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A Fixed Point Theorem for Stronger Association
Rules and Its Computational Aspects®

Géabor Czédli'

Abstract

Each relation induces a new closure operator, which is (in the sense of data
mining) stronger than or equal to the Galois one. The goal is to give some
evidence that the new closure operator is often properly stronger than the
Galois one. An easy characterization of the new closure operator as a largest
fixed point of an appropriate contraction map leads to a (modest) computer
program. Finally, various experimental results obtained by this program give
the desired evidence.

Keywords: Association rule, database, data mining, lattice, poset, context,
concept lattice, formal concept analysis, Galois connection, functional depen-
dency.

1 Introduction to a new closure operator

Although the terminology of formal concept analysis is frequently used in the first
two sections, the paper belongs neither to formal concept analysis nor to other
applied fields about data bases. These fields are used only as a part of motivations
of the present study. However, in the converse direction, there is some hope that
this section and mainly the next one may give some motivation to these fields. This
section is devoted only to definitions and some basic properties; our motivations
will be given in the next section.

Following Wille’s terminology, cf. [11] or [7], a triplet
(A©, AW p)
is called a context if A© and A are nonempty sets and p C A©® x AD s a
binary relation. From what follows, we fix a context (A(®, A0 p) and let

—1
po=pand pr=p=.
*This research was partially supported by the NFSR of Hungary (OTKA), grant no. T 049433
and K 60148
T University of Szeged, www.math.u-szeged.hu/~czedli/. E-mail: czedli@math.u-szeged.hu

DOI: 10.14232/actacyb.19.1.2009.10



150 Gabor Czédli

From now on, unless otherwise stated, ¢ will be an arbitrary element of {0,1}. So
whatever we say including ¢ without specification, it will be understood as prefixed
by Vi. The set of all subsets of A®) will be denoted by P(A®).

It is often, especially in the finite case, convenient to depict our context in the
usual form: a binary table with row labels from A(®), column labels from A, and
a cross in the intersection of the z-th row and the y-th column iff (z,y) € p. We will
refer to this table as the context table. For example, a context is given by Table 1.
(In an appropriate sense, cf. Table 2, this is the smallest interesting example.) The
concrete meaning of this context is not relevant for this paper!.

by |ba |b3 |ba
ai X | X
a2 X X
as | x |x X
ay X
as X [ x [x
Table 1

A mapping D@ : P(A®) — P(A®) is called a closure operator if it is extensive
(ie., X € DO(X) for all X € P(AM)), monotone (i.e., X CY implies D (X) C
DO(Y)), and idempotent (i.e., DV (DW (X)) = DO (X) for all X € P(AW)).
By a pair of extensive operators we mean a pair D = (D) DM)) where DO :
P(A®D) — P(A®) is an extensive mapping for i = 0,1. If these mappings are
closure operators then D is called a pair of closure operators.

If D = (DO, D) and £ = (£©,£M) are pairs of extensive operators then
D < € means that D@ (X) C £D(X) for all i € {0,1} and all X € P(A®).

Now, associated with (A(O), A, p), we define some pairs of closure operators.
The motivation will be given afterwards. For X € P(A®) let
Xpi={ye AUV forallz € X, (z,y) € pi},

and, again for X € P(A("), define

GW(X) = (Xpi)pr—i = m {ytp1-i) -

yeXpi

Then G = (g<0>, g<1>) is the well-known pair of Galois closure operators, which
plays the main role in formal concept analysis, cf. Wille [11] and Ganter and Wille
[7]. The visual meaning of

g - g(A(O) ) A(l)a p)

is the following. The maximal subsets of p of the form U©® x U™ with U®) C A®)
are called the (formal) concepts, cf. [11] or [7]. Pictorially, they are the maximal
full rectangles U x UM of the context table. (Full means that each entry is a

IThis is a context about juggling, the details are at Publications/[77] in the author’s web site.
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cross.) For X; € P(AW) take all maximal full rectangles U(®) x UM such that
X CU®, then GO (X) is the intersection of all the U(®)’s,

Now we define a sequence C;, i = 0,1,2,..., of pairs of of closure operators.
For X € P(A®) let

X, :={Y € P(A(l_i)) : there is a surjection ¢ : X — Y with ¢ C p;}.

