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M-Solid Varieties of Languages

Pedro Baltazar*

Abstract

In this paper, a characterization of the language varieties and congru-
ence varieties corresponding to M-solid pseudovarieties is presented. Taking
into account the isomorphisms of the Eilenberg-type correspondences, each
complete sublattice of pseudovarieties corresponds to a complete sublattice
of language varieties, as well as another one of congruence varieties. For the
varieties of tree language, we present the complete sublattices of varieties of
languages and the complete sublattice of varieties of congruences isomorphic
to the complete sublattice of all M-solid pseudovarieties.

Keywords: tree languages, Eilenberg-type correspondences, M-solid pseu-
dovarieties, M-solid varieties of languages

1 Introduction

Motivated by the connection between star-free languages and aperiodic monoids,
and other important similar results, Eilenberg [6] establishes an isomorphism be-
tween the lattice of all monoid pseudovarieties and the lattice of all varieties of
regular languages. At the beginning of the eighties, Thérien [14] proved that these
two lattices are also isomorphic to the lattice of all varieties of congruences of the
free monoids. These connections were independently extended to tree languages
by Almeida [1] and Steinby [12]. Due to the original result achieved by Eilenberg
these kind of connections have come to be known as Eilenberg-type correspon-
dences. Some of the complete sublattices of the complete lattice £P*(7) of all
pseudovarieties of type 7 were described by Denecke and Pibaljommee in [4]. They
showed that for each monoid M of hypersubstitutions, the set S%;(7) of all M-solid
pseudovarieties of type 7 is a complete sublattice of £P*(7). So, it is a natural
problem to find a characterization of the complete sublattices corresponding to
877 (7), under the Eilenberg-type correspondences. This work is based on the final
remarks of Esik’s in [7], where he points out a more wide framework to characterize
varieties of tree languages. Following Esik suggestions we show how monoids of
hypersubstitutions and solid pseudovarieties can be used in the characterization of
varieties of languages.
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We assume the reader is familiar with the basic notions and results of Universal
Algebra [2]. Throughout this article we fix an algebraic type 7 consisting of finitary
operations. For technical reasons we will consider a type of algebras without nullary
operations. Let {f; : ¢ € I} be a set of operational symbols of type 7, were f; is
an operational symbol of arity n; > 1. We will denote by Alg,(7) the class of all
finite algebras of type 7. Let X, = {x1,...,2p,...} be a countable infinite set of
variables disjoint from the set of operational symbols, and X,, = {x1,...,x,} be
the set of the first n variables. We will use X to represent any of the previous sets
of variables. The set of all n-ary terms of type 7, or terms of type 7 over X,,, is
denoted by T (X,,), and by T-(X,,) = Up>1T-(X,,) we denote the set of all terms
of type 7. For any term ¢ € T.(X) we denote by hg(t) the height of the term ¢.
A pseudovariety V of type 7 is a class of finite algebras of type 7 closed under
formation of homomorphic images, subalgebras and finitary direct products. It is
well-known that pseudovarieties are defined by filters of equations [2], and that the
set L£P%(7) of all pseudovarieties of type 7 forms a complete lattice. A pseudovariety
defined by equations is called an equational pseudovariety. In the sequel, we will
consider a non-trivial pseudovariety V of type 7. Let £P*(V) denote the complete
lattice of all subpseudovarieties of V. Given two algebras A and B, we say that A
divides B, and we write A < B, if A is a homomorphic image of a subalgebra of
B. By Pol,, A we denote the set of all n-ary polynomial operations of the algebra
A. In the next two sections we give the necessary definitions and results which will
be used to achieve the main results.

2 Eilenberg-type correspondences

The Eilenberg and Thérien results were generalized by Almeida and Steinby us-
ing a more general framework that included both cases: varieties of string languages
and varieties of tree languages. They considered sets of the finitely generated V-
free algebras F,,V '. When V is the pseudovariety of all monoids, the subsets of
F,,V are string languages, and when V is the pseudovariety of all finite algebras of
type 7 we have the tree languages case.

Let A be an algebra and L C A any subset of A. The syntactic congruence of
L on A is the relation ~p, given by

a~pb iff pla) €L < pb) €L,

to every unary polynomial operation p € Poly(A), with a,b € A.

