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Partially Ordered Pattern Algebras

Endre Vármonostory∗

Abstract

A partial order � on a set A induces a partition of each power A
n into

“patterns” in a natural way. An operation on A is called a �-pattern opera-

tion if its restriction to each pattern is a projection. We examine functional

completeness of algebras with �-pattern fundamental operations.

Keywords: majority function, semiprojection, ternary discriminator, dual

discriminator, functionally completeness

1 Preliminaries

A finite algebra A = (A;F ) is called functionally complete if every (finitary) opera-
tion on A is a polinomial operation of A. An n-ary operation f on A is conservative
if f(x1, . . . , xn) ∈ {x1, . . . , xn} for all x1, . . . , xn ∈ A. An algebra is conservative if
all of its fundamental operations are conservative.

A possible approach to the study of conservative operations is to consider them
as relational pattern functions or ρ-pattern functions. Given a k-ary relation ρ ⊆
Ak, two n-tuples (x1, . . . , xn), (y1, . . . , yn) ∈ An are said to be of the same pattern
with respect to ρ if for all i1, . . . , ik ∈ {1, . . . , n} the conditions (xi1 , . . . , xik

) ∈ ρ

and (yi1 , . . . , yik
) ∈ ρ mutually imply each other. An operation f : An → A is a

ρ-pattern function if f(x1, . . . , xn) always equals some xi, i ∈ {1, . . . , n} where i

depends only on the ρ-pattern of (x1, . . . , xn). In fact, any conservative operation
is a ρ-pattern function for some ρ — see [11]. An algebra A is called a ρ-pattern
algebra if its fundamental operations (or equivalently its term operations) are ρ-
pattern functions for the same relation ρ on A. Several facts about functional
completeness were proved, for the cases where ρ is an equivalence [9], a central
relation [10, 14], a graph of a permutation [13], a bounded partial order [12], or a
regular relation [8] on A. These relations appear in Rosenberg’s primality criterion
[6].

In particular if � is a partial order or a linear order on A, then a �-pattern
algebra is called a partially ordered pattern algebra or a linearly ordered pattern
algebra. Throughout the paper such algebras will be called �-pattern algebras.
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The aim of this article is to continue research on functional completeness of
finite partially ordered pattern algebras.

In case when the relation ρ on A is the identity the ρ-pattern algebra is called
pattern algebra. The basic operations of pattern algebras are called pattern func-
tions. Pattern functions were first introduced by Quackenbush [5]. B. Csákány [1]
proved that every finite pattern algebra (A; f) with |A| ≥ 3 is functionally com-
plete if f is an arbitrary nontrivial pattern function. The most known examples
of pattern algebras are (A; f) and (A; g) where f is the ternary discriminator [4]
(f(x, y, z) = z if x = y and f(x, y, z) = x if x 6= y) and g is the dual discriminator
[2] (g(x, y, z) = x if x = y and g(x, y, z) = z if x 6= y).
We need the following definitions and results.

An n-ary relation ρ on A is called central iff ρ 6= An and

(a) there exists c ∈ A such that (a1, . . . , an) ∈ ρ whenever at least one ai = c

(the set of all such c’s is called the center of ρ);

(b) (a1, . . . , an) ∈ ρ implies that (a1π, . . . , anπ) ∈ ρ for every permutation π of
{1, . . . , n} (ρ is totally symmetric);

(c) (a1, . . . , an) ∈ ρ whenever ai = aj for some i 6= j (ρ is totally reflexive).

Let A be a finite and nonempty set, k, n ≥ 1, f a k-ary function on A and
ρ ⊆ An an arbitrary n-ary relation. The operation f is said to preserve ρ if ρ is a
subalgebra of the nth direct power of the algebra (A; f); in other words, f preserves
ρ if for any k × n matrix M with entries in A, whose rows belong to ρ, the row
obtained by applying f to the columns of M also belongs to ρ. Adding this extra
row to M we get a so-called f -matrix [3].

A ternary operation f on A is a majority function if f(x, x, y) = f(x, y, x) =
f(y, x, x) = x holds for all x, y ∈ A. An n-ary i-th semiprojection on A (n ≥ 3,

1 ≤ i ≤ n) is an operation f with the property that f(x1, x2, . . . , xn) = xi when-
ever at least two of the elements x1, . . . , xn are equal. The following proposition
was obtained in [13] from Rosenberg’s fundamental theorem on minimal clones [7].

