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Two Power-Decreasing Derivation Restrictions in
Generalized Scattered Context Grammars™

Tom4s Masopust! Alexander Meduna! and Jiff Simacek!

Abstract

The present paper introduces and discusses generalized scattered context
grammars that are based upon sequences of productions whose left-hand sides
are formed by nonterminal strings, not just single nonterminals. It places two
restrictions on the derivations in these grammars. More specifically, let k£ be
a positive integer. The first restriction requires that all rewritten symbols
occur within the first k& symbols of the first continuous block of nonterminals
in the sentential form during every derivation step. The other restriction de-
fines derivations over sentential forms containing no more than k occurrences
of nonterminals. As its main result, the paper demonstrates that both re-
strictions decrease the generative power of these grammars to the power of
context-free grammars.

Keywords: scattered context grammar; grammatical generalization; deriva-
tion restriction; generative power.

1 Introduction

Scattered context grammars are based upon finite sets of sequences of context-free
productions having a single nonterminal on the left-hand side of every production
(see [5]). According to a sequence of n context-free productions, these grammars
simultaneously rewrites n nonterminals in the current sentential form according to
the n productions in the order corresponding to the appearance of these productions
in the sequence. It is well-known that they characterize the family of recursively
enumerable languages (see [8]).

In this paper, we generalize these grammars so that the left-hand side of ev-
ery production may consist of a string of several nonterminals rather than a single
nonterminal. Specifically, we discuss two derivation restrictions in scattered con-
text grammars generalized in this way. To explain these restrictions, let k be a
constant. The first restriction requires that all simultaneously rewritten symbols
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occur within the first & symbols of the first continuous block of nonterminals in
the current sentential form during every derivation step. The other restriction de-
fines the grammatical derivations over sentential forms containing no more than
k occurrences of nonterminals. As the main result, this paper demonstrates that
both restrictions decrease the generative power of generalized scattered context
grammars to the generative power of context-free grammars. As ordinary scattered
context grammars represent special cases of their generalized versions, they also
characterize only the family of context-free languages if they are restricted in this
way.

This result concerning the derivation restrictions is of some interest when com-
pared to analogical restrictions in terms of other grammars working in a context-
sensitive way. Over its history, formal language theory has studied many restrictions
placed on the way grammars derive sentential forms and on the forms of produc-
tions. In [6], Matthews studied derivations of grammars in the strictly leftmost
(rightmost) way—that is, rewritten symbols are preceded (succeeded) only by ter-
minals in the sentential form during the derivation. Later, in [7], he combined
both approaches—leftmost and rightmost derivations—so that any sentential form
during the derivation is of the form Wy, where x and y are terminal strings, W
is a nonterminal string, and a production is applicable only to a leftmost or right-
most substring of W. In both cases, these restrictions result into decreasing the
generative power of type-0 grammars to the power of context-free grammars.

Whereas Matthews studied restrictions placed on the forms of derivations, other
authors studied the forms of productions. In [2], Book proved that if the left-hand
side of any non-context-free production contains besides exactly one nonterminal
only terminals, then the generative power of type-0 grammars decreases to the
power of context-free grammars. He also proved that if the left-hand side of any
non-context-free production has as its left context a terminal string and the left
context is at least as long as the right context, then the generative power of type-0
grammars decreases to the power of context-free grammars, too. In [4], Ginsburg
and Greibach proved that if the left-hand side of any production is a nonterminal
string and the right-hand side contains at least one terminal, then the generated
language is context-free. Finally, in [1], Baker proved a stronger result. This result
says that if any left-hand side of a production either has, besides terminals, only
one nonterminal, or there is a terminal substring, 8, on the right-hand side of
the production such that the length of (3 is greater than the length of any terminal
substring of the left-hand side of the production, then the generative power of type-
0 grammars decreases to the power of context-free grammars. For more details, see
page 198 in [9] and the literature cited there.

2 Preliminaries
In this paper, we assume that the reader is familiar with formal language theory

(see [10]). For a set @, |Q| denotes the cardinality of ). For an alphabet (finite
nonempty set) V, V* represents the free monoid generated by V. The identity of
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V* is denoted by €. Set V* = V* — {e}. For w € V*, |w| and w® denote the
length and the mirror image of w, respectively, and sub(w) denotes the set of all
substrings of w. For W C V', occur(w, W) denotes the number of occurrences of
symbols from W in w.

