Acta Cybernetica 19 (2009) 105-123.

Adaptive Scheduling Solution for Grid
Meta-Brokering*

Attila Kertész! Jézsef Daniel Dombit and Jézsef Dombit

Abstract

The nearly optimal, interoperable utilization of various grid resources play
an important role in the world of grids. Though well-designed, evaluated and
widely used resource brokers have been developed, these existing solutions still
cannot cope with the high uncertainty ruling current grid systems. To ease the
simultaneous utilization of different middleware systems, researchers need to
revise current solutions. In this paper we propose advanced scheduling tech-
niques with a weighted fitness function for an adaptive Meta-Brokering Grid
Service, which enables a higher level utilization of the existing grid brokers.
We also set up a grid simulation environment to demonstrate the efficiency
of the proposed meta-level scheduling solution. The presented evaluation re-
sults show that the proposed novel scheduling technique in the meta-brokering
context delivers better performance.

Keywords: grid computing, meta-brokering, scheduling, grid service, ran-
dom number generator function

1 Introduction

Ten years ago a new computing infrastructure called the Grid was born. Ian Foster
et. al. made this technology immortal by publishing the bible of the Grid [1] in
1998. Grid Computing has become an independent research field since then: cur-
rently grids are targeted by many world-wide projects. A decade is a long time:
though the initial goal of grids to serve various scientific communities by providing
a robust hardware and software environment is still unchanged, different middle-
ware solutions have been developed (Globus Toolkit [2], EGEE [3], UNICORE [4],
etc.). The realizations of these grid middleware systems formed production grids
that are mature enough to serve scientists having computation and data intensive
applications. Nowadays research directions are focusing on user needs: more effi-
cient utilization and interoperability play the key roles. To solve these problems

*This work was supported by the FP7 Network of Excellence S-Cube funded by the European
Commission (Contract FP7/2007-2013).

TMTA SZTAKI, University of Szeged E-mail: keratt@inf .u-szeged.hu

fUniversity of Szeged E-mail: {dombijd,dombi}@inf.u-szeged.hu

DOI: 10.14232/actacyb.19.1.2009.7

106 Attila Kertész, Jozsef Daniel Dombi, and Jézsef Dombi

grid researchers have two options: as a member of a middleware developer group
they can come up with new ideas or newly identified requirements and go through
the long process of designing, standardizing and implementing the new feature,
then waiting for the next release containing the solution. Researchers sitting on
the other side or unwilling to wait for years for the new release, need to rely on
the currently available interfaces of the middleware components and use advanced
techniques of other related research fields (peer-to-peer, web computing, artificial
intelligence, etc.). We have chosen the second option to improve grid resource
utilization with an interoperable resource management service.

Since the management and advantageous utilization of highly dynamic grid
resources cannot be handled by the users themselves, various grid resource man-
agement tools have been developed, supporting different grids. User requirements
created certain properties that resource managers have learned to support. This
development is still continuing, and users already need to stress themselves to dis-
tinguish brokers and to migrate their applications, when they move to a different
grid. Interoperability problems and multi-broker utilization have emerged the need
for higher level brokering solutions. The meta-brokering approach means a higher
level resource management by enabling automatic and simultaneous utilization of
grid brokers. Scheduling at this level requires sophisticated approaches, because
high uncertainty presents at all stages of grid resource management. Despite these
difficulties, this work addresses the resource management layer of middleware sys-
tems and proposes an enhanced scheduling technique to improve grid utilization in
a high-level brokering service.

In the following sections of this paper we are focusing on a meta-brokering
solution for grid resource management and present an adaptive scheduling technique
that targets better scheduling in global grids. In Section 2 we introduce meta-
brokering in grids, in Section 3 we describe our proposed scheduling solution, and in
Section 4 we present our simulation architecture and the evaluation of our proposed
solution. Finally, in Section 5 we gather the related research directions and Section
6 concludes the paper.