Proposition 1. The clone of the term operations of every nontrivial finite ρ-
pattern algebra A with at least three elements contains a nontrivial binary ρ-pattern
function, or a ternary majority ρ-pattern function, or a nontrivial ρ-pattern func-
tion, which is a semiprojection.

Now we formulate the following theorem (which was got from Proposition 4 in [13]).

Theorem 2. Let A = (A; f) be a finite ρ-pattern algebra with |A| ≥ 3. The algebra
(A; f) is functionally complete iff

(a) f is monotonic with respect to no bounded partial order on A,

(b) f preserves no binary central relations on A,

(c) f preserves no nontrivial equivalences on A.
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2 Results

Theorem 3. Let (A;�) be a finite poset with at least three elements that has a
least or a greatest element. If f is an arbitrary binary �-pattern function on A,
then the algebra (A; f) is not functionally complete.

Proof. Let a be the least or the greatest element of (A;�). Let ρ be the nontrivial
equivalence on A with blocks {a}, A\{a}. Now f preserves ρ and apply Theorem 2.

Remark. Let n = {0, 1, . . . , n − 1} be an at least three-element set, and let � be
a linear order on n such that 0 � i � n − 1 holds for each i ∈ n. If a, b ∈ n and
a � b but a 6= b then we write a ≺ b. Now the following statement is true.

If π and σ are two different permutations of the set {1, 2, . . . , k} then the k-tuples
(a1π, a2π, . . . , akπ), (a1σ, a2σ, . . . , akσ) are not in the same pattern with respect to
� where a1, a2, . . . , ak ∈ n with a1 ≺ a2 ≺ . . . ≺ ak.

Now we can formulate the following theorem.

Theorem 4. Let (A;�) be a finite linearly ordered set with |A| = n ≥ 4, and let f

be a �-pattern function that is a majority function on A. Then the algebra (A; f)
is functionally complete iff for arbitrary elements a1, a2, a3 ∈ A with a1 ≺ a2 ≺ a3

exactly one of the following statements holds:

(a) there exist permutations π, σ of the set {1, 2, 3} for which the values
f(a1, a2, a3), f(a1π, a2π, a3π), f(a1σ, a2σ, a3σ) are pairwise distinct,

(b) f(a1π, a2π, a3π) ∈ {a1, a3} for every permutation π of {1, 2, 3}, and there
exists a permutation π′ of {1, 2, 3} for which f(a1π′ , a2π′ , a3π′) 6= f(a1, a2, a3).

Proof. We will use Theorem 2. We may suppose, without loss of generality, that
A = n. First, we prove that if one of the conditions (a) or (b) hold for the algebra
(n; f) then f preserves neither the bounded partial orders nor the binary central
relations on n. We need the following claims.

Claim. Let E be an arbitrary bounded partial order on n with the least element m

and the greatest element M , then f does not preserve E.

Proof of Claim. If a ∈ n, a 6= m, M , then f(m,a,M) = m or f(m,a,M) = M or
f(m,a,M) = a. Consider the following f -matrices

m m

a a

a M

f(m,a, a) f(m,a,M)

m a

a a

M M

f(m,a,M) f(a, a,M)

where f(m,a, a) = f(a, a,M) = a. If f(m,a,M) = m, then the first f -matrix
shows that f does not preserve E. If f(m,a,M) = M , then by the second f -matrix
f does not preserve E. If f(m,a,M) = a, then by (a) or (b) we get that at least
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one of the elements f(m,M, a), f(M,m, a), f(M,a,m), f(a,m,M), f(a,M,m) is
equal to m or M . In this case we can get the suitable f -matrix by permuting the
first three rows of one of the two f -matrices above. Now from this f -matrix we get
that f does not preserve E. The proof of the claim is complete.

Claim. If τ is an arbitrary binary central relation on n, then f does not preserve
τ .

Proof of Claim. If c ∈ n is a central element of τ and a, b ∈ n so that (a, b) 6∈ τ ,
then consider the following matrices

a a

b b

c b

f(a, b, c) f(a, b, b)

a a

b b

c a

f(a, b, c) f(a, b, a)

where f(a, b, b) = b and f(a, b, a) = a. If f(a, b, c) = a, then the first f -matrix
shows that f does not preserve τ . If f(a, b, c) = b, then the second f -matrix will be
used. If f(a, b, c) = c, then by (a) or (b) we see that f(a, c, b), f(b, a, c), f(b, c, a),
f(c, a, b) or f(c, b, a) is equal to a or b. Now we can also get the suitable f -matrix
by permuting the first three rows of one of the two f -matrices above. In this case
from this f -matrix we get that f does not preserve τ . The proof of the claim is
complete.

