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On Nilpotent Languages and Their

Characterization by Regular Expressions

György Gyurica∗

Abstract

Tree languages recognized by deterministic root-to-frontier recognizers are
also called DR-languages. The concept of generalized R-chain languages was
introduced by the author in his paper On monotone languages and their

characterization by regular expressions (Acta Cybernetica, 18 (2007), 117-
134.) and it has turned out that the monotone DR-languages are exactly
those languages that can be given by generalized R-chain languages. In this
paper we give a similar characterization for nilpotent DR-languages by means
of plain R-chain languages. Also a regular expression based characterization
is given for nilpotent string languages.

1 Introduction

Monotone string and DR-languages were characterized by means of regular ex-
pressions in [4] and [9]. For string languages it was shown in [4] that the class of
monotone languages and the class of languages represented by finite unions of semi-
normal chain languages are the same. In case of DR-languages it is turned out in
[9] that the class of monotone DR-languages and the class of languages represented
by generalized R-chain languages are the same. In this paper our goal was to find
a similar characterization for both nilpotent string and DR-languages, however our
main focus was directed towards nilpotent DR-languages because nilpotent string
languages were already studied in the past intensively.

After introducing the necessary concepts we brought in the concept of plain
chain languages by which we characterized nilpotent string languages. Later, a
similar chain-like structure was introduced for DR-languages, that were given the
name plain R-chain languages. It has turned out that a DR-language is nilpotent
if and only if it can be given as a plain R-chain language. The proof required some
additional results, among which one states a condition by which the class of DR-
languages is closed under x-product. We have also defined when a DR-language is
path complete or x-terminating. These concepts turned out to be very handy if we
want to characterize the x-product of nilpotent DR-languages.
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For notions and notation not defined in this paper we refer the reader to [8] and
[9].

2 Nilpotent string languages

Let X be a finite nonempty alphabet. X∗ denotes the set of all words over X . The
length of a word u ∈ X∗ is denoted by |u| which is the number of occurrences of
letters from X in u. The empty word is denoted by e. As usual, N will denote
the set of natural numbers, i.e. N = {1, 2, . . .}. X+(= X∗ \ {e}) denotes the set
of words with length greater than 0. The set of words no longer than k ∈ N is
X∗,k = {u ∈ X∗ : |u| ≤ k}. A word w ∈ X∗ is a prefix of a word u ∈ X∗ if there is
a word v ∈ X∗ for which u = wv. Moreover, we say that w ∈ X∗ is a proper prefix
of u ∈ X∗ if w is a prefix of u and |w| < |u|.

A system A = (A,X, δ, a0, A
′) is called an X-recognizer, if A is a finite set

of states, X is the input alphabet, δ : A × X → A is the next-state function,
a0 ∈ A is the initial state, and A′ ⊆ A is the set of final states. The next-state
function can be extended to a function δ∗ : A ×X∗ → A, where δ∗(a, e) = a, and
δ∗(a, xu) = δ∗(δ(a, x), u) for every a ∈ A, x ∈ X, u ∈ X∗. If there is no danger of
confusion, instead of δ∗(a, u) we can use the notation δ(a, u) or simply au.

The language L(A) recognized by A is given by

L(A) = {u ∈ X∗ | a0u ∈ A′}.

A language L ⊆ X∗ is called regular or recognizable if it can be recognized by
an X-recognizer.

An X-recognizer A = (A,X, δ, a0, A
′) is nilpotent if there is an integer k ≥ 0

and a state ā ∈ A such that au = ā for all a ∈ A, u ∈ X∗ with |u| ≥ k. The state ā
is called the nilpotent element of A, and the least k for which the above condition
holds is called the degree of nilpotency of A. A language L ⊆ X∗ is nilpotent if
there is a nilpotent X-recognizer A for which L(A) = L.

Remark 1. Nilpotent element has various names in the terminology like absorbent
element (see [2]), or trap state, etc. We will use the term nilpotent element in the
rest of this paper.