The relation ~, is the greatest congruence of A for which L is the union of
classes.

The syntactic algebra A /L of the subset L of A is the quotient algebra A/ ~,,
and the homomorphism ¢y, : A — A/L is called the syntactic homomorphism of
L. We say that an algebra is syntactic if it is isomorphic to the syntactic algebra
of some subset of some algebra.

IWe follow the somewhat nonstandard definition of V-free algebras from [1] which does not
require that a V-free algebra be itself in V.
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An operation on subsets of an algebra A of the form L — p~ 'L := {a €
A : p(a) € L}, where p € Pol;A is an unary polynomial operation of A, and
L C Ais a subset of A, will be called cancellation. Another operation on subsets is
L ¢ 'L := ¢ (L) where ¢ : A — B is a homomorphism, and will be referred
to as inverse homomorphism.

Let A be an algebra of type 7. A subset L C A of A is called V-recognizable if
there exists an algebra B € V| a homomorphism ¢ : A — B, and a subset K C B
such that L = ¢~ !(K). In this case, we say that the triple (B, ¢, K) recognizes L,
or simply that L is recognized by A.

We are only interested in the V-recognizable subsets of the finitely generated V-
free algebras F,,V. For any n > 1, let Rec,,V denote the set of all V-recognizable
subsets of F,,V. We will refer to the elements of Rec,V as V-languages. By a
field of subsets we mean a Boolean subalgebra of the power set, with the usual set
operations.

A wariety of V-languages is a sequence ¥ = (¥;,)n>1 such that

L.1) ¥, is a field of subsets of Rec,,;
L.2) ¥, is closed under cancellation;
L.3) ¥ is closed under inverse homomorphisms F,,V — F,,, V.
The lattice of all varieties of V-languages is represented by VL(V).
We represent by Con,, V' the set of all congruences 6 on F,, V' such that F,,V/0 €
V' which we will call V-congruences. Let ¢ : A — B be a homomorphism and 6 a
congruence on B. Then we have the homomorphism ¢ x ¢ : Ax A — B x B defined
by (¢ x ¢)(a,b) = (¢(a), (b)), for all (a,b) € A x A. Because 0 is a subalgebra of
B x B, then (¢ x )70 is a subalgebra of A x A, and it is easy to prove that it is
a congruence on A.
A wariety of V-congruence filters is a sequence I' = (I'y,),,>1 such that
C.1) T, is a filter of V-congruences on ConF,, V contained in Con,,V;
C2) If p : F,,V — F,V is a homomorphism and 6 € T, then (¢ X
o) o er,,.

To simplify the terminology, we will call a variety of V-congruence filters just
a variety of V-congruences, and will represent the lattice of all varieties of V-
congruence filters by VC(V).

Proposition 1. [1] The correspondences
() Lrs(V) —-vLev) WeW =({LCF,V:F,V/LEW},)ns1
and
() VL(V) — LP(V) V-V =Vi{A/LeV:Le¥,,n>1}

are mutually inverse lattice isomorphisms.
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Proposition 2. [1] The correspondences
() LP(V) = VC(V) Wi—W¢= ({0 € Con,V :F,V/0 € W},)n>1

and
() VC(V) — LP(V) '—=T*"=V{F,V/0:0cT,,n>1}

are mutually inverse lattice isomorphisms.

Where V;{K} denotes the pseudovariety generated by the class of finite algebras
K. From the above two isomorphisms we get the next result.

Theorem 1. [1] The lattices LP*(V'), VL(V) and VC(V) are all complete and
isomorphic to each other.

3 Hypersubstitutions and M-solid pseudovarieties

A mapping o : {f; : i € I} — T,(X,), which assigns to every n;-ary operation
symbol f; an n;-ary term o(f;), will be called a hypersubstitution of type 7. If o
is a hypersubstitution, then we can think of ¢ as mapping each term of the form
fi(x1, ..., xn,) to the n;-ary term o(f;). This means that any hypersubstitution o
induces a unique map & on the set T-(X) of all terms of type 7 over X, as follows:

(1) &[x] :==x, for all x € X;

(2) 6[fl(t17 N ,tnl)] = U(fl)(a'[tl], .. ,&[tnz]), for the term fi(tla . ;tni)~

We denote by Hyp(r) the set of all hypersubstitutions of type 7. We can de-
fine a composition operation oj on hypersubstitutions by o1 oj 09 := 61 0 09, for
01,09 € Hyp(r). Considering the identity hypersubstitution o;4, the set of all
hypersubstitutions form a monoid Hyp(7) = (Hyp(7);0p,0:4). In the sequel, let
M C Hyp(t) be a submonoid of hypersubstitutions.