2 The need for grid meta-brokering

Heterogeneity appears not only in the fabric layer of grids, but also in the middle-
ware. Even components and services of the same middleware may support different
ways for accessing them. After a point this variety slows down grid development,
and makes grid systems unmanageable. Most grid middleware systems have fixed
interfaces to access their components and propagate information flow. In case of
resource management most of the middleware systems provide access to static prop-
erties (number of CPUs, size of memory, etc.) and some also give dynamic ones
(number of waiting jobs, expected response time), but this data is usually outdated
due to timely periodic refreshing. As a result we can state that there is a high
uncertainty in current grids, which is not likely to change soon. Though the first
de facto middleware, the Globus Toolkit [2], did not have a resource broker that au-

Adaptive Scheduling Solution for Grid Meta-Brokering 107

tomates resource selection, the currently used middleware systems have built-in or
supporting brokers [8]. The development of different brokers and grids has started
a separation process in the research and user community, too. Therefore one of the
major problems of current grids is grid interoperability. Focusing on the resource
management layer of grids an obvious solution would be to interconnect brokers
to create interoperability. Unfortunately current brokers do not have a common
protocol and uniform interface for intercommunication, though the OGF-GSA [10]
started to work on this issue. Once they standardize a solution we still would need
to wait till all the brokers implement it in order to establish interoperability. In
order to achieve this goal in a short term we have chosen to interconnect brokers
by a high-level resource manager: we introduced meta-brokering (first proposed in
[7]) that means a higher level utilization of the existing, widely used and reliable
resource brokers. Since most of the users have certificates to access more Grids,
they are facing the problem of grid selection: which grid, which broker should I
choose for my specific application? Just like users needed resource brokers to choose
proper resources within a grid, now they need a meta-brokering service to decide,
which broker (or grid) is the best for them and also to hide the differences of utiliz-
ing them. In this way the meta-brokering approach solves the grid interoperability
problem at the level of resource management by providing a uniform interface for
the users of all the grids they have access to.

Admin User Portal

or
=
BPDL, 3
P
IS data ‘ — 83 =
/'/ 3
Job status, ;

1]
T

Job description Submission
(JSDL) Broker name, results
its JDL

I 7 e \
_~ Invoker | ~ N ~
Meta-Broker Fe GT2 grid
Core : 3

output

LU

-
[] - TS
(_Parser | Translator Information 8
Colicstor SwissGrid
BPDL List

VO Load X
MB Languages

MB Health H
IS Agent |

Figure 1: Components of the Grid Meta-Broker Service

MatchMaker

Figure 1 introduces the revised architecture of the Grid Meta-Broker Service
that enables the users to access resources of different grids through their own bro-
kers. In this way, this higher level tool matches resource brokers to user requests.
The system is implemented as a web-service that is independent from middleware-
specific components. The provided services can be reached through WSDL (Web
Services Description Language). In the following we give a brief summary of its com-

108 Attila Kertész, Jozsef Daniel Dombi, and Jézsef Dombi

ponents and their operation. As the JSDL (Job Submission Description Language)
standard [5] proposed by OGF (Open Grid Forum [9]) is general enough to describe
jobs of different grids and brokers, we have chosen this to be the job description
language of the Meta-Broker. The Translator components of the Meta-Broker are
responsible for transforming the resource specification defined by the user to the
language of the appropriate resource broker that the Meta-Broker selects to use for
a given job. Regarding all the various job specification formats used by different
grid middleware systems not all job attributes can be expressed in each document.
Furthermore we revealed some useful scheduling-related attributes that are also
missing from JSDL. To overcome these limitations we specified MBSDL (Meta-
Broker Scheduling Description Language [6]). The main attribute categories are:
middleware constraints, scheduling policies and QoS requirements. This schema
can be used to extend JSDL with scheduling-related attributes. Besides describing
user jobs, we also need to describe resource brokers in order to differentiate and
manage them. These brokers have various features for supporting different user
needs. These needs should be able to be expressed in the users JSDL, and iden-
tified by the Meta-Broker for each corresponding broker. Therefore we proposed
an extendable BPDL (Broker Property Description Language [6]) — similar to the
purpose of JSDL —, to express metadata about brokers. The common subset of the
individual broker properties is stored here: the supported middleware, job types,
certificates, job descriptions, interfaces, monitoring features and dynamic perfor-
mance data. The scheduling-related ones are stored in MBSDL: fault tolerant
features (checkpointing, rescheduling, replication), agreement support, scheduling
policies (ranking by resource attributes) and QoS properties (e.g. advance reser-
vation, co-allocation, email notification). The union of these properties forms a
complete broker description document that can be filled out and regularly updated
for each utilized resource broker. These two kinds of data formats are used by
the Meta-Broker: JSDL is used by the users to specify jobs and the BPDL (Broker
Property Description Language) by administrators to specify brokers — both parties
can use MBSDL to extend their descriptions.

