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Two Power-Decreasing Derivation Restrictions in

Generalized Scattered Context Grammars∗
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Abstract

The present paper introduces and discusses generalized scattered context

grammars that are based upon sequences of productions whose left-hand sides

are formed by nonterminal strings, not just single nonterminals. It places two

restrictions on the derivations in these grammars. More specifically, let k be

a positive integer. The first restriction requires that all rewritten symbols

occur within the first k symbols of the first continuous block of nonterminals

in the sentential form during every derivation step. The other restriction de-

fines derivations over sentential forms containing no more than k occurrences

of nonterminals. As its main result, the paper demonstrates that both re-

strictions decrease the generative power of these grammars to the power of

context-free grammars.
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1 Introduction

Scattered context grammars are based upon finite sets of sequences of context-free
productions having a single nonterminal on the left-hand side of every production
(see [5]). According to a sequence of n context-free productions, these grammars
simultaneously rewrites n nonterminals in the current sentential form according to
the n productions in the order corresponding to the appearance of these productions
in the sequence. It is well-known that they characterize the family of recursively
enumerable languages (see [8]).

In this paper, we generalize these grammars so that the left-hand side of ev-
ery production may consist of a string of several nonterminals rather than a single
nonterminal. Specifically, we discuss two derivation restrictions in scattered con-
text grammars generalized in this way. To explain these restrictions, let k be a
constant. The first restriction requires that all simultaneously rewritten symbols
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occur within the first k symbols of the first continuous block of nonterminals in
the current sentential form during every derivation step. The other restriction de-
fines the grammatical derivations over sentential forms containing no more than
k occurrences of nonterminals. As the main result, this paper demonstrates that
both restrictions decrease the generative power of generalized scattered context
grammars to the generative power of context-free grammars. As ordinary scattered
context grammars represent special cases of their generalized versions, they also
characterize only the family of context-free languages if they are restricted in this
way.

This result concerning the derivation restrictions is of some interest when com-
pared to analogical restrictions in terms of other grammars working in a context-
sensitive way. Over its history, formal language theory has studied many restrictions
placed on the way grammars derive sentential forms and on the forms of produc-
tions. In [6], Matthews studied derivations of grammars in the strictly leftmost
(rightmost) way—that is, rewritten symbols are preceded (succeeded) only by ter-
minals in the sentential form during the derivation. Later, in [7], he combined
both approaches—leftmost and rightmost derivations—so that any sentential form
during the derivation is of the form xWy, where x and y are terminal strings, W
is a nonterminal string, and a production is applicable only to a leftmost or right-
most substring of W . In both cases, these restrictions result into decreasing the
generative power of type-0 grammars to the power of context-free grammars.

Whereas Matthews studied restrictions placed on the forms of derivations, other
authors studied the forms of productions. In [2], Book proved that if the left-hand
side of any non-context-free production contains besides exactly one nonterminal
only terminals, then the generative power of type-0 grammars decreases to the
power of context-free grammars. He also proved that if the left-hand side of any
non-context-free production has as its left context a terminal string and the left
context is at least as long as the right context, then the generative power of type-0
grammars decreases to the power of context-free grammars, too. In [4], Ginsburg
and Greibach proved that if the left-hand side of any production is a nonterminal
string and the right-hand side contains at least one terminal, then the generated
language is context-free. Finally, in [1], Baker proved a stronger result. This result
says that if any left-hand side of a production either has, besides terminals, only
one nonterminal, or there is a terminal substring, β, on the right-hand side of
the production such that the length of β is greater than the length of any terminal
substring of the left-hand side of the production, then the generative power of type-
0 grammars decreases to the power of context-free grammars. For more details, see
page 198 in [9] and the literature cited there.

2 Preliminaries

In this paper, we assume that the reader is familiar with formal language theory
(see [10]). For a set Q, |Q| denotes the cardinality of Q. For an alphabet (finite
nonempty set) V , V ∗ represents the free monoid generated by V . The identity of
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V ∗ is denoted by ε. Set V + = V ∗ − {ε}. For w ∈ V ∗, |w| and wR denote the
length and the mirror image of w, respectively, and sub(w) denotes the set of all
substrings of w. For W ⊆ V , occur(w,W ) denotes the number of occurrences of
symbols from W in w.

