
Acta Cybernetica 18 (2008) 733–776.

Effect Preservation in Transaction Processing in

Rule Triggering Systems∗†

Mira Balaban
‡

and Steffen Jurk
§

Abstract

Rules provide an expressive means for implementing database behavior:
They cope with changes and their ramifications. Rules are commonly used
for integrity enforcement, i.e., for repairing database actions in a way that
integrity constraints are kept. Yet, Rule Triggering Systems fall short in
enforcing effect preservation, i.e., guaranteeing that repairing events do not
undo each other, and in particular, do not undo the original triggering event.

A method for enforcement of effect preservation on updates in general rule
triggering systems is suggested. The method derives transactions from rules,
and then splits the work between compile time and run time. At compile
time, a data structure is constructed, that analyzes the execution sequences
of a transaction and computes minimal conditions for effect preservation. The
transaction code is augmented with instructions that navigate along the data
structure and test the computed minimal conditions.

This method produces minimal effect preserving transactions, and under
certain conditions, provides meaningful improvement over the quadratic over-
head of pure run time procedures. For transactions without loops, the run
time overhead is linear in the size of the transaction, and for general transac-
tions, the run time overhead depends linearly on the length of the execution
sequence and the number of loop repetitions. The method is currently being
implemented within a traditional database system.

Keywords: rule triggering systems, effect preservation, minimal conditions,
consistency, static analysis, transaction processing

∗This work was supported in part by the Paul Ivanir Center for Robotics and Production
Management at Ben-Gurion University of the Negev. Contact: POB 653, Beer Sheva 84105,
ISRAEL, Phone: +972-8-6472222, FAX: +972-8-6477527.

†This research was supported by the DFG, Berlin-Brandenburg Graduate School in Distributed
Information Systems (DFG grant no. GRK 316). Contact: POB 101433, 03013 Cottbus, Ger-
many, Phone: +49-355-692711, FAX: +49-355-692766

‡Ben-Gurion Univerity, Beer-Sheva, Israel, E-mail: mira@cs.bgu.ac.il
§Brandenburg University of Technology, Cottbus, Germany, E-mail:

sj@informatik.tu-cottbus.de

734 Mira Balaban and Steffen Jurk

1 Introduction

Rules provide an expressive means for implementing database behavior: They
cope with changes and their ramifications. Rule mechanisms are used in almost
every commercial database system, using features such as CREATE TRIGGER or
CREATE RULE. Rules are commonly used for Integrity enforcement, i.e., for repairing
database actions in a way that integrity constraints are kept ([37, 16, 38]). Yet, Rule
Triggering Systems (RTS s), also termed Active Databases, fall short in enforcing
effect preservation, i.e., guaranteeing that repairing events do not undo each other,
and in particular, do not undo the original triggering event.

A natural expectation in database maintenance is that a fact that was success-
fully added is retrievable, as long as it was not intentionally removed. Reliability
in question answering, and faithfulness to the intended semantics of operations,
require no contradictory operations. Such behavior is achievable if rule application
that can cause contradictory updates is avoided. Active databases do not meet this
expectation since it is possible that a rule application undoes the actions of previous
rule applications in a single repair transaction. Moreover, in a distributed active
database a user might not be aware of rules that trigger contradicting actions, since
the rules might reside in independently developed sites.

Example 1. Consider a database with a table T1 with two attributes A, B, a
table T2 with an attribute C, and two integrity constraints: an inclusion constraint
(A ⊆ C) and an exclusion constraint (B ∩ C = ∅)1. The inclusion constraint is
enforced by the rules:

R1 : ON insert(T1, (x,)) : IF (x) /∈ T2 THEN insert(T2, (x))
R2 : ON delete(T2, (x)) : IF (x) ∈ T1.A THEN delete(T1, (x,))

The exclusion constraint is enforced with the rules:

R3 : ON insert(T1, (, x)) : IF (x) ∈ T2 THEN delete(T2, (x))
R4 : ON insert(T2, (x)) : IF (x) ∈ T1.B THEN delete(T1, (, x))

An insertion update insert(T1, (a, b)) triggers rules R1 and R3, in order to
preserve the integrity constraints. The value a is inserted into T2 (if not exists)
to preserve the inclusion constraint, which in turn causes a deletion of tuples (, a)
from T1 in order to preserve the exclusion constraint. Analogously the value b
is removed from T2 (if exists) to preserve the exclusion constraint which causes
deletion of tuples (b,) from T1. If the event-repair policy is that a rule is fired
immediately AFTER its event (triggering update) is executed, and the repairing
rules R1 and R3 are triggered in that ordering, the order of rule application for
this insertion event is R1, R4, R3, R2. A database design tool would result the
following repair update:

1these constraints are simplified versions of possibly more natural constraints like f(A) ⊆ C

and g(B) ∩ C = ∅, where f and g are some functions.

Effect Preservation in Transaction Processing in Rule Triggering Systems 735

INSERT INTO T1 VALUES (a,b);

IF NOT EXISTS (SELECT * FROM T2 WHERE C=a) THEN

INSERT INTO T2 VALUES (a);

DELETE FROM T1 WHERE B=a;

END IF;

IF EXISTS (SELECT * FROM T2 WHERE C=b) THEN

DELETE FROM T2 VALUES (b);

DELETE FROM T1 WHERE A=b;

END IF;

If a = b, then the repairing update might undo its own actions, since tuples inserted
to the tables might be deleted:

Rule Triggering Primitive Update T1 T2

− − (a, a) ∅
R1 insert(T1, (a, a)) (a, a) (a)
R4 insert(T2, (a)) ∅ (a)
R3 insert(T1, (a, a)) ∅ ∅
R2 delete(T2, (a)) ∅ ∅

If the rule application ordering is R3, R1, R4, the result is that the inserted tuple
is deleted from T1, while a new tuple is still inserted to T2 as a repair for the deleted
insertion to T1:

Rule Triggering Primitive Update T1 T2

− − (a, a) ∅
R3 insert(T1, (a, a)) (a, a) ∅
R1 insert(T1, (a, a)) (a, a) (a)
R4 insert(T2, (a)) ∅ (a)

This example demonstrates the problem of effect preservation. A seemingly
successful insertion update ends up in a state where the insertion is not performed.
Moreover, although the insertion actually failed, its repairing updates have taken
place. The problem is caused by allowing contradictory updates, i.e., updates that
undo the expected effects of each other, within the context of a successful repairing
transaction. Rather, the insertion insert(T1, (a, a)) must fail (be rejected) since
there is no way to achieve consistency together with effect preservation.

The problem of effect preservation goes back to the early days of Planning in
Artificial Intelligence, when planners tried to cope with the problem of interacting
goals, where one action undoes something accomplished by another (e.g., Strips
[15], Noah [31]). In the field of databases, [32, 35] provide a general framework for
consistency enforcement under an effect preservation constraint. Static composition
of refactoring ([20, 19]) also needs to cope with possibly contradicting effects of
successive refactorings.

In the field of active databases the problem of effect violation occurs when a rule
fires other rules that perform updates that contradict an update of a previous rule.
Nevertheless, automated generation and static analysis of active database rules

736 Mira Balaban and Steffen Jurk

[37, 6, 12] do neither handle, nor provide a solution for that problem. Updates
triggered within the scope of a single repair can contradict each other.

In this paper we suggest a combined, compile time – run time, method for
enforcing effect preservation on updates. The method is applied in two steps:

1. Static derivation of transactions from rules: For each primitive (atomic)
update, e.g., insertion or deletion of a tuple, obtain a transaction, based on
a given rule application policy.

2. Effect Preservation Transformation: Enforce effect preservation using
“minimal” modifications.

Our method assumes that primitive (atomic) updates are associated with in-
tended effects (postconditions). At compile time, we construct a data structure that
analyzes all execution sequences of an update and computes minimal conditions
necessary for effect preservation. The update code is augmented with instructions
that navigate along the data structure and test the computed minimal conditions.
This method produces minimal effect preserving transactions, and under certain
conditions, provides meaningful improvement over the quadratic overhead of pure
run time procedures. For transactions without loops, the run time overhead is
linear in the size of the transaction, and for general transactions, the run time
overhead depends linearly on the length of the execution sequence and the number
of loop repetitions (while for pure run time methods it is necessarily quadratic in
the length of the execution sequence).

Our method is domain independent, but in this paper we demonstrate it on
the relational domain with element insertion and deletion operations, alone. The
method is currently being implemented within a traditional database system.

Section 2 introduces a small imperative update language While that we use in
the rest of this paper, and describes the algorithm for static derivation of trans-
actions from rules. Section 3 introduces the major notions of effect preservation.
In Section 4 algorithms for effect preservation of While updates are described and
proved to enforce only minimal effect preservation, i.e., do not cause unnecessary
failures. The algorithms are introduced gradually, first for While updates without
loops, and then for general While updates. Section 5 describes related work, and
section 6 concludes the paper. Proofs are postponed to the Appendix.

2 Static Rule Repair

Rule repair in active databases is performed at run time. The database tool is
usually equipped with an event-repair policy (e.g., an AFTER policy), while the
order of firing the applicable rules, henceforth rule-ordering policy, is determined
at run time. The event-repair policy determines when an event that is applied
by a rule is repaired. For example, using a DELAYED event-repair policy in Ex-
ample 1, and SEQUENTIAL rule-ordering policy, the order of rule application for
the insert(T1, (a, b)) insertion event is R1, R3, R4, R2. The rule-ordering policy is

Effect Preservation in Transaction Processing in Rule Triggering Systems 737

responsible for sequencing the set of rules that should repair for an event. For exam-
ple, using a DELAYED event-repair policy and a REVERSED SEQUENTIAL rule-
ordering policy in Example 1, the order of rule application for the insert(T1, (a, b))
insertion event is R3, R1, R4.

If the rule-ordering policy is determined statically, the overall task of repairing
for an event can be determined statically, by associating every database event with
a transaction. The advantage is that an update transaction that is constructed at
compile time can be also optimized at compile time, thereby saving some run time
load.

Subsection 2.1 describes the small theoretical imperative update languageWhile
[26], that is used in the rest of the paper. Subsection 2.2 introduces a compile time
algorithm for derivation of updates from rules. The rest of the paper deals with
enforcing effect preservation on statically derived updates.

2.1 The Repair Language While – An Imperative Language
of Updates (Transactions)

The While language [26] is a small theoretical imperative language that includes
the three major control structures in sequential imperative languages: sequencing,
conditionals and loops. We adapt it for database update usage by adding a fail
atomic statement that stands for rollback, and by having state variables that stand
for relations. In the experimental evaluation the language is replaced by a real
database maintenance language. Likewise, all the examples in the paper deal with
a relational database and the atomic updates insert and delete of a tuple to a
relation. However, our method applies to any atomic updates for which effects can
be provided (see subsection 3.1).

Syntax: Updates are built over a finite set of typed state variables For exam-
ple, in a relational database with relations R1, . . . , Rn, the state variables are
{R1, . . . , Rn}, and any assignment of concrete relations to the relation variables
results a database state. The symbols of the While language include, besides the
state variables, parameter variables, local variables, and constant symbols like nu-
merals, arithmetic operations and comparisons, boolean constants and boolean con-
nectives, and set operations (language constants). We use the letters r, s, t for state
variables, u, v, w, . . . for parameter or local variables, and e, f, g, . . . for expressions.

The primitive update statements of While are skip, fail, and well-typed assign-
ments. The skip update is a no-op update statement: Its execution does not affect
the state of the update. The fail update denotes a failure of the update: Updates
following fail are not executed. In transactional databases without choice, fail cor-
responds to the rollback operation, which undoes the failed update by restoring the
old state. Assignment updates have the form x := e, where x is a variable and e is
an expression.

Compound updates (transactions) in the While language are formed by three
constructors: sequence, condition, and while. If P is a condition, and S, S1, S2

738 Mira Balaban and Steffen Jurk

are updates, then “S1;S2” is the sequential composition of S1 and S2, “if P then

S1 else S2” is a P conditioned update, and “while P do S” is a P conditioned
S loop, with S as the body of the loop. The statement “if P then S” is an
abbreviation for “if P then S else skip”. The empty update ǫ is the neutral
(unit) element of update sequencing. That is, for every update S, ǫ;S ≡ S; ǫ ≡ S,
where ≡ stands for “is the same as” or “can be replaced by” (ǫ is needed for
the definition of the terminal configurations below). A compound update S with
parameter variables −→x is sometimes denoted S(−→x).

Semantics: A state is a well-typed value assignment to all variables. A database
state is a restriction of a state to the state variables. An non-ground expression
(that includes variables) can be evaluated only with respect to a state. The value
of an expression e in a state s is denoted es. A state s that satisfies a condition P
is denoted as s |= P . Variable substitution on a state s is denoted s[x 7→ es], which
is a state that differs from s only in the value of x which is es.