The Information Collector (IC) component of the Meta-Broker stores the data
of the reachable brokers and historical data of the previous submissions. This infor-
mation shows whether the chosen broker is available, or how reliable its services are.
During broker utilization the successful submissions and failures are tracked, and
regarding these events a rank is modified for each special attribute in the BPDL of
the appropriate broker (these attributes were listed above). In this way, the BPDL
documents represent and store the dynamic states of the brokers. All data is stored
in XML, and advanced XML-serialization techniques are used by the IC. The load
of the resources behind the brokers is also taken into account to help the Match-
maker to select the proper environment for the actual job. When too many similar
jobs are needed to be handled by the Meta-Broker an eager matchmaking may flood
a broker and its grid. That is the main reason why load balancing is an important
issue. In order to cope with this problem, there is an IS (Information System) Agent
component reporting to the Information Collector, which regularly checks the load
of the underlying grids of each connected resource broker, and store this data. This

Adaptive Scheduling Solution for Grid Meta-Brokering 109

tool is implemented as separate web-service connected to the Information System
of the grids behind the utilized brokers. With the additional information provided
by this agent the matchmaking process can adapt to the load of the utilized grids.
Finally, the actual state (load, configurations) of the Meta-Broker is also stored
here, and it can also be queried by users. The continuous monitoring of grid load
and broker performances makes this grid service self-adaptive.

The previously introduced languages are used for matching the user requests to
the description of the interconnected brokers: which is the role of the Matchmaker
component. The JSDL contains the user request (this supposed to be an exact
specification of the user’s job) using the extended attributes, while the intercon-
nected brokers are described by their BPDL documents. The default matchmaking
process consists of the following steps to find the fittest broker:

e The Matchmaker compares the JSDL of the actual job to the BPDL of the
registered resource brokers. First the job requirement attributes are matched
against the broker properties stored in their BPDLs: this selection determines
a group of brokers that are able to submit the job. This phase consists of two
steps: first the brokers are filtered by all the requirements stated in the JSDL.
When none of the brokers can fulfill the request, another filtering process will
be started with minimal requirements (those ones are kept which are real
necessary for job execution). If the available brokers still can not accept the
job, it will be rejected.

e In the second phase the previous submissions of the brokers and the load
of the underlying grids are taken into account: The MatchMaker counts a
rank for each of the remaining brokers. This rank is calculated from the load
that the IS Agent regularly updates, and from the job completion rate that is
updated in the PerformanceMetrics field of the BPDL for each broker. When
all the ranks are counted, the list of the brokers is ordered by these ranks.

e Finally the first broker of the priority list is selected for submission.

3 Adaptive Scheduling for meta-brokering

In the previous section we introduced the Grid Meta-Broker and shown how the
default matchmaking is carried out. The main goal of this paper is to enhance the
scheduling part of this matchmaking process. To achieve this, we have created a
Decision Maker component and inserted it into the MatchMaker component of the
Meta-Broker (see Figure 1). The first part of the matchmaking is unchanged: the
list of the available brokers is filtered according to the requirements of the actual
job read from its JSDL. Then the list of the remaining brokers along with their
performance data and background grid load are sent to the Decision Maker in order
to determine the fittest broker for the actual job. The scheduling techniques and
the process are described in the following paragraphs.

The Decision Maker uses a random number generator, and we chose a JAVA
solution, which generates pseudorandom numbers. This generator produces exactly

110 Attila Kertész, Jozsef Daniel Dombi, and Jézsef Dombi

the same sequence of random numbers for each execution with the same initial value.
This initial value is called the seed. The JAVA random number generator class uses
uniform distribution and 48-bit seed, which is modified by a linear congruential
formula[11]. The default seed is the current time in milliseconds since 1970. We also
developed a unique random number generator, which generates random numbers
with a given distribution. We called this algorithm as generator function. In our
case we defined a score value for each broker, and we created the distribution based
on the score value. For example the broker which has the highest score number has
the highest probability to be chosen. In this algorithm the inputs are the broker id
and the broker score, which are integer numbers (see Table 1).