The complement of a language L ⊆ X∗ is defined as X∗ \L and will be denoted
by c(L) in the sequel. The following lemma is well-known (see [5]).

Lemma 1. A language L ⊆ X∗ is nilpotent if and only if L or c(L) is finite.

We introduce some chain-like languages that were used in [4] and [9]. A language
L ⊆ X∗ is fundamental, if L = Y ∗ for a Y ⊆ X . A language L ⊆ X∗ is a chain

language, if L can be given in the form L = L0x1L1x2 . . . xk−1Lk−1xkLk, where
x1, . . . , xk ∈ X and every Li (0 ≤ i ≤ k) is a product of fundamental languages.
We will call a chain language L = L0x1L1x2 . . . xk−1Lk−1xkLk plain , if Li = {e}
for every 0 ≤ i < k and Lk = Y ∗, where Y = ∅ or Y = X . We will use small Greek
letters like ζ, η, θ, . . . to denote plain chain languages.
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Let ζ = x1x2 . . . xkLk be a plain chain language. Clearly, ζ is finite if Lk = {e},
and ζ is infinite if Lk = X∗. Furthermore, the length of ζ is defined as |ζ| = k. We
consider the plain chain language ζ′ = x1x2 . . . xj as a prefix of ζ if either j > k
with xk+1 . . . xj ∈ Lk or 1 ≤ j ≤ k. Note that every word of X∗ can be considered
as a finite plain chain language.

The following two remarks are trivial.

Remark 2. The languages {e} and X∗ are nilpotent.

Remark 3. Every finite language can be given as a union of finitely many plain
chain languages.

Lemma 2. Let L ⊆ X∗ be an infinite language that is given as a union of plain

chain languages ζ1, . . . , ζl (l ∈ N). If for all u ∈ X∗ there is an i ∈ {1, . . . , l} such

that u is a prefix of ζi, then L is nilpotent.

Proof. Let us suppose that the conditions of the lemma hold. We construct a
recognizer A = (X∗,k ∪ {ā}, X, δ, {e}, A′) where k = max{|ζi| : 1 ≤ i ≤ l}. For
every a ∈ A and x ∈ X , we define the next-state function δ as follows:

δ(a, x) =







ax, if a ∈ X∗,k−1,
ā, if a ∈ X∗,k and |a| = k,
ā, if a = ā.

To define the set of final states A′, let ā ∈ A′. Moreover, let x1 . . . xj ∈ A′ for
every x1 . . . xjLj ∈ {ζ1, . . . , ζl}, and if Lj = X∗ then for every u ∈ X∗,k−j let
x1 . . . xju ∈ A′.

Let us now take a word u ∈ L and let ζ ∈ {ζ1, . . . , ζl} be the shortest plain
chain language for which u is a prefix of ζ. If |u| > k then a0u = ā hence u ∈ L(A).
If |u| ≤ k then |ζ| ≤ |u| holds since u is represented by ζ in L, therefore by the
construction of A′ we get u ∈ L(A). Let us now take a word w ∈ L(A). The
construction of A′ implies that there is a plain chain language ζ ∈ {ζ1, . . . , ζl} for
which w is a prefix of ζ and |ζ| ≤ |w|. Since ζ takes part in the representation of
L, we get w ∈ L. Thus L = L(A). It is obvious that ev = ā for any word v ∈ X∗

with |v| > k, therefore L is nilpotent with the nilpotent element ā and with the
degree of nilpotency of k + 1.

Let A = (A,X, δA, a0, A
′) and B = (B,X, δB, b0, B

′) be X-recognizers.
The direct product of A and B is defined as the X-recognizer
A×B = (A×B,X, δ, (a0, b0), F ), where F ⊆ A×B and δ is defined as δ((a, b), x) =
(δA(a, x), δB(b, x)) for all a ∈ A, b ∈ B and x ∈ X . Let τ be a mapping from A
onto B. We say that τ is homomorphism of A onto B if τ(a0) = b0, τ

−1(B′) = A′

and τ(δA(a, x)) = δB(τ(a), x) for every a ∈ A and x ∈ X . In this case B is the
homomorphic image of A beside τ .