The semantics of While updates is defined operationally, using the structural
operational semantics described in [26]. This semantical approach emphasizes indi-
vidual steps of the execution, that are captured by a transition relation denoted ⇒
between update configurations. An update configuration (configuration for short)
is a pair 〈S, s〉 of an update S and a state s. A configuration 〈ǫ, s〉 is called a
terminal configuration and abbreviated as s. All non-terminal configurations are
intermediate. A configuration 〈fail, s〉 is called a failing configuration. A configu-
ration 〈A;S, s〉 where A is an assignment update and S is any update (possibly the
empty update), is called an assignment configuration.

The transition relation between configurations 〈S, s〉 ⇒ γ, expresses the first
step in the execution of S from state s. If the execution of S from s is not com-
pleted by the transition, γ is an intermediate configuration 〈S′, s′〉, where S′ is the
remaining computation to be executed from state s′. If the execution of S from s
is completed by the transition, γ is a terminal configuration 〈ǫ, s′〉 ≡ s′. A non-
terminal configuration γ is a dead-end if there is no γ′ such that γ ⇒ γ′. Failing
configurations are dead-end configurations. The transition relation ⇒ is defined by
the axioms and rules in Figure 1.

An execution sequence (denoted as Ψ, Φ or seq(S, s)) of a statement S starting
in state s, is either a finite or an infinite sequence of configurations. In a finite
execution sequence, seq(S, s) = γ0, . . . , γk, where γ0 = 〈S, s〉, γi ⇒ γi+1 (0 ≤ i < k)
and γk is either a terminal or a dead-end configuration. In an infinite execution
sequence, seq(S, s) = γ0, . . . , where γ0 = 〈S, s〉, and γi ⇒ γi+1, 0 ≤ i. A finite
sequence is successful if it ends in a terminal configuration, and failing if it ends in
a dead-end configuration. The states of the first and last (if exists) configurations
of an execution sequence Ψ are denoted start(Ψ) and end(Ψ), respectively, and the
i-th configuration (0 ≤ i) is denoted Ψi.

Extended While: While is extended with calls to external procedures that do
not affect the state of a While computation. Such external procedures can operate

Effect Preservation in Transaction Processing in Rule Triggering Systems 739

[ass] 〈x := e, s〉 ⇒ s[x 7→ es]

[skip] 〈skip, s〉 ⇒ s

[fail] 〈fail, s〉

[comp] if〈S1, s〉 ⇒ 〈S′

1, s
′〉 then〈S1;S2, s〉 ⇒ 〈S′

1;S2, s
′〉

if S′

1 is ǫ then the conclusion is 〈S1;S2, s〉 ⇒ 〈S2, s
′〉

[ifT] 〈if P then S1 else S2, s〉 ⇒ 〈S1, s〉 if s |= P

[ifF] 〈if P then S1 else S2, s〉 ⇒ 〈S2, s〉 if s 6|= P

[while] 〈while P do S, s〉 ⇒
〈if P then (S; while P do S) else skip, s〉

Figure 1: Axioms and rules defining the semantics of the transition relation ⇒

on elements of an external environment, e.g., print or draw. Formally, the extended
While includes an additional primitive update proc, where proc is a procedure that
can be applied in the environment where While is run. The semantics of proc is
like that of skip:

〈proc, s〉 ⇒ s

The transformations introduced in Section 4 map a While update without external
calls into a While update with external calls to procedures that read and evaluate
data from a data structure built as part of the transformation.

2.2 Static Derivation of Transactions from Rules

Event-Condition-Action (ECA) rules consist of event, condition, and action (also
termed body), with the intuitive semantics that an execution of the event update
implies an execution of the action update, provided that the condition holds. For
simplicity, we embed the condition part into the action part, since an ECA rule
〈E,C〉 → A can be captured by the rule E → if C then A.

Compile time rule application requires careful management of parameter and
local variables. Prior to rule application, all such variables must be consistently
renamed by fresh variables. Then, the expression in the triggering event must unify
with the expression in the rule event, and the resulting substitution applied to the
rule body. For example, if the update under construction includes the primitive
update insert(r, x+3), and the event in an applicable rule is insert(r, x), then the
variable x must be renamed in the rule by a new name, say y, yielding the event
insert(r, y). The two events insert(r, x + 3) and insert(r, y) should be unified,

740 Mira Balaban and Steffen Jurk

yielding the matching substitution y 7→ x+ 3, which should be applied to the rule
body, replacing all occurrences of y by x+ 3.

Compile time rule processing builds for each primitive event a complex update,
that exhausts all necessary rule applications. It requires static event-repair pol-
icy, rule-ordering policy, and static termination policy. A termination policy is
necessary since rule triggering can be cyclic. Much research have been devoted to
termination analysis ([36, 5]). In this work we take the approach of full propagation,
that is controlled by a static termination condition.

Algorithm 1 below, performs static derivation of transactions from rules. It is
designed for the AFTER event-repair semantics, which characterizes commercial
databases. The AFTER semantics is implemented by sequencing immediately after
every occurrence of an assignment to a state variable event, the bodies of all rules
that are applicable to that event. Rule application handles variable renaming, rule
event matching and substitution application.

Algorithm 1. [DTA – Derive TransAction]

input: a primitive update U , a set of rules R, a rule-ordering policy RO, and a
termination condition TC.
output: A While program S.
method:

1. S := U

2. While there is an unmarked assignment E in S do:

a) Mark E.
// The marking is used to avoid multiple replacements of the same prim-
itive update.

b) For every rule in R, consistently rename all parameter and local vari-
ables, by fresh variables.

c) Let E1 → B1, . . . , Ek → Bk be all rules whose event can be unified with
E, and are such ordered by RO. Let φi be the matching substitution for
E and Ei, i.e., Eφi = Eiφi, 1 ≤ i ≤ k.

d) If k 6= 0 and ¬TC: Replace E in S by E;B1φ1; . . . ;Bkφk

e) If k 6= 0 and TC: Replace E in S by E; fail

3. Return S

The following example presents the rules from Example 1 as event-action rules
in the While language, and the update constructed by the DTA algorithm, for the
triggering event insert(T1, (x, y)), using a sequential rule-ordering policy.

Effect Preservation in Transaction Processing in Rule Triggering Systems 741

Example 2 (Static transaction derivation with the DTA algorithm.).

R1 : insert(T1, (x, y)) → if (x) /∈ T2 then insert(T2, (x));

R2 : delete(T2, (x)) → while σA=x(T1) 6= ∅ do

delete(T1,first(σA=x(T1)));

R3 : insert(T1, (x, y)) → if (y) ∈ T2 then delete(T2, (y));

R4 : insert(T2, (x)) → while σB=x(T1) 6= ∅ do

delete(T1,first(σB=x(T1)));

The While program derived for the update insert(T1, (x, y)):

insert(T1, (x, y));

if (x) /∈ T2 then

insert(T2, (x));

while σB=x(T1) 6= ∅ do

delete(T1,first(σB=x(T1)));

if (y) ∈ T2 then

delete(T2, (y));

while σA=y(T1) 6= ∅ do

delete(T1,first(σA=y(T1)));

Assignment Preprocessing: Prior to the transaction derivation a preprocessing
of rule actions is needed. Our effect characterization methods require that every
assignment to a state variable r := e(r, x1, . . . , xn) is rewritten such that the vari-
ables x1, . . . , xn are not assigned after the assignment is executed. The rationale
behind this requirement is that each such assignment has effects which are a set of
constraints, expressed by the variables in the assignment. If the variables x1, . . . , xn

are reassigned after the assignment is executed, then the effects of the assignment
must be reassigned as well. In order to avoid this hard procedure, we rewrite the
assignment, using new variables, as follows:
The assignment r := e(r, x1, . . . , xn), is replaced by the sequence update

x′1 := x1; . . . , x′n := xn; r := e(r, x′1, . . . , x
′

n);

where x′1, . . . , x
′

n are new variables. The new sequence command has the same se-
mantics as the original assignment, when restricted to the original update variables.

3 Effect Preservation – Goals and Associated Ter-
minology

In this section we introduce the main concepts of effect preservation and analyze
their basic properties. We deal with three main issues: (1) Define what are effects

742 Mira Balaban and Steffen Jurk

and where do they come from; (2) Define when an update is effect preserving; (3)
Define criteria for effect preserving transformations. The section ends with the
definition of a minimal effect preserving transformation.

3.1 Characterization of Effects

The effects of a primitive update are constraints (postconditions) that characterize
the intended impact of the update:

Definition 1 (Effects of Primitive Updates). The effects of a primitive update U
is a collection of First Order Logic formulae effects(U) that always hold following
the update. That is, for every state s, if 〈U, s〉 ⇒ s′, then s′ |= effects(U)2.

Effects are used as a criterion for acceptance or rejection of execution sequences.
Therefore, if they are too restrictive, they lead to needless rejections, while if they
are too permissive, they lead to unwanted acceptance that possibly violates some
data integrity constraints. For example, taking {false} as the effects of an update
causes constant rejection, while taking {true} causes constant acceptance.

For the primitive skip the effects are {} since 〈skip, s〉 ⇒ s. For the primitive
fail the effects can be anything since, 〈fail, s〉 is a dead-end configuration. For
assignments to regular variables the effects are also {} since such updates have no
impact on database states. For assignments to state variables, the effects are do-
main specific and developer provided. In the relational domain with the operations
of element insertion and deletion we assume the following effects:

• effects(r := insert(r, e)) is {e ∈ r} and

• effects(r := delete(r, e)) is {e 6∈ r}.

Clearly, different effects can be considered. For example, the effects of element
insertion and deletion can be the dynamic constraints: If {e 6∈ r} ({e ∈ r}) before
the assignment, then {e ∈ r} ({e 6∈ r}) after the assignment, respectively. Yet, these
effects are still questionable, and in the current work we do not handle dynamic
effects.

3.2 Definition of Effect Preservation

Consider the update:

insert(r, e1);
if P then insert(r, e2) else skip;
delete(r, e3)

Starting from any state, there are two possible execution sequences, based on
whether P holds after the first insertion. Effect preservation requires that both se-
quences preserve the {e1 ∈ r} condition, but only one should preserve the {e2 ∈ r}

2For a set of formulae Φ and a state s, s |= Φ holds iff for every formula φ in Φ, s |= φ.

Effect Preservation in Transaction Processing in Rule Triggering Systems 743

condition. Therefore, effect preservation requires distinction between execution se-
quences. That is, the definition of effect preservation should be execution sequence
sensitive. This observation leads us to the following definition:

Definition 2 (The effect preservation property of updates). An update S is Effect
Preserving if all of its execution sequences are effect preserving.

Now we need to define effect preservation for execution sequences. For that
purpose, we need first to assign to a configuration within an execution sequence,
the effects of previous assignments along the sequence, so to maintain the history
of the sequence.

Definition 3 (Effects of Configurations within Execution Sequences). Let Ψ =
γ0, γ1, . . . be an execution sequence. The effects of the i-th configuration in Ψ,
denoted effectsi(Ψ), are:
effects0(Ψ) = {}, and for i ≥ 0:

effectsi+1(Ψ) =















effectsi(Ψ) ∪ effects(A) if γi is an assignment
configuration 〈A;S, si〉
to a state variable

effectsi(Ψ) otherwise

For a successful (finite length k) execution sequence, the effects are those of its
last configuration: effects(Ψ) = effectsk(Ψ). For a failing (finite) execution sequence
the effects are {false}. Note that the effects set of an assignment configuration
does not include the effects of its assignment update.

Property 1. For a successful execution sequence Ψ, the size of effects(Ψ) is pro-
portional to the length of Ψ.

Example 3 (Effects-of-configurations). The effects for the execution sequence

Ψ = 〈r := insert(r, x); r := delete(r, y), s〉 ⇒ 〈r := delete(r, y), s′〉 ⇒ 〈ǫ, s′′〉

are: effects0(Ψ) = {}, effects1(Ψ) = {x ∈ r}, effects2(Ψ) = {x ∈ r, y 6∈ r} =
effects(Ψ).

Note: Due to the rewriting preprocessing of assignments to state variables (see
Subsection 2.2), the effects of configurations indeed maintain the intended history
of effects. Consider an assignment A = r := e(r, y1, . . . , yn) to a state variable r.
effects(A) imposes a constraint on r in terms of the values of y1, . . . , yn in the state
that follows the update execution. If the variables y1, . . . , yn are later on assigned,
then effects(A) should be modified to reflect this change. Since the assignment
preprocessing guarantees that these variables are not assigned along the sequence,
effects(A) can be taken as the final effect of the assignment.