A pushdown automaton is a septuple M = (Q,Σ,Γ, δ, q0, Z0, F ), where Q is
a finite set of states, Σ is an input alphabet, q0 ∈ Q is the initial state, Γ is a
pushdown alphabet, δ is a finite set of rules of the form Zqa→ γp, where p, q ∈ Q,
Z ∈ Γ ∪ {ε}, a ∈ Σ ∪ {ε}, γ ∈ Γ∗, F is a set of final states, and Z0 is the initial
pushdown symbol. Let ψ denote a bijection from δ to Ψ (Ψ is an alphabet of rule
labels). We write r.Zqa→ γp instead of ψ(Zqa→ γp) = r.

A configuration of M is any word from Γ∗QΣ∗. For any configuration xAqay,
where x ∈ Γ∗, y ∈ Σ∗, q ∈ Q, and any r.Aqa → γp ∈ δ, M makes a move
from xAqay to xγpy according to r, written as xAqay ⇒ xγpy [r], or, simply,
xAqay ⇒ xγpy. If x, y ∈ Γ∗QΣ∗ and m > 0, then x⇒m y if and only if there exists
a sequence x0 ⇒ x1 ⇒ · · · ⇒ xm, where x0 = x and xm = y. Then, we say x⇒+ y

if and only if there existsm > 0 such that x⇒m y, and x⇒∗ y if and only if x = y or
x⇒+ y. The language of M is defined as L(M) = {w ∈ Σ∗ : Z0q0w ⇒∗ f, f ∈ F}.

A phrase-structure grammar or a grammar is a quadruple G = (V, T, P, S),
where V is a total alphabet, T ⊆ V is an alphabet of terminals, S ∈ V − T is
the start symbol, and P is a finite relation over V ∗. Set N = V − T . Instead
of (u, v) ∈ P , we write u → v ∈ P throughout. We call u → v a production;
accordingly, P is G’s set of productions. If u → v ∈ P , x, y ∈ V ∗, then G makes a
derivation step from xuy to xvy, symbolically written as xuy ⇒ xvy. If x, y ∈ V ∗

andm > 0, then x⇒m y if and only if there exists a sequence x0 ⇒ x1 ⇒ · · · ⇒ xm,
where x0 = x and xm = y. We write x⇒+ y if and only if there exists m > 0 such
that x ⇒m y, and x ⇒∗ y if and only if x = y or x ⇒+ y. The language of G is
defined as L(G) = {w ∈ T ∗ : S ⇒∗ w}.

3 Definitions

This section defines a new notion of generalized scattered context grammars. In
addition, it formalizes two derivation restrictions studied in this paper.

A generalized scattered context grammar, a SCG for short, is a quadruple G =
(V, T, P, S), where V is a total alphabet, T ⊆ V is an alphabet of terminals, S ∈ N

(N = V − T ) is the start symbol, and P is a finite set of productions such that
each production p has the form (α1, . . . , αn) → (β1, . . . , βn), for some n ≥ 1, where
αi ∈ N+, βi ∈ V ∗, for all 1 ≤ i ≤ n. If each production p of the above form satisfies
|αi| = 1, for all 1 ≤ i ≤ n, then G is an ordinary scattered context grammar. Set
π(p) = n. If π(p) ≥ 2, then p is said to be a context-sensitive production. If
π(p) = 1, then p is said to be context-free. If (α1, . . . , αn) → (β1, . . . , βn) ∈ P ,
u = x0α1x1 . . . αnxn, and v = x0β1x1 . . . βnxn, where xi ∈ V ∗, 1 ≤ i ≤ n, then
u ⇒ v [(α1, . . . , αn) → (β1, . . . , βn)] in G or, simply, u ⇒ v. Let ⇒+ and ⇒∗

denote the transitive and the reflexive and transitive closure of ⇒, respectively.
The language of G is defined as L(G) = {w ∈ T ∗ : S ⇒∗ w}.
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For an alphabet T = {a1, . . . , an}, there is an extended Post correspondence

problem, E, defined as

E = ({(u1, v1), . . . , (ur, vr)}, (za1
, . . . , zan

)) ,

where ui, vi, zaj
∈ {0, 1}∗, for each 1 ≤ i ≤ r, 1 ≤ j ≤ n. The language represented

by E is the set

L(E) = {b1 . . . bk ∈ T ∗ : exists s1, . . . , sl ∈ {1, . . . , r}, l ≥ 1,
vs1

. . . vsl
= us1

. . . usl
zb1 . . . zbk

for some k ≥ 0}.