Hypersubstitutions can be applied to an equation ¢t = s € Eq(7) to produce a
new equation G[t] = 6[s|. From an algebra A = (A, (f;)icr) of type 7 and a hyper-
substitution ¢ € M it is possible to construct a new algebra o[A] = (A; (a(f;)*)ier)
called the M-derived algebra of A by o.

It is easy to see that, if a map ¢ is a homomorphism ¢ : A — B, then it is also
a homomorphism ¢ : o[A] — o[B], for all ¢ € Hyp(r). Related to congruences,
if 8 € ConA is a congruence on A, then 6 is also a congruence on o[A], and
oA /6] = o[A]/6.

Definition 1. A pseudovariety V' of algebras of type T is called M-solid if it is
closed under M -derived algebras.

Clearly, the pseudovarieties Algy(7) of all finite algebras and I(7) of all trivial
algebras are, respectively, the greatest and smallest M-solid pseudovarieties of type
7. We will represent the set of all M-solid pseudovarieties of type 7 by S)(7).
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Theorem 2. [4] For every monoid M C Hyp(r) of hypersubstitutions the set
Szj,\f (1) is a complete sublattice of the lattice L,s(T) of all pseudovarieties of type T.

At this point, using Eilenberg-type correspondences we just know that the com-
plete sublattice S} (V) := S) N L,s(V) of all M-solid subpseudovarieties of V
corresponds to a complete sublattice of VL(V') and another complete sublattice of
VC(V'). In the next section we give a characterization of this sublattices.

4 M-solid varieties of languages and congruences

We start with the definition of a special kind of hypersubstitution introduced
by Plonka in [10].

Definition 2. Let K be a class of algebras of type 7. A hypersubstitution o €
Hyp(T) is called K-proper if for allt = s € Id(K) we have &[t] = 7[s] € Id(K).
Let P(K) be the set of all K-proper hypersubstitutions.

We have that, for any class K of algebras, P(K) = (P(K);op,0;q) is a sub-
monoid of Hyp(7). When K is an equational pseudovariety, P(K) is the greatest
submonoid of hypersubstitutions such that K is P(K)-solid.

The notion of semi-weak homomorphism of an algebra is introduced by Kolibiar
in [9].

Definition 3. Let A and B be algebras of type 7. A mapping h : A — B is called
a semi-weak homomorphism if there exists a hypersubstitution o € Hyp(T) such
that h is a homomorphism of A into o[B]. In this case, we write h : A =% B. A
semi-weak homomorphism h : A == A is called a semi-weak endomorphism of A.
We say that h : A — o[B] is an M -semi-weak homomorphism, if o € M.

Clearly, the extension of a hypersubstitution & is a semi-weak endomorphism
of T,(X), and also, any usual homomorphism is a semi-weak homomorphism. We
have the following fact.

Proposition 3. Let ¢ € P(V) be a V-proper hypersubstitution. Then
o:F,V - F,V is a semi-weak endomorphism, for anyn > 1.

Proof. Let T,(X,,) be the algebra of n-ary terms of type 7. We have the homo-
morphism 6 : T,(X,) — o[T-(X,)]. The V-free algebra F,V is given by F,V =
T, (X,)/0v(X,), where the congruence 0y (X,) := {(t,s) € Tr(X,) x Tr(X,) :
t = s € Id(V)} is given by all the equations over X, satisfied by V. We have
that 0y (X,,) is also a congruence on o[T,(X,,)] and that o[T,(X,,)]/0v(X,) =
o|T+(X,)/0v(X,)]. Since the equations satisfied by V are preserved by V-proper
hypersubstitutions, we have the homomorphism ¢ : F,V — o[F,V]. Hence,
6:F,V 2 F,V is an P(V)-semi-weak endomorphism. O

Now we give the definition of an M-solid variety of languages.
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Definition 4. Let ¥ = (¥,)n>1 be a variety of V-languages. The variety ¥ is
called an M-solid variety of V-languages if for all n,m > 1, and all M -semi-weak
homomorphism h : F,,V — F,V and all L € ¥, we have h=*(L) € ¥;,.

