
Acta Cybernetica 19 (2009) 135–146.

Determining Initial Bound by “Ray-method” in

Branch and Bound Procedure

Anett Rácz∗

Abstract

In this paper we present an algorithm for determining initial bound for
the Branch and Bound (B&B) method. The idea of this algorithm is based
on the use of “ray” as introduced in the “ray-method” developed for solving
integer linear programming problems [11], [12]. Instead of solving an integer
programming problem we use the main idea of the ray-method to find an
integer feasible solution of an integer linear programming problem along the
ray as close to an optimal solution of the relaxation problem as possible. The
objective value obtained in this manner may be used as an initial bound for
the B&B method. It is well known that getting a “good bound” as soon as
possible can often significantly increase the performance of the B&B method.

Keywords: integer programming, branch and bound, ray-method, initial
bound

1 Introduction

It is well known that the performance of the B&B method mainly depends on the
following three main factors:

• the rule used to choose the “branching” variable,
• the strategy used for generating binary search tree and
• the value of the initial bound.

Generally speaking, while the branching variable and strategy determine the size
of the binary tree to be generated, getting a “good” bound as soon as possible can
dramatically reduce the size of the tree to be considered, since the bound is used
to prune those parts of the tree where the value of the objective function cannot
be better than the bound.

Numerous efforts have been made in the past decades to investigate the general
properties and behavior of the B&B method, e.g. [3, 6, 7, 13, 14, 16, 17, 18], to im-
prove its computational efficiency, e.g. [4, 8, 9, 10, 15], to maximize its performance
in different computational environments, see for example [5, 19], etc.1

∗Department of Applied Mathematics and Probability Theory, Faculty of Informatics, Univer-
sity of Debrecen, 4032 Debrecen Egyetem tér 1., Hungary, E-mail: anett.racz@inf.unideb.hu

1The list of the relevant literature is so long, that in the framework of the current paper there
is not enough space even to begin to cover all of the relevant items.

DOI: 10.14232/actacyb.19.1.2009.9

136 Anett Rácz

However, there is still some research being done in order to develop alternative
algorithms for problems involving discrete variables. One of such investigations was
performed in the Computer Center of the Russian Academy of Sciences [11, 12].
Schematically, the method developed by Khachaturov et al. is based on the search
of “better” feasible integer solutions in some special set along some direction called
a “ray”. In this paper we present a new procedure for determining an initial bound
for the branch and bound method which uses the basic ideas of the ray-method
described in [11, 12].

The paper is organized as follows. In Section 2 we briefly overview the original
ray-method – its mathematical background, its general scheme, different ways to
define the ray, and implementation issues. In Section 3 we explain the main idea
of the algorithm proposed: here we define the ray, then describe the main steps of
the procedure, and finally, using a small illustrative numerical example, we show
how this algorithm may be utilized. Section 4 summarizes my conclusions and my
plans for future research.

2 The original “Ray-method”

Originally, the method was developed for a non-linear integer programming problem
of the following form:

f(x) −→ min (1)

st.
x ∈ S ⊂ Rn, (2)

x = (x1, x2, . . . , xn), xj − integer, j = 1, 2, . . . , n, (3)

where feasible set

S = {x ∈ Rn | gi(x) ≤ bi, i = 1, 2, . . . ,m}

is a convex, bounded and non-empty set, objective function f(x) is non-linear dif-
ferentiable ∀x ∈ S and bounded from below on S, functions gi(x), i = 1, 2, . . . ,m,
are non-linear and differentiable.

2.1 The mathematical background

Definition 1. Let be given a feasible integer point x0 ∈ Rn. We will say that
integer point x′ belongs to neighborhood set O(x0), i.e. x′ ∈ O(x0) if values

∣

∣x0

1
− x′

1

∣

∣ ,
∣

∣x0

2
− x′

2

∣

∣ , . . . ,
∣

∣x0

n − x′

n

∣

∣

are relative primes.

Note that O(x0) has the following obvious properties.

Property 1. x0 /∈ O(x0).

Determining Initial Bound by “Ray-method” in B&B Procedure 137

Property 2. If point x′ ∈ O(x0), then on the straight line open segment (x0, x′)
there is no integer point, i.e. there is no integer point x such that

x = x0 + λ(x′ − x0), 0 < λ < 1 .