It is well known that for each recursively enumerable language, L, there is an
extended Post correspondence problem, E, such that L(E) = L (see Theorem 1
in [3]).

Next, we define two derivation restrictions discussed in this paper.
Let k ≥ 1. If there is (α1, . . . , αn) → (β1, . . . , βn) ∈ P , u = x0α1x1 . . . αnxn,

and v = x0β1x1 . . . βnxn, where

1. x0 ∈ T ∗N∗,

2. xi ∈ N∗, for all 0 < i < n,

3. xn ∈ V ∗, and

4. occur(x0α1x1 . . . αn, N) ≤ k,

then u k⋄⇒ v [r] in G or, simply, u k⋄⇒ v. Let k⋄⇒
n denote the n-fold product

of k⋄⇒, where n ≥ 0. Furthermore, let k⋄⇒
∗ denote the reflexive and transitive

closure of k⋄⇒. Set k−leftL(G) = {w ∈ T ∗ : S k⋄⇒
∗ w}.

Let m,h ≥ 1. W (m) denotes the set of all strings x ∈ V ∗ satisfying 1 given
next. W (m,h) denotes the set of all strings x ∈ V ∗ satisfying 1 and 2 given next.

1. x ∈ (T ∗N∗)mT ∗;

2. (y ∈ sub(x) and |y| > h) implies alph(y) ∩ T 6= ∅.

If there is (α1, . . . , αn) → (β1, . . . , βn) ∈ P , u = x0α1x1 . . . αnxn, and v =
x0β1x1 . . . βnxn, where

1. x0 ∈ V ∗,

2. xi ∈ N∗, for all 0 < i < n, and

3. xn ∈ V ∗,

then u ◦⇒ v [r] in G or, simply, u ◦⇒ v. Let ◦⇒n denote n-fold product of ◦⇒,
where n ≥ 0. Furthermore, let ◦⇒∗ denote the reflexive and transitive closure of
◦⇒.

Let u, v ∈ V ∗, and u ◦⇒ v.
u h

m◦⇒ v

if and only if u, v ∈W (m,h), and

u m◦⇒ v

if and only if u, v ∈ W (m). Set nonterL(G,m, h) = {w ∈ T ∗ : S h
m◦⇒∗ w} and

nonterL(G,m) = {w ∈ T ∗ : S m◦⇒∗ w}.
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3.1 Language Families

Let SCGs denote the family of generalized scattered context grammars. Define
these language families:

nonterSC(m,h) = {L : L = nonterL(G,m, h), G ∈ SCGs} for all m,h ≥ 1

nonterSC(m) = {L : L = nonterL(G,m), G ∈ SCGs} for all m ≥ 1

k−leftSC = {L : L = k−leftL(G), G ∈ SCGs} for all k ≥ 0

Let CF, CS, and RE denote the families of context-free, context-sensitive, and
recursively enumerable languages, respectively. For all k ≥ 0, kCF denote the
family of languages generated by context-free grammars of index k.

4 Results

This section presents the main results of this paper. First, it demonstrates that,
for every k ≥ 1, CF = k−leftSC, then that RE = nonterSC(1), and, finally, that
for every m,h ≥ 1, mCF = nonterSC(m,h).

Theorem 1. Let k be a positive integer. Then, CF = k−leftSC.