It is easy to see that the trivial variety of V-languages LiriV = ({0, F,,V}), is
M-solid, for any M. Using the Eilenberg-type correspondences between pseudova-
rieties and varieties of languages we have the following result.

Proposition 4. Let W be an M-solid subpseudovariety of V.. Then, W' is an
M -solid variety of V -languages.

Proof. Let W be an M-solid subpseudovariety of V. From Proposition 1 we have
that W' is a variety of V-languages. For n,m > 1, let h : F,,V — F,V be an
M-semi-weak homomorphism, and L € W. We want to show that h=1(L) € W£,.
Since L € Wf;, then F,,V/L € W. So, L is W-recognizable, and there exists a
finite algebra A € W, a homomorphism ¢ : F,V — A, and a set K C A such
that ¢~ 1(K) = L. We have the homomorphism & : F,,,V — o[F,,V] and as well
the homomorphism ¢ : o[F, V] — o[A], for a hypersubstitution ¢ € M. Then,
h=Y(L) = =1 (o7 (K)) = (po h)"1(K). So, h~1(L) is recognized by (c[A],p o
h,K). As a consequence F,,,V/h=*(L) < o[A]. Since W is M-solid, we have that
o[A] € W and then F,,V/h='(L) € W. Hence h='(L) € W/, This proves that
Wt is an M-solid variety of V-languages. ]

From the last proposition we conclude the following results.

Corollary 1. Let L € Rec,V be a V-recognizable language and h : ¥,V — F,V
an M -semi-weak homomorphism. Then h=1(L) is recognized by o[A] for some
hypersubstitution o € M.

Corollary 2. Let ¥ be a variety of V-languages. If the pseudovariety ¥V * is M-
solid then ¥ is an M-solid variety of V -languages.

As claimed in [12] every subdirectly irreducible algebra is a syntactic algebra.
Hence, each finite algebra of V' can be represented as a subdirect product of a finite
number of syntactic algebras of some subsets, that are V-recognized by the algebra.
So, as remarked in [11], for any variety ¥ of V-languages and any finite algebra A,
if for all n, all V-languages in T, (X,,) recognized by A are in ¥, then A € ¥,

Proposition 5. Let V' be an equational pseudovariety. If ¥ is an M-solid variety
of V-languages, then the pseudovariety ¥ is M (| P(V')-solid.

Proof. Let A € ¥ be any finite algebra and o € M () P(V) a hypersubstitution.
We will prove that o[A] € #*. From the previous remark, we have only to prove
that all V-languages recognized by o[A] are in #. For any n > 1, let L € Rec,V
be a V-language recognized by o[A]. Hence, there exists a homomorphism ¢ :
F,V — o[A] and a subset K C A such that ¢~!(K) = L. Since o € P(V),
then oc[A] € V and 6 : F,V — F,V is an M-semi-weak endomorphism of F,, V.
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Let ¥ : F,V — A be the unique homomorphism such that ¢¥» o 6 = . Thus,
L= (K) = ($06) "} (K) =

=61 1(K)). Since A recognizes the language L' = ¢~ 1(K), then F,,V/L' < A,
and as consequence L' € ¥%,. Since ¥ is M-solid, this implies that L = 6=1(L') €
Y. We have proved that all V-languages recognized by o[A] are in ¥, and so
o[A] € ¥ Hence, ¥* is an M (| P(V)-solid pseudovariety. O

The condition imposed on V', that V' be an equational pseudovariety, isn’t very
restrictive because in both cases, string languages and tree languages, we are dealing
with equational pseudovarieties.

The analogous definition of M-solidity for varieties of congruences is presented.