Now we will prove that if one of the conditions (a) or (b) holds for the algebra
(n; f), then f does not preserve the nontrivial equivalences on n.

Claim. If ρ is an arbitrary nontrivial equivalence on n, then f does not preserve
ρ.

Proof of Claim. Now there exist elements a, b, c ∈ n with a 6= b, (a, b) ∈ ρ,
(a, c) 6∈ ρ.
First, suppose that (a) holds. If f(a, b, c) = c, then we can use the following
f -matrix to show that f does not preserve ρ

a a

a b

c c

a c

where f(a, a, c) = a. If f(a, b, c) = a or f(a, b, c) = b, then by (a) f(a, c, b), f(b, a, c),
f(b, c, a), f(c, a, b) or f(c, a, b) equals c. In this case we get the suitable f -matrix
by permuting the first three rows of the f -matrix above. From this f -matrix we
get that f does not preserve ρ.
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Now we suppose that (b) is true.

(i) First, we suppose that a ≺ b ≺ c. If f(a, b, c) = c, then the f -matrix above
does the job. If f(a, b, c) = a, then by (b) f(a, c, b), f(b, a, c), f(b, c, a),
f(c, a, b) or f(c, b, a) equals c. We get the suitable f -matrix by permuting the
first three rows of the f -matrix above.

(ii) Secondly, we suppose that c ≺ a ≺ b. If f(c, a, b) = c then we get the
suitable f -matrix by permuting the first three rows of the f -matrix above.
If f(c, a, b) = b, then by (b) f(c, b, a), f(a, b, c), f(a, c, b), f(b, a, c), f(b, c, a)
equals c. For example, if f(c, b, a) = c, then the following f -matrix shows
that f does not preserve ρ

c c

b a

a a

c a .

In the remaining cases we get the suitable f -matrices by permuting the first
three rows of the f -matrix above.

(iii) If there do not exist elements a, b, c ∈ n with a 6= b, (a, b) ∈ ρ, (a, c) 6∈ ρ for
which a ≺ b ≺ c or c ≺ a ≺ b hold, then it is easy to see that ρ has a unique
nonsingleton block, namely {0, n− 1}. Now |A| ≥ 4 and we can suppose that
a = 0, b = n − 1 and {c1, . . . , cn−2} = n \ {a, b}.

First, assume f(a, c1, c2) = a. If f(b, c1, c2) = c1, then the following f -matrix

a b

c1 c1

c2 c2

a c1

will be used. If f(b, c1, c2) = b, then f(c2, a, c1) = c2 since the patterns
(b, c1, c2) and (c2, a, c1) are the same with respect to �. We need the following
f -matrices

c2 c2

a b

c1 c1

c2 c1

c2 c2

a b

c1 c1

c2 b .

If f(c2, b, c1) = c1, then the first f -matrix shows that f does not preserve ρ.
If f(c2, b, c1) = b, then the second f -matrix does the job.
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Secondly, assume f(a, c1, c2) = c2. Now we will use the following f -matrices

a b

c1 c1

c2 c2

c2 c1

a b

c1 c1

c2 c2

c2 b .

If f(b, c1, c2) = c1, then the first f -matrix shows that f does not preserve ρ.
If f(b, c1, c2) = b, then the second f -matrix will be used.

The proof of the claim is complete.

From now we show that the algebra (n; f) is not functionally complete if (a)
and (b) are not satisfied. Further also suppose that a1, a2, a3 ∈ n and a1 ≺ a2 ≺ a3.
We have the following three cases:

If ai = f(a1, a2, a3) = f(a1π, a2π, a3π) equalities hold for every permutation π

of {1, 2, 3}, then f preserves one of the three binary central relations τ1, τ2, τ3 on
A defined below:

For i = 1, let the center of τ1 be C = {0, 1, . . . , n − 3} and (n − 2, n − 1) 6∈ τ1,
for i = 2, let the center of τ2 be C = {1, 2, . . . , n − 2} and (0, n − 1) 6∈ τ2,
for i = 3, let the center of τ3 be C = {2, 3, . . . , n − 1} and (0, 1) 6∈ τ3.
Now let f(a1π, a2π, a3π) ∈ {a1, a2} be for every permutation π of {1, 2, 3} (or let

f(a1π, a2π, a3π) ∈ {a2, a3} be for every permutation π of {1, 2, 3}), and suppose that
there exists a permutation π′ of {1, 2, 3} for which f(a1π′ , a2π′ , a3π′) 6= f(a1, a2, a3).
Then it is easy to show that f preserves the nontrivial equivalence with a unique
nonsingleton block, namely {0, 1, . . . , n − 2} (or {1, 2, . . . , n − 1}).