The effect preservation property is concerned with maintaining the effects of
primitive updates along a sequence:

744 Mira Balaban and Steffen Jurk

Definition 4 (The Effect Preservation Property of Execution Sequences). An exe-
cution sequence Ψ = γ0, γ1, . . . , where γi = 〈Si, si〉 i ≥ 0 is Effect Preserving (EP)
if it is either failing or si |= effectsi(Ψ) for all i ≥ 0.

Example 4 (Effect preservation).

1. Consider the execution sequence from Example 3. The sequence is effect
preserving for s = [r 7→ {3, 4, 5}, x 7→ 3, y 7→ 4] but is not effect preserving
for s = [r 7→ {3, 4, 5}, x 7→ 3, y 7→ 3].

Therefore, the update r := insert(r, x); r := delete(r, y) is not effect preserv-
ing.

2. Consider the execution sequence

〈r := insert(r, x); r := insert(r, y), s〉 ⇒ 〈r := insert(r, y), s′〉 ⇒ 〈ǫ, s′′〉

and states s, s′, s′′ where s′ = s[r 7→ insert(r, x)s] and
s′′ = s′[r 7→ insert(r, y)s′

]. The sequence is effect preserving for every state s.

Therefore, the update r := insert(r, x); r := insert(r, y) is effect preserving.

Note that a failing execution sequence is effect preserving, and an infinite exe-
cution sequence can be effect preserving as well.

Proposition 1. An execution sequence Ψ = 〈S0, s0〉, 〈S1, s1〉, . . . in which si+1 |=
effectsi(Ψ) for all i ≥ 0, is effect preserving.

3.3 Criteria for Effect Preserving Transformations

The first question that we need to answer when coming to define effect preserving
transformation concerns the kind of transformations we wish to produce. One op-
tion is semantics based code transformation, e.g., the replacement of r := insert(r, e);
r := delete(r, e) by skip3. However, in this case, we need to set criteria for the de-
sired transformation. For example, Schewe and Thalheim in [32, 35], require that
all post conditions of the input update are preserved by the transformed code. But
in that case, even a simple update such as r := insert(r, e); r := delete(r, e) cannot
be replaced by skip since, for example, in the state s = [r 7→ {3, 4, 5}, e 7→ 3], the
input update has the postcondition {e 6∈ r} which is not satisfied by skip.

Therefore, we adopt a more modest approach where non preservation of effects
causes rejection. We term it “repair by rejection”. We still need to characterize
desirable repairs since otherwise, the simplest transformation can repair every non
effect preserving update by replacing it with fail. We set two criteria for good effect
preserving transformations:

3This is the approach taken in the Generalized Consistent Specialization theory of [32, 35].
This approach is discussed in Section 5.

Effect Preservation in Transaction Processing in Rule Triggering Systems 745

1. Minimize rejections inserted for enforcing effect preservation.

2. Minimize run time overhead, i.e., minimize tests overhead.

The first criterion is handled by introducing a minimal restriction relation be-
tween updates. The restriction relation reflects the desired criterion for minimizing
the enforced rejections. An effect preserving transformation is required to produce
an update which is a minimal restriction of the input update. The second criterion
is handled by replacing update effects by delta-conditions, which are minimal condi-
tions that guard against effect violation. A desired effect preserving transformation
should produce a minimal restriction using delta-conditions.

3.3.1 Update Restriction – Minimizing Enforced Rejections

We already noted that effect preservation should be execution sequence sensitive.
That is, it should take into consideration the different effects of different execution
sequences. Therefore, the restriction relation on updates is defined on the basis of
a restriction relation on execution sequences.

Restriction Relations on Execution Sequences

We introduce three increasingly tighter relations, termed restriction, EP-restriction
and minimal-EP-restriction. The restriction relation on execution sequences relates
sequences that are either both infinite or terminate in the same state, or one is fail-
ing. The EP-restriction relation further requires that the restricting sequence is EP.
The minimal-EP-restriction relation is an EP-restriction with minimal rejections
(no needless rejections).

Definition 5 (Restriction relations between execution sequences).

1. An execution sequence Ψ′ is a restriction of an execution sequence Ψ, denoted
Ψ′ ≤ Ψ, if

a) start(Ψ′) = start(Ψ),

b) If Ψ′ is infinite then Ψ is also infinite,

c) If Ψ′ is successful with end(Ψ′) = s′ then also Ψ is successful with
end(Ψ) = s′.

That is, Ψ′ might be failing while Ψ is successful and terminates properly, or
is infinite.

2. An execution sequence Ψ′ is an EP-restriction of an execution sequence Ψ,
denoted Ψ′ ≤EP Ψ, if Ψ′ ≤ Ψ, and Ψ′ is EP.

3. An execution sequence Ψ′ is a minimal-EP-restriction of an execution se-
quence Ψ, denoted Ψ′ ≤min EP Ψ, if Ψ′ ≤EP Ψ, and if Ψ is EP then
Ψ ≤EP Ψ′ (i.e., Ψ′ ≡ Ψ).

746 Mira Balaban and Steffen Jurk

The relations ≤,≤EP ,≤min EP have proper versions, denoted<,<EP , <min EP ,
respectively. Ψ′ < Ψ means that Ψ′ is failing while Ψ is successful or infinite. Also,
Ψ and Ψ′ are equivalent, denoted Ψ′ ≡ Ψ, if Ψ′ ≤ Ψ, and Ψ ≤ Ψ′. Ψ′ ≡ Ψ
means that Ψ and Ψ′ are both either failing or successful or infinite, and if they
are successful they end in the same state. Ψ and Ψ′ are EP-equivalent, denoted
Ψ′ ≡EP Ψ, if Ψ′ ≤EP Ψ, and Ψ ≤EP Ψ′. That is, Ψ′ ≡EP Ψ if Ψ ≡ Ψ′ are both
effect preserving. Note that a failing execution sequence is a restriction of any other
sequence.

Proposition 2. The relations ≡ and ≡EP are equivalence relations on execution
sequences with a common start state, and the ≤, ≤EP and ≤min EP relations are
partial orders with respect to ≡.

Proof. Immediate.

Example 5 (Minimal-EP-restriction of execution sequences).

1. Consider the execution sequence Ψ from Example 3. Assume: s = [r 7→
{3, 4, 5}, x 7→ 3, y 7→ 4]. The following execution sequence is a minimal-EP-
restriction of Ψ:

〈r := insert(r, x); r := delete(r, y); if x 6∈ r then fail else skip, s〉 ⇒
〈r := delete(r, y); if x 6∈ r then fail else skip, s′〉 ⇒
〈if x 6∈ r then fail else skip, s′′〉 ⇒
〈skip, s′′〉 ⇒
〈ǫ, s′′〉

2. Consider the execution sequence

Ψ = 〈r := insert(r, e); r := delete(r, e), s〉 ⇒ 〈r := delete(r, e), s′〉 ⇒ 〈ǫ, s〉.

Assume: s = [r 7→ {3, 4, 5}, e 7→ 4]. Two minimal-EP-restrictions of ψ are:

〈skip, s〉 ⇒ 〈ǫ, s〉 ≤min EP Ψ and
〈fail, s〉 ≤min EP Ψ.

However, while 〈fail, s〉 <EP 〈skip, s〉 ⇒ 〈ǫ, s〉,
we have 〈fail, s〉 6<min EP 〈skip, s〉 ⇒ 〈ǫ, s〉.

Restriction Relations on Updates

Definition 6 (Restriction relations between updates).

1. An update U ′ is a restriction of an update U , denoted U ′ ≤ U , if for all states
s, seq(U ′, s) ≤ seq(U, s).

2. An update U ′ is an EP-restriction of an update U , denoted U ′ ≤EP U , if for
all states s, seq(U ′, s) ≤EP seq(U, s).

Effect Preservation in Transaction Processing in Rule Triggering Systems 747

3. An update U ′ is a minimal-EP-restriction of an update U , denoted
U ′ ≤min EP U , if for all states s, seq(U ′, s) ≤min EP seq(U, s).

In analogy to the restriction relations of execution sequences, the update re-
striction relations also induce proper versions and equivalence relations. U ′ < U
means that U ′ has failures which are successful in U . Updates U and U ′ are seman-
tically equivalent (or just equivalent, for short), denoted U ′ ≡ U , if for all states
s, seq(U ′, s) ≡ seq(U, s). Update U and U ′ are termination equivalent, denoted
U ′ ≡t U , if for all states s, the successful sequences are equivalent. That is, there
might be states for which one update fails while the other loops.

Proposition 3. The semantical equivalence is an equivalence relation on the set
of updates, and the update relation restriction ≤, ≤EP and ≤min EP are partial
orders on the set of updates, partitioned by the semantical equivalence relation.

Example 6 (Minimal-EP-restriction of updates).
Consider the update S = r := insert(r, e); r := delete(r, e). Since for the state
s = [r 7→ {3, 4, 5}, e 7→ 3] seq(skip, s) 6<min EP seq(S, s), we have skip 6<min EP S.

Properties of the update restriction relations:

1. For every update U , fail ≤ U and fail ≤EP U . That is, the set of updates
has a single least element with respect to the relations ≤ and ≤EP .

2. U ′ ≤EP U , if U ′ ≤ U , and U ′ is EP.

3. The restriction relations on updates are increasingly tighter. That is: If
U ′ ≤EP U then also U ′ ≤ U . If U ′ ≤min EP U then also U ′ ≤EP U .

4. If U ′ ≤min EP U and U is EP, then U ≤EP U ′ (i.e., U ′ ≡ U). However, the
converse is not true since it is possible that all execution sequences of U ′ are
minimal-EP restrictions of the corresponding execution sequences of U , while
still U is not effect preserving (some sequences of U are not EP).

The restriction relations between updates are used for characterizing the desir-
able update transformations as minimal effect preserving :

Definition 7. An update transformation Θ is minimal effect preserving if for every
update U , Θ(U) ≤min−EP U .

3.3.2 Delta Conditions – Minimizing Run Time Overhead

Effect preservation can be obtained by inserting a test for past effects following every
assignment in the sequence. However, the tests for past effects are costly, since the
size of the effects of a configuration effectsi(Ψ) in a sequence Ψ is proportional to
i. Therefore, the tests overhead in the worst case is O(length(Ψ)2), assuming that
testing the effects of primitive updates takes constant time.

748 Mira Balaban and Steffen Jurk

The tests overhead can be improved by replacing the tests of past effects by
delta-conditions, which are minimal formulae that serve as guards against effect vi-
olation. Our experience shows that delta-conditions tend to be small and indepen-
dent of the length of the execution sequence. Therefore, based on this experience,
their test overhead for the whole sequence is linear in the length of the execution
sequence.

Delta-conditions extract the possible interaction between aggregated past effects
and a forthcoming assignment. Consider, for example, the execution sequence Ψ
from Example 3, where s = [r 7→ {3, 4, 5}, x 7→ 3, y 7→ 4]. The first item in Example
5 presents a minimal-EP-restriction for Ψ. Static analysis of the effects of Ψ reveals
that there is a single delta-condition x 6= y to be tested prior to the application of
the second assignment in Ψ. Therefore, a more efficient minimal-EP-restriction of
Ψ is:

〈r := insert(r, x); if x 6= y then r := delete(r, y) else fail, s〉 ⇒
〈 if x 6= y then r := delete(r, y) else fail, s′〉 ⇒
〈r := delete(r, y), s′〉 ⇒
〈ǫ, s′′〉

First we define delta-conditions in general, and then specialize to the simple
relational domain with element insertion and deletion alone.

Definition 8 (Delta-Conditions of Assignments). A delta-condition of an assign-
ment update A with respect to a set of formulae P is a minimal collection of First
Order Logic formulae δ(A,P) that guarantees that A does not violate P . That is,
for every state s, such that s |= P and s |= δ(A,P), if 〈A, s〉 ⇒ s′, then s′ |= P .

A delta-condition can be viewed, alternatively, as a first order formula, by taking
the conjunction of the formulae in the set. The empty set corresponds to the formula
true. Henceforth, the exact view of delta-conditions can be understood from the
context: A delta-condition in a test is treated as a formula while a delta-condition
in a set operation is treated as a set.
Computation of Delta-Conditions: δ(A,P) is not necessarily unique. The
worst (useless) delta-condition for every assignment A and a formula P is {false}.
If A is x := e then {Px/e} is another example of a useless delta-condition. The
best delta-condition is the empty set, which indicates that the update A does not
interfere with P .

Delta-conditions can be computed in a domain specific manner, by considering
the assignments and their effects. For the relational domain with element insertions
and deletions, and effects formulae of the form {e ∈ r} and {e 6∈ r}, δ(A,P) is
computed by the following rules:

1. If A = r := delete(r, e1) and P includes e2 ∈ r, then δ(A,P) includes the
formula e1 6= e2.

2. If A = r := insert(r, e1) and P includes e2 6∈ r, then δ(A,P) includes the
formula e1 6= e2.

Effect Preservation in Transaction Processing in Rule Triggering Systems 749

Note that if the assigned state variable in A does not occur in P , then δ(A,P) is {}.
The delta-conditions computed for the examples below are based on these rules.