Proof. Let G = (V, T, P, S) be a generalized scattered context grammar. Consider
the following pushdown automaton

M = ({q, r, f} ∪ {[γ, s] : γ ∈ N∗, |γ| ≤ k, s ∈ {q, r}}, T, V ∪ {Z}, δ, [S, q], Z, {f}) ,

where Z 6∈ V , and δ contains rules of the following forms:

1. [β0A1β1 . . . Anβn, q] → (β0α1β1 . . . αnβn)R[ε, r]
if (A1, . . . , An) → (α1, . . . , αn) ∈ P ; βi ∈ N∗, 0 ≤ i ≤ n;

2. A[A1 . . . An, r] → [A1 . . . AnA, r] if n < k, A ∈ N ;
3. [A1 . . . Ak, r] → [A1 . . . Ak, q];
4. a[A1 . . . An, r] → a[A1 . . . An, q] if n < k, a ∈ T ;
5. Z[A1 . . . An, r] → Z[A1 . . . An, q] if n < k;
6. a[ε, r]a → [ε, r] if a ∈ T ;
7. Z[ε, r] → f .

We prove that L(M) = k−leftL(G).

(⊆:) By induction on the number of rules constructed in 1 used in a sequence of
moves, we prove the following claim.

Claim 1. If ZαR[β0A1β1 . . . Anβn, q]w ⇒∗ f , then β0A1β1 . . . Anβnα k⋄⇒
∗ w.

Proof. Basis: Only one rule constructed in 1 is used. Then,

ZαR[β0A1β1 . . . Anβn, q]uw ⇒ Z(β0α1β1 . . . αnβnα)R[ε, r]uw ⇒∗ f,
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where (A1, . . . , An) → (α1, . . . , αn) ∈ P , n ≤ k, and β0α1β1 . . . αnβnα ∈ T ∗.
Therefore, β0 = · · · = βn = ε, and α1 . . . αnα = uw. Then,

A1 . . . Anw k⋄⇒ uw.

Induction hypothesis: Suppose that the claim holds for all sequences of moves
containing no more than i rules constructed in 1.

Induction step: Consider a sequence of moves containing i + 1 rules constructed
in 1. Then,

ZαR[β0A1β1 . . . Alβl, q]w
⇒ ZαR(β0α1β1 . . . αlβl)

R[ε, r]w (by a rule constructed in 1)
⇒∗ Zα′[ε, r]w′ (by rule constructed in 6)
⇒∗ Zα′′[β′

0B1β
′
1 . . . Bmβ

′
m, r]w

′ (by rule constructed in 2)
⇒ Zα′′[β′

0B1β
′
1 . . . Bmβ

′
m, q]w

′ (by a rule constructed in 3, 4, or 5)
⇒∗ f

where α′ ∈ V ∗N ∪ {ε}, v ∈ T ∗, α′vR = αR(β0α1β1 . . . αlβl)
R, and vw′ = w. Then,

by the production (A1, . . . , Al) → (α1, . . . , αl),

β0A1β1 . . . Alβlα k⋄⇒ β0α1β1 . . . αlβlα,

where |β0A1β1 . . . Alβl| ≤ k,

β0α1β1 . . . αlβlα = v(α′)R = vβ′
0B1β

′
1 . . . Bmβ

′
m(α′′)R,

and, by the induction hypothesis,

vβ′
0B1β

′
1 . . . Bmβ

′
m(α′′)R

k⋄⇒
∗ vw′.

Hence, the inclusion holds. △

(⊇:) First, we prove the following claim.

Claim 2. If β k⋄⇒
∗ w, where β ∈ NV ∗, then ZβR[ε, r]w ⇒∗ f .

Proof. By induction on the length of derivations.

Basis: Let A1 . . . Anw k⋄⇒ α1 . . . αnw (α1 . . . αn = α), where αw ∈ k−leftL(G),
and (A1, . . . , An) → (α1, . . . , αn) ∈ P , 1 ≤ n ≤ k. M simulates this derivation step
as follows.

ZwRAn . . . A1[ε, r]αw
⇒n ZwR[A1 . . . An, r]αw (by rule constructed in 2)
⇒ ZwR[A1 . . . An, q]αw (by a rule constructed in 4 or 5)
⇒ ZwRαR[ε, r]αw (by a rule constructed in 1)
⇒|αw| Z[ε, r] (by rule constructed in 6)
⇒ f (by the rule constructed in 7)
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Induction hypothesis: Suppose that the claim holds for all derivations of length i

or less.