Definition 5. LetT' = (I',),>1 be a variety of V-congruences. The variety T is said
to be M-solid if for all n,m > 1, M-semi-weak homomorphism h : ¥,V — F,V
and 0 € T,,, then (h x h)710 € T,,.

Clearly, the trivial variety of congruences CtriV = ({Vg,v })n is M-solid.
We need these technical results to prove the next proposition.

Lemma 1. [2] Let ¢ : A — B be a homomorphism, L C B a subset and § € ConA
a congruence.

i) If ~1 has a finite number of classes, then there is only a finite number of
subsets that may be obtained from L by cancellation;

i) (¢ x o)t ~p=pA{~p-11: L'is obtained from L by cancellation};
iii) 0 = (\{~r: L is a class of 0}.

Lemma 2. [12] Let ¥ be a variety of V-languages. For anyn > 1 and L € ¥;, all
the ~p,-classes are in ¥,.

To connect varieties of languages and varieties of congruences we have this
interesting result.

Proposition 6. Let ¥ be a variety of V-languages. Then, ¥ is M-solid iff V¢ is
M -solid.

Proof. (=) Forn,m > 1,let h:F,,V 2% F,V be an M-semi-weak homomorphism
and 6 € ¥/¢. Using Lemma 1 it follows that

(h x h)~'o = mﬂ{Nh—l(p—l(L)): p € Poly(F,V) L is a f-class}
L p

is a finitary intersection. From Lemma 2 we conclude that all classes of 8 are in 7;,.
Since 7 is a variety of V-languages we have p~1(L) € ¥, for all p € Pol;(F, V).
Moreover, ¥ is M-solid so h=(p~1(L)) € ¥;, for all p € Pol;(F,V) and for all
f-classes L. Hence, (h x h)~0 € ¥,¢, which proves that ¥ ¢ is M-solid.
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(<) Suppose ¥ is a variety of V-languages such that ¥¢ is an M-solid variety
of V-congruences. For n,m > 1, let L € ¥, and h : F,,,V — F,,V be an M-semi-
weak homomorphism. We have the homomorphism & : F,,V — o[F,, V] for some
hypersubstitution o € M. It is easy to prove that (h x h)™' ~C~p-1(f). Since,
~p€ ¥¢ and ¥¢ is M-solid, then (h x h)™! ~p€ ¥,5. Now, because ¥¢ is a filter
of congruences, we conclude that ~j, -1 y€ 7,5. Hence, h=Y(L) € ¥ = ¥;,. So

m* m

we have proved that 7 is M-solid. O

Corollary 3. A variety T' of V-congruence filters is M-solid iff T is an M-solid
variety of V-languages.

When V is the pseudovariety of all finite algebras of type 7, the V-languages
are precisely the recognizable tree languages of type 7. In this case we can prove
the next result.

Theorem 3. Let V = Algs(7) be the pseudovariety of all finite algebras of type T.
If W is any pseudovariety of type T the following conditions are equivalent:

i) W is an M-solid pseudovariety;
ii) W is an M-solid variety of tree languages;
1) W€ is an M-solid variety of congruences.

Proof. This proof is straightforward. We only need to use the previous results and
the fact that Hyp(7) is the set of all Alg;(7)-proper hypersubstitutions. O

The next result shows how to obtain complete sublattices of the lattice of all
varieties of tree languages VL(7) and the lattice of all varieties of congruences
VC(7). Let VL (7) denote the set of all M-solid varieties of tree languages and by
VCp(7) we will represent the set of all M-solid varieties of congruences.

Corollary 4. The sets VL (1) and VCp(T) are complete sublattices of the com-
plete lattices VL(T) and VC(1), respectively, and both are isomorphic to the complete
lattice Sy (T) of all M-solid pseudovarieties of type T.

We know that any semi-weak homomorphism h : T, (X,,) — T,(X,) is a ho-
momorphism A : T,(X,,) — o[T,(X,,)] for some hypersubstitution o € Hyp(r).
Hence, there exists an endomorphism ¢ : T, (X,,) — T-(X,,) such that h = p o 6.
Using this fact, in the case of tree languages, M-solid varieties of tree languages
and M-solid varieties of congruences have an alternative and more simple charac-
terization given by hypersubstitutions.