A pushdown automaton is a septuple M = (Q,%,T,0, qo, Zo, F'), where @ is
a finite set of states, ¥ is an input alphabet, ¢y € @ is the initial state, I" is a
pushdown alphabet, § is a finite set of rules of the form Zqa — ~p, where p,q € Q,
Z eTU{e},aeXU{e}, v €T F is a set of final states, and Z; is the initial
pushdown symbol. Let ¢ denote a bijection from § to ¥ (¥ is an alphabet of rule
labels). We write r.Zga — ~yp instead of ¥(Zga — ~p) = r.

A configuration of M is any word from I'*QX*. For any configuration xAqay,
where z € T*, y € ¥* ¢ € @, and any r.Aga — vp € 6, M makes a move
from xAqay to xypy according to r, written as xAqay = zypy|r], or, simply,
rAqay = xypy. If z,y € T*QX* and m > 0, then x =™ y if and only if there exists
a sequence Ty = T = --- = Ty, Where o = z and z,, = y. Then, we say z =1 y
if and only if there exists m > 0 such that x =™ y, and x =* yifand only if x = y or
x =T y. The language of M is defined as L(M) = {w € ¥* : Zgqow =* f, f € F}.

A phrase-structure grammar or a grammar is a quadruple G = (V,T, P, S),
where V' is a total alphabet, T" C V is an alphabet of terminals, S € V — T is
the start symbol, and P is a finite relation over V*. Set N = V — T. Instead
of (u,v) € P, we write u — v € P throughout. We call © — v a production;
accordingly, P is G’s set of productions. If u — v € P, z,y € V*, then G makes a
derivation step from zuy to xvy, symbolically written as zuy = zvy. If z,y € V*
and m > 0, then x =" y if and only if there exists a sequence zg = 1 = -+ = Xy,
where 7o = z and z,,, = y. We write z = y if and only if there exists m > 0 such
that * =™ y, and x =* y if and only if x = y or x =T 3. The language of G is
defined as L(G) = {w € T* : S =* w}.

3 Definitions

This section defines a new notion of generalized scattered context grammars. In
addition, it formalizes two derivation restrictions studied in this paper.

A generalized scattered context grammar, a SCG for short, is a quadruple G =
(V,T, P,S), where V is a total alphabet, T C V is an alphabet of terminals, S € N
(N =V —T) is the start symbol, and P is a finite set of productions such that
each production p has the form (aq,...,a,) — (61,-.., Bn), for some n > 1, where
a; € NT, 3; € V*, forall 1 < i < n. If each production p of the above form satisfies
la;] = 1, for all 1 < i < n, then G is an ordinary scattered context grammar. Set
m(p) = n. If w(p) > 2, then p is said to be a context-sensitive production. If
m(p) = 1, then p is said to be context-free. If (a1,...,an) — (B1,...,0,) € P,
U = ToQ1T]...0nTn, and v = xof121 ... OpTy, Where x; € V*, 1 < i < n, then
u = v [(a1,...,,) — (B1,---,0s)] in G or, simply, v = v. Let =T and =*
denote the transitive and the reflexive and transitive closure of =, respectively.
The language of G is defined as L(G) = {w € T* : S =* w}.
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For an alphabet T' = {a1,...,a,}, there is an extended Post correspondence
problem, E, defined as

E= ({(ulavl)7 R (uravr)}v (Zala sy Zan)) 5
where u;, vy, zq; € {0,1}*, for each 1 < i <, 1 < j < n. The language represented
by E is the set
LE)={by...bp €T* : exists s1,...,55€{1,...,r}1>1,

Vg, - .. Vs, = Ug, ... Ug; 2b, - - - 2b, fOr some k > 0}.

It is well known that for each recursively enumerable language, L, there is an
extended Post correspondence problem, E, such that £(E) = L (see Theorem 1
in [3]).

Next, we define two derivation restrictions discussed in this paper.

Let k > 1. If there is (a1,...,an) = (B1,.-.,0n) € P, u = o121 ... @,
and v = xof1x1 ... BTy, Where

1. xg € T*N™,

2. z; € N*, for all 0 < i < n,

3. x, € V*, and

4. occur(xzparzy ..., N) < k,

then w o= v [r] in G or, simply, v o= v. Let ,¢=" denote the n-fold product
of o=, where n > 0. Furthermore, let ,¢<=* denote the reflexive and transitive
closure of o=. Set p_ic ;i L(G) ={w € T* : S =% w}.

Let m,h > 1. W(m) denotes the set of all strings x € V* satisfying 1 given
next. W(m,h) denotes the set of all strings x € V* satisfying 1 and 2 given next.

1. z € (T*N*)"T*;
2. (y € sub(z) and |y| > h) implies alph(y) NT # 0.