Induction step: Consider a derivation of length i+ 1. Let

β0B1β1 . . . Blβlγ k⋄⇒ β0α1β1 . . . αlβlγ k⋄⇒
i ϕw,

where ϕw ∈ k−leftL(G), β0B1β1 . . . Blβl ∈ N+, and either |β0B1β1 . . . Blβl| = k,
or |β0B1 . . . Blβl| < k, β0α1β1 . . . αlβlγ = ϕψ, where ϕ ∈ T ∗, ψ ∈ NV ∗ ∪ {ε}, and
γ ∈ TV ∗ ∪ {ε}. Then,

Z(β0B1β1 . . . Blβlγ)
R[ε, r]ϕw

⇒∗ ZγR[β0B1β1 . . . Blβl, r]ϕw (by rule constructed in 2)
⇒ ZγR[β0B1β1 . . . Blβl, q]ϕw (by a rule constructed in 3 or 4)
⇒ Z(ϕψγ)R[ε, r]ϕw (by a rule constructed in 1)
⇒∗ Z(ψγ)R[ε, r]w (by a rule constructed in 6)
⇒∗ f (by the induction hypothesis)

Hence, the claim holds. △

Now, if S ⇒ uα ⇒∗ uw, where u ∈ T ∗ and α ∈ NV ∗, then Z[S, q]uw ⇒
Z(uα)R[ε, r]uw ⇒∗ ZαR[ε, r]w ⇒∗ f , by rules constructed in 1 and 6 and the
previous claim. For α = ε, Z[S, q]u⇒ ZuR[ε, r]u⇒∗ f . Hence, the other inclusion
holds.

Theorem 2. RE = nonterSC(1).

Proof. Let L ⊆ {a1, . . . , an}
∗ be a recursively enumerable language. There is an

extended Post correspondence problem,

E = ({(u1, v1), . . . , (ur, vr)}, (za1
, . . . , zan

)),

where ui, vi, zaj
∈ {0, 1}∗, for each 1 ≤ i ≤ r, 1 ≤ j ≤ n, such that L(E) = L; that

is, w = b1 . . . bk ∈ L if and only if w ∈ L(E). Set V = {S,A, 0, 1, $} ∪ T . Define
the SCG G = (V, T, P, S) with P constructed as follows:

1. For every a ∈ T , add

a) (S) → ((za)RSa), and

b) (S) → ((za)RAa) to P ;

2. a) For every (ui, vi) ∈ E, 1 ≤ i ≤ r, add (A) → ((ui)
RAvi) to P ;

b) Add (A) → ($$) to P ;

3. Add

a) (0, $, $, 0) → ($, ε, ε, $),

b) (1, $, $, 1) → ($, ε, ε, $), and

c) ($) → (ε) to P .
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Claim 3. Let w1, w2 ∈ {0, 1}∗. Then, w1$$w2 ⇒∗
G ε if and only if w1 = (w2)

R.

Proof. If : Let w1 = (w2)
R = b1 . . . bk, for some k ≥ 0. By productions (3a) and

(3b) followed by two applications of (3c), we obtain

bk . . . b2b1$$b1b2 . . . bk ⇒ bk . . . b2$$b2 . . . bk
⇒∗ bk$$bk
⇒ $$ ⇒ $ ⇒ ε.

Therefore the if-part of the claim holds.

Only if : Suppose that |w1| ≤ |w2|. We demonstrate that

w1$$w2 ⇒∗
G ε implies w1 = (w2)

R

by induction on k = |w1|.

Basis: Let k = 0. Then, w1 = ε and the only possible derivation is

$$w2 ⇒ $w2 [(3c)] ⇒ w2 [(3c)].

Hence, we can derive ε only if w1 = (w2)
R = ε.

Induction Hypothesis: Suppose that the claim holds for all w1 satisfying |w1| < k

for some k ≥ 0.