Pictorially, the elements of X); are easy to imagine. For example, let i = 0, i.e.,
let X C A© be a set of rows. Select a cross in each row of X, then the collection of
the columns of the selected crosses is an element of X, and each element of X1)g
is obtained this way. For example, if X = {a1, a2} in Table 1 then X consists of
{bl}, {bl,bg}, {bl,bg} and.{bg,b3}.

Let Co = G. If C, is already defined then let

LX) =cPx)n N U W (1)
YeXvi yecl=(y)

This defines the pair C,4+1 = (67(3217 C,(Ll_gl).
The easiest way to digest formula (1) is to think of it pictorially. For example, let
i=0and X C A and suppose that C, = (Cr(lo), Cr(ll)) is already well-understood.

Then a row z belongs to Cfﬁgl(X) if and only if z € ¢\ (X) and, in addition, for

each set Y € X1y of columns there is a column y in Cr(ll)(Y) such that y intersects
the row z at a cross. (Notice that Xty has already been explained pictorially,
clo (X) and Cr(ll)(Y) are already well-known by assumption, and y need not be
unique and it depends on Y'.)

Finally, let

o0 o0

c=(c?, chy.= (/\ cl0, /\ ¢y,
n=0 n=0

which means that, for all X € P(A®),
cV(x) = ¢ (x).
n=0

Although the above definitions look neither friendly nor natural at the first sight,
they had a proper application in [3]; proper means that C was heavily used when
proving a theorem which has nothing to do with the notion of C. Notice also that
it was routine to prove in [3] that we have indeed defined pairs of closure operators.

Lemma 1. (c¢f. [3]) C = C(A®, AWM p)and C, = C, (A, AN p) m=0,1,...)
are pairs of closure operators. Further, G =Cy>C1 >Cy>--->C.

It is well-known and goes back to Galois that, for each context (A, AM p),
the complete lattices ({X € P(A®) : GO(X) = X},C) and ({X € P(AD) :
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GW(X) = X},C) are dually isomorphic. The analogous statement is far from
being true for C; indeed, in case of the context given by Table 1, [{X € P(A©):
CO(X) = X}| =12 while [{X € P(AMW): ¢V (X) = X} = 10.

From now on we always assume that (A(®), A1) p) is finite. Then there are
only finitely many pairs of operators, whence there is a smallest n with C = C,, =
Cnt1 = Cpyo = ---. This raises the natural question how large this n can be. To
shed more light on C, we answer this question below.

Let us say that (A, AN p) is a decomposable context if there are nonempty
sets B and O with B®) U C® = A® and B® N C® = () such that

p=(pN (B x BM)U(pn (CO x cM)).

Otherwise (A AM p) is called an indecomposable context. We say that it is a
uniform context if |{x}p;| = [{y}pi| for all z,y € A®). For example, all finite block
designs (P, B, I) and, in particular, all finite projective spaces (P, L, I) are uniform
contexts. If [{z}p;| = [{y}pi| = 2 for all 2,y € A then we speak of a 2-uniform
context In the terminology of context tables, a context is 2-uniform iff there are
exactly two crosses in each row and in each column.

Now, as an anonymous referee of [4] suggested, it is routine to extract from
[3] that even if we restrict ourselves to finite indecomposable 2-uniform contexts,
arbitrarily large numbers n with G = Cy > C; > C3 > C3--- C, occur. We close
this section by recalling an open problem about C; for motivation and a possible
application cf. [3].

Problem 1. Is it true that for each indecomposable uniform context (A(O), A, p)
with |A©] > 3 and |A)| > 3 there exists an i € {0,1} and there are x,y,z € AW
such that

CO({z,yh) N ({y, 2} n W ({za}) = 07

2 Motivations

Now we give our motivations, and this will explain why “association rule” occurs
in the title of the paper. Closure operators have been playing an important role in
the theory of relational databases and knowledge systems for a long time, cf. e.g.,
Caspard and Monjardet [2] for a survey. Nowadays most investigations of this kind
belong to formal concept analysis, cf. Ganter and Wille [7] for an extensive survey.
The theory of mining association rules goes back to Agrawal, Imielinski and Swami
[1]; Lakhal and Stumme [8] gives a good account on the present status of this field.
For a data miner, the context is a huge binary database, and mining association
rules is a popular knowledge discovery technique for warehouse basket analysis.
In this case A is the set of costumers’ baskets, A(!) is the set of items sold in
the warehouse, and the task is to figure out which items are frequently bought
together. This information, expressed by so-called “association rules”, can help the
warehouse in developing appropriate marketing strategies. For example,

{cereal, coffee} — {milk}
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is an association rule (in many real warehouses), and this association rule says that,
with a given probability p, costumers buying cereal and coffee also buy milk. When
milk € G {cereal, coffee} then this probability is 1 and we speak about a strong
association rule.