If there is (a1,...,an) — (B1,--.,0n) € P, u = o1& ...0n%y,, and v =
rof121 . . . BnTy, where

1. g € V¥,

2. x; € N* for all 0 < i < n, and

3., €V*,

then w o= v [r] in G or, simply, u o= v. Let =" denote n-fold product of o=,
where n > 0. Furthermore, let oc=* denote the reflexive and transitive closure of
o=
Let u,v € V*, and u = v.

U ., o= U

h
if and only if u,v € W(m, h), and

U o= v
if and only if u,v € W(m). Set nonterL(G,m,h) = {w € T* : § o=* w} and
nonter L(Gym) ={w e T*: S | =" w}.
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3.1 Language Families

Let SCGs denote the family of generalized scattered context grammars. Define
these language families:

nonterSC(myh) = {L: L= ponter L(G,m, h),G € SCGs} for all m,h > 1
nonterSC(m) = {L: L = nonterL(G,m),G € SCGs} for all m > 1
k—teftSC = {L:L=p_1c;:L(G),G € SCGs} for all k>0

Let CF, CS, and RE denote the families of context-free, context-sensitive, and
recursively enumerable languages, respectively. For all £ > 0, yCF denote the
family of languages generated by context-free grammars of index k.

4 Results

This section presents the main results of this paper. First, it demonstrates that,
for every k > 1, CF = j_1e;1SC, then that RE = ,,55e-SC(1), and, finally, that
for every m,h > 1, ,,CF = ponterSC(m, h).

Theorem 1. Let k be a positive integer. Then, CF = j_1.7:SC.

Proof. Let G = (V, T, P,S) be a generalized scattered context grammar. Consider
the following pushdown automaton

M= ({qr, frU{lv.s]:veN" W <k,s€{qr}},T,VU{Z},6,[5,4], Z,{f}),
where Z ¢ V| and § contains rules of the following forms:

L [BoA1Bi ... AnBns gl — (BoarPr ... anf) e, 7]

if (A1,...,4,) — (a1,...,ap) € P; G,e N*,0<i<m;
2. A[Ay .. A, ] — (A ALA T ifn<k, Ae N,
3. [A1... Ak, 1] — [Ar ... A, ql;
4. a[Ay... An,v] — a[Ay ... Ay, q] ifn<k aeT;
5. Z[A1 ... An, 1] — Z[A1 ... Ap,q] if n <k;
6. ale,r]a — [e, 7] ifa €T,
7. Ze,r] — f.

We prove that L(M) = k_ier1 L(G).

(C:) By induction on the number of rules constructed in 1 used in a sequence of
moves, we prove the following claim.

Claim 1. If ZO(R[ﬁoAlﬁl ce Anﬁn,q]w =% f, then ﬂOAlﬁl Ce Anﬂna k<>=>* w.

Proof. Basis: Only one rule constructed in 1 is used. Then,

ZO‘R[BOAlﬁl cee Anﬂnv Q}uw = Z(ﬁoalﬁl cee a?zﬁ7za)R[5a T]uw :>* f7
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where (Ay,...,A,) — (a1,...,a,) € P, n < k, and Boa1 51 ... a0, € T*.
Therefore, 5y = --- =B, = ¢, and o ..., = uw. Then,

Ap . Apw o= uw.

Induction hypothesis: Suppose that the claim holds for all sequences of moves
containing no more than ¢ rules constructed in 1.

Induction step: Consider a sequence of moves containing ¢ + 1 rules constructed
in 1. Then,

Zal By A1y ... AiBr, qlw

= Zaf(Boa1Br...aup)Be,r]lw  (by a rule constructed in 1)

=% Zd[e,r]w’ (by rule constructed in 6)

=*  Zd"[B{B1By - .. B, ruw’ (by rule constructed in 2)

= Zd"[ByB1fy - .- B, g’ (by a rule constructed in 3, 4, or 5)
=* f

where o/ € V*N U {e}, v € T*, o/vF* = af(Bya1 31 ...y ), and vw’ = w. Then,
by the production (41,...,A4;) — (a1,...,q),

BoAiBr ... Aifio o= Boanfr - .. auBia,

where |BoA151 ... Aify| <k,
Boar 31 ... uBia = v(a ) =wB)B13} ... BB, (&),
and, by the induction hypothesis,
vByB1BY - .. B, (o) o= v

Hence, the inclusion holds. A

(2:) First, we prove the following claim.
Claim 2. If 3 ,o=* w, where B € NV*, then Z[3%[e,rlw =* f.
Proof. By induction on the length of derivations.

