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Abstract

A counterpart of Tutte’s Theorem and Berge’s formula is proved for open
graphs with perfect (maximum) internal matchings. Properties of barriers
and factor-critical graphs are studied in the new context, and an efficient
algorithm is given to find maximal barriers of graphs having a perfect internal
matching.
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1 Introduction

The concepts “open graph” and “perfect internal matching” have emerged from
the study of soliton automata introduced in [11]. In this graph theoretical model
for electronic switching at the molecular level, an undirected graph represents the
topological structure of a hydrocarbon molecule having an alternating pattern of
single and double bonds between its carbon atoms. A soliton is a solitary wave that
travels through chains of alternating single and double bonds in small packets, and
has the ability to switch each affected bond to its opposite. See [10] for the physico-
chemical aspects of soliton switching. Soliton waves are initiated and received at
some designated interface points, which are treated as distinguished vertices in the
graph model. These vertices are called external, and for convenience it is assumed
that a vertex is external iff it has degree one. Hence the notion “open graph”.

The fact that a molecule has an alternating pattern of single and double bonds
is captured by requiring that the underlying graph has a matching (e.g. the col-
lection of double bonds) which covers each vertex, with the possible exception of
the external ones. The status of any particular external vertex being covered or
not by such a “perfect internal” matching changes when a soliton is initiated from
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or received at that vertex. A soliton graph is defined as an open graph having a
perfect internal matching. The automaton behavior of soliton graphs arises from
the switching capability of the soliton. See [11] for the precise definition of soliton
automata.

Even though open graphs and perfect internal matchings have been introduced
in [2] with the above specific model in mind, there are other meaningful interpre-
tations of these concepts. Consider, for example, a project on which employees of
a company must work in couples. The company employs both full-time and other
(e.g. part-time) workers, but its preference is to assign as many full-time employees
to the project as possible. In addition, a known compatibility relationship among
the employees must be respected, which determines the possible couplings for the
job. The underlying graph G in this case consists of the employees as vertices
and the compatibility relation among them as edges. Vertices corresponding to
full-time employees are considered internal, whereas the group of other employees
constitutes the set of external vertices of G. The goal is to find a matching M of
G that covers a maximum number of internal vertices.

Considering the latter interpretation of open graphs and perfect/maximum in-
ternal matchings, a splitter is a collection of full-time workers such that no two of
these workers can work together by any optimal coupling. A barrier, on the other
hand, is a collection X of full-time workers (internal vertices) such that, when tak-
ing out X from the compatibility graph G, the number of odd internal components
(i.e., connected components consisting of an odd number of internal vertices) in
G−X exceeds the cardinality of X by the deficiency of G, which is the number of
full-time workers remaining idle by any optimal coupling. Clearly, for collections of
full-time workers, being a barrier is a stronger property than being just a splitter.

Regarding the soliton automaton model, it turns out that an internal vertex
(carbon atom) v may belong to a barrier only if v is “positively inaccessible” for
the soliton with respect to any state (perfect internal matching) M . By this we
mean that every M -alternating path reaching v (if any) starting from an external
vertex will arrive at v on an M -negative edge (i.e. single bond). Consequently,
whenever the soliton first arrives at v on edge e, it must return to v before quitting,
and then leave v on the same edge e in the opposite direction. (See the definition of
soliton paths/walks in [11].) It follows that a viable soliton graph, in which every
carbon atom can be reached by the soliton in an appropriate state, has a unique
maximal barrier, namely the set of its inaccessible vertices.

The present paper is a synthesis of the results obtained in [4], [5], and [6] with
a special emphasis on barriers. A new shorter proof is given for Tutte’s Theorem
for open graphs with perfect internal matchings, and Berge’s Formula is proved
as a consequence of this theorem. Barriers are studied in the context of a suitable
closure operation, which allows for an analysis of perfect internal matchings in open
graphs via perfect matchings of their closures. Maximal splitters in open graphs
are compared with maximal barriers in closed graphs, and, using a result from [6],
an algorithm is worked out to isolate maximal barriers in linear time.
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2 Graphs and matchings

By a graph, throughout the paper, we mean a finite undirected graph in the most
general sense, with multiple edges and loops allowed. Our notation and terminology
follows [14]. For a graph G, V (G) and E(G) will denote the set of vertices and the
set of edges of G, respectively. An edge e = (v1, v2) in E(G) connects two vertices
v1, v2 ∈ V (G), which are called the endpoints of e, and e is said to be incident with
v1 and v2. If v1 = v2, then e is called a loop around v1. Two edges sharing at least
one endpoint are said to be adjacent in G. A subgraph G′ of G is a graph such that
V (G′) ⊆ V (G) and E(G′) ⊆ E(G). If X ⊆ V (G) then G[X] denotes the subgraph
of G for which V (G[X]) = X and E(G[X]) consists of the edges of G having both
endpoints in X. The notation G − X is a shorthand for G[V (G) − X].

For a graph G, the degree of a vertex v, denoted d(v), is the number of occur-
rences of v as an endpoint of some edge in E(G). According to this definition, every
loop around v contributes two occurrences to the count. Vertex v is called external
if d(v) = 1, internal if d(v) ≥ 2 and isolated if d(v) = 0. External edges are those
that are incident with at least one external vertex, and an internal edge is one that
is not external. The sets of external and internal vertices of G will be denoted by
Ext(G) and Int(G), respectively. Graph G is called open if Ext(G) 6= ∅, otherwise
G is closed.

A matching M of graph G is a subset of E(G) such that no vertex of G occurs
more than once as an endpoint of some edge in M . As the endpoints of loops count
twice, such edges cannot participate in M . The endpoints of the edges contained
in M are said to be covered by M . A perfect (maximum) matching of G is a
matching that covers all (respectively, a maximum number of) vertices in G, and a
perfect internal (maximum internal) matching is one that covers all (respectively,
a maximum number of) internal vertices in G. In this paper we are primarily
interested in perfect internal matchings of graphs.

An edge e ∈ E(G) is said to be allowed (mandatory) if e is contained in some
(respectively, all) perfect internal matching(s) of G. Forbidden edges are those that
are not allowed. We will also use the term constant edge to identify an edge that is
either forbidden or mandatory. A mandatory external vertex is one that is covered
by all perfect internal matchings.