However, the importance of looking for the hidden regularities and rules is
not restricted only to huge databases. The success of formal concept analysis, cf.
Ganter and Wille [7], or Mendeleyev’s classical periodic system of chemical elements
show that exploring some rules in small databases may also lead to important
results. From this aspect, the present paper offers C, a mathematical tool, to
formulate some regularities in abstract contexts. Since C < G, the “association
rules” corresponding to C are stronger than the previously mentioned ones. It
would be nice to find some concrete contexts outside mathematics, say in natural
or social sciences, where C has some real applications and gives new insights that G
does not. This is much beyond the scope of the present paper but there is a hope,
for finding associations is an integral part of any creative activity.

Now we use the context given by Table 1 to develop our ideas further. Let
X = {a1,a2} € A ={ay,...,as}. Then {ai,...,as} x {b1} is the only relevant
maximal full rectangle to compute G (X) = {ay,...,a4}. Since Y = {by, b3} €
Xho but there is no y € GM(Y) = {bo, b3, by} with as € {y}py, formula (1) gives
as ¢ C§O)(X ). After the trivial and therefore omitted details we can easily see that
C=C and CO(X) = {a1,a0,a3}.

Suppose our whole knowledge is decoded in the context and we have to associate
an element with X. Usually we want an element outside X, and we look for
something similar, i.e., we want an element which shares the common attributes of
the elements of X. So the first answer is that we should associate some element of
GO(X)\ X = {az,as}. This way we obtain more than one element, but we may
want to chose only a single one. For example, which of ag and a4 should a scientist
choose if the context represents something in his research field and choosing both
is not permitted?? The unique element az of C(?)(X)\ X? The other element, a4?
We cannot answer to this question of decision making in full generality.

The main motivation to investigate C is that [3], where C has a proper applica-
tion, witnesses that C is useful in algebra.

We have seen that there is chance that C gives some insights and tools that
G, successfully used various fields, does not. But these are just hopes at present,
and as a very first step to justify these expectations the paper gives some partial
answers to the question how often C is different from G.

2For the mentioned concrete meaning of Table 1 the beginner may ask which one of az and ay4
is easier to learn after a; and aso.
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3 From a fixed point theorem to a program

Given a context (A, AN p) let H = H(A®, AM p) be the set of all pairs of
extensive operators defined in the previous section. Similarly, the set of all pairs of
closure operators will be denoted by T = T(A©®, A®M p). Then H = (H, <) and
T = (T, <) are posets, T is a sub-poset of H, and G,C € T C H. Motivated by
formula (1), we define a mapping f : H — H, D = (D), DW) — £ = (£ £M))
by

VX)) =DYX)n ) U {ytor-i . (2)
Y € X’L/)Z y € D(l_i) (Y)

Clearly, £ = f(D) € H, f is a monotone mapping, and f(Cp,+1) = C, for all n.
Since f(D) < D for all D € H, we will call f a contraction map. The following
proposition is mentioned to shed more light on the topic only, and will not be used
in the sequel.

Proposition 1. Given a finite context (A®) A p) T = (T, <), the set of pairs
of closure operators over (A, AN p) s an (upper) semimodular coatomistic
meet-semidistributive lattice, and T is closed with respect to the contraction map

f-

Proof. Let L; be the poset of closure operators over A®, i = 0,1. Then, according
to Corollaries 30 and 58 in Caspard and Monjardet [2], L; is a lattice that has some
nice properties, including those listed in the proposition. Notice that [2] attributes
some of these properties to others, including Demetrovics, Libkin and Muchnik [5],
Duquenne [6] and Ore [10]. Since T is the direct product of Ly and Ly and the
properties we consider are clearly preserved by finite direct products, the first part
of the statement is shown. The statement about the contraction map is included,
modulo notational changes, in the proof of Lemma 1 in [3]. O

If D € Hand f(D) = D then D is called a fixed point of f. Asusual, for D € H
theset {€ € H: & < D} will be denoted by (D]. Since f is a monotone contraction
map, (D] is always closed with respect to f. Remembering that (A, AM p) is
assumed to be finite, we have the following theorem.