Basis: Let Ap...Ayw ;o= a1...opw (a1...0p = ), where aw € j_1.1 L(G),
and (A1,...,4,) — (a1,...,a,) € P, 1 <n <k. M simulates this derivation step
as follows.

ZwlA, ... Aile, r]aw
=" ZwlAy ... Ay, r]ow (by rule constructed in 2)
= Zwl[A; ... A, qlaw (by a rule constructed in 4 or 5)
= Zwale, rlaw (by a rule constructed in 1)
=lawl Zle 7] (by rule constructed in 6)
= f (by the rule constructed in 7)
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Induction hypothesis: Suppose that the claim holds for all derivations of length 4
or less.

Induction step: Consider a derivation of length i + 1. Let

BoB1Bi - .. BiBry o= Boaifi ... cufry yo=" pw,

where pw € kfleftE(G)a ,8()3161 . ..Blﬂl € N+, and either |503151 . ..Blﬁl| =k,
or |BoB1...Bifi| < k, Boarf1 ...y = @b, where o € T*, ¢ € NV* U {e}, and
v € TV*U{e}. Then,

Z(BoB1B1 - .. BiBy) Ble, rlpw

*

=*  ZyR[BoB1f1 ... Bify,r)ew (by rule constructed in 2)
= ZyRBoBip ... Bifi, qlpw (by a rule constructed in 3 or 4)
= Z (o) e, rpw (by a rule constructed in 1)
=* Z(y) e, rlw (by a rule constructed in 6)
=* f (by the induction hypothesis)
Hence, the claim holds. A

Now, if S = ua =* uww, where u € T* and o € NV*, then Z[S,qluw =
Z(ua) e, rluw =* ZaRe,rlw =* f, b y rules constructed in 1 and 6 and the
previous claim. For a = ¢, Z[S, qlu = Zu®[e,r|Ju =* f. Hence, the other inclusion
holds. O

Theorem 2. RE = 51t SC(1).

Proof. Let L C {aj,...,a,}* be a recursively enumerable language. There is an
extended Post correspondence problem,

E= ({(ulvvl)v SERE) (ur>vr)}7 (Zaw' e ’Zan))7

where u;, v;, zq; € {0,1}%, for each 1 <4 <7, 1 < j <n, such that L(E) = L; that
is, w=1"by...b; € Lif and only if w € L(E). Set V = {S,A,0,1,$} UT. Define
the SCG G = (V,T, P, S) with P constructed as follows:

1. For every a € T, add

(S) = ((24)"'Sa), and
(S) — ((z4)FAa) to P;

a

=3

)

)

2. a) For every (u;,v;) € B, 1<i<r,add (A) — ((u;)FAv;) to P;
b) Add (A) — (8%) to P;

3. Add

$,8,0) — (3,¢,¢,9),
a$7$71) - ($,€,€,$), and
c) (8) — (e) to P.



790 Tomés Masopust, Alexander Meduna, and Jiff Simacek

Claim 3. Let wy,wa € {0,1}*. Then, w1$$ws =% € if and only if wy = (w2)%.

Proof. If: Let w; = (w2)® = by ...by, for some k > 0. By productions (3a) and
(3b) followed by two applications of (3c), we obtain

bk...be1$$b1b2...bk = bkb2$$b2bk
=* bk$$bk
= $=8=-

Therefore the if-part of the claim holds.

Only if: Suppose that |w;] < |ws|. We demonstrate that
w1 $$ws =4 € implies wy = (wo)®
by induction on k = |w;|.

Basis: Let k = 0. Then, w; = ¢ and the only possible derivation is

$$wo = $ws [(3¢)] = wa [(3¢)).

Hence, we can derive € only if w; = (wp)® = ¢.

Induction Hypothesis: Suppose that the claim holds for all wy satisfying |w| < k
for some k > 0.

Induction Step: Consider wia$$bwy with a # b, a,b € {0,1}. If wy = wy1bwia,
w1, w12 € {0,1}*, then either (3a) or (3b) can be used. In either case, we obtain

w1a$$bw2 = w11$w12aw21$w22,

where bwy = wa1bwaz, way, wee € {0,1}*, and wisaws; € N1 cannot be removed
by any production from the sentential form. The same is true when wy = w); aw},,
why, why € {0,1}*. Therefore, the derivation proceeds successfully only if a = b.
Thus,

w1a$$bws = w1$Sws =" ¢,
and from the induction hypothesis,

wy, = (wg)R.