An open graph having a perfect internal matching is called a soliton graph. Let
G be a soliton graph, fixed for the rest of this section, and let M be a perfect
internal matching of G. An edge e ∈ E(G) is said to be M -positive (M -negative)
if e ∈ M (respectively, e 6∈ M). An M -alternating path (cycle) in G is a path
(respectively, even-length cycle) stepping on M -positive and M -negative edges in
an alternating fashion. Let us agree that, if the matching M is understood or
irrelevant in a particular context, then it will not explicitly be indicated in these
terms.

An external alternating path is one that has an external endpoint. If both end-
points of the path are external, then it is called a crossing . An alternating path is
positive (negative) if it is such at its internal endpoints (if any), meaning that the
edges incident with those endpoints are positive (respectively, negative). A positive
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(negative) alternating fork is a pair of vertex-disjoint positive (respectively, nega-
tive) external alternating paths leading to two distinct internal vertices. Although
it sounds somewhat confusing, we still say that these two vertices are connected by
the fork.

An alternating unit is either a crossing or an alternating cycle. Switching on
an alternating unit amounts to changing the sign of each edge along the unit. It is
easy to see that the operation of switching creates a new perfect internal matching
for G. Moreover, as it was proved in [1], every perfect internal matching of G can
be transformed into any other perfect internal matching by switching on a number
of pairwise disjoint alternating units. It follows that any edge e of G is not constant
iff there exists an alternating unit passing through e with respect to every perfect
internal matching of G.

Since in our treatment we are particular about external vertices, we do not want
to allow that subgraphs of G possess external vertices other than the ones present
in G. Therefore whenever this happens, and an internal vertex v becomes external
in a subgraph G′ of G, we shall augment G′ by a looping edge around v. This
augmentation will be understood automatically throughout the paper.

3 Perfect matchings vs. perfect internal matchings

There is an easy way to neutralize the concession that external vertices in open
graphs need not be covered by perfect internal matchings, without actually with-
drawing this privilege. In any open graph G, attach a loop around each external
vertex to obtain a closed graph Ḡ. Since loops cannot be part of any matching, the
augmentation G 7→ Ḡ will simply cancel the privilege existing in G by turning every
external vertex into an internal one. Thus, perfect matchings of G can trivially be
recaptured as perfect internal matchings of Ḡ. This observation will allow us to
conveniently refer to results on maximum/perfect matchings without leaving the
realm of our current framework dealing with maximum/perfect internal matchings,
yet preserving the original scope of these results simply by saying that the objects
of consideration are closed graphs.

On the other hand, perfect internal matchings, too, can be studied as ordinary
perfect matchings by introducing an appropriate closure operation on graphs.

Definition 3.1. The closure of graph G is the closed graph G∗ for which:
— V (G∗) = V (G) if |V (G)| is even, and

V (G∗) = V (G) ∪ {c}, c 6∈ V (G) if |V (G)| is odd;
— E(G∗) = E(G) ∪ {(v1, v2)|vi ∈ Ext(G) ∪ {c}}.

Intuitively, G∗ is obtained from G by connecting its external vertices with each
other in all possible ways. If |V (G)| happens to be odd, then a new vertex c is
added to G, and edges are introduced from c to all of the external vertices. The
edges of G∗ belonging to E(G∗) − E(G) are called marginal, and the vertex c is
referred to as the collector. Edges incident with the collector vertex will be called
collector, too.
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Notice that, in the specification of E(G∗), it is not required that v1 6= v2.
Consequently, in G∗, there will be a loop around each external vertex of G. These
loops have no specific role if G has at least two external vertices, although their
introduction as trivial forbidden edges is harmless. If there is only one external
vertex in G, however, the loop is essential to make G∗ closed.

Proposition 3.1. Graph G has a perfect internal matching iff G∗ has a perfect
matching.

Proof. If G∗ has a perfect matching M∗, then deleting the marginal edges from
G∗ and M∗ will leave G with a perfect internal matching. Conversely, if G has a
perfect internal matching M , then it is always possible to extend M to a perfect
matching of G∗ by matching up the external vertices of G not covered by M in an
arbitrary way, using the collector vertex c if necessary. Obviously, the use of c is
necessary if and only if |V (G)| is odd.

Lemma 3.1. Every M -alternating crossing of G gives rise to an M∗-alternating
cycle of G∗ by any extension of M to a perfect matching M∗. Conversely, for an
arbitrary perfect matching M∗ of G∗, every M∗-alternating cycle of G∗ containing
at least one marginal edge opens up to a number of alternating crosses with respect
to the restriction of M∗ to E(G) when the marginal edges are deleted from G∗.

Proof. Straightforward, using the same argument as under Proposition 3.1.

Corollary 3.1. For every edge e ∈ E(G), e is allowed in G iff e is allowed in G∗.

Proof. Indeed, by Lemma 3.1,
e is allowed in G

iff there exists a M -alternating unit through e in G
iff there exists an M∗-alternating cycle through e in G∗

iff e is allowed in G∗.

Recall from [14] that a closed graph G is elementary if its allowed edges form
a connected subgraph. We shall adopt this definition for open graphs with the
additional requirement that the allowed edges must cover all of the external vertices.

Based on Corollary 3.1, the following statement was proved in [4].

Proposition 3.2. A connected graph G is elementary iff G∗ is elementary.

In general, the subgraph of G determined by its allowed edges has several con-
nected components, which are called the elementary components of G. An elemen-
tary component C is external if it contains external vertices of G, otherwise C is
internal . Notice that an elementary component can be as small as a single external
vertex of G. Such a component is called degenerate, and it is the only exception
from the general rule that elementary components are elementary graphs. A de-
generate external component is the external endpoint of a forbidden external edge.
A mandatory elementary component is a single mandatory edge e ∈ E(G) with a
loop around one or both of its endpoints, depending on whether e is external or
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Figure 1: Marginal edges that are forbidden in G∗.

internal. Note that an edge connecting two external vertices is not mandatory in
G, therefore it is not a mandatory elementary component either.

Observe that if v is a non-mandatory external vertex and the collector vertex
c is present in G∗, then the edge (v, c) cannot be forbidden in G∗. For, if M is a
perfect internal matching of G not covering v, then it is always possible to extend
M to a perfect matching of G∗ by adding the edge (v, c) first. Consequently, if G
is elementary, then only those marginal edges can become forbidden in G∗ that are
different from the collector ones. (An elementary graph G contains a mandatory
external vertex iff G consists of a single edge with a number of loops attached to
one of its endpoints, in which case the collector vertex is not present in G∗.) Fig.
1 shows a simple example where all these edges are indeed forbidden.