Table 1: Inputs of the algorithm

BrokerID | Score
3 2
4 3
5 1
6 2

The next step is to choose a broker and put it into a temporary array: the
cardinality is determined by the score value (see Table 2). After the temporary
array is filled, we shuffle this array and choose an array element using the JAVA
random generator. In the example shown in Table 3 the generator function chose
the broker with id 4.

Table 2: Elements in the temporary array

BrokerID | 3|3 |4 (4]4]5|6]|6
ArrayID | 12|34 |5|6]| 7|8

Table 3: Shuffled temporary array

BrokerID | 4|3 |6 | 3 41516
ArrayID | 1|2 |3 |4 6|78

Java Random generator: 5

To improve the scheduling performance of the Meta-Broker we need to send
the job to the broker that best fits the requirements and executes the job without
failures with the shortest execution time. Every broker has three properties that

Adaptive Scheduling Solution for Grid Meta-Brokering 111

the algorithm can rely on: the successful counter, the failure counter and the load
counter.

e The successful counter represents the number of jobs which had finished with-
out any errors.

e The failure counter shows the number of failed jobs.

e The load counter indicates the actual load of the grid behind the broker (in
percentage).

We have developed four different kinds of decision algorithms. The trivial algorithm
uses only a random number generator to select a broker. The other three algorithms
take into account the previously mentioned broker properties. These algorithms
define a score number for each broker and use the generator function to select one.
To calculate the score value we build a weighted sum of the evaluated properties.
This number is always an integer number. Furthermore, the second and third
decision algorithms take into account the maximum value of the failure and load
counter. This means that we extract the maximum value of the properties before
multiplying them with the weight. The generator function of the third algorithm
chooses a broker which score number is not smaller than the half of the highest
score value.

After testing different kinds of weighted systems, we conclude that the most
useful weights are shown in Table 4) that represent the weights of the used decision
algorithms.

Table 4: The weights of the decision makers

Decision Maker | Success_weight | Failed_weight | Load_weight

Decision 1. 3 0.5 1
Decision II. 4 4 4
Decision III. 4 4 4

During the utilization of the Meta-Broker, the first two broker properties (suc-
cessful and failure counter) are incremented through a feedback method that the
simulator (or a user or portal in real world cases) calls after the job submission is
finished. The third property, the load value, is queried by the Meta-Broker from
an information provider (Information System) of a Grid. During simulation this
data is saved to a database by the Broker entities of the simulator (described later
and shown in Figure 2). This means by the time we start the evaluation and till
we do not receive feedback from finished jobs the algorithms can only rely on the
background load of the grids. To further enhance the scheduling we developed a
training process that can be executed before the simulation in order to initialize
the first and second properties. This process sends a small number of jobs with
various properties to the brokers and set the successful and failed jobs number at

112 Attila Kertész, Jozsef Daniel Dombi, and Jézsef Dombi

the BPDLs of the brokers. With this additional training method we expect shorter
execution times by selecting more reliably brokers.

4 Evaluation

In order to evaluate our proposed scheduling solution, we have created a general
simulation environment, in which all the related grid resource management entities
can be simulated and coordinated. The GridSim toolkit [12] is a fully extendable,
widely used and accepted grid simulation tool — these are the main reasons why
we have chosen this toolkit for our simulations. It can be used for evaluating VO-
based resource allocation, workflow scheduling, and dynamic resource provisioning
techniques in global grids. It supports modeling and simulation of heterogeneous
grid resources, users, applications, brokers and schedulers in a grid computing en-
vironment. It provides primitives for the creation of jobs (called gridlets), mapping
these jobs to resources and their management, therefore resource schedulers can be
simulated to study scheduling algorithms. GridSim provides a multilayered design
architecture based on SimJava [13], a general purpose discrete-event simulation
package implemented in Java. It is used for handling the interaction or events
among GridSim components. All components in GridSim communicate with each
other through message passing operations defined by SimJava.