Proposition 5. Let A = {0, 1, 2} be a linearly ordered set with 0 ≺ 1 ≺ 2, and
let f be a �-pattern function, which is a majority function on A. Then the algebra
(A; f) is functionally complete iff there exist permutations π, σ of A for which the
values f(0, 1, 2), f(0π, 1π, 2π), f(0σ, 1σ, 2σ) are pairwise distinct.

Proof. Suppose that there exist permutations π, σ of A for which the values
f(0, 1, 2), f(0π, 1π, 2π), f(0σ, 1σ, 2σ) are pairwise distinct. Then the algebra (A; f)
is functionally complete. (Let us observe that the proof of this statement is included
in the proof of Theorem 4, since in the case (a) of Theorem 4 every f -matrix has
exactly three elements.)

If f(0, 1, 2) = f(0π, 1π, 2π) for every permutation π of A, then we obtain that
f preserves one of the three binary central relations τ1, τ2, τ3 on A defined below:

For f(0, 1, 2) = 0 let the center of τ1 be {0}, and (1, 2) 6∈ τ1,
for f(0, 1, 2) = 1 let the center of τ2 be {1}, and (0, 2) 6∈ τ2,
for f(0, 1, 2) = 2 let the center of τ3 be {2}, and (0, 1) 6∈ τ3.
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Now let assume that at least one of the inclusions: f(0π, 1π, 2π) ∈ {0, 1},
f(0π, 1π, 2π) ∈ {1, 2}, f(0π, 1π, 2π) ∈ {0, 2} holds for every permutation π of A,
and suppose that there exists a permutation π′ of A for which f(0π′, 1π′, 2π′) 6=
f(0, 1, 2). Then it is also easy to observe that f preserves the nontrivial equivalence
with unique nonsingleton block, namely {0, 1}, {1, 2} or {0, 2}. Using Theorem 2,
the proof is complete.

Theorem 6. Let (A,�) be an arbitrary finite poset with 3 ≤ |A|. Let f be a
�-pattern function, which is a majority function on A, and for which there exist
permutations π, σ of {1, 2, 3} such that the values f(a1, a2, a3), f(a1π, a2π, a3π),
f(a1σ, a2σ, a3σ) are pairwise distinct, then the algebra (A; f) is functionally com-
plete.

Proof. Such an operation f always exists. (For example: f(x, x, y) = f(x, y, x) =
f(y, x, x) = x, and f(x, y, z) = x if x, y, z are pairwise different). Now it is easy to
prove that such operations do not preserve the bounded partial orders, the binary
central relations and the nontrivial equivalences on A. Applying Theorem 2, the
proof is complete.

Theorem 7. Let (A;�) be an arbitrary finite poset with 3 ≤ |A|. Then for every k

with 3 ≤ k ≤ |A| there exists a k-ary �-pattern function f , which is a semiprojection
and the algebra (A; f) is functionally complete.

Proof. If 3 ≤ k ≤ |A|, then the k-ary �-pattern function

fk(x1, x2, . . . , xk) =











x1 if the elements x1, x2, . . . , xk are pairwise distinct and

xk−1 6≺ xk,

xk otherwise

is a semiprojection on A. By Lemma 7 of [3] fk has no compatible bounded partial
order on A.

Let τ be an arbitrary binary central relation on A, let c ∈ A be a central element
of τ , and let a, b ∈ A be so that (a, b) 6∈ τ . We will need the following matrices

a a

d d
...

...
e e

c b

b b

a b

a a

d d
...

...
e e

b b

c b

a b

where the entries above the line in the first column are pairwise distinct in both
fk-matrices.

If c 6≺ b, then we will use the first fk-matrix. If c ≺ b, then the second fk-matrix
will work. In both cases we get that fk does not preserve the relation τ .
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Let ρ be an arbitrary nontrivial equivalence, and let a, b, c ∈ A with a 6≺ b,
(a, b) ∈ ρ and (a, c) 6∈ ρ. Now we will use the following fk-matrix to show that fk

does not preserve ρ

c c

d d
...