If G is not elementary, then several of its external elementary components may
be amalgamated in G∗. The internal elementary components of G, however, will
remain intact in G∗, as every forbidden edge of G is still forbidden in G∗. The
mandatory external elementary components of G, too, will remain mandatory in
G∗. We claim that the union of all non-mandatory external elementary components
of G, together with the collector vertex if that is present, forms one elementary
component in G∗, called the amalgamated elementary component. Indeed, as we
have already seen, every collector edge incident with a non-mandatory external
vertex is allowed in G∗. Similarly, if e is an edge in G∗ connecting two external
vertices of G belonging to different non-mandatory elementary components, then
it is always possible to find a perfect internal matching M of G by which the two
endpoints of e are not covered. Then M can be extended to a perfect matching
M∗ of G∗ by putting in the edge e first, so ensuring that e becomes allowed in G∗.

The observations of the previous paragraph are summarized in Theorem 3.1
below, which provides a characterization of the elementary decomposition of G∗.

Theorem 3.1. The set of elementary components of G∗ consists of:

(i) the internal elementary components of G;

(ii) the mandatory external elementary components of G;

(iii) the amalgamated elementary component, which is the union of all non-
mandatory external elementary components and the collector vertex.
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The closure operation provides a hint toward a new interpretation of our frame-
work dealing with open graphs and perfect/maximum internal matchings. The key
observation is that, in our arguments relating perfect internal matchings of G to
perfect matchings of G∗ and vice versa, we did not essentially use the fact that the
external vertices have degree 1. The idea works for any set of vertices designated as
external in G. The concept arising from this remark is that of a perfect (maximum)
matching with a “specified potential defect” explained below.

Let G be a graph, and fix S ⊆ V (G) arbitrarily. A perfect (maximum) S-
matching of G is a matching M that covers all (respectively, a maximum number
of) vertices in S. Vertices in V (G)−S need not, although they may be covered by
M . The set Spd(G) = V (G)−S is the specified potential defect of such matchings,
which takes over the role of Ext(G) in this setting. Although this generalization
appears to be substantial for the first sight, a closer look at the definition reveals
that it is merely a technical matter. Attach, to each vertex v ∈ Spd(G), a handle
consisting of two adjacent edges leading to a new external vertex v̂. Furthermore,
“protect” the vertices in V (G) with degree one by attaching a loop around them.
Let Ĝ denote the resulting graph. Then the restriction of every perfect (maxi-
mum) internal matching M̂ of Ĝ to V (G) is a perfect (maximum) S-matching M
of G that covers v iff M̂ covers v̂. Moreover, the connection M̂ 7→ M is a one-
to-one correspondence. Consequently, in the study of S-matchings we can always
assume, without essential loss of generality, that the vertices belonging to the spec-
ified potential defect have degree 1. In this way all substantial results on internal
matchings can be rephrased as results on matchings with a specified potential defect
in a straightforward way.

The following sections will show that obtaining results on open graphs with
perfect/maximum internal matchings from corresponding classical results on closed
graphs is by no means a matter of trivial rephrasing, although the results themselves
in most cases come as appropriate rewordings of the original statements.

4 Tutte’s Theorem and Berge’s Formula

First we restate and prove Tutte’s well-known theorem [15] in terms of perfect
internal matchings. Let X ⊆ Int(G) be arbitrary, and consider the (connected)
components of G − X. Component K is called external or internal depending
on whether or not K contains external vertices. An odd internal component is
an internal one consisting of an odd number of vertices. The number of such
components is denoted by cin

o
(G,X). If M is a perfect internal matching of G, then

by the term “vertex x ∈ X is taken by component K” – or, equivalently, “K takes
x” – with respect to M we mean that x is connected to some vertex in K by an
M -positive edge.

Theorem 4.1 (Tutte’s Theorem). A graph G has a perfect internal matching iff
cin

o
(G,X) ≤ |X|, for all X ⊆ Int(G).

Proof. The “only if” part of the proof is the well-known counting argument: if G
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has a perfect internal matching M , then every odd internal component of G − X
must take a vertex from X with respect to M , so that cin

o
(G,X) ≤ |X|. To see the

“if” part, consider the closure G∗ of G, and prove that G∗ has a perfect matching
whenever cin

o
(G,Y ) ≤ |Y | holds for all Y ⊆ Int(G). Then, by Proposition 3.1, G

will have a perfect internal matching. Using Tutte’s original theorem, it is sufficient
to show that co(G

∗,X) ≤ |X| holds in G∗ for all X ⊆ V (G∗), where co(G
∗,X) is

the number of odd components in G∗ − X.
To avoid unnecessary complications caused by the collector vertex being present

in G∗ we can assume, without loss of generality, that |V (G)| is even. If |V (G)| were
odd, then we would rather “duplicate” an arbitrary external edge e of G – that
is, introduce a new external vertex with an incident edge adjacent to e – than
bother with the collector vertex when taking the closure. This slight modification
is equivalent to introducing an extra edge from the collector vertex to the internal
endpoint of one external edge, which preserves the number co(G

∗,X) as well as
the correspondence between the perfect internal matchings of G and the perfect
matchings of G∗ explained in Proposition 3.1.

Let X = Y ∪ {x1, x2, . . . , xk} ⊆ V (G∗) be arbitrary such that Y ⊆ Int(G) and
xi ∈ Ext(G), 1 ≤ i ≤ k for some k ≥ 0. We say that a component K in G∗ − X
is owned by xi if xi is connected to an internal vertex of K. Component K is
called the joint external component, denoted JX , if K contains an external vertex
of G. Clearly, JX is unique, provided that k < |Ext(G)|. Observe that each odd
component K of G∗−X falls in exactly one of the following three pairwise disjoint
groups.

Group g1: the odd internal components of G − Y ;
Group g2: the components owned by the vertices x1, . . . , xk;
Group g3: the component JX by itself, if it exists and is not in group g2.

Obviously, |g3| ≤ 1, |g2| ≤ k, and by assumption, |g1| ≤ |Y |. Thus,

co(G
∗,X) ≤ |Y | + k + 1 = |X| + 1.

It remains to show that co(G
∗,X) = |X| + 1 is impossible. This follows from the

fact that the parity of co(G
∗,X) is the same as that of |X|. Indeed, on the one hand,

the parity of |V (G∗)| is even. On the other hand, |V (G∗)| = |X| + |V (G∗ − X)|.
Concerning |V (G∗ − X)|, an odd (even) number of odd components in G∗ − X
contain an odd (even) number of vertices altogether, and any number of even
components contribute an even number of vertices to the count. Thus, in order
for |X| and |V (G∗ − X)| to have the same parity it is necessary that |X| and
co(G

∗,X) have the same parity, too. This concludes the proof of Theorem 4.1.