5 bl 3 | GridSim
B] G M-B B] Simulator iJ i extension
: result : S
P \ :
Broker @ Broker E‘
Is / \ \.
Grids load M M M
Resource ﬁ Resource ﬂ Resource E‘
‘WorkloadHWorhoad‘ ‘Workload‘ ‘GridSim

Figure 2: Meta-Brokering simulation environment based on GridSim

Our general simulation architecture can be seen in Figure 2. On the bottom-
right part we can see the GridSim components used for the simulated grid systems.
Resources can be defined with different grid-types. Resources consist of more ma-
chines, to which workloads can be set. On top of this simulated grid infrastructure
we can set up brokers. The Broker and Simulator entities have been developed
by us in order to enable the simulation of meta-brokering. Brokers are extended

Adaptive Scheduling Solution for Grid Meta-Brokering 113

GridUser entities:

e they can be connected to one or more resources;

e different properties can be set to these brokers (agreement handling, co-
allocation, advance reservation, etc.);

e some properties can be marked as unreliable;

e various scheduling policies can be defined (pre-defined ones: rnd — random
resource selection, fcpu — resources having more free cpus or less waiting jobs
are selected, nfailed — resources having less machine failures are selected);

e generally resubmission is used, when a job fails due to resource failure;

e finally they report to the IS (Information System) Grid load database by
calling the feedback method of the Meta-Broker with the results of the job
submissions (this database has a similar purpose as a grid Information Sys-
tem).

The Simulator is an extended GridSim entity:

e it can generate a requested number of gridlets (jobs) with different properties,
start and run time (length);

e it is connected to the created brokers and able to submit jobs to them;

e the default job distribution is the random broker selection (though at least
the middleware types are taken into account);

e in case of job failures a different broker is selected for the actual job;

e it is also connected to the Grid Meta-Broker through its web service interface
and able to call its matchmaking service for broker selection.

4.1 Preliminary testing phase

Table 5 shows the details of the preliminary evaluation environment. 10 brokers can
be used in this simulation environment. The second column denotes the scheduling
policies used by the brokers: fcpu means the jobs are scheduled to the resource with
the most free cpus, nfail means those resources are selected that have less machine
failures, and rnd means randomized resource selection. The third column shows the
capabilities/properties (eg: coallocation, checkpointing, ...) of the brokers: three
properties are used in this environment, subscript F means unreliability, a broker
having such a property may fail to execute a job with the requested service with a
probablity of 0.5. The fourth column contains the number of resources utilized by a
broker, while the fifth column contains the number of background jobs submitted to
the broker (SDSC BLUE workload logs taken from the Parallel Workloads Archive
[14]) during the evaluation timeframe.

114 Attila Kertész, Jozsef Daniel Dombi, and Joézsef Dombi

D1 D2

—Testl =-Test2 Test] -m-Test2
o100 000
T 5 —Testd —Avg
2 2
Y Y
E E
£ £
o100 o100
201000 201000
1000 1000
147 1011610222528 31 3 37 40 43 46 49 52 55 5 6164 67 70 73 76 79 82 85 68 9194 97100 yop 14 7 1013161922 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97100 Jobs
D3 Rnd
~+-Testl -m-Test2 -#-Test2
so1000 aou00
00 a0
= - Test3 —Avg =
ke 3
v Y
] E
£
01000 o100
201000 20100
1000 1000

147 1013161922 25 25 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 85 91 94 97100 14710131619 22 25 28 3134 37 40 43 46 49 52 55 5 61 64 67 70 73 76 79 62 85 88 9194 97100 o

Jobs.

Figure 3: Diagrams of the preliminary evaluation for each algorithm

Adaptive Scheduling Solution for Grid Meta-Brokering 115

000

01000

Time (sec.)

anio0n

201000

o

D1_trained

—-Testl

- Test2

—-Avg

Time {sec.)

so1000

s01000

ano

mom

D3_trained

Time (sec)

G000

30100

D2_trained ,‘

——Test1

=Test2 = Avg

~+Testl -#-Test2 -+Avg

Figure 4: Diagrams of the preliminary evaluation for each algorithm with training

phases

116 Attila Kertész, Jozsef Daniel Dombi, and Jézsef Dombi

Table 5: Preliminary evaluation setup.

Broker | Scheduling | Properties | Resources | Workload
1. fepu A 8 20*8
2. fepu B 8 20*8
3. fcpu C 8 20*8
4. fepu Ap 8 20*8
5. fcpu Br 8 20*8
6. fcpu Cr 8 20*8
7. nfail ArB 10 20*%10
8. nfail ACFE 10 20*10
9. nfail BrpC 10 20*10
10. rnd - 16 20*16

As shown in the table we utilized 10 brokers to execute our first experiment.
In this case we submitted 100 jobs to the system, and measured the makespan of
all the jobs (time elapsed from submission till the successful finishing, including
waiting time in the queue of the resources and resubmissions on failures). Out of
the 100 jobs 40 had no special property (this means all the brokers can successfully
execute them), for the rest of the jobs the three properties were distributed equally:
20 jobs had property A, 20 had B and 20 had C. Each resource of the simulated
grids has been utilized by 20 background jobs (workload) with different submission
times according to the distribution defined by the SDSC BLUE workload logs.