Induction Step: Consider w1a$$bw2 with a 6= b, a, b ∈ {0, 1}. If w1 = w11bw12,
w11, w12 ∈ {0, 1}∗, then either (3a) or (3b) can be used. In either case, we obtain

w1a$$bw2 ⇒ w11$w12aw21$w22,

where bw2 = w21bw22, w21, w22 ∈ {0, 1}∗, and w12aw21 ∈ N+ cannot be removed
by any production from the sentential form. The same is true when w2 = w′

21aw
′
22,

w′
21, w

′
22 ∈ {0, 1}∗. Therefore, the derivation proceeds successfully only if a = b.

Thus,

w1a$$bw2 ⇒ w1$$w2 ⇒∗ ε,

and from the induction hypothesis,

w1 = (w2)
R.

Analogously, the same result can be proved for |w1| ≥ |w2|, which implies that the
only-if part of the claim holds.

Therefore, the claim holds. △
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Examine the introduced productions to see that G always generates b1 . . . bk ∈
L(E) by a derivation of this form:

S ⇒ (zbk
)RSbk

⇒ (zbk
)R(zbk−1

)RSbk−1bk
⇒∗ (zbk

)R . . . (zb2)
RSb2 . . . bk

⇒ (zbk
)R . . . (zb2)

R(zb1)
RAb1b2 . . . bk

⇒ (zbk
)R . . . (zb1)

R(usl
)RAvsl

b1 . . . bk
⇒∗ (zbk

)R . . . (zb1)
R(usl

)R . . . (us1
)RAvs1

. . . vsl
b1 . . . bk

⇒ (zbk
)R . . . (zb1)

R(usl
)R . . . (us1

)R$$vs1
. . . vsl

b1 . . . bk
= (us1

. . . usl
zb1 . . . zbk

)R$$vs1
. . . vsl

b1 . . . bk
⇒∗ b1 . . . bk.

Productions introduced in steps 1 and 2 of the construction find nondeterminis-
tically the solution of the extended Post correspondence problem which is sub-
sequently verified by productions from step 3. Therefore, w ∈ L if and only if
w ∈ L(G) and the theorem holds.

Theorem 3. Let m and h be positive integers. Then, mCF = nonterSC(m,h).

Proof. Obviously, mCF ⊆ nonterSC(m,h).
We prove that nonterSC(m,h) ⊆ mCF . Let α = x0y1x1. . .ynxn, where xi ∈

T ∗, yi ∈ N+, for 0 ≤ i ≤ n, and for all 0 < i < n, xi 6= ε. Define f(α) =
x0〈y1〉x1 . . . 〈yn〉xn, where 〈yi〉 is a new nonterminal, for all 0 ≤ i ≤ n. Let GSC =
(V, T, P, S) be a generalized scattered context grammar. Introduce a context-free
grammar GCF = (V ′, T, P ′, 〈S〉), where V ′ = {〈γ〉 : γ ∈ N∗, 1 ≤ |γ| ≤ h} ∪ T and
P ′ is constructed as follows:

1. for each γ = x0α1x1 . . . αnxn, where xi ∈ N∗, αi ∈ N+, 1 ≤ |γ| ≤ h, and
(α1, . . . , αn) → (β1, . . . , βn) ∈ P , add 〈γ〉 → f(x0β1x1 . . . βnxn) to P ′.

Claim 4. Let S h
m◦⇒k ω in GSC , where ω ∈ V ∗, k ≥ 0. Then, 〈S〉 m⇒

k f(ω) in

GCF .

Proof. By induction on k = 0, 1, . . . .

Basis: Let k = 0, thus S h
m◦⇒0 S in GSC . Then, 〈S〉 m⇒

0 〈S〉 in GCF . As
f(S) = 〈S〉, the basis holds.

Induction hypothesis: Suppose that the claim holds for all 0 ≤ m ≤ k, where k is
a non-negative integer.

Induction step: Let S h
m◦⇒k φγψ h

m◦⇒ φγ′ψ in GSC , and the last production
applied during the derivation is (α1, . . . , αn) → (β1, . . . , βn), where φ ∈ V ∗T ∪{ε},
γ = x0α1x1 . . . αnxn, ψ ∈ TV ∗ ∪ {ε}, γ′ = x0β1x1 . . . βnxn, αi, xi ∈ N∗, and
βi ∈ V ∗. By the induction hypothesis,

〈S〉 m⇒
k f(φγψ).
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By the definition of f , φ, and ψ, f(φγψ) = f(φ)〈γ〉f(ψ). Hence, we can use the
production 〈γ〉 → f(γ′) ∈ P ′ introduced in 1 in the construction to obtain

f(φ)〈γ〉f(ψ) m⇒ f(φ)f(γ′)f(ψ).