Definition 9. [Delta-conditions of Configurations within Execution Se-
quences]

Let Ψ = γ0, γ1, . . . be an execution sequence. The delta-conditions of an assign-
ment configuration is the delta-conditions between its effects and the assignment
updates. For non assignment configuration the delta-condition is empty. For i ≥ 0:

δi(Ψ) =















δ(A, effectsi(Ψ)) if γi is an assignment
configuration 〈A;S, si〉
to a state variable

{} otherwise

Example 7 (Delta-conditions-of-configurations). Consider the execution se-
quence Ψ from Example 3. While the effects of its configurations are:
effects0(Ψ) = {}, effects1(Ψ) = {x ∈ r}, effects2(Ψ) = {x ∈ r, y 6∈ r},
the delta-conditions of its configurations are meaningfully smaller:
δ0(Ψ) = {}, δ1(Ψ) = {x 6= y}, δ2(Ψ) = {}.

Size of delta-Conditions of a Configuration in the relational Domain with
Element insertion and Deletion: Consider an assignment configuration γi =
〈A;S, si〉 in an execution sequence Ψ = γ0, γ1, The size of δi(Ψ) depends on
the number of opposite assignments in γ0, γ1, . . . , γi−1. If A = r := op(r, ei) where
op = insert (delete), then the size of δi(Ψ) depends on the number of deletions
(insertions) to r, respectively. In the worst case, if all configurations before γi are
opposite operations on r: r : −inverse op(r, ej), then δi(Ψ) = {ej 6= ei | 0 ≤ j < i},
which is proportional to the length of the execution sequence. Nevertheless, as al-
ready commented above, our experience is that multiple contradictory assignments
to the same relation in a single execution sequence are rare. Therefore, based on
this experience, we assume that the size of delta-conditions is small (bounded), and
their tests take constant time.

4 Algorithms for Enforcing Effect Preservation on
Updates

In this section we introduce a minimal effect preserving transformation for While
updates. That is, an input update S is transformed into an update S′ such that
S ≤min EP S′. The transformation combines compile time analysis with run time
evaluation of delta-conditions. This approach was selected since we already know
that:

750 Mira Balaban and Steffen Jurk

• Effect preservation requires run time information, as it is execution sequence
sensitive. Otherwise, the minimize rejections criterion is not met.

• Naive run time effect preservation has a worst case overhead of O(size(S)2)
for an update S (assuming that testing the effects of primitive updates takes
constant time), since at every modification all past effects must be checked.
The delta-conditions optimization does not apply since their computation
depends on the full effects of configurations in the actual execution sequence.

Our method includes three steps:

1. Construct a computation tree (graph) that spans all execution sequences of
the update.

2. Annotate the computation tree (graph) with delta-conditions.

3. Augment the update with instructions that navigate along the computa-
tion tree (graph) and test the computed delta-conditions. The output is
an extended-While update: A While update augmented with external calls.

The transformation is introduced gradually: First, for a restricted subset of While
without loops, and then it is extended to any While update.

4.1 Minimal Effect Preservation for While updates without
Loops

The effect preserving transformation EP1 applies two algorithms: build CT for
computation tree construction, and reviseUpdate1 for code transformation. build CT
constructs a tree, associates it with an iterator (a pointer), and returns a static en-
coding of the resulting iterator. reviseUpdate1 interleaves within the input code
tree navigation (using the iterator) and tests for delta-conditions that are read from
the tree. The EP1 algorithm returns code in the extended While – extended with
calls to these external procedures.

Algorithm 2. [EP1 – Minimal Effect-Preservation forWhile without loops]

input: A While update S without loops.
output: A pair: 〈computation tree for S, minimal-EP restriction of S〉.
method:

EP1(S) = T := build CT (S); S′ := reviseUpdate1(S);
return 〈T, S′〉

4.1.1 Computation Tree Construction

The computation tree is a syntax tree whose nodes are associated with delta-
conditions. Paths in the tree correspond to execution sequences of the update,

Effect Preservation in Transaction Processing in Rule Triggering Systems 751

starting from a given state. Nodes correspond to configurations, and are associ-
ated with their delta-conditions (note that delta-conditions of configurations are
independent from their states).

Example 8 (A computation tree of an update). The update

S(“A”, “B”) = if P then Car := insert(Car, “A”);
if Q then Car := insert(Car, “B”)

has the following computation tree:

1

2 3

4 5

6 7 8 9insert

insert skip

skipskip insert

if Q if Q

if P

For this update, the tree captures the four possible execution sequences. Each
sequence corresponds to a path of the tree. The effects of the paths are (from left
to right): {“A” ∈ Car, “B” ∈ Car}, {“A” ∈ Car}, {“B” ∈ Car}, {}.

The tree construction consists of the actual tree construction, annotation of
the tree nodes with effects and delta-conditions, and finally, removal of the ef-
fects annotation. The effects annotation is necessary only for the delta-conditions
computation. This is important since effects grow linearly with the length of the
execution sequence (path in the tree), while delta-conditions tend to be small and
independent of path length.

The algorithm uses a node constructor n = Node(S) that returns a node n
labeled by S (denoted label(n)), and methods addLeft(n,m) (addRight(n,m))
that add a left (right) node m to n. The left (right) branch of n are retrieved by
getLeft(n) (getRight(n)), respectively, and the conjunction of its delta-conditions
is retrieved by getDelta(n). The algorithm returns an iterator to the tree. The
iterator function node() returns the currently pointed node, and the functions
right(), left() advance the iterator to the right or left child node of the current
node, respectively (if the current node is a leaf node they do nothing). The iterator
is necessary for interleaving tree navigation in the transformed update.

Algorithm 3. [build CT – Build a computation tree for While without
loops]
input: A While statement S without loops.
output: An iterator for a computation tree for S, initialized to the root node.
method: build CT (S) = iterator(annotateT (CT (S)),

where CT and annotateT are the following procedures:

752 Mira Balaban and Steffen Jurk

I. CT(S) – the actual tree construction. CT is defined inductively on the structure
of While statements, following the semantics of the transition relation ⇒. There-
fore, the sequence operator ; is taken as left associative. That is, in S1;S2, S1 can
be either primitive or an if statement, since it cannot include the sequence operator.

1. For a primitive update U , CT (U) = Node(U).

2. CT (S1;S2) = root, where root = CT (S1).
For all leaves l of root, such that label(l) 6= fail do: addLeft(l, CT (S2)).

3. CT (if P then S1 else S2) = root,
where root = Node(if P then S1 else S2),
addLeft(root, CT (S1)) and addRight(root, CT (S2)).

II. annotateT(T) – the annotation procedure. It annotates a computation tree T
built by CT with effects and with delta-conditions with respect to these effects. The
effects annotation is only intermediate, and is removed once all the delta conditions
are computed.
annotateT (T) = remove effects(annotateT helper(T, {})), where,

annotateT helper(T, eff) =
effects(root(T)) = eff,

δ(root(T)) =







δ(label(root(T)), eff) if label(root(T)) is a state variable
assignment

{} otherwise

eff ′ =







eff ∪ effects(label(root(T))) if label(root(T)) is a state variable
assignment

eff otherwise
annotateT helper(getLeft(T), eff ′)
annotateT helper(getRight(T), eff ′)

4.1.2 Code Transformation

The transformation interleaves within the update code commands for navigating the
computation tree and for testing delta-conditions. Tree navigation is done using
the iterator operations node(), left(), right(). The statically computed delta-
conditions are read from the tree and checked at run time. The transformation is
inductively defined on the structure of While statements. A syntactic piece of code
is denoted [..], and code concatenation is expressed by [..] · [..]. Evaluable
constructs within the syntactic brackets are understood from context.

Algorithm 4. [reviseUpdate1 – Code transformation for While without
loops]
input: A While update S without loops.
output: An extended While update which is a minimal-EP restriction of S, when
combined with the computation tree of S .
method:

Effect Preservation in Transaction Processing in Rule Triggering Systems 753

1. S is a primitive update:

a) S is an assignment to a state variable:
Replace S by [if getDelta(node()) then S; left() else fail];

b) Otherwise, S is a regular assignment or skip or fail:
Replace S by: [S; left()]

2. S = [S1;S2]: Replace S by reviseUpdate1(S1) · reviseUpdate1(S1)

3. S =[if P then S1 else S2]: Replace S by
[if P then left();] · reviseUpdate1(S1)·

[else right();] · reviseUpdate1(S2)

Example 9. (The EP1 Transformation of a non effect preserving update
into an effect preserving one.) Consider the following artifical, but compre-
hensive, update S(x, y, z), where P is and arbitrary condition:

S(x, y, z) =

1 r := insert(r, x);
2 if P then r := insert(r, y);
3 r := delete(r, z)

4

65

3

1

2

insert

insert

delete delete

skip

if P

Clearly, r := delete(r, z) might violate the effects of both insertions, insert(r,x)
and insert(r,y), depending on P and the values of x, y, z. The effects and
delta-conditions of nodes are as follows:

node effects delta-condition
1 {} {}
2 {x ∈ r} {}
3 {x ∈ r} {}
4 {x ∈ r} {}
5 {x ∈ r, y ∈ r} {x 6= z, y 6= z}
6 {x ∈ r} {x 6= z}

Recall that the effects of a node do not include the effects of the node itself. The
delta-conditions of nodes 1, 2, 3 and 4 are empty since there is no previous update
whose effects could be violated. The delta-conditions of nodes 5 and 6 are inequal-
ities of the inserted and deleted elements. Applying Algorithm 4 to S returns the
following update where the lines are labeled according the original code:

S′(x, y, z) =

1 if getDelta(node()) then r := insert(r, x); left() else fail;
2a if P then

2b left();

754 Mira Balaban and Steffen Jurk

2c if getDelta(node()) then r := insert(r, y); left() else fail;
2d else

2e right(); skip; left();
3 if getDelta(node()) then r := delete(r, z); left() else fail

Where the external calls getDelta(node()), left() and right() refer to the compu-
tation tree build CT (S).

Algorithm 4 can be further statically optimized by removing redundant tests of
empty delta-conditions. For this purpose, the reviseUpdate1 procedure should
accept also the computation tree as a parameter, and use a tree service
nodesT (occur(i, U), S) that maps the i-th occurrence of a primitive update U in S
to the set of tree nodes that correspond to configurations of this occurrence of U .
In Example 9, nodesT (occur(1, r := insert(r, x)), S) = {1}, and
nodesT (occur(1, r := insert(r, z)), S) = {5, 6}. Such an optimization simplfies the
output update and saves redundant run time tests of delta-conditions. The op-
timization is obtained by revising the primitive update entry in Algorithm 4, as
follows:

If S is the i-th occurrence of a primitive update:

1. S is an assignment to a state variable, and for some n ∈ nodesT (i, S), δ(n) 6=
∅:
Replace S by [if getDelta(node()) then S; left() else fail];

2. Otherwise:
Replace S by: [S; left()]

4.2 Minimal Effect Preservation for While updates with
Loops

The presence of loops introduces difficulties in detecting past effects since the actual
assignments being applied are not made explicit by the syntactic structure, but are
determined at run time by loop repetitions. Therefore, we need to strengthen the
complie time created structure with information that can capture the dynamics
of loops, and extend the update so that it can track the actually visited loops.
The nodes of the computation tree, which is extended into a computation graph,
are annotated with additional delta-conditions with respect to all possibly visited
nodes, and the code transformation prepares structures for storing and testing the
values of variables at run time.

As before, the effect preserving transformation EP2 applies two algorithms:
build CG for computation graph construction, and reviseUpdate2 for code trans-
formation. The EP2 algorithm returns code in While, extended with external calls
for navigating the computation graph, testing the delta-conditions, and recording
values of variables in loops.

Effect Preservation in Transaction Processing in Rule Triggering Systems 755

Algorithm 5. [EP2 – Minimal Effect-Preservation for While]
input: A While statement S.
output: A pair: 〈computation graph for S, minimal-EP restriction of S〉.
method:

EP2(S) = G := build CG(S); S′ := reviseUpdate2(S,G);
return 〈G, S′〉

4.2.1 Computation Graph Construction

As in Algorithm 3, the graph construction consists of the actual graph construc-
tion, annotation of the graph nodes with delta-conditions, and finally, removal of
redundant annotation that is necessary only for the delta-condition computation.