Figure 3 shows the detailed evaluation runs with the scheduling algorithms
Decision 1 (D1), 2 (D2), 3 (D3) and without the use of the Meta-Broker (randomized
broker selection — Rnd) respectively. Figure 4 shows the measured values with the
three algorithms with training (we submitted 10 jobs to each broker to set their
initial performance values). In Figure 5 we can see the averages of the tests with
the different algorithms. This illustrates best the differences of the simulations with
and without the use of the Meta-Broker.

After we have seen the diagrams of the preliminary evaluations we can state that
all the proposed scheduling algorithms (D1, D2 and D3) provide shorter execution
times than the random broker selection. In the main evaluation phases our goal
was to set up a more realistic environment and to experience with a higher number
of jobs.

4.2 Main testing phase

Table 6 shows the evaluation environment used in the main evaluation. The simu-
lation setup was derived from real-life production grids: current grids and brokers
support ony a few special properties: we used four. To determine the (propor-
tional) number of resources in our simulated grids we compared the sizes of current

production grids (EGEE VOs, DAS3, NGS, Grid5000, OSG, ...). We used the same

Adaptive Scheduling Solution for Grid Meta-Brokering 117

—e—Random —m-Decisionl
801000,00
—+—Decision2 ——Decision3
—+—Decision1_trained —®—-Decision2_trained
601000,00
-
o
@
<l
o ——Decision3_trained]
£
=

401000,00

201000,00

1000,00

Figure 6: Simulation in the main evaluation environment

118 Attila Kertész, Jozsef Daniel Dombi, and Jézsef Dombi

Table 6: Main evaluation setup.

Broker | Scheduling | Properties | Resources | Workload
1. fepu A 6 50*6
2. fepu Ap 8 50*8
3. fcpu A 12 50%12
4. fcpu B 10 50%10
5. fcpu Br 10 50*10
6. fcpu B 12 50%12
7. fcpu Bp 12 50%12
8. fcpu C 4 50%4
9. fcpu C 4 50%4
10. fepu ArD 8 50*8
11. fepu AD 10 50*10
12. fepu ADp 8 50*8
13. fepu ABp 6 50*6
14. fcpu ABCF 10 50%10

notations in this table as before.

In the main evaluation we utilized 14 brokers. In this case we submitted 1000
jobs to the system, and again measured the makespan of all the jobs. Out of the
1000 jobs 100 had no special property, for the rest of the jobs the four properties
were distributed in the following way: 30 jobs had property A, 30 had B, 20 had
C and 10 had D. The workload logs contained 50 jobs for each resource. In the
training processes 100 jobs were submitted to each broker prior the evaluations to
set the initial values. Figure 6 shows the graphical representation of the simulation
environment.

In the first phase of the main evaluation the simulator submitted all the jobs at
once, just like in the preliminary evaluation. The results for this phase can be seen
in Figure 7.

In the first phase we could not exploit all the features of the algorithms, because
we submitted all the jobs at once and the performance data of the brokers were
not updated early enough for the matchmaking process. To avoid this, in the last
phase of the main evaluation we submitted the jobs periodically: 1/3 of the jobs
were submitted in the beginning, then the simulator waited for 200 jobs to finish
and update the performances of the brokers. After this the simulator submitted
again 1/3 of all the jobs and waited for 300 more to finish. Finally the rest of
the jobs (1/3 again) were submitted. In this way the broker performance results
could be used by the scheduling algorithms. Figure 8 shows the results of the last
evaluation phase. Here we can see that the runs with training could not make too
much advantage of the trained values, because the feedback of the first submission
period compensates the lack of training.