By the definition of f , φ, and ψ, f(φ)f(γ′)f(ψ) = f(φγ′ψ). As a result,

〈S〉 m⇒
k f(φ)〈γ〉f(ψ) m⇒ f(φγ′ψ)

and, therefore, 〈S〉 m⇒
k+1 f(φγ′ψ) and the claim holds for k + 1. △

Claim 5. Let 〈S〉 m⇒
k ω in GCF , where ω ∈ V ′∗, k ≥ 0. Then, S h

m◦⇒k f−1(ω)
in GSC .

Proof. By induction on k = 0, 1, . . . .

Basis: Let k = 0, thus 〈S〉 m⇒
0 〈S〉 in GCF . Then S h

m◦⇒0 S in GSC . As
f−1(〈S〉) = S, the basis holds.

Induction hypothesis: Suppose that the claim holds for all 0 ≤ m ≤ k, where k is
a non-negative integer.

Induction step: Let 〈S〉 m⇒
k φ〈γ〉ψ m⇒ φγ′ψ in GCF , and the last production ap-

plied during the derivation is 〈γ〉 → γ′, where φ ∈ V ∗T ∪{ε}, γ = x0α1x1 . . . αnxn,
ψ ∈ TV ∗ ∪ {ε}, γ′ = f(x0β1x1 . . . βnxn), αi, xi ∈ N∗, and βi ∈ V ∗. By the
induction hypothesis,

S h
m◦⇒k f−1(φ〈γ〉ψ).

By the definition of f , φ, and ψ, f−1(φ〈γ〉ψ) = f−1(φ)γf−1(ψ). There exists
(α1, . . . , αn) → (β1, . . . , βn) ∈ P by 1, thus

f−1(φ)γf−1(ψ) h
m◦⇒ f−1(φ)f−1(γ′)f−1(ψ).

By the definition of f , φ, and ψ, f−1(φ)f−1(γ′)f−1(ψ) = f−1(φγ′ψ). As a result

S h
m◦⇒k f−1(φ)γf−1(ψ) h

m◦⇒ f−1(φγ′ψ)

and, therefore, S h
m◦⇒k+1 f−1(φγ′ψ) and the claim holds for k + 1. △

Hence, the theorem holds.

References

[1] Baker, B. S. Context-sesitive grammars generating context-free languages. In
Nivat, M., editor, Automata, Languages and Programming, pages 501–506.
North-Holland, Amsterdam, 1972.

[2] Book, R. V. Terminal context in context-sensitive grammars. SIAM Journal

of Computing, 1:20–30, 1972.



Two Power-Decreasing Derivation Restrictions in Generalized SCGs 793

[3] Geffert, V. Context-free-like forms for the phrase-structure grammars. In
Chytil, M., Janiga, L., and Koubek, V., editors, Mathematical Foundations of

Computer Science, volume 324 of Lecture Notes in Computer Science, pages
309–317. Springer-Verlag, 1988.

[4] Ginsburg, S. and Greibach, S. Mappings which preserve context-sensitive lan-
guages. Information and Control, 9:563–582, 1966.

[5] Greibach, S. and Hopcroft, J. Scattered context grammars. Journal of Com-

puter and System Sciences, 3:233–247, 1969.

[6] Matthews, G. A note on symmetry in phrase structure grammars. Information

and Control, 7:360–365, 1964.

[7] Matthews, G. Two-way languages. Information and Control, 10:111–119, 1967.

[8] Meduna, A. A trivial method of characterizing the family of recursively enu-
merable languages by scattered context grammars. EATCS Bulletin, pages
104–106, 1995.

[9] Rozenberg, G. and Salomaa, A., editors. Handbook of Formal Languages,
volume 1. Springer-Verlag, Berlin, 1997.

[10] Salomaa, A. Formal languages. Academic Press, New York, 1973.

Received 18th July 2007