Algorithm 6. [build CG – Build a computation graph for While]
input: A While statement S.
output: An iterator for a computation graph for S, initialized to the root node.
method: build CG(S) = iterator(annotateG(CG(S))),

where CG and annotateG are the following procedures:

I. CG(S) – the actual graph construction. CG extends the inductive tree con-
struction of procedure CT with a fourth entry for a while update:

4. CG(while P do S) = root, where root = Node(while P do S),
addLeft(root, CG(if P then S else skip)).
For all leaves l of left(left(root)), such that label(l) 6= fail do: addLeft(l, root)

The while entry follows the while semantics:

〈while P do S, s〉 ⇒ 〈if P then (S; while P do S) else skip, s〉

Loop repetitions in a while statement are captured by graph cycles. Note that the
graphs are finite and have leaf nodes – the leaf in a while statement graph is the
right child node of the added if-then-else statement. Therefore, the construction
algorithm is well-defined.

II. annotateG(G) – the annotation procedure. It annotates a computation graph
G built by CG with delta-conditions with respect to its effects. During the annota-
tion phase each node n is associated, in addition to its effects and delta-conditions,
with:

1. possible(n) – All assignment (to state variable) nodes on cycles through n.

2. δPossible(n) – Delta-conditions with respect to the effects of the assignments
in these nodes. For each node m in possible(n), a delta-condition between
label(n) and effects(label(m)) is computed. δPossible(n) is a set of all pairs
〈m, δm〉 where m ∈ possible(n) and δm = δ(label(n), effects(label(m))).

756 Mira Balaban and Steffen Jurk

Like the effects annotation, the possible(n) annotation, which grows linearly with
the length of the execution sequence (path in the graph), is only intermediate, and
is removed when the annotation is completed. The only annotations left in the
final graph are the δ(n) and δPossible(n) annotations, which tend to be small and
independent of path length.

The set possible(n), for a node n, can be computed using any cycle detection
algorithm. However, it is not sufficient to consider only simple cycles since cycles
through nested loops are not simple (the while node in the cycle must be visited
several times). Below we provide separate annotation procedures for the possible
and δPossible sets. The effects and the delta-conditions annotations are essentially
the ones from the tree construction version (Algorithm 3).

annotateG(G) =
remove(annotate δPossible(annotate possible(

annotate effects δ(G))))

where,

1. annotate effects δ(G): Same as annotateT from the tree construction algo-
rithm. The only difference is the escape from looping. For that purpose, the
recursive application of annotate helper on getLeft(G) should be preceded by
a test that the child node was not previously visited. For example, test that
effects(getLeft(G)) is not defined already.

2. Set for all nodes n of the computation graph: possible(n) = ∅.
annotate possible(G) =

a) Mark root(G) as visited.

b) For n = getLeft(root(G)) or getRight(root(G)):

• If n is marked as visited:
If possible(n) = possible(root(G)): Stop.
else possible(n) = possible(n) ∪ {root(G)}

• possible(n) = possible(n) ∪ possible(root(G))

c) annotate possible(getLeft(root(G)))
annotate possible(getRight(root(G)))

3. annotate δPossible =
For every node n in G, which is an assignment to a state variable node:
For every node m ∈ possible(n), which is an assignment to a state variable
node:
Add to δPossible(n): 〈m, δ(label(n), effects(label(m)))〉.

4. The remove procedure removes the effects and the possible annotations from
the graph.

Effect Preservation in Transaction Processing in Rule Triggering Systems 757

Example 10 (Annotated computation graph with loops.). A While statement and
its computation graph.

S(x, y, z) =
1 x1 := x;
2 r := insert(r,x1);
3 while y > 0 do
4 while z > 0 do
5 y1 := y;
6 z1 := z;
7 r := delete(r,y1 + z1);
8 z := z − 1;
9 y2 := y;
10 z2 := z;
11 r := insert(r,y2 + z2);
12 y := y − 1;
13 y3 := y;
14 z3 := z;
15 r := insert(r,y3 + z3);

1

2

3

4

x1:=x

insert

while

while

y1:=y

z1:=z

delete

z:=z−1

y:=y−1

skip

y2:=y

z2:=z

insert

skip

y3:=y

z3:=z

insert

17

10

13

16

18

19

11

14

5

7

9

6

8

12

15

if z>0

if y>0

The graph annotations for the assignment to a state variable nodes.

node effects delta-condition possible δPossible
2 {} {} {} {}
15 {x1 ∈ r} {x1 6= y1 + z1} {18} {〈18, y1 + z1 6= y2 + z2〉}
18 {x1 ∈ r} {} {15} {〈15, y1 + z1 6= y2 + z2〉}
14 {x1 ∈ r} {} {15} {〈15, y1 + z1 6= y3 + z3〉}

2

4.2.2 Code Transformation

The full transformation for While updates extends the previous one for While up-
dates without loops. As before, it interleaves within the update code commands for
navigation of the computation graph (using the iterator functions node(), right(),
left()) and run time testing of effect preservation (using getDelta(node()) and a
procedure test δPossible(node())). In addition, the transformation adds manipula-
tion of run time value recording, using a procedure
updateV alues(node(), 〈x1, . . . , xm〉), that records in the given node the current val-
ues of the variables x1, . . . , xm .

The updateV alues procedure handles the run time recording of variable values
within repeated loop rounds. For that purpose, a node n in the graph that rep-
resents an assignment r := e(r, x1, . . . , xm) to a state variable r (e.g., e = insert
or delete), is associated at run time with a collection values(n) of tuples of values
of x1, . . . , xm used in the expression e. Whenever the assignment is executed, the

758 Mira Balaban and Steffen Jurk

procedure updateV alues(n, x1, . . . , xm) is applied, and adds the current values of
the variables x1, . . . , xm to the collection.

The test δPossible procedure applies a run time test for the δPossible condi-
tions that annotate the node n (the delta conditions are a compile time product).
Recall that

δPossible(n) = {〈m, δm〉 | δm = δ(label(n), effects(label(m))),
m is an assignment to a state variable node,
residing on a cycle through n}.

For each pair 〈m, δm〉 in δPossible(n), test δPossible(n) applies the associated
delta-condition δm, when instantiated by values(m). This way the delta-conditions
between the assignment of n and the effects of all previous executions of the as-
signment in m are tested. Assume that values(m) records the values of variables
x1, . . . , xm.

test δPossible(n) =
For every 〈m, δm〉 ∈ δPossible(n) such that δm 6≡ {}:

For every entry v1, . . . , vm in values(m):
Substitute in δm: x1/v1, . . . , xm/vm, and apply δm.

test δPossible(n) = true if all tests are true and false otherwise.

The reviseUpdate2 algorithm extends the previous reviseUpdate1 by modifying
the assignment to state variable transformation and adding a fourth transformation
for a while statement. We list only these extensions:

Algorithm 7. [reviseUpdate2 – Code transformation for While]
input: A While update S.
output: An extended While update which is a minimal-EP restriction of S, when
combined with the computation graph of S .
method:

1.a. S = [r := e(r, x1, . . . , xm)], an assignment to a state variable r,
where expression e is over variables x1, . . . , xm:
Replace S by
[if getDelta(node()) and test δPossible(node())

then updateV alues(node(), 〈x1, . . . , xm〉);S; left()
else fail];

4. S =[while P do S′]: Replace S by:
[while P do { left();left();] · reviseUpdate2(S

′)· [}; right()]

Brackets { and } serve to enclose a block of statements. The double left();left()

for loops is required to jump over the added if-then-else node. 2

Example 11. (The EP2 Transformation of a non effect preserving update
into an effect preserving one.) For the update S in Example 10, algorithm 5
returns the following update where lines are labelled accodring the orginal line of
code:

Effect Preservation in Transaction Processing in Rule Triggering Systems 759

1 x1 := x;
2a if getDelta(node()) and test δPossible(node()) then
2b updateValues(node(),〈x1〉);
2c r := insert(r, x1); left()
2d else fail ;
3a while y > 0 do
3b left(); left()
4a while z > 0 do
4b left();
5 y1 := y; left();
6 z1 := z; left();
7a if getDelta(node()) and test δPossible(node()) then
7b updateValues(node(),〈y1, z1〉);
7c r := delete(r, y1 + z1);left()
7d else fail;
8 z := z − 1; left();
4c right();
9 y2 := y; left();
10 z2 := z; left();
11a if getDelta(node()) and test δPossible(node()) then
11b updateValues(node(),〈y2, z2〉);
11c r := insert(r, y2 + z2); left()
11d else fail;
12 y := y − 1; left();
3c right();
13 y3 := y; left();
14 z3 := z; left();
15a if getDelta(node()) and test δPossible(node()) then
15b updateValues(node(),〈y3, z3〉);
15c r := insert(r, y3 + z3); left()
15d else fail 2

4.3 Correctness and Complexity of the Update Transforma-
tions

4.3.1 Enforcing Effect Preservation on Execution Sequences

In this subsection we concentrate on effect preservation in the semantic domain of
While programs, i.e., the set of all execution sequences over a given set of variables.
This “pre-processing” study is essential since effect preservation properties ofWhile
updates are defined in terms of effect preservation of their execution sequences,
and correctness of While transformations is proved by refering to their impact on
their execution sequences. We introduce an execution sequence transformation that
enforces minimal effect preservation. The transformation is further optimized by
using delta-conditions. These transformations are used later on to prove the effect

760 Mira Balaban and Steffen Jurk

preservation properties of the update transformations.

The Conditional Assignment Transformation

The following transform maps an execution sequence Ψ to an execution sequence
denoted CA(Ψ), which is a minimal effect preserving restriction of Ψ.

Definition 10. [Conditional assignment transformation]
Let Ψ = 〈S0, s0〉, 〈S0, s0〉, . . . , be an execution sequence. CA(Ψ) is the execution
sequence resulting from the replacement of every assignment to a state variable
configuration 〈A;S, si〉 in Ψ by the configuration sequence γ1, γ2, γ3, where:
γ1 = 〈A; if ¬effectsi(Ψ) then fail else skip;S, si〉,
γ2 = 〈if ¬effectsi(Ψ) then fail else skip;S, si+1〉,

γ3 =

{

〈fail, si+1〉 if si+1 6|= effectsi(Ψ)
〈skip;V, si+1〉 otherwise

If the resulting sequence includes a failing configuration cut the sequence after the
first failing configuration.

Example 12 (The CA Transformation). Consider the execution sequence from
Example 3

〈r := insert(r, x); r := delete(r, y), s〉 ⇒ 〈r := delete(r, y), s′〉 ⇒ 〈ǫ, s′′〉

and states s, s′, s′′ where s′ = s[r 7→ insert(r, x)s] and s′′ = s′[r 7→ delete(r, y)s′

].
The effects of the configurations in the sequence are effects0(Ψ) = {}, effects1(Ψ) =
{x ∈ r} and effects2(Ψ) = {x ∈ r, y 6∈ r}.

1. Assume: s = [r 7→ {3, 4, 5}, x 7→ 3, y 7→ 4]. Then, CA(Ψ) is4

〈r := insert(r, x); if true then fail else skip; r := delete(r, y), s〉 ⇒
〈if true then fail else skip; r := delete(r, y), s′〉 ⇒
〈skip; r := delete(r, y), s′〉 ⇒
〈r := delete(r, y); if x 6∈ r then fail else skip, s′〉 ⇒
〈if x 6∈ r then fail else skip, s′′〉 ⇒
〈skip, s′′〉 ⇒
〈ǫ, s′′〉

2. Assume: s = [r 7→ {3, 4, 5}, x 7→ 3, y 7→ 3]. Then, CA(Ψ) is

〈r := insert(r, x); if true then fail else skip; r := delete(r, y), s〉 ⇒
〈if true then fail else skip; r := delete(r, y), s′〉 ⇒
〈skip; r := delete(r, y), s′〉 ⇒
〈r := delete(r, y); if x 6∈ r then fail else skip, s′〉 ⇒
〈if x 6∈ r then fail else skip, s′′〉 ⇒
〈fail, s′′〉

4An empty effects set is the formula true.

Effect Preservation in Transaction Processing in Rule Triggering Systems 761

That is, for the state s = [r 7→ {3, 4, 5}, x 7→ 3, y 7→ 4], in which Ψ is effect
preserving (see Example 4), CA(Ψ) is also effect preserving, successful and ends in
the same state, while for the state s = [r 7→ {3, 4, 5}, x 7→ 3, y 7→ 3], in which Ψ is
not effect preserving, CA(Ψ) is failing. In any case, for both states, CA(Ψ) ≤EP Ψ.

The following claim shows that the CA transformation does not needlessly re-
strict execution sequences that are already effect preserving:

Claim 1. [Correctness and Minimality of the CA transformation]
For every execution sequence Ψ, CA(Ψ) ≤min EP Ψ.

Therefore, we conclude that the CA transformation does not needlessly restrict
execution sequences that are already effect preserving. Such transformations are
termed minimal effect preserving transformations.

Conclusion 1. The CA transformation is a minimal effect preserving transfor-
mation. That is, CA(Ψ) ≤EP Ψ, and if Ψ is already effect preserving, then
CA(Ψ) ≡ Ψ.