Figure 9 displays the summary of the different evaluation phases. The depicted

Adaptive Scheduling Solution for Grid Meta-Brokering 119

3501000,00
—e—Random —m-Decisionl
3001000,00
—&—Decision2 —=—Decision3
2501000,00
g —+—Decision1_trained -@-Decision2_trained
a
= 2001000,00
Qo
£
=

——Decision3_trained
1501000,00

1001000,00

501000,00

1000,00

Figure 7: Diagram of the first phase of the main evaluation

—+—Random —-Decisionl
7001000,00
—4—Decision2 ——Decision3
6001000,00
—+=Decision1_ trained ~e~-Decision2_trained
5001000,00
§ —+—Decision3_trained r
& 2001000,00
£
=
3001000,00 f
2001000,00 =
1001000,00
1000,00 E o
-
L3

Jobs

Figure 8: Diagram of the second phase of the main evaluation

120 Attila Kertész, Jozsef Daniel Dombi, and Jézsef Dombi

2000000 m 10 brokers
~— 1500000
-
2
E 1000000 M 14 brokers
F sooooo
0
= 14 brokers,
periodic job
submissions

Figure 9: Summary of the evaluation results

columns show the average values of each evaluation runs with the same parameters.
The results clearly show that the more intelligence (more sophisticated methods)
we put into the system the higher performance we gain. The most advanced version
of our proposed meta-brokering solution is the Decision Maker with the algorithm
called Decision3 with training. Once the number of brokers and job properties will
be high enough to set up this Grid Meta-Broker Service for inter-connecting several
Grids, with the presented scheduling algorithms our service will be ready to serve
thousands of users even under high uncertainty.

5 Related work

Meta-brokering means a higher level solution that brokers user requests among
various grid domains. One of these promising approaches aims at enabling commu-
nication among existing resource brokers. The GSA-RG of OGF [10] is currently
working on a project enabling grid scheduler interaction. They try to define com-
mon protocol and interface among schedulers enabling inter-grid usage. In this work
they propose a Scheduling Description Language to extend the currently available
job description language solutions. This work is still in progress, up to now only
a partial SDL schema has been created. The meta-scheduling project in LA Grid
[15] aims to support grid applications with resources located and managed in dif-
ferent domains. They define broker instances with a set of functional modules:
connection management, resource management, job management and notification
management. These modules implement the APIs and protocols used in LA Grid
through web services. Each broker instance collects resource information from its
neighbors and save the information in its resource repository or in-core memory.
The resource information is distributed in the Grid and each instance will have a

Adaptive Scheduling Solution for Grid Meta-Brokering 121

view of all resources. The Koala grid scheduler [16] was designed to work on DAS-2
interacting with Globus [2] middleware services with the main features of data and
processor co-allocation; lately it is being extended to support DAS-3 and Grid’5000.
To inter-connect different grids, they have also decided to use inter-broker commu-
nication. Their policy is to use a remote grid only if the local one is saturated. In
an ongoing experiment they use a so-called delegated matchmaking (DMM), where
Koala instances delegate resource information in a peer-2-peer manner. Gridway
introduces a Scheduling Architectures Taxonomy [17], where they describe a Mul-
tiple Grid Infrastructure. It consists of different categories, we are interested in the
Multiple Meta-Scheduler Layers, where Gridway instances can communicate and
interact through grid gateways. These instances can access resources belonging to
different administrative domains (grids/VOs). They pass user requests to another
domain when the current is overloaded — this approach follows the same idea as
the previously introduced DMM. Gridway is also based on Globus, and they are
experimenting with GT4 and gLite [3]. Comparing the previous approaches, we can
see that all of them use a new method to expand current grid resource management
boundaries. Meta-brokering appears in a sense that different domains are being ex-
amined as a whole, but they rather delegate resource information among domains,
broker instances or gateways. Usually the local domain has preference, and when
a job is passed to somewhere else, the result should be passed back to the initial
point. Regarding multi-grid usage, the existing grids are very strict and conserva-
tive in the sense that they are very reluctant to introduce any modification that
is coming from research or from other grid initiatives. Hence the solutions aiming
at inter-connecting the existing brokers through common interfaces require a long
standardization procedure before it will be accepted and adapted by the various
grid communities. On the other hand the advantage of our proposed meta-brokering
concept is that it does not require any modification of the existing grid schedulers,
since it utilizes and delegates broker information by reaching them through their
current interfaces. The HPC-Europa Project researchers also considered taking
steps towards meta-brokering [18]; currently we have an ongoing work together
with them to define a common meta-brokering model.