We are going to use Tutte’s Theorem to derive Berge’s Formula [9] on the defi-
ciency of graphs in our framework. Recall that the deficiency of a closed graph G,
denoted def(G), is the number of vertices left uncovered by any maximum matching
of G. Then, according to Berge’s Formula:

def(G) = max{co(G,X) − |X| | X ⊆ V (G)},
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where co(G,X) is the number of odd components in G − X.
For any graph G, let idef(G) denote the internal deficiency of G, that is, the

number of internal vertices left uncovered by any maximum internal matching of
G.

Theorem 4.2 (The Berge Formula). For any graph G,

idef(G) = max{cin

o
(G,X) − |X| | X ⊆ Int(G)}.

Proof. If G is closed, then the statement is equivalent to Berge’s original formula.
Therefore we can assume that G is open. We shall follow the idea outlined in [14,
Exercise 3.1.16]. Letting

δ′(G) = max{cin

o
(G,X) − |X| | X ⊆ Int(G)},

the inequality δ′(G) ≤ idef(G) is easily obtained by the standard counting argument
seen already in the “only if” part of the proof of Tutte’s Theorem. The argument is
as follows. If M is any maximum internal matching, then at most |X| odd internal
components of G − X can take a vertex from X with respect to M . It is therefore
inevitable that at least cin

o
(G,X) − |X| internal vertices of G remain uncovered by

M .
Now we turn to proving the inequality idef(G) ≤ δ′(G). If δ′(G) = 0, then the

inequality follows from Theorem 4.1. Assuming that δ′(G) ≥ 1, construct a new
graph G′ from G by adjoining a set H of δ′(G) new vertices to G, joining each of
these vertices to each internal vertex of G and also to each other. Furthermore,
attach a loop around each vertex in H to ensure that these vertices become internal
in G′. It is sufficient to prove that G′ has a perfect internal matching. Indeed, if
M ′ is a perfect internal matching of G′, then leaving out those edges of M ′ which
are incident with vertices in H results in a matching M of G that covers at least
|Int(G)| − δ′(G) vertices, showing that idef(G) ≤ δ′(G).

We use Theorem 4.1 to show that G′ has a perfect internal matching. Let
X ⊆ Int(G′) be arbitrary, and concentrate on the set of components in G′ − X. If
X = ∅, then this set consists of a single external component. (Remember that G
is open, and H 6= ∅.) Thus, cin

o
(G′,X) = 0. If |X| ≥ 1 and H 6⊆ X, then G′ − X

has at most one internal component, so that cin

o
(G′,X) ≤ 1 ≤ |X|. If, however,

X = H ∪ Y , then the components of G′ − X coincide with those of G − Y . Thus,

cin

o
(G′,X) = cin

o
(G,Y ) ≤ δ′(G) + |Y | = |H| + |Y | = |X|.

The statement now follows from Tutte’s Theorem.

Another fundamental theorem in matching theory is the Gallai-Edmonds Struc-
ture Theorem ([12],[13]). The main idea of this theorem is to decompose a closed
graph G into three sets of vertices as follows.

• D(G): vertices not covered by at least one maximum matching of G;

• A(G): vertices in V (G) − D(G) adjacent to at least one vertex in D(G);
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• C(G) = V (G) − A(G) − D(G).

The five statements of the theorem are listed below. To explain statements (a) and
(d), a closed graph G is called factor-critical if G − v has a perfect matching for
every v ∈ V (G). In this case, a near-perfect matching of G is one that covers all
vertices but one. Clearly, every factor-critical graph is connected and has an odd
number of vertices.

(a) The components of the subgraph induced by D(G) are factor-critical.

(b) The subgraph induced by C(G) has a perfect matching.

(c) The bipartite graph obtained from G by deleting the vertices of C(G) and
the edges spanned by A(G) and by contracting each component of D(G) to
a single vertex has positive surplus (as viewed from A(G)).

(d) If M is any maximum matching of G, it contains a near-perfect matching
of each component of (the graph induced by) D(G), a perfect matching of
C(G), and matches all vertices of A(G) with vertices in distinct components
of D(G).

(e) def(G) = c(D(G)) − |A(G)|, where c(D(G)) denotes the number of compo-
nents in G[D(G)].

The counterpart of the Gallai-Edmonds Structure Theorem for maximum in-
ternal matchings was proved in [3]. Not surprisingly, the difference between the
statement of the original theorem and that of its counterpart is of a rewording
nature, which can be summarized as follows:

— the set D(G), as well as A(G), is a subset of Int(G);

— the subgraph induced by C(G), which will contain all the external vertices,
has a perfect internal matching;

— in general, the words “perfect matching” and “maximum matching” are re-
placed by “perfect internal matching” and “maximum internal matching”,
respectively;

— in statement (e) above, def(G) is replaced by idef(G).

In the light of the Gallai-Edmonds Theorem one can easily argue about the
deficiency of the graph G∗. In general, it cannot be expected that def(G∗) = idef(G)
holds. Equation of these two deficiencies could only be guaranteed if the decision
whether to add a collector vertex to V (G) or not depended on the number of vertices
in C(G) rather than V (G). This follows immediately from statements (d) and (e)
above. If the parity of |V (G)| and |C(G)| is the same, then C(G∗) = (C(G))∗, so
that def(G∗) = idef(G). Otherwise C(G∗) 6= (C(G))∗ and def(G∗) = idef(G) + 1,
because the closure of G in this case is implemented through an incorrect closure
of C(G), and the discrepancy caused by the missing or unjustified collector vertex
in the latter closure contributes +1 to the overall deficiency.
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5 Splitters, barriers, and the canonical partition

of elementary graphs

Recall from [14] that a barrier of a closed graph G is a set X ⊆ V (G) for which the
maximum is reached in Berge’s formula. We extend this definition to open graphs
in the following natural way.

Definition 5.1. A barrier of graph G is a set X ⊆ Int(G) for which |X| =
cin

o
(G,X) − idef(G).