The Delta-Conditions Based Transformation

Delta-conditions were introduced as minimal conditions for guaranteeing that the
effects of an intermediate configuration in an execution sequence are preserved by
its successor configuration. Therefore, the CA transformation can be revised into
a delta-conditions based transformation CAδ that replaces tests of full effects by
tests of delta-conditions. Of course, the revised transformation CAδ must preserve
the properties of the former CA transformation.

Definition 11. [Delta-conditions based transformation]
Let Ψ = 〈S0, s0〉, . . . , 〈Sk, sk〉 be an execution sequence. CAδ(Ψ) is the execution
sequence resulting from the replacement of every assignment to a state variable
configuration 〈A;S, si〉 in Ψ, by the configuration sequence γ1, γ2, where:
γ1 = 〈if δi(Ψ) then A else fail;S, si〉,

γ2 =

{

〈A;S, si〉 if si |= δi(Ψ)
〈fail, si〉 otherwise

If the resulting sequence includes a failing configuration cut the sequence after the
first failing configuration.

Example 13 (The delta-conditions based Transformation). Consider the ex-
ecution sequence from Example 3, and states s, s′, s′′, where s′ = s[r 7→ insert(r, x)s]
and s′′ = s′[r 7→ delete(r, y)s′

]. The delta-conditions of the configurations in the
sequence are δ0(Ψ) = {}, δ1(Ψ) = {x 6= y} and δ2(Ψ) = {}.

1. Assume: s = [r 7→ {3, 4, 5}, x 7→ 3, y 7→ 4]. Then, CAδ(Ψ) is

〈if true then r := insert(r, x) else fail; r := delete(r, y), s〉 ⇒
〈r := insert(r, x); r := delete(r, y), s〉 ⇒
〈if x 6= y then r := delete(r, y) else fail, s′〉 ⇒
〈r := delete(r, y), s′〉 ⇒
〈ǫ, s′′〉

762 Mira Balaban and Steffen Jurk

2. Assume: s = [r 7→ {3, 4, 5}, x 7→ 3, y 7→ 3]. Then, CAδ(Ψ) is

〈if true then r := insert(r, x) else fail; r := delete(r, y), s〉 ⇒
〈r := insert(r, x); r := delete(r, y), s〉 ⇒
〈if x 6= y then r := delete(r, y) else fail, s′〉 ⇒
〈fail, s′〉 ⇒

Compared with the execution sequence that results from the CA-transformation in
Example 12, the execution sequence CAδ(Ψ) is shorter, and there is a single equality
test which precedes the assignment. As before, for both states, CAdelta(Ψ) ≤EP Ψ.

Claim 2. [Correctness and Minimality of the CAδ transformation] For
every execution sequence Ψ, CAδ(Ψ) ≤min EP Ψ.

Conclusion 2. The CAδ transformation is a minimal effect preserving transfor-
mation. That is, CAδ(Ψ) ≤EP Ψ, and if Ψ is already effect preserving, then
CAδ(Ψ) ≡ Ψ.

4.3.2 Minimal Effect Preserving Update Transformation

In this subsection we prove that the update transformations introduced above
are minimal effect preserving. Recall that a transformation Θ is minimal effect
preserving, if it produces minimal-EP-restrictions of its input updates (Defini-
tion 7). Observing the definition of this relation, it means that for all states s,
seq(Θ(U), s) ≤min EP seq(U, s) (Definition 6). Our proof uses the results about
the CAδ transformation of execution sequences. For each of the two update trans-
formations Θ introduced in Subsections 4.1 and 4.2, we show that

for every update U , for all states s, seq(Θ(U), s) ≡EP CAδ(seq(U, s)).

Since by Proposition 2:

for every update U , for all states s, CAδ(seq(U, s)) ≤min EP seq(U, s),

it follows that

for every update U , for all states s, seq(Θ(U), s) ≤min EP seq(U, s).

Therefore, by Definition 6,

for every update U , Θ(U) ≤min EP U,

and by Definition 7, Θ is minimal effect preserving.

Correctness of the transformation of While updates without loops

The main problem is to show

for every update U , for all states s, seq(reviseUpdate1(U), s) ≡EP CAδ(seq(U, s)).

Once this is proved, the minimal effect preservation property of EP1 is obtained as
outlined above.

Effect Preservation in Transaction Processing in Rule Triggering Systems 763

Lemma 1. Let U be a While update without loops, and s a state. The execution
sequence seq(U, s) corresponds to a full path in the computation tree of U , CT (U),
such that:

1. seq(U, s)0 corresponds to root(CT (U)), and if seq(U, s)i corresponds to node
ni in the tree, then seq(U, s)i+1 corresponds to a child node ni+1 of ni. If
seq(U, s) is a successful sequence, the last terminal configuration does not
correspond to any node, and its previous configuration corresponds to a leaf
node. If the sequence is failing, its last configuration corresponds to a leaf
node.
This correspondence defines a 1 : 1 mapping between the configurations in
seq(U, s) (excluding the terminal configuration, if exists) and the nodes of the
path.

2. If seq(U, s)i corresponds to node ni, then effectsi(seq(U, s)) = effects(ni) and
δi(seq(U, s)) = δ(ni).

Proposition 4. Let U be an extended While update, such that all external calls are
to terminating procedures. Let removeEC(U) be the While update that is obtained
from U by removing all external calls (if there is a syntactic problem, an external call
is replaced by skip). Then, for every state s: seq(removeEC(U), s) ≡EP seq(U, s).

Proof. The external calls do not affect termination and any variable assignment.
Therefore, for every state s, seq(removeEC(U), s) agrees with seq(U, s) with re-
spect to termination and failures, and if seq(U, s) is effect preserving so is
seq(removeEC(U), s).

Lemma 2. Let U be a While update without loops, and s a state. Then,

removeEC(seq(reviseUpdate1(U), s)) = CAδ(seq(U, s)).

Theorem 1. [Correctness and Minimality of Algorithm 4] For every update
S in While without loops, reviseUpdate1(S) is a minimal EP restriction of S.

Proof. By Lemma 2, (seq(removeEC(reviseUpdate1(U)), s)) = CAδ(seq(U, s)).
By Proposition 4, for every update U that does not include non-terminating ex-
ternal calls, for every state s: seq(removeEC(U), s) ≡EP seq(U, s). Therefore,
seq(reviseUpdate1(U), s) ≡EP CAδ(seq(U, s)). The rest of the proof is as outlined
above.

The following claim holds under the experimental observation that the size of
delta-conditions is small, and is independent from the length of the execution se-
quence. The reason is that multiple contradictory assignments to the same relation
in a single execution sequence do not happen frequently.

764 Mira Balaban and Steffen Jurk

Claim 3. The run time overhead of reviseUpdate1(S) is O(size(S)).

Proof. By the last theorem, reviseUpdate1(S) ≤min EP S. Therefore, for ev-
ery state s, seq(reviseUpdate1(S), s) is finite. For every state s, the overhead
of seq(reviseUpdate1(S), s) over seq(S, s) is

length(seq(S, s)) × (Time(getDelta(node())) + Time(navigation procedures))

Since there are no loops, the length of seq(S, s) is bounded by the size(S).

Time(getDelta(node())) = size(delta-condition) × Time(condition test).

Under the above assumption, the size of the delta-conditions is bounded. Each
condition in a delta-condition is a variable inequality, and therefore, its test takes
constant time, since it does not depend on the size of a relation. Therefore,
Time(getDelta(node())) = O(∞). Navigation procedures are calO(1), since they
only advance the iterator. Therefore, the overall overhead is O(size(S)).

Correctness of the transformation of While updates

The correctness of the reviseUpdate2 transformation is proved, essentially, similarly
to the proof for reviseUpdate1. However, there are two tricky points:

1. While allows for infinite execution sequences.

2. A node in the computation graph of a While update is annotated with delta-
conditions with respect to all possible assignments that might precede its
statement when executed. Therefore, its set of delta-condition is a superset of
the actual delta-conditions of its corresponding configuration in an execution
sequence.

Therefore, the two Lemmas on which the correctness Theorem is based are slightly
different.

Lemma 3. Let U be a While update, and s a state. Every finite prefix of seq(U, s)
corresponds to a path from the root in the computation graph of U , CG(U), such
that:

1. seq(U, s)0 corresponds to root(CG(U)), and if seq(U, s)i corresponds to node
ni in the tree, then seq(U, s)i+1 corresponds to a child node ni+1 of ni. If
seq(U, s) is a finite successful sequence, the last terminal configuration does
not correspond to any node, and its previous configuration corresponds to a
leaf node. If the sequence is finite failing, its last configuration corresponds
to a leaf node.
This correspondence defines a partial mapping from configurations in seq(U, s)
(excluding the terminal configuration, if exists) to the nodes on the path.

Effect Preservation in Transaction Processing in Rule Triggering Systems 765

2. If seq(U, s)i corresponds to node ni, then effectsi(seq(U, s)) = effects(ni) and
δi(seq(U, s)) ⊆ δ(ni) ∪ δPossible(ni)

5.

Lemma 4. Let U be a While update, and s a state. Then,

removeEC(seq(reviseUpdate2(U), s)) ≡EP CAδ(seq(U, s)).

Theorem 2. [Correctness and Minimality of Algorithm 7] For every update
S in While, reviseUpdate2(S) is a minimal EP restriction of S.

Proof. By Lemma 4, (seq(removeEC(reviseUpdate1(U)), s)) ≡EP CAδ(seq(U, s)).
By Proposition 4, for every update U that does not include non-terminating ex-
ternal calls, for every state s: seq(removeEC(U), s) ≡EP seq(U, s). Therefore,
seq(reviseUpdate1(U), s) ≡EP CAδ(seq(U, s)). The rest of the proof is as outlined
above.

As before, the complexity claim holds under the experimental observation that
the size of delta-conditions is small, and is independent from the length of the
execution sequence.

Claim 4. If for a state s seq(S, s) is terminating, then the run time overhead of
seq(reviseUpdate2(S), s) is proportional to the multiplication of the length of the
execution sequence seq(S, s) by the number of loop repetitions.

Proof. By the last theorem, reviseUpdate2(S) ≤min EP S. Therefore, if seq(S, s)
is finite, then also seq(reviseUpdate2(S), s) is finite. For every state s, the overhead
of seq(reviseUpdate2(S), s) over seq(S, s) is

length(seq(S, s)) × (Time(getDelta(node())) + Time(test δPossible(node()))+
Time(updateV alues(node())) + Time(navigation procedures))

As in the no-loops case, Time(getDelta(node())) = O(1), and navigation proce-
dures are O(1), since they only advance the iterator. The procedure
updateV alues(node(), x1, . . . , xm) is also O(1), since it adds a new value to a
collection. The only additional complexity overhead results from the procedure
test δPossible(node()) that tests multiple tuples that record variable values re-
sulting from loop repetitions. A call to test δPossible(node()) takes time pro-
portional to the number of loop repetitions. Therefore, the run time overhead is
O(length(seq(S, s))×#(loop repetitions)). The number of loop repetitions depends
on the update arguments, and usually is much smaller than the the length of the
execution sequence. Therefore, the run time overhead of seq(reviseUpdate2(S), s)
is much smaller than O((length(seq(S, s))2)), which is the overhead of a purely run
time effect preservation procedure.

5The notation is used imprecisly here, since δPossible(ni) is a set of pairs, and only the second
element in each pair is a delta-condition.

766 Mira Balaban and Steffen Jurk

5 Related Works

Effect preservation is traditionally related to the paradigm of integrity constraint
management. This direction is relevant in dynamic situations, where operations
can violate necessary properties. The role of integrity constraint maintenance is
to guard the consistency of the information base. There are, basically, two major
approaches to maintain consistency: Integrity checking, where operations are tested,
either at run time or at compile time, for being integrity preserving [10, 9, 8, 11,
21, 7], and integrity enforcement, where operations are repaired, so to guarantee
consistency [37, 28, 12, 29, 23, 14, 24, 3, 4]. The problem of effect violation arises
in the latter approach, where transactions are automatically constructed. It can
also arise in situations where transactions are deductively synthesized ([27]). The
Greatest Consistent Specialization theory of [35] is a compile time enforcement
theory with effect preservation. It generates a fully repaired transaction, which
is consistent with respect to a given set of constraints, and preserves the effects
of the original transaction. A relaxed version, that allows for stronger repairs, is
suggested in [30, 22]. A classification of Research efforts in consistency enforcement
appears in [25].