6 Conclusions

The Grid Meta-Broker itself is a standalone Web-Service that can serve both users
and grid portals. The presented enhanced, adaptive scheduling solution with this
Meta-Broker enables a higher level, interoperable brokering by utilizing existing
resource brokers of different grid middleware. It gathers and utilizes meta-data
about existing widely used brokers from various grid systems to establish an adap-
tive meta-brokering service. We have developed a new scheduling component for
this Meta-Broker called Decision Maker that uses weighted functions with random
generation to select a good performing broker to user jobs even under high uncer-
tainty. We have evaluated the presented algorithms in a simulation environment
based on GridSim with real workload samples. The presented evaluation results

122

Attila Kertész, Jozsef Daniel Dombi, and Jézsef Dombi

affirm our expected utilization gains: the enhanced scheduling provided by the De-
cision Maker enables better adaptation and results in a more efficient job execution.

References

[1]

2]

Foster, I. and Kesselman, C. Computational Grids, The Grid: Blueprint for a
New Computing Infrastructure, pp. 15-52, Morgan Kaufmann, 1998.

Foster, I. and Kesselman, C. The Globus project: A status report, pp. 4—18,
In Proc. of the Heterogeneous Computing Workshop, IEEE Computer Society
Press, 1998.

EGEE middleware technical website,
http://egee-technical.web.cern.ch/egee-technical, September 2008.

Erwin, D. W. and Snelling, D. F. UNICORE: A Grid Computing Environment,
pp- 825-834, In Lecture Notes in Computer Science, volume 2150, Springer,
2001.

Job Submission Description Language (JSDL),
http://www.ggt.org/documents/-GFD.56.pdf, September 2008.

Kertész, A., Kacsuk, P., Rodero, I., Guim, F. and Corbalan, J. Meta-Brokering
requirements and research directions in state-of-the-art Grid Resource Man-
agement, Technical report, TR-0116, Institute on Resource Management and
Scheduling, CoreGRID — Network of Excellence, November 2007.

Kertész, A. and Kacsuk, P. Grid Meta-Broker Architecture: Towards an Inter-
operable Grid Resource Brokering Service, pp. 112-116, CoreGRID Workshop
on Grid Middleware in conjunction with Euro-Par 2006, Dresden, Germany,
LNCS, Vol. 4375, 2007.

Kertész, A. and Kacsuk, P. A Taxonomy of Grid Resource Brokers, pp. 201—
210, 6th Austrian-Hungarian Workshop on Distributed and Parallel Systems
(DAPSYS 2006), Springer US, 2007.

Open Grid Forum (OGF) website, http://www.ogf.org, September 2008.

OGF Grid Scheduling Architecture Research Group,
https://forge.gridforum.org/sf/pro-jects/gsa-rg, September 2008.

Knuth, Donald E. The Art of Computer Programming Volume 2., Section
3.2.1. Addison-Wesley Professional, 1997.

Buyya, B. and Murshed, M. GridSim: A Toolkit for the Modeling and Simula-
tion of Distributed Resource Management and Scheduling for Grid Computing,
pp. 1175-1220, Concurrency and Computation: Practice and Experience, Vol-
ume 14, Issue 13-15, 2002.

Adaptive Scheduling Solution for Grid Meta-Brokering 123

[13]

[17]

18]

Howell, F. and McNab, R. SimJava: A discrete event simulation library for
Java, In Proc. of the International Conference on Web-Based Modeling and
Simulation, San Diego, USA, 1998.

Parallel Workloads Archive website,
http://www.cs.huji.ac.il/labs/parallel/workload, September 2008.

Rodero, I., Guim, F. and Corbalan, J., Fong, L.L., Liu, Y.G. and Sadjadi,
S.M. Looking for an Evolution of Grid Scheduling: Meta-brokering, Coregrid
Workshop in Grid Middleware’07, Dresden, Germany, June 2007.

Tosup, A., Epema, D.H.J., Tannenbaum, T., Farrellee, M. and Livny, M. Inter-
Operating Grids through Delegated MatchMaking, In proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage
and Analysis (SCO07), Reno, Nevada, November 2007.

Vazquez, T., Huedo, E., Montero, R. S. and Llorente, I. M. FEwvaluation of a
Utility Computing Model Based on the Federation of Grid Infrastructures, pp.
372-381, Euro-Par 2007, August 28, 2007.

The HPC-Europa Project website, http://www.hpc-europa.org, September
2008.