Let S(x0) denote the subset of feasible set S, where f(x) is strictly less than
f(x0), i.e.

S(x0) = {x ∈ S | f(x) < f(x0)}.

Using this notation we can formulate the following optimization criteria.

Theorem 1. Feasible integer point x0 is an optimal solution for problem (1)-(3)
if and only if

O(x0) ∩ S(x0) = ∅ (4)

Proof : see [11], [12].

2.2 The general scheme

Let x0 be an integer feasible solution for problem (1)-(3). In accordance with the
main idea of the method we have to find such an integer point x′ ∈ O(x0) that
x′ ∈ O(x0)∩S(x0). If O(x0)∩S(x0) = ∅, then x0 is an optimal solution for problem
(1)-(3). The problem is solved.

Otherwise, i.e. if O(x0) ∩ S(x0) 6= ∅, then we solve the following one-variable
minimization problem:

f(λ) = f(x0 + λ(x′ − x0)) −→ min (5)

x0 + λ(x′ − x0) ∈ S (6)

λ ≥ 0. (7)

Since both points x0 and x′ belong to the convex bounded non-empty feasible set
S, constraint (6) defines the segment of straight line x0 +λ(x′ −x0), which belongs
to S. So constraints (6) and (7) determine a non-empty bounded subset of S. Since
original objective function f(x) is continuous ∀x ∈ S and bounded from below, it
means that function f(λ) is continuous and bounded too on any subset of S. The
latter means that problem (5)-(7) is solvable and may be solved by any suitable
numerical method. Let λmin be its optimal solution and [λmin] denote its integer
part. Concerning value [λmin] + 1 it may occur that

x0 + ([λmin] + 1)(x′ − x0) /∈ S, (8)

or
f(x0 + ([λmin] + 1)(x′ − x0)) ≥ f(x0 + [λmin](x

′ − x0)) . (9)

Now we construct the following point:

x′′ =

{

x0 + [λmin](x
′ − x0), if (8) or (9) takes place,

x0 + ([λmin] + 1)(x′ − x0), otherwise.

138 Anett Rácz

In other words, first, solving problem (5)-(7) we search the minimal value of
function (5) on the ray beginning from point x0 and passing through point x′.
Then on this ray we have to find an integer feasible point x′′ for which f(x′′) is
most close to value f(λmin). In the next step we denote point x′′ by x0 and repeat
the process. The new set S(x0) differs from the previous one by only one constraint
f(x) <= f(x0) = f(x′′).

Since the number of integer points in feasible set S is bounded, the process will
terminate in a finite number of iterations.

2.3 Different rules to define the ray

Let point x0 be an integer feasible solution for problem (1)-(3), i.e. x0 ∈ S. We
will say that L = {x ∈ Rn |x = x0 + λl, λ ≥ 0}, where l = (l1, l2, . . . , ln) ∈ Rn,
is a ray, if there is λ′ > 0 such that f(x0 + λ′l) < f(x0). Using this notation, we
describe here the following three ways by [12] for constructing a ray.

Procedure 1: Let x∗ be the optimal solution of the relaxation problem (i.e.
the problem without the integrality constraints) (1)-(2). Define ray L as

L = {x ∈ Rn |x = x0 + λ (x∗ − x0), λ ≥ 0}. (10)

Procedure 2: Calculate the gradients ∇gi(x) at the point x
0 for all gi(x), i =

1, 2, . . . ,m, functions, and introduce rays Li, i = 1, 2, . . . ,m, in the following way:

Li = x0 + λ∇gi(x
0), λ ≥ 0,

if exists such λ′ > 0, that f(x0 + λ′ ∇gi(x
0)) < f(x0). And

Li = x0 − λ∇gi(x
0), λ ≥ 0,

otherwise.
Procedure 3: Choose the following formula for the ray.