The following properties of nilpotent recognizers are well-known.

Lemma 3. The direct products and homomorphic images of nilpotent recognizers

are also nilpotent.
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Proof. It is obvious that the class of nilpotent recognizers is closed under direct
products (see [5]).

To prove that the class of nilpotent recognizers is closed under the homomorphic
images, let the recognizer B = (B,X, δB, b0, B

′) be the homomorphic image of the
nilpotent recognizer A = (A,X, δA, a0, A

′) under a homomorphism τ : A → B. Let
the state ā ∈ A be the nilpotent element of A and let k be the degree of nilpotency
of A. Let τ(ā) = b̄. Taking any word u ∈ X∗ for which |u| ≥ k and an element
a ∈ A we get that au = ā, and thus τ(a)u = τ(ā). As every element of B has an
inverse image in A we can state that B is nilpotent with the degree of nilpotency
of k and with the nilpotent element b̄.

It is a widely used fact that the unions and the intersections of languages recog-
nized by given recognizers can be recognized by direct products of these recognizers
(see [5]). Also it is clear that the complement of a nilpotent language is also nilpo-
tent (again, see [5]). Thus we get

Corollary 1. The family of nilpotent languages is closed under union, intersection

and complement.

Let A = (A,X, δA, a0, A
′) be an X-recognizer. The X-recognizer

B = (B,X, δB, b0, B
′) is the connected subrecognizer of A, if B = {a0u|u ∈ X∗},

B′ = A′ ∩B, a0 = b0 and δB(b, x) = δA(b, x) for every b ∈ B, x ∈ X .

Lemma 4. The connected subrecognizer of a nilpotent recognizer is nilpotent.

Proof. Let A = (A,X, δA, a0, A
′) be a nilpotent X-recognizer with the nilpotent

element of ā and with the degree of nilpotency of k. Also let B = (B,X, δB, b0, B
′)

be the connected subrecognizer of A. By the definitions of connected subrecognizer
and nilpotentX-recognizer we get that ā ∈ B. Again, by the definition of connected
subrecognizer we obtain that b0u = ā for every word u ∈ X∗ with |u| ≥ k. Thus B
is nilpotent.

It is also a well-known fact that the minimal recognizer recognizing a language
L is a homomorphic image of the connected subrecognizer of any recognizer recog-
nizing L (see [8]). Thus we have

Corollary 2. A language is nilpotent iff the minimal recognizer recognizing it is

nilpotent.

Before we continue studying nilpotent languages, we observe some basic corre-
lations between nilpotent and monotone languages.

An X-recognizer A = (A,X, δ, a0, A
′) is monotone if there is a partial ordering

≤ on A such that a ≤ δ(a, x) holds for all a ∈ A and x ∈ X . It is obvious that
for all a ∈ A and u ∈ X∗, a ≤ au holds, too. A language L ⊆ X∗ is monotone if
L = L(A) for a monotone X-recognizer A. Later we will use the fact that every
partial ordering on a finite set can be extended to a linear ordering. For more
details on monotone languages we refer the reader to [4].

The following property of nilpotent languages is well-known (see [10]).
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Lemma 5. Every nilpotent language is monotone.

Proof. Let L ⊆ X∗ be a nilpotent language and let A = (A,X, δ, a0, A
′) be a

nilpotent recognizer for which L = L(A). Moreover, let us suppose that L is
not monotone. This means that there are states a, b ∈ A with a 6= b and words
u, v ∈ X∗ such that au = b and bv = a. Let k be the degree of nilpotency of
A. Then a(uv)k = a and b(vu)k = b, which contradicts the assumption that A is
nilpotent with degree of nilpotency of k.

Remark 4. In the proof of Lemma 5 we relied on the assumption that there are
states a and b and words u and v such that a 6= b, au = b and bv = a. If there is no
such a pair of states a and b, then the relation defined by a′ ≤ a′u for every a′ ∈ A
and u ∈ X∗, is a monotone order.