Let X be a barrier in graph G (open or closed). It is evident that, for every
x ∈ X, X − {x} is a barrier in G − x. Moreover, the (internal) deficiency of G− x
is one greater than that of G. Consequently, X ⊆ C(G) ∪ A(G), according to the
Gallai-Edmonds decomposition of G. As it was proved in [14, Theorem 3.3.15],
A(G) is the intersection of all (inclusionwise) maximal barriers in a closed graph
G. For the reader’s convenience we repeat the leading argument of this proof here,
without assuming that G is closed.

Theorem 5.1. The set A(G) is contained in every maximal barrier of G.

Proof. Let X be any maximal barrier. We claim that A(G − X) = ∅. For, if
A(G−X) were not empty, then X∪A(G−X) would be a barrier properly containing
X. It is also easy to see that, for any vertex u ∈ A(G), A(G−u) = A(G)−{u}, and
for any u ∈ C(G), A(G − u) ⊇ A(G). (See [14, Lemma 3.2.2] for these statements
in closed graphs.) Thus, A(G) ⊆ A(G − X) ∪ X, so that A(G − X) = ∅ implies
A(G) ⊆ X.

Corollary 5.1. For every maximal barrier X of G, X = A(G) ∪ Y , where Y is a
maximal barrier of C(G).

Proof. Evident by Theorem 5.1, since A(G) separates C(G) from D(G).

Our concern in this paper is with maximal barriers of graphs. Therefore, on
the basis of Corollary 5.1, we can restrict our attention to graphs having a perfect
internal matching. Let G be a graph (open or closed) having a perfect internal
matching, fixed for the rest of this paper. For two internal vertices u and v of G,
we say that u and v attract (repel) each other if an extra edge e = (u, v) becomes
allowed (respectively, forbidden) in the graph G + e. The binary relation of two
vertices repelling each other is denoted by ∼. The following simple statement was
proved in [4].

Lemma 5.1. Two internal vertices u and v of G attract each other iff u and v
can be connected by a positive alternating path or fork with respect to every perfect
internal matching of G.

A vertex v ∈ Int(G) is called accessible with respect to a perfect internal match-
ing M if there exists a positive external M -alternating path leading to v. It was
proved in [4] that a vertex v is accessible with respect to some perfect internal
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matching of G iff v is accessible with respect to all perfect internal matchings of G.
It is therefore meaningful to say that vertex v is accessible in G without specifying
the matching M . Vertex v is inaccessible if it is not accessible. An edge e ∈ E(G)
is called viable if at least one endpoint of e is accessible. Otherwise e is said to be
impervious. See also [11] for an equivalent definition of impervious edges.

Definition 5.2. A set X ⊆ Int(G) is a splitter if every two vertices of X repel
each other in G. Splitter X is inaccessible if all of its vertices are such.

The concept maximal splitter (maximal inaccessible splitter) is meant inclusion-
wise. Notice that, in this way, a maximal inaccessible splitter is not necessarily a
maximal splitter.

For any set X ⊆ Int(G), let GX be the graph obtained from G by connecting,
with an extra edge, each vertex in X with all internal vertices of G, provided that
this edge does not already exist in G. If G = GX , then we say that G is X-complete.

Lemma 5.2. For every X ⊆ Int(G), X is a splitter in G iff X is a splitter in GX .

Proof. Let Ge be the graph obtained from G by adding just one edge e towards
constructing GX . In order to prove the lemma it is sufficient to show that if X is
a splitter in G, then it is one in Ge as well. Assume, to the contrary, that X is a
splitter in G, yet, two vertices x, y ∈ X attract each other in Ge. Let M be any
perfect internal matching of Ge that is also a perfect internal matching of G, i.e.,
one by which the edge e is negative. By Lemma 5.1, x and y can be connected
by a positive M -alternating path or fork β. Leaving out the edge e, β splits into
several subpaths. Since one endpoint of e is in X, it is inevitable that one of these
subpaths becomes a positive M -alternating path connecting two vertices in X, or
two of them constitute a positive M -alternating fork connecting two such vertices.
Either way, this contradicts X being a splitter in G.

We claim that any two distinct vertices u, v in a barrier X of G repel each other.
Indeed, assume that the edge e = (u, v) is part of some perfect internal matching
M of G+e. Since |X| = cin

o
(G,X) = cin

o
(Ge,X), at least two odd components of in

Ge −X could not take a vertex from X with respect to M ; a contradiction. Thus,
every barrier is a splitter. The converse of this statement is not true, however, as
shown by the graph of Fig. 2. It is also clear by Corollary 3.1 that a set X ⊆ Int(G)
is a splitter in G iff X is a splitter in G∗. As we shall see, splitters are in close
relationship with extreme sets of vertices. Recall from [14] that a set of vertices X
in a closed graph G is extreme if def(G − X) = def(G) + |X|.

Proposition 5.1. A set X ⊆ V (G) of a closed graph G having a perfect matching
is a splitter iff X is extreme.

Proof. By Lemma 5.2 we can assume, without loss of generality, that G is X-
complete. If X is extreme, then G cannot have a perfect matching containing an
edge in X × X. Indeed, if M was such a matching, then the restriction of M to
G − X would cover more than |V (G)| − |X| vertices. Thus, X is a splitter.
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maximal splitter

Figure 2: A maximal splitter that is not a barrier

Now let X be a splitter. Obviously, def(G − X) ≤ |X|. Assume, by way of
contradiction, that def(G − X) = |X| − k for some k > 0, and let M be any
maximum matching of G−X. Couple up each vertex in G−X not covered by M
with an arbitrary vertex in X, and extend M by these edges to form a matching M̄
in G. (Remember that G is X-complete.) Observe that k must be odd, otherwise
M̄ could further be extended to a perfect matching of G containing k/2 edges from
X ×X, contradicting the fact that X is a splitter. On the other hand, k cannot be
odd, for |V (G)| is even.

Proposition 5.2. A set X ⊆ Int(G) is a barrier in G∗ iff |X| = cin

o
(G,X) or

|X| = cin

o
(G,X) + 1.

Proof. Using the trick of duplicating an external edge e of G when |V (G)| is odd, as
seen under the proof of Tutte’s Theorem, we can assume, without loss of generality,
that |V (G)| is even. The reason is that X is a barrier in G∗ iff X is one in the
closure of the augmented graph Ge. Consider the components in G−X and those
in G∗ − X. The only difference between these two groups is that the external
componets in G−X are joined to form one component JX in G∗−X. Assume that
JX is even. Then, clearly, X is a barrier in G∗ iff |X| = cin

o
(G,X). On the other

hand, if JX is odd, then X is a barrier in G∗ iff |X| = cin

o
(G,X) + 1. Moreover, if

|X| = cin

o
(G,X), then JX must be even, and if |X| = cin

o
(G,X) + 1, then JX must

be odd.