L = x0 − λ∇f(x0), λ ≥ 0. (11)

2.4 Implementation issues

In contrast to the transparency of the theoretical background for the method there
are serious difficulties with its implementation and computational efficiency. The
main and most serious of them is checking optimality criteria for a given feasible
integer point x0 since set O(x0) may contain a huge number of integer points. Note
that, as was mentioned above, these integer points were selected on the basis of the
usage of relative prime numbers, so determining these integer points may be a very
hard and computationally very expensive problem. This is why the developers of
the method for numerical experiments used different approximate variants of the
method and tested it using problems of relatively small size (up to 100 constraints
× 120 variables).

Determining Initial Bound by “Ray-method” in B&B Procedure 139

3 The new method proposed

As was mentioned above, the ray-method was originally developed as a method
for solving non-linear integer programming problems. Using the main ideas of the
method, below we propose a new algorithm which may be used for determining
the initial bound in the branch and bound method when solving integer linear
programming problems.

3.1 Preliminaries

Consider the following pure integer linear programming minimization problem:

f(x) =

n
∑

j=1

cjxj −→ min (12)

st.
n
∑

j=1

aijxj ≤ bi, i = 1, 2, . . . ,m, (13)

xj ≥ 0, integer, j = 1, 2, . . . , n. (14)

Here and in what follows we assume that relaxation problem (12)-(14) is solvable
(i.e. has a non-empty feasible set and objective function f(x) over the feasible set
has a finite lower bound) and vector

xmin = (xmin
1

, xmin
2

, . . . , xmin
n)

is its relaxation non-integer solution. Furthermore, we suppose that the corre-
sponding maximization relaxation problem is solvable too, and

xmax = (xmax
1

, xmax
2

, . . . , xmax
n)

is its optimal solution. These two assumptions play a very important role in our
algorithm since we use points xmin and xmax to determine the ray for indicating
the direction of the search. Moreover we assume that xmin 6= xmax.

3.2 Main steps

Using the given notation, the algorithm proposed may be described in the following
steps.

0. Initial point: Let us denote point xmin by x0, and l = (l1, l2, . . . , ln), where
lj = xmax

j − xmin
j , j = 1 . . . n.

1. Ray: Define the ray in the following way:

L = x0 + λ(xmax − x0), 0 ≤ λ ≤ 1 .

Note that since feasible set S is convex, it means that all points of L are
elements of set S.

140 Anett Rácz

2. Constructing set O(x0): Let J0 be a set of indexes of integer components of
x0, i.e. J0 = {j ∈ J | x0

j = [x0

j]}, where J = {1, 2, . . . , n}. We define set O(x0)
as the set of such points x which satisfy the following constraints:

[x0

j] ≤ xj ≤ [x0

j] + 1, if j /∈ J0 ,

[x0

j] ≤ xj ≤ [x0

j] + 1, if j ∈ J0 and lj > 0 ,

[x0

j]− 1 ≤ xj ≤ [x0

j], if j ∈ J0 and lj < 0 ,

xj = [x0

j], if j ∈ J0 and lj = 0 .



























(15)

Generally speaking O(x0) is the unit-cube containing the point x0. If J0 = ∅,
then the dimension of this unit-cube is n.

Before starting the iterations let us define the point x′ := x0 and calculate
the first perforation point Pact = (p1, p2, . . . , pn) solving the following opti-
mization problem:

λ −→ max (16)

st.
pj = x0

j + λlj j = 1, 2, . . . , n, (17)

[x0

j] ≤ pj ≤ [x0

j] + 1, j /∈ J0 ,

[x0

j] ≤ pj ≤ [x0

j] + 1, j ∈ J0 and lj > 0 ,

[x0

j]− 1 ≤ pj ≤ [x0

j], j ∈ J0 and lj < 0 ,

pj = [x0

j], j ∈ J0 and lj = 0 .



























(18)

3. Shifting: Now we enter new variables yj = xj − [x′

j], j = 1, 2, . . . , n, and
construct new feasible set S′ in the following way

S′ :

n
∑

j=1

aijyj ≤ b′i, i = 1, 2, . . . ,m ,

where

b′i = bi −
n
∑

j=1

aij [x
′

j], i = 1, 2, . . . ,m .