Theorem 1. C is the largest fixed point of [ in (G].

Proof. Since the context is finite, there is a k with Cy, = C+1 = C. Hence f(C) =
f(Cx) = Cry1 = C, s0 C is a fixed point of f. Clearly, C € (G].

Now let D € (G] be an arbitrary fixed point. Then, using that f is monotone,
D=f(D)<f(G)=Cy. So D= f(D) < f(C;) =Ca,etc. Thus D C,=C. O

Even if the above theorem is a simple statement, it is useful from algorithmic
point of view. The speed of the obvious algorithm for computing C depends on how
fast the sequence Cy = G, C1, Ca,... decreases. If we follow what formula (1) says

then we obtain C,,+1 from C,, in two steps. In the first step we compute, say, Cfﬁl
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from (Cr(lo), Cél)), and then in the second step we compute C,(zlll from (Céo), Cél)).

However, we could obtain a more rapidly decreasing sequence if we performed the
second step from (Cfﬁzl, C,(Il)) instead of (C,SO), C,(ll)). (This would also mean less
memory usage, which would save some additional time, too.) We will refer to this

strategy as the modified algorithm.

Remark 1. The modified algorithm computes C, and it is at least as fast as the
straightforward algorithm suggested by formula (1). (In fact, it is usually faster.)

Indeed, for i € {0,1} we define a mapping f; : H — H, (D D1)
(£© £M) such that €% is defined as in formula (2) and €09 = DO (It
follows easily from Proposition 1 that T is closed with respect to the contraction
maps f;, ¢ € {0,1}, but we do not need this fact in the proof.) The modified
algorithm produces the sequence

fo(G), f1(fo(9)), fo(f1(fo(9))), fi(fo(f1(fo(G)))), ---

Computing two new members of this sequence needs a slightly less computer work
than computing one new member of the sequence Cy = G, Cy, Cs, ... Hence all we
have to show is that, for every n, the 2n-th member of the first sequence is above
C and below C,,. But this follows via a trivial induction, since f(D) < f;(D) < D
and f(f(D)) < f1(fo(D)) < f(D) hold for all D € H.

It is clear from the proof of Theorem 1 and the argument following Remark 1
that instead of the poset H we could have worked only with the lattice T. How-
ever, the advantage of H is not only to make Theorem 1 stronger. In a practical
calculation, like computing C*) (X) just for a single X, it gives a better theoreti-
cal background: we can reduce the G (Y;)’s for certain (not necessarily distinct)
subsets Y; of A(® and A according to (2) in an arbitrary order, and we do not
have to care if the actual pair of operators is a pair of closure operators, the process
converges to C.

The algorithm given by Remark 1 was developed into a modest computer pro-
gram which computes C. The program is available at the author’s home page.
(Although the source code is in Borland’s old Turbo Pascal 7.0 for MS DOS, the
executable version runs in today’s Windows environment as well.) When |A(®)| or
|AM| is large then it is not possible to determine C in the practice, at least not with
this program, for we would need 214V 4 olA| steps even to store C. However,
as it is clear from formula (1), we can determine CV(X) for all X with |X| < m
and all ¢ € {0,1} without determining the whole C, and this is much faster when
m is not too large. The program allows m € {2,...,9} when |[A©], |AM] < 14,
and it allows only m = 2 when |A(©] |A®M| < 48. However, the running time even
for a single context with m = 9 and |A(®| = |A®M| = 14 is usually too long to wait
for. The program can generate and test many random contexts. The experimental
results obtained by the program are reported in the following section.
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4 Experimental results obtained by the program

The computational results will be given by tables, which are followed by the expla-
nations of their concise notations. Even if these results are not exact mathematical
theorems, they shed some light on the goal of the paper, and they may induce exact
numerical bounds or asymptotical statements in the future. Notice that when only
some specific relations (e.g., partial orders) are considered then the frequency of
C # G can be quite different from what we can learn from the present section, cf.