The most common approach in integrity enforcement is that of the run time Rule
Triggering Systems (RTS) (active databases), which are implemented in almost ev-
ery commercial database product [38, 37, 16, 38]. RTSs have to cope with problems
of termination, uniqueness (confluence) and effect preservation [12, 13, 36, 39].
Since a rule might be repeatedly applied, an application of a set of rules does not
necessarily terminate. Practically, the problem is solved by timing-out or count-
ing the level of nested rule activations. Sophisticated methods [12, 13] deal with
static cycle analysis of rules. Furthermore, different orders of rule execution do not
guarantee a unique database state. This is the confluence problem of RTSs. Static
analysis of confluence in RTSs is studied in [36, 39].

The problem of effect violation in active databases occurs when a rule fires
other rules that perform an update that is contradictory to an update performed
by a previous rule. Automated generation and static analysis of active database
rules [37, 6, 12] do neither handle, nor provide a solution to that problem. In
fact, contradicting updates are allowed, since the case of inserting and deleting
the same tuple is considered as a skip operation. The problem lies in the locality
of rule actions. Since an action is intended to repair a single event, it does not
account for the history of the repair, and therefore might not preserve the original
intention of the transaction being repaired. The limitations of RTSs in handling
effect preservation are studied in [33, 34].

In earlier versions of this work [17, 1, 2, 18], effect preservation was syntacti-
cally defined, based on the data structure that is constructed for a transaction.
[17] presents an early investigation of the usage of dependency graphs for order-
ing constraint enforcement. [1, 2] present our first effect preservation efforts for
While statements without loops: First, sequence transactions were annotated with
two kinds of effects (desired and executed), and a sequence was said to be effect
preserving if its desired effects logically followed from its executed effects. Then,

Effect Preservation in Transaction Processing in Rule Triggering Systems 767

a loop-less transaction was said to be effect preserving if all sequence transactions
on its computation tree are effect preserving. However, in [18] we tried to extend
this approach for handling effect preservation in general While transactions, but
encountered major problems, since the meaning of the desired and executed ef-
fects in the presence of loops is not straightforward. Consequently, we changed
our overall approach to effect preservation, looking for a unified framework that
can account for all While transactions. The result is a new approach, were effect
preservation is semantically defined (rather than syntactically). The move from
syntax based effect preservation to semantics based one is dramatic, since the lat-
ter provides a uniform framework for While, on which general criteria for effect
preserving transformations can be developed. The effect preservation terminology
developed in Section 3, and the algorithms introduced in section 4 could not have
been developed on the basis of syntax based effect preservation alone.

6 Conclusion

In this work we introduced a combined, compile time – run time method for en-
forcing effect preservation in rule triggering systems. Our method enforces effect
preservation on updates written in an imperative language with loops. It is based
on the assumption that effects of primitive database updates are provided by the
developer. The transformation is proved to be minimal effect preserving, and under
certain conditions provides meaningful improvement over the quadratic overhead
of pure run time procedures.

Our goal is to produce a database tool in which effect preservation is a correct-
ness condition for transactions. For that purpose, we are currently implementing
our effect preservation algorithm by embedding it within a real database plat-
form. We intend to use an open source database, such as postgres, and apply effect
preservation to stored procedures (procedural database application code maintained
within the database). Moreover, we plan to extend the effect preservation process
so that it will be applicable to general transactions (and not only to isolated prim-
itive updates). In addition, we plan to experimentally test the assumption about
the independence of the size of delta-conditions from the length of the execution
sequence.

Further research is needed in order to extend the set of primitive updates
such that it includes, for example, attribute modification. Study of dynamic con-
straints requires further research as well. Another future application domain is
semi-structured databases. The theory applies to any domain, provided that the
developer associates effects with primitive assignments, and provides an algorithm
for deriving delta-conditions.

Acknowledgments: We would like to thank B. Thalheim, K.D. Schewe, F. Bry,
E. Mayol, A. Cali and M. Kifer for providing constructive comments on our work.

768 Mira Balaban and Steffen Jurk

References

[1] Balaban, M. and Jurk, S. Intentions of Operations – Characterization and
Preservation. In Proc. International ER’02 workshop on Evolution and Change
in Data Management (ECDM’02), pages 100–111, 2002.

[2] Balaban, M. and Jurk, S. Update-Consistent Query Results by Means of Effect
Preservation. In Proc. Fifth International Conf. on Flexible Query Abswering
Systems (FQAS’02), pages 28–43, 2002.

[3] Balaban, M. and Shoval, P. Enhancing the ER model with structure methods.
Journal of Database Management, 10(4), 1999.

[4] Balaban, M. and Shoval, P. MEER – an EER model enhanced with structure
methods. Information Systems Journal, pages 245 – 275, 2001.

[5] Baralis, E. and Widom, J. An algebraic approach to rule analysis in expert
database systems. Proceedings of the 20. International Conference on Very
Large Data Bases, 1990.

[6] Baralis, E. and Widom, J. An algebraic approach to static analysis of active
database rules. In ACM Transactions on Database Systems, volume 25(3),
pages 269–332, September 2000.

[7] Benzaken, V. and Schaefer, X. Static Integrity Constraint Management in
Object-Oriented Databases Programming Languages via Predicate Transform-
ers. In European Conference on Object-Oriented Programming, ECOOP’97,
Lecture Notes in Computer Science, 1997.

[8] Benzaken, V. and Themis, D. A database programming language handling
integrity constraints. VLDB Journal, pages 493 – 518, 1995.

[9] Bry, F. Intensional updates: Abduction via deduction. In Proc. 7th Conf. on
Logi Programming, 1990.

[10] Bry, F. and Manthey, R. Checking consistency of database constraints: A
logical basis. In Proc. of the VLDB int. Conf., pages 13–20, 1986.

[11] Celma, M. and Decker, H. Integrity checking in deductive databases. the ul-
timate method? Proceedings of 5th Australiasian Database Conference, pages
136–146, 1995.

[12] Ceri, S., P.Fraternali, Paraboschia, S., and Tanca, L. Automatic gerneration of
production rules for integrity maintenance. In ACM Transactions on Database
Systems, volume 19(3), pages 367–422, 1994.

[13] Ceri, S. and Widom, J. Deriving production rules for constraint maintenance.
Proceedings of the 16. International Conference on Very Large Data Bases,
pages 566–577, 1990.

Effect Preservation in Transaction Processing in Rule Triggering Systems 769

[14] Etzion, O. and Dahav, B. Patterns of self-stabilization in database consistency
maintenance. Data and Knowledge Engineering, 28(3):299–319, 1998.

[15] Fikes, R.E. and Nilsson, N.J. Strips: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2:189–208, 1971.

[16] Fraternali, P., Paraboschi, S., and Tanca, L. Automatic rule generation for
constraints enforcement in active databases. In Lipeck, U. and Thalheim, B.,
editors, Modeling Database Dynamics, pages 153–173. springer WICS, 1993.

[17] Jurk, S. and Balaban, M. Improving Integrity Constraint Enforcement by
Extended Rules and Dependency Graphs. In Proc. 22th Conf. on DEXA,
2001.

[18] Jurk, S. and Balaban, M. Towards Effect Preservation of Updates with Loops.
In Proc. Fifth IFIP TC-11 WG 11.5 Working Conf. on Integrity and Internal
Control in Information Systems (IICIS’02), pages 59–75, 2002.

[19] Kniesel, G. ConTraCT – A Refactoring Editor Based on Composable Condi-
tional Program Transformations. Technical Report, Computer Science Dept.,
University of Bonn, 2005.

[20] Kniesel, G. and Koch, H. Static composition of refactorings. Science of Com-
puter Programming, Special Issue on ”Program Transformation”, Lammel, R.
(ed.), 52:9–51, 2004.

[21] Lee, S.Y. and Ling, T.W. Further improvement on integrity constraint checking
for stratisfiable deductive databases. In Proc. 22th Conf. on VLDB, pages 495–
505, 1996.

[22] Link, S. Consistency enforcment in databases. In Bertossi, L., Katona, G.O.H.,
Schewe, K.-D., and Thalheim, B., editors, Semantics in Databases, Second
International Workshop, Dagstuhl Castle, Germany, 2003.

[23] Mayol, E. and Teniente, E. Structuring the process of integrity maintenance. In
Proc. 8th Conf. on Database and Expert Systems Applications, pages 262–275,
1997.

[24] Mayol, E. and Teniente, E. Addressing efficiency issues during the process of
integrity maintenance. In Proc. 10th Conf. on Database and Expert Systems
Applications, pages 270–281, 1999.

[25] Mayol, E. and Teniete, Ernest. A survey of current meth-
ods for integrity constraint maintenance and view updating. In
Chen, Embley, Kouloumdjian, Liddle, Roddick, editor, Intl. Conf. on
Entity-Relationship Approach, volume 1727 of Lecture Notes in Computer
Science, pages 62–73, 1999.

[26] Nielson, H.R. and Nielson, F. Semantics with Applications – A Formal Intro-
duction. John Wiley & Sons, 1992.

770 Mira Balaban and Steffen Jurk

[27] Qian, X. The deductive synthesis of database transactions. ACM Transactions
on Database Systems, pages 626 – 677, 1993.

[28] Qian, X., Jullig, R., and Daum, M. Consistency Management in a Project
Management Assisteant. In ACM-SIGSOFT’90, 15(6), 1990.

[29] Ross, K.A. and Srivastava, D. Materialized View Maintenance and Integrity
Constraint Cheking: Trading Space for Time. In ACS-SIGMODF’96, 1996.

[30] S. Link, K.D. Schewe. Towards an arithmetic theory of consistency enforcement
based on preservation of δ constraints. In Electronic Notes in Theoretical
Computer Science, volume 61, pages 1–20, 2002.

[31] Sacerdoti, E. The nonlinear nature of plans. In ijcai-75, pages 206–214, 1975.

[32] Schewe, K.D. Consistency enforcement in entity-relationship and object-
oriented models. Data and Knowledge Eng., 28(1):121–140, 1998.

[33] Schewe, K.D. and Thalheim, B. Consistency enforcement in active databases.
In Chakravarty, S. and Widom, J., editors, Research Issues in Data Engineer-
ing – Active Databases, pages 71–76. IEEE Computer Society Press, 1994.

[34] Schewe, K.D. and Thalheim, B. Limitations of rule triggering systems for
integrity maintenance in the context of transition specifications. Acta Cyber-
netica, 13:277–304, 1998.

[35] Schewe, K.D. and Thalheim, B. Towards a theory of consistency enforcement.
Acta Informatics, 36:97–141, 1999.

[36] van der Voort and Siebes, A. Termination and confluence of rule execution.
In In Proceedings of the Second International Conference on Information and
Knowledge Management, November 1993.

[37] Widom, J. and Ceri, S. Deriving production rules for constraint maintenance.
In Proc. 16th Conf. on VLDB, pages 566–577, 1990.

[38] Widom, J. and Ceri, S. Active Database Systems. Morgan-Kaufmann, 1996.

[39] Zhou, C. and Hsu, M. A theory for rule triggering systems. In Advances in
Database Technology-EDBT’ 90, volume 416 of Lecture Notes in Computer
Science, pages 407–421, 1999.

7 Appendix – Proofs

Proof of Proposition 1:

Proposition: An execution sequence Ψ = 〈S0, s0〉, 〈S1, s1〉, . . . in which si+1 |=
effectsi(Ψ) for all i ≥ 0, is effect preserving.
Proof: This property derives from the necessary property of effects of assignments

Effect Preservation in Transaction Processing in Rule Triggering Systems 771

A: For every state s, if 〈A, s〉 ⇒ s′ then s′ |= effects(A). By the definition of the
effects of configurations in an execution sequence Ψ, if the statement that is exe-
cuted in the i-th transition is not an assignment, then effectsi+1(Ψ) = effectsi(Ψ),
and if it is an assignment A, then effectsi+1(Ψ) = effectsi(Ψ) ∪ effects(A). There-
fore, in the first case we have si+1 |= effectsi(Ψ) = effectsi+1(Ψ) and in the sec-
ond case we have si+1 |= effectsi(Ψ) and si+1 |= effects(A) which implies si+1 |=
effectsi(Ψ) ∪ effects(A) = effectsi+1(Ψ). Since for i = 0, s0 |= {true} = effects0(Ψ),
we have the effect preservation property for all configurations in the sequence.

2

Proof of Claim 1:

Claim: For every execution sequence Ψ, CA(Ψ) ≤min EP Ψ.
Proof: We have to show that CA(Ψ) is EP and a minimal restriction of Ψ.

1. CA(Ψ) ≤ Ψ: If CA(Ψ) is failing then it is a restriction of Ψ. Otherwise,
the sequence of states in CA(Ψ) is the same as in Ψ (apart from possible
intermediate repetitions). Therefore, if CA(Ψ) is infinite, then also Ψ is
infinite. If CA(Ψ) is finite and successful then end(CA(Ψ)) = end(Ψ).