Obviously, set S′ is the intersection of the current set O(x′) and feasible set
S shifted to point 0. Then we solve the following 0-1 LP problem

f ′(y) =

n
∑

j=1

cjyj + c0 → max (19)

st.
n
∑

j=1

aijyj ≤ b′i, i = 1, 2, . . . ,m, (20)

Determining Initial Bound by “Ray-method” in B&B Procedure 141

yj = 0/1, j = 1, 2, . . . , n, (21)

where

c0 =

n
∑

j=1

cj [x
′

j] ,

using Balas’ additive algorithm (implicit enumeration) [2]. If problem
(19)-(21) has 0-1 optimal solution y∗, then we determine vector
x∗ = (x∗

1
, x∗

2
, . . . , x∗

n), where

x∗

j = y∗j + [x′

j], j = 1, 2, . . . , n ,

and use value f(x∗) = f ′(y∗) as an initial bound for the branch and bound
method. Stop.
Otherwise,

4. Perforation point: We determine point Pnext where the ray “perforates” the
hull of the next unit-cube along the ray solving the following optimization
problem:

λ −→ max (22)

st.
xj = x0

j + λlj j = 1, 2, . . . , n , (23)

[pj] ≤ xj ≤ [pj] + 1, j /∈ J ′ ,

[pj] ≤ xj ≤ [pj] + 1, j ∈ J ′ and lj > 0 ,

[pj]− 1 ≤ xj ≤ [pj], j ∈ J ′ and lj < 0 ,

xj = [pj], j ∈ J ′ and lj = 0 ,



























(24)

where J ′ = {j ∈ J | pj = [pj]}. Here constraints (23) and (24) provide Pnext ∈
L and Pnext ∈ O(Pact), correspondingly. Obviously, this problem is solvable,
i.e. has a non-empty feasible set and its objective function is bounded from
above. Let Pnext = (p′

1
, p′

2
, . . . , p′n) solve problem (22)-(24) and λ′ be the

maximal value of objective function (22).

Let us define middle point x′ of the section [Pact; Pnext]:

x′

j =
pj + p′j

2
j = 1, 2, . . . , n . (25)

Furthermore, we do not need point Pact any more, so we overwrite it with
the value of Pnext, i.e. Pact := Pnext.

5. Next unit-cube: Having point x′ we can determine the next unit-cube along
the ray using the following rule:

[x′

j] ≤ xj ≤ [x′

j] + 1, if j /∈ J ′ ,

[x′

j] ≤ xj ≤ [x′

j] + 1, if j ∈ J ′ and lj > 0 ,

[x′

j]− 1 ≤ xj ≤ [x′

j], if j ∈ J ′ and lj < 0 ,

xj = [x′

j], if j ∈ J ′ and lj = 0 ,



























(26)

142 Anett Rácz

where J ′ = {j ∈ J | x′

j = [x′

j]}. Go to step 3.

Since the number of unit-cubes “perforated” by the ray is finite, the process will
terminate in a finite number of iterations. It may occur that when determining next
perforation point x′ we obtain λ′ > 1. It means that unit-cubes constructed along
the ray do not contain any integer feasible point for original problem (12)-(14). It
means the method fails.

3.3 An illustrative numerical example

Here the main steps of the method proposed using a small numerical example are
illustrated. The method proposed was partially implemented in the frame of the
educational linear and linear-fractional package WinGULF [1]. The package has
numerous options for the B&B method - we can choose the direction of the search
(first left node and then right one or vice versa), different rules for selecting a
branching variable (for example, “fractional part most close to 0.5”, “smallest frac-
tional part”, “biggest fractional part”, “smallest value”, “biggest value”, etc.), user
defined initial bound, etc. When testing the method proposed, most of the options
built in were used.

Consider the following numerical example:

f(x) = 20x1+ 21x2+ 18x3 −→ min
st.

9x1+ 1.5x2+ 7x3 ≤ 1350 ,
5.5x1+ 1x2+ 9x3 ≥ 1250 ,

−4.5x1− 10x2+ 2.5x3 ≤ −1050 ,

x1, x2, x3 − integer.

Solving both (minimization and maximization) relaxation problems we obtain the
following:

xmin = (65.042, 97.799, 88.274) ,
xmax = (0.000, 523.076, 80.769) ,
L = (−65.042, 425.277, −7.504) .