Proposition 7. A wvariety ¥ of tree languages is M-solid iff it is closed under
inverse hypersubstitution with respect to M, i.e. iff for all n > 1, and any hyper-
substitution o € M and any L € ¥, we have 6= (L) € ¥,,.

A similar result holds for varieties of congruences.



M-Solid Varieties of Languages 727

Proposition 8. Let T' € VC(7) be a variety of congruences. Then, T' is M-solid
iff for allm > 1, all € T, and all 0 € M, we have (6 x )70 € T,,.

An important notion in the theory of tree language is the tree homomorphism
[13]. Semi-weak homomorphisms and the extensions of hypersubstitutions are par-
ticular cases of tree homomorphisms, and each monoid of hypersubstitutions can
define a special set of tree homomorphisms. So, the M-solid varieties of tree lan-
guages can be characterized using tree homomorphisms.

5 Examples

Now we will see two well known cases of tree languages that are M-solid, for
some monoids M C Hyp(1) of hypersubstitutions.

5.1 Nilpotent algebras

An algebra A of type 7 is called nilpotent, if there exists an absorbing element
ap and an integer k > 1 such that t*(ay, ..., a,) = ag for all terms ¢ in n variables
with hg(t) > k and for all n-tuples of elements (a1, ...,a,), where hg is the usual
height function on terms. The smallest k for which this holds is called the degree
of nilpotency of A. Let Nil(7) be the class of all nilpotent algebras of type 7.

For each n > 1, let Nil,(7) consist of all finite and all cofinite tree languages
in T (X,,). For string languages it is well-know that finite and cofinite language
are recognizable, and that they form a variety of languages. In the case of tree
languages we have the following result.

Proposition 9. [12] The sequence Nil(1) = (Nil,,(7))n>1 s a variety of tree
languages and Nil(T)* = Nil(T).

A hypersubstitution o is called regular if for each f;, all the variables x1, ..., xy,
occur in o(f;). The set Reg(r) of all regular hypersubstitutions is a submonoid of
Hyp(7), and applying induction over a term ¢t we prove that if o is a regular
hypersubstitution then hg(&[t]) = hg(t).

Using this lemma we can easily prove the next result about the pseudovariety
Nil(T).

Proposition 10. The pseudovariety Nil(t) is Reg(T)-solid.

Proof. By proposition 9 we know already that Nil(7) is a pseudovariety. So, we only
have to show that it is closed under Reg(7)-derived algebras. Let A € Nil(T) be a
nilpotent algebra of degree k and o € Reg(7) a regular hypersubstitution. For any
t € T-(X,,) and by induction on the height of ¢ it is easy to prove that t7IA] = &[t]A.
Using this fact, for any ¢ € T, (X,,) of hg(t) > k then hg(&[t]) > hg(t) > k, and we
have Al = [t} = ag. Hence, o[A] is a nilpotent algebra of degree k, and thus
o[A] € Nil(T). O

By proposition 3 we can conclude the following result.

Corollary 5. The variety of tree languages Nil(T) is Reg(T)-solid.
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5.2 Definite tree languages

A string language L is called k-definite, if a word of length greater then k is in
L iff it suffix of length k is in L. The extension to tree languages of this notion is
made using roots. For any term t, root(t) =t if t is a variable, and root(t) = f; if
t= fi(ti,...,tn,), for some i € I.

The k-root Ry (t) of a term ¢ € T (X,,) is defined as follows:

i) Ro(t) = &, where ¢ is a special symbol which represents an empty root and
Ry (t) = root(t);

ii) let k > 2, if hg(t) < k and t = f;(t1,...,t,,) for some ¢ € I, then Ry(t) = t.
If hg(t) 2 k then Rk(t) = fi(Rk—l(tl)a ey Rk—l(tnl))

Let K > 0 and L C T-(X,). The language L is called k-definite, if for all
t,s € T-(X,,) such that Ri(t) = Ri(s), t € L iff s € L. For each n > 0, we define
the relations ~y, ,, in Tr(X,,) as follows:

t ~pn s iff Rk(t) = R}g(s),

for all ¢,s € T-(X,,). We will simply denote t ~y, s, if Ri(t) = Ry(s).