2. CA(Ψ) is EP: We show by induction on the sequence of states in CA(Ψ)
s0, s1, . . . that if the sequence is not failing, then for every state si, si |=
effectsi(CA(Ψ)). First, we note that not only the states in CA(Ψ) are states
that occur in Ψ and in the same ordering, but also the effects associated with
configurations in CA(Ψ) are the same since CA(Ψ) has no additional assign-
ments. Therefore, for every CA(Ψ) configuration there is a corresponding
earlier Ψ configuration with the same effects.
Basis: s0 |= {true} = effects0(CA(Ψ)).
Inductive step: Assume that the claim holds for all states si, for 0 ≤ i ≤ k,
for some k ≥ 0. Consider the transition 〈W, sk〉 ⇒ 〈W ′, sk+1〉 in the sequence.

a) If 〈W, sk〉 is not an assignment configuration, then sk = sk+1 and
effectsk(CA(Ψ)) = effectsk+1(CA(Ψ)), and by the inductive hypothesis:
sk+1 |= effectsk+1(CA(Ψ)).

b) If 〈W, sk〉 is an assignment configuration, then

W = A; if ¬effectsi(Ψ) then fail else skip;V,

where the i configuration in Ψ corresponds to the k configuration in
CA(Ψ). That is, effectsi(Ψ) = effectsk(CA(Ψ)). The following configu-
rations in the CA(Ψ)) sequence are
〈if ¬effectsi(Ψ) then fail else skip;V, sk+1〉 ⇒
either 〈fail, sk+1〉 if sk+1 6|= effectsi(Ψ),
or 〈skip;V, sk+1) if sk+1 |= effectsi(Ψ).
In the first case the sequence is failing, and hence EP. In the sec-
ond case, sk+1 |= effectsi(Ψ) = effectsk(CA(Ψ)) and by Proposition
1, sk+1 |= effectsk+1(CA(Ψ)).

772 Mira Balaban and Steffen Jurk

Therefore, in either case, CA(Ψ) is EP.

3. CA(Ψ) ≤min EP Ψ: It can be shown, by induction on the sequence configu-
rations, that if Ψ is an EP execution sequence then Ψ ≤EP CA(Ψ).

2

Proof of Claim 2:

Claim: For every execution sequence Ψ, CAδ(Ψ) ≤min EP Ψ.
Proof: The proof is similar to that of Proposition 1. It is based on the correspon-
dence between configurations of CAδ(Ψ) to those of Ψ: Ψ configurations that are
not changed correspond to themselves, and assignment configurations in Ψ corre-
spond to the pair of configurations in CAδ(Ψ) that replaces them.

1. CAδ(Ψ) ≤ Ψ since it is either failing or follows the same configurations (with
some additional intermediate ones).

2. In order to show that CAδ(Ψ) is EP we show (by induction on the sequence
of states in CAδ(Ψ) s0, s1, . . .) that if the sequence is not failing, then for
every state sk,
sk |= effectsk(CAδ(Ψ)) = effectsi(Ψ) (where the k-th configuration in CAδ(Ψ)
corresponds to the i-th configuration in Ψ).
Basis: s0 |= {true} = effects0(CAδ(Ψ)) = effects0(Ψ).
Inductive step: Assume that the claim holds for the first k configurations
of CAδ(Ψ), for some k ≥ 0. Consider the transition 〈W, sk〉 ⇒ 〈W ′, sk+1〉 in
CAδ(Ψ).

a) If 〈W, sk〉 is an original Ψ configuration, it is not an assignment configu-
ration. Therefore sk = sk+1 and effectsk(CA(Ψ)) = effectsk+1(CA(Ψ)),
and by the inductive hypothesis sk+1 |= effectsk+1(CA(Ψ)).

b) If 〈W, sk〉 is the first of a new pair of configurations that replaces the
i-th assignment configuration in Ψ, then it is of the form
〈if δi(Ψ) then A else fail;V, sk〉,
where the following CAδ(Ψ) configurations are
either 〈A;V, sk+1〉 ⇒ 〈V, sk+2〉 (where sk+1 = sk)
or 〈fail, sk〉 (where sk+1 = sk).
In the latter case the overall CAδ(Ψ) sequence is failing, and hence EP.
In the first case, sk+1 = sk |= δi(Ψ) = δ(effectsi(Ψ), A). Since by the
inductive hypothesis sk+1 = sk |= effectsi(Ψ), we have by the definition
of delta-conditions: sk+2 |= effectsi(Ψ). By the inductive hypothesis we
also have effectsi(Ψ) = effectsk(CAδ(Ψ)) = effectsk+1(CAδ(Ψ)), since
the k-th configuration is an if configuration. Altogether, from
sk+2 |= effectsk+1(CAδ(Ψ)), and by Proposition 1, we get
sk+2 |= effectsk+2(CAδ(Ψ)).

Effect Preservation in Transaction Processing in Rule Triggering Systems 773

The second equality in the hypothesis is obtained directly from the def-
inition of effects in execution sequence:
effects

k+2(CAδ(Ψ)) = effects
k+1(CAδ(Ψ)) ∪ effects(A) =

effects
i
(Ψ) ∪ effects(A) = effects

i+1(Ψ).

3. If Ψ is an EP execution sequence then Ψ ≤EP CAδ(Ψ). Can be shown by
induction on the sequence configurations.

2

Proof of Lemma 1:

Lemma: Let U be a While update without loops, and s a state. The execution
sequence seq(U, s) corresponds to a full path in the computation tree of U , CT (U),
such that:

1. seq(U, s)0 corresponds to root(CT (U)), and if seq(U, s)i corresponds to node
ni in the tree, then seq(U, s)i+1 corresponds to a child node ni+1 of ni. If
seq(U, s) is a successful sequence, the last terminal configuration does not
correspond to any node, and its previous configuration corresponds to a leaf
node. If the sequence is failing, its last configuration corresponds to a leaf
node.
This correspondence defines a 1 : 1 mapping between the configurations in
seq(U, s) (excluding the terminal configuration, if exists) and the nodes of the
path.

2. If seq(U, s)i corresponds to node ni, then effectsi(seq(U, s)) = effects(ni) and
δi(seq(U, s)) = δ(ni).

Proof: The proof is by induction on the structure of U (nesting level of its opera-
tors).

1. If U is primitive, then seq(U, s) is either 〈fail, s〉 or 〈U, s〉 ⇒ s′, and CT (U)
is a single node. So, the correspondence is established.

2. If U is an if statement if P then S1 else S2, then seq(U, s) =
γ0, . . . , γn, where γ0 = 〈if P then S1 else S2, s〉 and γ1, . . . , γn is ei-
ther seq(S1, s) or seq(S1, s). The root node of CT (U) has two subtrees for
CT (S1) and CT (S2). The inductive hypothesis holds for S1 and S2. There-
fore, the tree path that corresponds to seq(U, s) consists of root(CT (U)) and
the path that corresponds to either S1 or S2, according to seq(U, s).

3. If U is a sequence statement S1;S2, then seq(U, s) is the concatenation of two
sequences for S1 and S2, respectively. The inductive hypothesis holds for S1

and S2. CT (U) is CT (S1) where all non fail leaves have left subtrees for
CT (S2). Therefore, the tree path that corresponds to seq(U, s) consists of
the path that corresponds to seq(S1, s) in CT (S1), concatenated to the path
that corresponds to the S2 sequence in CT (S2).

774 Mira Balaban and Steffen Jurk

The second part of the Lemma holds since the definitions of effects and of delta-
conditions for execution sequences are exactly the tree annotations.

2

Proof of Lemma 2:

Lemma: Let U be a While update without loops, and s a state. Then,

removeEC(seq(reviseUpdate1(U), s)) = CAδ(seq(U, s)).

Proof: The proof is obtained from the following three immediate claims:

1. There is an order preserving correspondence (mapping) between the configu-
rations of seq(U, s) and the those of CAδ(seq(U, s)), such that:

a) If seq(U, s)i is an assignment to a state variable configuration, then it
corresponds to two successive configurations in CAδ(seq(U, s)) – an if

configuration and either the assignment or a fail configuration –, fol-
lowing the definition of the CAδ transformation.

b) All other configurations correspond to themselves.

2. There is an order preserving correspondence (mapping) between the config-
urations of seq(U, s) and the those of removeEC(seq(reviseUpdate1(U), s)),
such that:

a) If seq(U, s)i is an assignment to a state variable configuration, then it
corresponds to two successive configurations in
removeEC(seq(reviseUpdate1(U), s)) – an if configuration and either
the assignment or a fail configuration –, following the definition of the
reviseUpdate1 transformation.

b) All other configurations correspond to themselves.

3. When the sequence removeEC(seq(reviseUpdate1(U), s)) reaches an if

configuration that corresponds to an assignment to a state variable config-
uration seq(U, s)i, the node() iterator procedure points to the tree node ni

that corresponds to seq(U, s)i.

Based on the first two claims, the two execution sequences
removeEC(seq(reviseUpdate1(U), s)) and CAδ(seq(U, s)) differ only in the condi-
tions in the added if statements. In CAδ(seq(U, s)) the condition is δi(seq(U, s))
– for the corresponding seq(U, s)i configuration, while in
removeEC(seq(reviseUpdate1(U), s)) the condition is δ(ni) – for the tree node ni

pointed by the iterator. However, based on the third claim, the conditions are the
same since effectsi(seq(U, s)) = effects(ni), by Lemma 1. Therefore,
removeEC(seq(reviseUpdate1(U), s)) = CAδ(seq(U, s)).

2

Effect Preservation in Transaction Processing in Rule Triggering Systems 775

Proof of Lemma 3:

Lemma: Let U be a While update, and s a state. Every finite prefix of seq(U, s)
corresponds to a path from the root in the computation graph of U , CG(U), such
that:

1. seq(U, s)0 corresponds to root(CG(U)), and if seq(U, s)i corresponds to node
ni in the tree, then seq(U, s)i+1 corresponds to a child node ni+1 of ni. If
seq(U, s) is a finite successful sequence, the last terminal configuration does
not correspond to any node, and its previous configuration corresponds to a
leaf node. If the sequence is finite failing, its last configuration corresponds
to a leaf node.
This correspondence defines a mapping from configurations in the finite prefix
of seq(U, s) (excluding the terminal configuration, if exists) to the nodes on
the path.

2. If seq(U, s)i corresponds to node ni, then effectsi(seq(U, s)) = effects(ni) and
δi(seq(U, s)) ⊆ δ(ni) ∪ δPossible(ni)

6.

Proof: We extend the proof of Lemma 1 by adding the additional entry for a while
statement:

4. If U is a while statement while P do S, then a finite prefix of seq(U, s) is
a concatenation of repeating sequences for S:
〈while P do S, s〉 ⇒ 〈if P then (S; while P do S) else skip, s〉 · seq(S, s),
where · stands for sequence concatenation. The root node of CG(U) (a while
labeled node) has a left child for the if statement, which has a left subtree
for CG(S). The inductive hypothesis holds for S. Therefore, the graph
path that corresponds to a single round in the loop consists of root(CG(U)),
its left child, and the path that corresponds to S in CG(S). For the next
round: The non failure leaves of CG(S) have root(seq(U, s) as their left child.
Therefore, a path that corresponds to a finite prefix of seq(U, s) consists of
cyclic repetition on the graph path for a single loop round.

In the second part of the Lemma, the equality of effects holds since their definition
for execution sequences is exactly the graph annotations. The delta-conditions and
delta-Possible annotations of a graph node is a superset of the delta-conditions of
the corresponding configuration since delta-Possible includes delta-conditions with
respect to all possible assignments that might precede its statement when executed.
Therefore, its set of delta-conditions is a superset of the actual delta-conditions of
its corresponding configuration in an execution sequence.

2

6The notation is used imprecisely here, since δPossible(ni) is a set of pairs, and only the second
element in each pair is a delta-condition.

776 Mira Balaban and Steffen Jurk

Proof of Lemma 4:

Lemma: Let U be a While update, and s a state. Then,

removeEC(seq(reviseUpdate2(U), s)) ≡EP CAδ(seq(U, s)).

Proof: The proof is the same as that of Lemma 2. The only difference is that the
two sequences are not equal due to the difference in the delta-conditions in the added
if statements. The conditions in the removeEC(seq(reviseUpdate2(U), s)) se-
quence are taken from the graph-nodes – include the delta-conditions and delta-
Possible annotations of a graph node, which form a superset of the delta-conditions
of the corresponding configuration in CAδ(seq(U, s)). However, the tests of the
conditions in both sequences give the same results since the extra delta-conditions
in a configuration of removeEC(seq(reviseUpdate2(U), s)) are evaluated on an
empty set of variable values (they are applied on non-visited graph nodes, whose
values collection is empty). Therefore, the two sequences, although not syntac-
tically equal, have the same behavior with respect to failure, termination, and
effect-preservation.

2

Received 13th April 2007