...
e e

a a

b a

c a

where the entries above the line in the first column of the fk-matrix are pairwise
distinct. Using Theorem 2 we get that the algebra (A; fk) is functionally complete.

Remark. Let (A;�) be a finite linearly ordered set with 3 ≤ |A|, and let f be a
nontrivial k-ary �-pattern function, which is a semiprojection on A. If for any ele-
ments a1, . . . , ak ∈ A with a1 ≺ . . . ≺ ak, and for any permutations π of {1, . . . , k}
one of the following conditions is satisfied:

(a) ai = f(a1π, . . . , akπ), 3 ≤ k ≤ |A|, or

(b) f(a1π, . . . , akπ) ∈ {a1, a2, . . . , ak−2}, 4 ≤ k ≤ |A|, or

(c) f(a1π, . . . , akπ) ∈ {a2, a3, . . . , ak−1}, 4 ≤ k ≤ |A|, or

(d) f(a1π, . . . , akπ) ∈ {a3, a4, . . . , ak}, 4 ≤ k ≤ |A|

then the algebra (A; f) is not functionally complete.

Proof of Remark. We may suppose, without loss of generality, that A = n. If
condition (a) holds, then f preserves one of the binary central relation τ1, τ2, τ3 on
A defined below:

(1) for i = 1, let the center of τ1 be C = {0, 1, . . . , n− 3} and (n− 2, n− 1) 6∈ τ1,

(2) for 1 < i < k, let the center of τ2 be C = {1, 2, . . . , n− 2} and (0, n− 1) 6∈ τ2,

(3) for i = k, let the center of τ3 be C = {2, 3, . . . , n − 1} and (0, 1) 6∈ τ3.

It is also easy to see that if (b) holds, then f preserves the central relation τ1. If
(c) (or (d)) holds, then f preserves the central relation τ2 (or τ3). Using Theorem
2, the proof of the remark is complete.
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Let (A;�) be an arbitrary finite bounded poset with at least three elements.
Define the following two operations on A:

t(x, y, z) =

{

z if x � y,

x otherwise,

d(x, y, z) =

{

x if x � y,

z otherwise.

The operation t is the ternary order-discriminator, and d is the dual order-discrimi-
nator. The algebras (A; t), (A; d) are called order-discriminator algebras. In [12]
we proved that the order-discriminator algebras (A; t) and (A; d) are functionally
complete. The following theorem is a generalization of this result.

Theorem 8. If (A;�) is an arbitrary finite poset with at least three elements, then
the order-discriminator algebras (A; t) and (A; d) are functionally complete.

Proof. It is sufficient to prove that t and d do not preserve the relations (a), (b),
and (c) in Theorem 2.

(a) Let E be an arbitrary bounded partial order on A with the least element m

and the greatest element M . Now we show that the operations t, d do not preserve
the bounded partial order E on A. Let a ∈ A be an arbitrary element different
from m and M . The following two t-matrices and two d-matrices will be used

m m

m a

M M

M m

a M

m M

m m

a m

a M

a a

m m

a m

a a

a M

m m

a m .

If a ≺ m then the first t-matrix, if a 6≺ m then the second t-matrix shows that t

does not preserve E. If a ≺ M then the first d-matrix, if a 6≺ M then the second
d-matrix shows that d does not preserve E.

(b) Let τ be an arbitrary central relation on A, and let a, b, c ∈ A so that a 6= b,
(a, b) 6∈ τ and c is a central element of τ . We may suppose that a 6≺ b. Consider
the following t-matrix and d-matrix

a c

b c

c b

a b

a a

a c

c b

a b .

The first t-matrix shows that the operation t does not preserve τ . If a 6� c then
by the d-matrix we see that the operation d does not preserve τ . If a � c, then by
permuting the first two rows of the d-matrix we get again that d does not preserve τ .
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(c) Let ε be an arbitrary nontrivial equivalence on A, and let a, b, c ∈ A so
that (a, b) ∈ ε and (a, c) 6∈ ε. We will need the following two t-matrices and two
d-matrices:

a b

a a

c c

c b

a a

a b

c c

c a

a b

a a

c c

a c

a a

a b

c c

a c .

If a ≺ b, then by the first t-matrix, if a 6≺ b, then by the second t-matrix we get that
the operation t does not preserve the relation ε. If a ≺ b, then the first d-matrix, if
a 6≺ b, then the second d-matrix does the job. In all cases we see that the operations
t and d do not preserve ε.
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