Analogously, the same result can be proved for |wq| > |ws|, which implies that the
only-if part of the claim holds.
Therefore, the claim holds. A
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Examine the introduced productions to see that G always generates by ...by €
L(E) by a derivation of this form:

S = (Zbk)RSbk
= (Zbk)R(ZbA 1) Sbk lbk
=* (Zbk)R.. ( b2) Sbg
= (Zbk)R . (ZbQ)R(Zbl) Ablbg bk
= (). (2P us,) P Avg by . by,
= (2)F () Bug ) B (ug, ) A, o vg by by
= (z) o () Fus) o () 8805, g, by By,
= (Ugy - - - Us, Zpy - zbk)R$$vs1 cog by L by
=* by...bg.

Productions introduced in steps 1 and 2 of the construction find nondeterminis-
tically the solution of the extended Post correspondence problem which is sub-
sequently verified by productions from step 3. Therefore, w € L if and only if
w € L(G) and the theorem holds. O

Theorem 3. Let m and h be positive integers. Then, ,,CF = ponterSC(m, h).

Proof. Obviously, ,,CF C ,onterSC(m, h).

We prove that ,onterSC(m,h) C ,,CF. Let o = xoy121. . .YnTyn, Where z; €
T*, y; € Nt , for 0 < 4 < n, and for all 0 < ¢ < m, z; # €. Define f(a) =
2o{y1)21 - .. (Yn)Tn, where (y;) is a new nonterminal, for all 0 < i < n. Let Ggo =
(V,T, P,S) be a generalized scattered context grammar. Introduce a context-free
grammar Geop = (V/, T, P',(S)), where V! = {{y) : vy € N*,1 < |y| < h}UT and
P’ is constructed as follows:

1. for each v = zga1 1 ... Ty, where z; € N*, oy € NT, 1 < |y| < h, and
(a1,...,00) = (B1y...,Bn) € P,add (y) — f(zof121 ... Bnxy) to P.

Claim 4. Let S 'o=* w in Gso, where w € V*, k > 0. Then, (S) =" f(w) in
Ger.
Proof. By induction on k£ =0,1,....

Basis: Let k = 0, thus S o= S in Ggo. Then, (S) ,=° (S) in Gor. As
f(S) = (S), the basis holds.

Induction hypothesis: Suppose that the claim holds for all 0 < m < k, where k is
a non-negative integer.

Induction step: Let S o=k ¢y Po= ¢y'9) in Gse, and the last production
applied during the derivation is (aq,...,an) — (B1,...,3,), where ¢ € V*T U {e},
Y = ToTy ... QuTp, Y € TV U {e}, v = xofi21... Bntn, ai,x; € N*, and
B; € V*. By the induction hypothesis,

(S) =" Flpr).
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By the definition of f, ¢, and ¢, f(¢v) = f(¢){(v)f(¥). Hence, we can use the
production (y) — f(v') € P’ introduced in 1 in the construction to obtain

F@OYN @) = F(@)F (V) f ().
By the definition of f, ¢, and ¥, f()f(v")f(¥) = f(¢y'¥). As a result,
(S) =" FOYNF @) = (DY)

and, therefore, (S) ,,=**! f(¢7'¢) and the claim holds for k + 1. A

Claim 5. Let (S) ,, =" w in Gor, where w € V'*, k > 0. Then, S o=t f~1(w)
m Gsc.

Proof. By induction on k =0,1,....

Basis: Let k = 0, thus (S) ,,=° (S) in Gop. Then S Jo=0 S in Gso. As
F71((S)) = S, the basis holds.

Induction hypothesis: Suppose that the claim holds for all 0 < m < k, where k is
a non-negative integer.

Induction step: Let (S) , =" ¢(y) , = ¢7'+ in Gor, and the last production ap-
plied during the derivation is () — +/, where ¢ € V*T U{e}, v = zpa121 . . . 0,
Y € TV U {e}, v = f(zofrx1...0nxn), ai,x; € N*, and ; € V*. By the
induction hypothesis,

S pot (G,

By the definition of f, ¢, and ¥, f~1(¢(y)) = f~1(¢)vf 1 (). There exists
(a1,...,an) = (B1,...,8n) € P by 1, thus

FHONS W) o= U )W)
By the definition of f, ¢, and v, f~1(¢)f~1(Y)f 1Y) = f~H(dY'b). As a result
S o= FTHOVTHW) o= [TV Y)
and, therefore, S fo=F+1 f=1(¢~'y)) and the claim holds for k + 1.

Hence, the theorem holds. O
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