Let D¥(7) = (DX(7))n>1 be a sequence, where D¥ (1) is the set of all k-definite
tree languages of T (X,,). The sequence of all definite tree languages is D(1) =
(D (7)1, where Dy (1) = U{Drn(7) : k = 0} is the set of all definite tree
languages of T (X,,). Clearly, we can conclude the inclusions

DO(r) C DY (r) C--- CDF(r) C--- C D(7).
Thus, we have the following result.

Proposition 11. [12] For alln > 1 and k > 0 the relation ~y, ,, is a congruence
on the algebra T,(X,,), and it has a finite number of classes.

Let Tk, = [~kmn) be the principal filter generated by ~y , on the lattice
FConT,(X,,) of all finite index congruence relations of T,(X,,).

Proposition 12. [12] For each k > 0 the sequence I'y = (I'y n)n>1 s a variety of
congruences. Moreover, I'f = D*(7).

From this last proposition we conclude that for any k > 0 the sequences D¥(7)
and D(7) are varieties of tree languages.

A hypersubstitution o is called a pre-hypersubstitution if for every i € I the term
o(f;) is not a variable. The set of all pre-hypersubstitutions Pre(7) is a submonoid
of Hyp(7). The next result shows an important behavior of pre-hypersubstitutions
related to preservations of k-roots.
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Lemma 3. Let t,s € Tr(X) and o € Pre(r). If t ~y s then 6[t] ~y &[s], for all
k> 0.

Proof. This proof is made by induction on k. The first case k = 0 is obvious.
Let k > 1 and suppose it is true for k — 1. Let ¢ € Pre(r) and t,s € T-(X,,),
such that ¢ ~; s. If ¢ or s are variables then they must be the same variable and
clearly 6[t] ~i 6[s]. If not, we must have ¢t = f;(t1,...,tn,) and s = fi(s1,..., Sn;)
for some ¢ € I such that ¢ ~k_1 S1,...,tn, ~k—1 Spn,. Hence, we have 5[t] =
o(fi)(G[t1],...,0[tn,]) and &[s] = o(fi)(d[s1], ..., F[sn,]). By induction hypothesis
G[t1] ~k—1 0[s1],. -, 0tn,] ~k—1 G[sn,]. Because o(f;) is not a variable, and ~y, is
a congruence we can conclude that &[t] ~p &[s]. O

Proposition 13. For each k > 0 the sequence L'y, = (L' n)n>1 is a pre-solid variety
of congruences.

Proof. Let k > 0. By proposition 8, we need to prove that for every pre-hypersubsti-
tution o € Pre(r) and 6 € 'y ,,, we have (6 x )70 € ['y,,, for each n > 1. So, it
is sufficient to show that ~; ,C (0 x 0)716. Let t,s € T;(X,,) such that t ~ , s.
By the previous lemma we have 6[t] ~r.,, 6[s], and so (t,5) € (p X @)™t ~pnC
(¢ x »)~10. Hence, I'y, = Tk n)n>1 is a pre-solid variety of congruence filters. [

Now, we are able to state the next result.

Corollary 6. For any k > 0, the varieties of tree languages D*(1) and D(7) are
pre-solid varieties of tree languages.

This Corollary follows from Corollary 11.13 of [7].

6 Conclusion

The approaches of Esik [7] and Steinby [13] generalize the Eilenberg-type cor-
respondence to tree languages; they are not restricted to a fixed algebraic type. In
particular, Esik uses algebraic theories, and Steinby adds some constructions to the
usual Universal Algebra. It is easy to see that the x-varieties and +-varieties of Esik
correspond to solid and pre-solid varieties of languages, respectively, as presented
here. Steinby’s general varieties correspond to hypersubstitutions which map the
n-ary operational symbols to primitive terms f;(z1,...,z,) (with a change in the
algebraic type). We believe that hypersubstitutions and M-solid pseudovarieties
are an adequate generalization of the aforementioned approaches and that they
are suitable for characterizing varieties of tree languages. In order to see this, one
needs to work with hypersubstitutions between different algebraic types which form
a small category. Then it is easy to generalize all the other notions presented here.
But, to go even further and generalize these results to positive and many-sorted
varieties [11], it is necessary to work within the framework of Institutions [8].
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