Corollary 5.2. Every barrier of G is also a barrier in G∗.

Theorem 5.2. Every maximal splitter of G is a barrier in G∗.

Proof. We can again assume, without loss of generality, that |V (G)| is even. Let
Y be a maximal splitter of G. By Proposition 5.2 it is enough to prove that
|Y | = cin

o
(G,Y ) or |Y | = cin

o
(G,Y )+1. Since Y is also a splitter in G∗, it is extreme

in that graph according to Proposition 5.1. Thus, by [14, Lemma 3.3.8], Y can be
extended to a maximal barrier X of G∗. Clearly, X − Y = {x1, . . . , xk} ⊆ Ext(G),
because Y is maximal. Concentrate on the odd components of G∗−X, and observe
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that the situation is analogous to the one analyzed in the proof of Tutte’s Theorem.
Each of these components falls in one of the three groups specified there. Note that
the number of odd components in G∗ −X can reach the barrier level |X| = |Y |+ k
only if the size of group g1 is at least |Y | − 1, that is, cin

o
(G,Y ) ≥ |Y | − 1. On the

other hand, cin

o
(G,Y ) ≤ |Y | is guaranteed by Tutte’s Theorem. The proof is now

complete.

Proposition 5.3. No barrier exists in an elementary soliton graph G, other than
the empty set.

Proof. The empty set is trivially a barrier in all soliton graphs. By way of con-
tradiction, assume that X ⊆ V (G) is a non-empty barrier. Since cin

o
(G,X) = |X|,

each vertex in X must be taken by an appropriate odd internal component of G−X
with respect to any perfect internal matching M of G. Consequently, all edges con-
necting X to other components of G − X are forbidden. This implies that either
the allowed edges of G do not form a connected subgraph, or, when they do, none
of the external vertices of G are covered by them; a contradiction.

Corollary 5.3. For every maximal splitter X of an elementary soliton graph G
having at least one internal vertex, cin

o
(G,X) = |X| − 1.

Proof. By Proposition 5.2 and Theorem 5.2 we know that either cin

o
(G,X) = |X|−1

or cin

o
(G,X) = |X|. The latter equation is ruled out, however, due to Proposi-

tion 5.3.

The proof of the following statement uses the exact same argument that was
introduced under Proposition 5.3.

Proposition 5.4. Every barrier X of G is an inaccessible splitter.

Proof. As it has been noticed earlier, every barrier is a splitter. It is therefore
sufficient to prove that every vertex of X is inaccessible. Let M be an arbitrary
perfect internal matching of G. Since X is a barrier, every vertex v ∈ X is taken
by some odd internal component of G − X with respect to M . Consequently, any
alternating path starting out from v on an M -positive edge is locked forever inside
the subgraph of G determined by the odd internal components of G − X plus X.
In other words, v is inaccessible.

It is well-known (cf. [14]) that the collection of maximal barriers in a closed
elementary graph G forms a partition of V (G), called the canonical partition of G.
Canonical partition is established in open graphs in the same way, using maximal
splitters rather than barriers.

Theorem 5.3. The collection of maximal splitters in an elementary graph G forms
a partition of Int(G).



Splitters and Barriers in Open Graphs ... 711

Proof. Let P = {X1, . . . ,Xn} be the collection of maximal splitters in G. By
Theorem 5.2, each Xi (1 ≤ i ≤ n) can be extended to a maximal barrier X∗

i
of

G∗. Since X∗

i
\ Xi may only contain external vertices of G for every 1 ≤ i ≤ n, it

follows that P is the restriction of the canonical partition of G∗ to Int(G). Thus,
P is a partition itself.

Theorem 5.3 above states that the relation ∼ of two internal vertices repelling
each other is an equivalence of Int(G), provided that G is elementary. This fact
was first observed in [1]. If G is not elementary, then ∼ fails to be transitive in
general. It is an important question, however, if the restriction of ∼ to a concrete
non-degenerate elementary component C of G, denoted ∼ |C , is still an equivalence,
and if so, does it coincide with canonical equivalence in C alone? As it was pointed
out in [4], ∼ |C can be specified as canonical equivalence in the elementary graph
Ch, which is obtained from C by adding the so called “hidden edges”. A hidden edge
(u, v) in C between two distinct internal vertices arises from a negative alternating
path or fork α connecting u and v with respect to any perfect internal matching
M of G, such that no vertex of α, other than its two endpoints u and v, lies in C.
Following [14], if α is a path, then it is called a negative (M -)ear to C. Clearly, all
hidden edges are forbidden both in G and Ch, but their presence affects canonical
equivalence in Ch in such a way that it will eventually coincide with ∼ |C . See
Fig. 3 for two hidden edges, one in elementary component C1, and the other in
C4. Notice that the two vertices in C1 not connected by the hidden edge fall in the
same canonical class in C1, but different canonical classes according to (C1)h. This
holds for the elementary component C4 as well. Let us agree that, in the future,
by a canonical class of C we shall in fact mean one of Ch.

6 Finer structure of maximal splitters and barri-

ers

Recall that a closed graph G is factor-critical if G − v has a perfect matching for
every v ∈ V (G). We shall adopt this definition word by word for open graphs,
assuming of course that v ∈ Int(G), and requiring that G− v has a perfect internal
matching. We also require that G be connected, because, unlike for closed graphs,
this property does not come as a consequence. The following simple result is quoted
from [5].

Proposition 6.1. A connected open graph G is factor-critical iff G has a perfect
internal matching and every internal vertex in G is accessible.

Corollary 6.1. No barrier exists in factor-critical open graphs, other than the
empty set.

Proof. Immediate by Propositions 5.4 and 6.1. Notice that the statement trivially
holds for closed graphs as well, even though such graphs do not have a perfect
(internal) matching. The reason is that a factor-critical closed graph G is the
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single component of D(G) by itself, and all barriers lie completely in A(G)∪C(G).
(See the Gallai-Edmonds decomposition of graphs.)

Using factor-critical graphs, the following characterization of maximal splitters
was obtained in [5]. Recall that a component K is degenerate if K consists of a
single external vertex of G.

Theorem 6.1. For a set X of internal vertices of a soliton graph G, the following
two statements are equivalent.