Let us denote xmin with x0 and construct set O(x0), i.e. the following unit-cube:

O(x0) :















65 ≤ x1 ≤ 66 ,

97 ≤ x2 ≤ 98 ,

88 ≤ x3 ≤ 89 .

So we can construct the first shifted problem:

Determining Initial Bound by “Ray-method” in B&B Procedure 143

f ′(y) = 20y1+ 21y2+ 18y3 + 4921 −→ max
st.

9y1+ 1.5y2+ 7y3 ≤ 3.5 ,
5.5y1+ 1y2+ 9y3 ≥ 3.5 ,

−4.5y1− 10y2+ 2.5y3 ≤ −7.5 ,

y1, y2, y3 − 0/1

and try to solve it. Since the problem is infeasible, we have to determine the next
unit-cube along the ray. In order to obtain the next unit-cube first we solve the
following problem (see (23)-(24)):

λ → max

st.
x1 = 65.042 + λ(−65.042) ,

x2 = 97.799 + λ(425.277) ,

x3 = 88.274 + λ(−7.504) ,



















65 ≤ x1 ,

x2 ≤ 98 ,

88 ≤ x3















and obtain the first perforation point P1:

λ′ = 0.00047, P1 = (65.011, 98, 88.270) .

To find the next perforation point P2 we have to solve the following problem:

λ → max

st.
x1 = 65.042 + λ(−65.042) ,

x2 = 97.799 + λ(425.277) ,

x3 = 88.274 + λ(−7.504) ,



















65 ≤ x1 ,

x2 ≤ 99 ,

88 ≤ x3 ,















so we obtain

λ′′ = 0.00064, P2 = (65, 98.07, 88.26) .

144 Anett Rácz

Using these points P1 and P2 we find the middle point

x′ = (65.006, 98.03, 88.26) .

This point allows us to construct the next shifted problem:

f ′(y) = 20y1+ 21y2+ 18y3 + 4942 −→ max
st.

9y1+ 1.5y2+ 7y3 ≤ 2 ,
5.5y1+ 1y2+ 9y3 ≥ 2.5 ,

−4.5y1− 10y2+ 2.5y3 ≤ −2.5 ,

y1, y2, y3 − 0/1 .

This problem has no feasible solution.

Proceeding to the next perforation point P3, we obtain the following optimiza-
tion problem to solve

λ → max

st.
x1 = 65.042 + λ(−65.042) ,

x2 = 97.799 + λ(425.277) ,

x3 = 88.274 + λ(−7.504) ,



















64 ≤ x1 ,

x2 ≤ 99 ,

88 ≤ x3 .















We obtain λ = 0.0028 and the next perforation point P3 = (64.85, 99, 88.25).
Therefore the next middle point is x′ = (64.93, 98.53, 88.26) and the shifted
problem is as follows:

f ′(y) = 20y1+ 21y2+ 18y3 + 4922 −→ max
st.

9y1+ 1.5y2+ 7y3 ≤ 11 ,
5.5y1+ 1y2+ 9y3 ≥ 8 ,

−4.5y1− 10y2+ 2.5y3 ≤ −2 ,

y1, y2, y3 − 0/1 .

The optimal solution of this problem is y∗ = (0, 1, 1) and f ′(y∗) = 4961. This
value may be used as an initial bound. The corresponding integer point is x∗ =
(64, 99, 89).

Note that the initial bound obtained (4961) is very close to the optimal value
(after solving the problem we obtain 4959). Below is presented a table with results

Determining Initial Bound by “Ray-method” in B&B Procedure 145

obtained from WinGULF after running B&B method on this numerical example
using different strategies (from left to right and vice versa) and different branching
rules. “Wo.I.B.” means without an initial bound and “W.I.B.” means with an
initial bound.