[4].

size 4 5 6] 8| 10| 12| 14| 20| 30| 40| 48
|{tests}] 1000{1000{1000{100|100{100{100{100{100{100{100
(—,—,—) 549| 757 889| 98(100

([0,4], —, —) | 549] 757| 889] 98[100[100[100

([0,2],—,—) | 535| 707| 844| 97/100{100|100

{2}, —,—) 282| 517| 736 94/100{100|100{100{100{100|100
(12y,C, =) [ 235 484] 721[ 94[100[100] 99| 86| 18] 4] 1
([2,00),C, )| o[ 134] 491] 96[100

(2.4, . #) | 0] 134] 491] 96/100[100] 99

(121, C. %) 0| 134 470| 92[100[100] 99] 86 18| 4| 1

Table 2
In Table 2, “size” denotes |[A®| = |[AMD]| ie., only “square” contexts have been

tested. The number of contexts tested with the given size is denoted by |{tests}|.
For a given context, C # G can be due to some more or less trivial reason like
C (i)((l)) £ G (@). Therefore the program counted those contexts for which there
isani € {0,1} and an X € P(A®) such that C¥(X) # GO (X) and X satisfies
some further conditions. Each of these further conditions is denoted by a vector
(v, B,7). Here « is missing or it is a set of integers, like [2,4] = {2,3,4}. If a is a
set of integers then | X| has to belong to a. If 5 not missing then it is the “C” sign
and X has to satisfy X ¢ C()(X). If  is not missing then it is the “#£” sign and X
has to satisfy G()(X) # A®. For example, the row (—, —, —) gives the number of
contexts with C # G, and the entry 484 means that among 1000 random contexts
there are 484 contexts containing a 2-element subset X with C((X) # G (X)
and X C CO(X).

It is important to emphasize that, for each column, the program produced the
given number of random contexts first, and counted those context that have the
desired property only afterwards. In other words, different entries in the same
column refer to the same set of random contexts. Due to the limited power of the
program some entries are missing, but some obvious relations among the numbers
in the same column give lower bounds for the missing entries.

We may also ask the question that if we take a random context table of size n xn
and choose an i € {0,1} and a subset X of A®) randomly then what is the chance
that (—, —,—): C(X) # G(X), or ([2,00),C,#): 2 < |X| and X C CO(X) #
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g (X) # A The experimental results for some values of n are reported in
Table 3.

size 3 4 5 6 7 8 9

|{tests}| 1000 | 1000 | 1000 | 1000|1000 1000 | 1000

(—,—,—) 171 39| 82| 185| 306| 402| 571

({2}, C,#) 0 0 0 12| 35 54| 86
Table 3

Table 2 gives the strong belief? that a “medium sized” square context gives an
“essentially new” C with high probability. Here “essentially new” means that the
condition ({2}, C, #) holds for some X. However, this probability decreases rapidly
when the size of the context grows.

Let us call a random context a p-random context, 0 < p < 1, if we put a cross
to each entry with probability p, independently from other entries. So far we have
considered 0.5-random contexts. However, we may get different results with other
values of p. For example, we tested 100 p-random 40 x 40-sized contexts with
different values of p, and counted the essentially new contexts among them (in the
sense of ({2}, C,#)). The result is given by Table 4.

P 0.1/0.2{0.3]10.4{0.5{0.6/0.7|10.8]0.9
({2},c,#)|100| 68| 14| 5| 2| 3| 23| 64| 77
Table 4

Finally, we tested some contexts from the real life: essentially all those contexts
from Ganter and Wille [7] which are given by simple context tables (with x being
the only entry) and whose size fits into the program. (Sometimes the context was
given by a multi-valued table and we had to reduce it.) Each column represents a
context, and the column label tells us which context of [7] is considered. “Yes” for
a context means that C is distinct from G and the condition («, 3,7) given in the
row label is satisfied.

1.1[1.5a]1.5b[1.13[1.16]1.21]1.23[1.24[2.4]2.13[2.15
|A©)] 8| 8| 5| 5| 14| 6| 6| 8 7| 12 14

|AD)] 9| 5| 4| 25/ 16/ 12 8| 8 7 9 9

({2},C,#) | no| no| no| yes| no| no| yes| nolyes| no| yes

([0,6], —, —)|yes| no| no| yes yes| yes| nolyes| no| yes
Table 5

3Theoretically there could be some unknown hidden connection between C and the built-in
random number generator and this could mislead us, but the chance of this is minimal.
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