(i) The set X is a maximal splitter.
(ii) Each non-degenerate component of G − X is factor-critical such that

(iia) |X| = cin

o
(G,X) + 1, or

(iib) |X| = cin

o
(G,X) with every external component of G − X being

degenerate.
Furthermore, condition (iib) holds in (ii) above iff X is inaccessible.

The structure of elementary components in a soliton graph G has been analysed
in [4]. To summarize the main results of this analysis, we first need to review
some of the key concepts introduced in that paper. The reader can obtain a good
understanding of these concepts by following the definitions to come on Fig. 3.

An elementary component of G is viable if it does not contain impervious allowed
edges. (Recall that an edge e is impervious if both endpoints of e are inaccessible.)
In Fig. 3, all elementary components, with the exception of C7, are viable. A viable
internal elementary component C is one-way if all external alternating paths (with
respect to any perfect internal matching M) enter C in vertices belonging to the
same canonical class of C. This unique class, as well as the vertices belonging to this
class, are called principal. Furthermore, every non-degenerate external elementary
component is considered a priori one-way (with no principal canonical class, of
course). In Fig. 3, elementary components C1, C4, and C6 are one-way internal,
with their principal vertices encircled. A viable elementary component is two-way
if it is not one-way. An impervious elementary component is one that is not viable.

We say that elementary component C ′ is two-way accessible from component
C with respect to any (or all) perfect internal matching(s) M , in notation CρC ′, if
C ′ is covered by a negative (M -)ear to C. The ear itself might be closed, meaning
that its two endpoints are the same. It is required, though, that if C is one-way
and internal, then the endpoints of this ear are not in the principal canonical
class of C. As it was shown in [4], the two-way accessible relationship is matching
invariant. In Fig. 3, C2 is two-way accessible from C1, C3 from C2, and C5 from
C4. (But C3 is not two-way accessible from C1, and C2, C3, C4, C5 are not two-
way accessible from C6, even though there exists a negative closed ear originating
from the principal vertex of C6 that covers all four of these components.) It was
also proved in [4] that the transitive closure of the two-way accessible relationship
between elementary components is asymmetric.

A family of elementary components in G is a block of the partition induced
by the smallest equivalence relation containing ρ. A family F is called external if
it contains an external elementary component, otherwise F is internal. Family F
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Figure 3: The structure of elementary components in a soliton graph
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is viable if every elementary component in F is such. Otherwise the family F is
impervious. A soliton graph G is viable if all of its families are such. The graph
of Fig. 3 has five families, four of which are viable. The only external family is a
stand-alone degenerate external elementary component.

The first group of results obtained in [4] on the structure of elementary compo-
nents of G can now be stated as follows.

Theorem 6.2. Each viable family of G contains a unique one-way elementary
component, called the root of the family. Each internal vertex in every member of
the family, except for the principal vertices of the root, is accessible. The principal
vertices themselves are inaccessible, but all other vertices are only accessible through
them.

For two distinct viable families F1 and F2, F2 is said to follow F1, in notation
F1 7→ F2, if there exists an edge in G connecting any non-principal vertex in F1

with a principal vertex of the root of F2. The reflexive and transitive closure of 7→ is
denoted by

∗

7→. The second group of results in [4] characterizes the edge-connections
between members inside one viable family, and those between two different families.

Theorem 6.3. The following three statements hold for the families of any soliton
graph G.

1. An edge e inside a viable family F is impervious iff both endpoints of e are
in the principal canonical class of the root. Every forbidden edge e connecting
two different elementary components in F is part of a negative ear to some
member C ∈ F .

2. For every edge e connecting a viable family F1 to any other family (viable
or not) F2, at least one endpoint of e is principal in F1 or F2. If the endpoint
of e in F1 is not principal, then F2 is viable and it follows F1.

3 The relation
∗

7→ is a partial order between viable families, by which the exter-
nal families are maximal elements. This relation reflects the order in which
families are reachable by alternating paths starting from external vertices.

In the light of Theorem 6.2 and Proposition 6.1 it is immediate that a soliton
graph G is factor-critical iff G consists of a single non-degenerate external family.
Thus, Corollary 6.1 is in fact a generalization of Proposition 5.3. The following
theorem is a further generalization along this line.

Theorem 6.4. Every viable soliton graph has a unique maximal barrier, which is
the collection of its inaccessible vertices.

Proof. By Theorem 6.2 and Proposition 5.4 it is sufficient to show that the set P of
all principal vertices of a viable soliton graph G is a barrier. Let F be an arbitrary
internal family of G with root C, and let XC be the the set of principal vertices
in C. By Theorem 6.3, the principal vertices of the families that follow F separate
F from all the families that are below F in the Hasse diagram of the partial order
∗

7→. Similarly, the vertices XC separate all other families from F . Thus, we can
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concentrate on the family F alone as a closed graph, and prove that XC is a barrier
in that graph. Doing this for all internal families will then prove that P is a barrier
in G.

As we have already seen, XC is a canonical class of Ch (remember the extra
hidden edges being present in Ch), therefore a maximal barrier in that graph. Let K
be an odd component of F −XC , and consider an arbitrary elementary component
D of G present as a subgraph in K −C. As D is a two-way member of family F , it
can be reached by a cascade of negative ears originating from the root C. Since all
hidden edges are present in Ch, and the graph K − C — being essentially a group
of interconnected two-way elementary components of F — has an even number of
vertices, the restriction of K to C defines an odd component of Ch−XC . Moreover,
this correspondence between the odd components of F −XC and those of Ch −XC

is one-to-one. Consequently, since XC is a barrier in Ch, it must be one in F as
well.

Corollary 6.2. Every maximal inaccessible splitter of G is a barrier.

Proof. Let v(G) be the subgraph of G determined by its viable families. We first
prove that each principal vertex u of G repels each internal vertex w lying in
G − v(G). Let M be a perfect internal matching of G and suppose, by way of
contradiction, that there exists a positive M -alternating path p connecting u and
w. Furthermore, starting from u let z denote the last vertex of p which belongs
to v(G). It is clear that the subpath of p from u to z is positive at its both ends.
However, by Theorem 6.3, z is also a principal vertex, consequently Theorem 6.4
implies that u ∼ z, which is a contradiction.

By the previous paragraph, every maximal inaccessible splitter X of G is the
union of the set S of principal vertices in G and a maximal splitter Y in G− v(G).
Since G−v(G) is a closed graph, Y is a barrier in that graph by Theorem 5.2. Also,
S is a barrier in v(G). By Theorem 6.3, all edges connecting v(G) to G − v(G)
originate from vertices in S, which implies that X = S ∪ Y is a barrier in G.