Branching Left → Right Right → Left
variable Wo.I.B. W.I.B. Wo.I.B. W.I.B.
Minimal index 291 37 37 33
Maximal index 31 23 243 23
Max. value 33 25 245 25
Min. value 31 25 25 25
Max. fract. part 105 41 37 37
Min. fract. part 31 23 23 23
Most close to 0.5 31 25 25 25

4 Further work and ideas to improve efficiency

Some simple manual tests were performed. These preliminary tests show that it
could be worth making more efforts in the topic and in performing computerized
numerical tests with different LP problems including MIPLIB and other test col-
lections. It is clear that test results depend very hard on the search strategy and
branching rules used when running B&B. This is why it would be worth devel-
oping a special software application, which could be used when comparing the
efficiency of the ray-method in different cases. Moreover, we would like to improve
the ray-method too. One of the possible directions for further research may be an
investigation connected with extending the main ideas of the method to the case
of mixed integer programming problems. Another open question is ray-selection in
the case when the maximization problem is unbounded.

References

[1] Bajalinov, E., ”Linear-fractional programming: theory, methods, software and
applications”, Kluwer, 2003.

[2] Balas, E., ”An additive algorithm for solving linear programs with zero-one
variables”, Operations Research, vol. 13, pp. 517-46, 1965.

[3] Berliner, H., ”The B tree search algorithm: A best-first proof procedure”, Ar-
tificial Intell., vol. 12, no. 1, pp. 23-40, 1979.

[4] Borchers, B., Mitchell, J.E., ”An improved branch and bound algorithm for
mixed integer nonlinear programs”, Computers and Operations Research, vol.
21, issue 4, pp. 359-367, 1994.

[5] Gendron, B., Crainic, T.G., ”Parallel Branch-and-Bound Algorithms: Survey
and Synthesis.”, Opererations Research, vol. 42 issue 6, pp. 1042-1066, 1994.

146 Anett Rácz

[6] Gupta, O. K., Ravindran, V., ”Branch and Bound Experiments in Convex
Nonlinear Integer Programming”, Management Science, vol. 31, no. 12, 1533-
1546, 1985.

[7] Hawkins, D. M., ”Branch-and-Bound method”, Encyclopedia of Statistical Sci-
ences, John Wiley and Sons, 2006.

[8] Ibaraki, T., ”Computational efficiency of approximate branch-and-bound algo-
rithms”, Math. Oper. Res., vol. 1, no. 3, pp. 287-298, 1976.

[9] Ibaraki, T., ”Theoretical comparisons of search strategies in branch-and-bound
algorithms”, Int. J. Computer and Information Sciences, vol. 5, no. 4, pp.
315-343, 1976.

[10] Ibaraki, T., ”The Power of Dominance Relations in Branch-and-Bound Algo-
rithms”, Journal of the ACM (JACM), vol. 24, issue 2, pp. 264 - 279, 1977.

[11] Khachaturov, V.R., Mirzoyan, N.A. ”Solving problems of integer programming
with ray-method.” Notes on applied mathematics, Computer Center of Soviet
Academy of Science, 1987.

[12] Khachaturov, V.R., ”Combinatorial methods and algorithms for solving large-
scale discrete optimization problems”, Moscow, Nauka, 2000.

[13] Kumar, V., Kanal, L. N., ”A general branch and bound formulation for un-
derstanding and synthesizing and/or tree search procedures”, Artificial Intell.,
vol. 21, no. 1-2, pp. 179-198, 1983.

[14] Lawler, E. L., Wood, D. E., ”Branch-And-Bound Methods: A Survey”, Oper-
ations Research, vol. 14, no. 4, pp. 699-719, 1966.

[15] Linderoth, T. Savelsbergh, M. W. P., ”A computational study of branch and
bound search strategies for mixed integer programming”, INFORMS J. Com-
puting, vol. 11, no. 2, 173-187, 1999.

[16] Mitten, L., ”Branch and bound methods: General formulation and properties”,
Operation Research, vol. 18, pp. 24-34, 1970.

[17] Smith, D.R., ”Random trees and the analysis of branch and bound procedures”,
Journal of the Association for computing machinery, vol.31, no.1, pp.163-188,
1984.

[18] Yu, C.-F., Wah, B.W., ”Stochastic modeling of branch-and-bound algorithms
with best-first search”, IEEE Transactions on Software Engineering, vol. SE-11,
no. 9, pp. 922-934, 1985.

[19] Yu, C.-F., Wah, B.W., ”Efficient Branch-and-Bound Algorithms on a Two-
Level Memory System”, IEEE Transactions on Software Engineering, vol. 14,
no. 9, pp. 1342-1356, 1988.