Corollary 6.3. A set X ⊆ Int(G) is a maximal barrier in G iff X is a maximal
inaccessible splitter.

Proof. Immediate by Proposition 5.4 and Corollary 6.2.

If G is closed, then Corollary 6.3 says that maximal splitters coincide with
maximal barriers in G. This result follows already from Theorem 5.3, considering
that G∗ = G for closed graphs.

On the basis of Corollaries 6.2 and 6.3 we can outline a simple procedure to find
one random maximal barrier in a soliton graph G. The procedure uses a global set
variable B, the contents of which is initially empty.

Step 1. Isolate the subgraph v(G) consisting of the viable families of G, and
add the principal (inaccessible) vertices of v(G) to B.
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Step 2. If G = v(G), then terminate. Otherwise, in the remainder graph
G − v(G) – wich is now closed – attach an external edge to an arbitrary vertex u
to obtain a soliton graph Gu. Set G := Gu, and goto Step 1.

Clearly, the maximal barriers of Gu coincide with the ones of G−v(G) containing
vertex u. (Note that u is trivially inaccessible in Gu.) Therefore the procedure
above is capable of finding any maximal barrier of G by chosing the vertex u
in Step 2 in an appropriate way. It was proved in [6] that Step 1 of the above
procedure takes linear time in terms of the number of edges in v(G), provided that
a perfect internal matching M has previously been found for G. Also notice that,
if G is closed, then choosing a vertex u ∈ V (G) to be part of a maximal barrier
is equivalent to turning G into a soliton graph by attaching an external edge to u
before applying the above procedure. Thus, we have proved the following result.

Theorem 6.5. A random maximal barrier of G (open or closed) can be found
in linear time, provided that a perfect internal matching has previously been con-
structed for G.

We wish to emphasize that the above procedure can only be used to find a
random maximal barrier of G in linear time. Finding e.g. a maximum size barrier
X is a much more complicated issue, which would have to be addressed in a different
way. See [7, 8]. Our contribution in this regard concerns only the implications of
adding one particular vertex to X.

Let G be a viable soliton graph and X be its maximal barrier. The question
arises how X can be extended to a maximal splitter Y of G. By Theorem 6.1
we know that a proper extension exists iff G has non-degenerate external families.
Then an obvious way to construct Y is to add an arbitrary maximal splitter of
any (one) non-degenerate external family to X. Observe that this is the only way
to achieve the goal, since any two internal vertices belonging to different external
families attract each other.

Another interesting issue is to relate the maximal barriers of G∗ to the maximal
splitters of G. Notice that the restriction X of a maximal barrier X∗ in G∗ to
Int(G) need not be maximal as a splitter in G. For example, if G has a single
external family F with the root of this family being a mandatory edge, then X∗

might contain the external endpoint v of this edge (as the only external vertex in
G). Since F is a factor-critical graph, v must be the only vertex from F present
in X∗. Vertex v, however, could be replaced by any other maximal splitter of F in
X∗, so that the result would be a maximal splitter of G as well as a maximal barrier
of G∗. Clearly, the restriction X of the original X∗ is a maximal barrier of G in
this case. Another example of this nature manifests itself when all vertices in X∗

belonging to the amalgamated elementary component A of G∗ are from Ext(G),
but A does contain vertices in Int(G). Despite these examples, we still have the
following positive result.

Theorem 6.6. Let X be a maximal splitter in soliton graph G. Then X is either
a maximal barrier in G, or it can be extended in a unique way to a maximal barrier
X∗ of G∗.
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The proof is preceded by a preliminary observation.

Lemma 6.1. Let u and v be distinct vertices of a closed graph G such that u ∼ v.
Assume, furthermore, that there exists a perfect matching M in G and an M -
alternating path p connecting u with v in such a way that p is M -positive at its v
end. Then, for an arbitrary vertex z, z ∼ v only if z ∼ u.

Proof. Suppose, on the contrary, that for some vertex z ∈ V (G) with z ∼ v there
exists a positive M -alternating path p′ connecting z and u. Starting from v, let
w denote the first vertex of p which is also on p′. The prefix of p′ from z to w,
joined with the section of p from w to v then becomes a path, which cannot be
M -alternating, for the positivity of this path would contradict z ∼ v. But then the
section of p from v to w, continued with the suffix of p′ from w to u does form a
positive M -alternating path, which contradicts v ∼ u.

Proof. (of Theorem 6.6) By Theorem 6.1 we can assume that X contains an ac-
cesible vertex v. Indeed, if this is not the case, then X is inaccessible, so that
|X| = cin

o
(G,X), meaning that X is a barrier in G. We show that X can be ex-

tended in a unique way to a barrier of G∗. Clearly, X∗−X ⊆ Ext(G). Consider the
graph G∗ as the underlying graph in Lemma 6.1, and notice that for any manda-
tory external vertex u ∈ Ext(G), either u 6∼ v, or u and v satisfy the conditions of
Lemma 6.1 with a suitable alternating path p that starts out from v on a negative
marginal edge. In either case, Lemma 6.1 implies that u ∈ X∗ iff u is present in all
maximal barriers of G∗ containing v.

Now let u ∈ Ext(G)(∪{c}) be in the amalgamated elementary component of
G∗. It is again true that there exists an alternating path p with respect to some
perfect matching of G∗ connecting u and v in such a way that p is positive at its
v end. This is trivial if v is accessible from u in G, but even if v is accessible from
some other external vertex u′ in G through path p′, this path p′ can be augmented
by one or two marginal edges to obtain a suitable path p in G∗ starting already
from u. If u 6∼ v, then u cannot be present in any maximal barrier containing v.
On the other hand, if u ∼ v, then Lemma 6.1 applies and u ∈ X∗ iff u is present
in all maximal barriers containing v.

7 Conclusion

We have proved a counterpart of Tutte’s Theorem and Berge’s Formula for open
graphs with perfect (maximum) internal matchings. We have also provided a com-
parison between barriers in open and closed graphs, and studied the finer structure
of maximal splitters and barriers on the basis of earlier results.

An algorithm has been given to find the maximal barriers of an open or closed
graph. This algorithm isolates a random maximal barrier in linear time, provided
that a perfect internal matching has previously been found for the graph. Maximal
splitters of open graphs have been extended to maximal barriers of their closures,
and it was proved that this extension is unique, unless the maximal splitter in hand
is already a maximal barrier of the original graph.
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