From Lemma 5 we easily get

Corollary 3. Let A = (A,X, δ, a0, A
′) be a nilpotent recognizer. There is a linear

ordering ≤ on A such that a ≤ ax holds for all a ∈ A and x ∈ X.

The converse of Lemma 5 does not hold as the following example shows.

Example 1. It is easy to see that L = ab∗ is monotone, but is not nilpotent.

In the sequel, we will characterize nilpotent languages by means of plain chain
languages.

Lemma 6. Every nilpotent language L ⊆ X∗ can be given as a union of finitely

many plain chain languages ζ1, . . . , ζl (l ∈ N), where in case of infinite L it holds

that for all u ∈ X∗ there is an i ∈ {1, . . . , l} such that u is a prefix of ζi.

Proof. Let L ⊆ X∗ be a nilpotent language. If L is finite, then by Remark 3 L can
be given as a union of finitely many plain chain languages. If L is infinite, then let
A = (A,X, δ, a0, A

′) be the minimal nilpotent recognizer for which L = L(A). If A
is singleton, then L(A) = X∗, thus L is a plain chain language. Let us now assume
that A = {a0, . . . , an} (n > 0), and let the state an be the nilpotent element of
A. Using Corollary 3, we have a linear ordering ≤ on A such that a0 ≤ . . . ≤ an
holds. Since A is nilpotent and minimal, a 6= an implies ax 6= a for all a ∈ A and
x ∈ X . Let us define the recognizer Ai,j = (A,X, δ, ai, {aj}) for all 0 ≤ i, j ≤ n.
Furthermore, for all x ∈ X , let us define the recognizer Ax = (A,X, δ, a0, Ax),
where Ax = {a ∈ A \ {an} | ax = an}. Using the recognizers defined above we can
write L(A0,n) =

⋃

x∈X L(Ax)xL(An,n). Since L(Ax) is finite and L(An,n) = X∗,
we get that L(A0,n) is given as a finite union of plain chain languages. Using the
languages L(Ai,j), we can give L as

L = L(A) =
⋃

am∈A′

L(A0,m) =
⋃

am∈A′\{an}

L(A0,m) ∪
⋃

x∈X

L(Ax)xL(An,n),

where every L(A0,m) is finite (0 ≤ m < n), hence by Remark 3 we gave L as the
union of finitely many plain chain languages. Let us now take a word u ∈ X∗ and
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let w ∈ X∗ be any word for which |uw| ≥ n. Since a0uw = an there is a plain
chain language ζ in the above representation of L(A0,n) for which u is the prefix
of ζ.

From Lemma 1, Lemma 2 and Lemma 6 we directly obtain

Theorem 1. Let L ⊆ X∗ be a regular language. L is nilpotent iff L can be given

as a union of finitely many plain chain languages ζ1, . . . , ζl (l ∈ N), where in case

of infinite L it holds that for all u ∈ X∗ there is an i ∈ {1, . . . , l} such that u is a

prefix of ζi.

3 Nilpotent DR-languages

A finite nonempty set of operational symbols is called ranked alphabet and will be
denoted by Σ in this paper. The subset of all m-ary operational symbols will be
denoted by Σm (⊆ Σ), m > 0. We shall exclude the case m = 0, so it is supposed
that Σ0 = ∅ in the sequel.

Let X be a set of variables. The set TΣ(X) of ΣX-trees is defined as follows:

(i) X ⊆ TΣ(X),

(ii) σ(p1, . . . , pm) ∈ TΣ(X) if m ≥ 0, σ ∈ Σm and p1, . . . , pm ∈ TΣ(X),

(iii) every ΣX-tree can be obtained by applying the rules (i) and (ii) a finite
number of times.

In the rest of this paper X will stand for the countable set {x1, x2, . . .}, and for
every n ≥ 0, Xn will denote the subset {x1, . . . , xn} ⊆ X . The power set of the
set S will be denoted by p(S).

A deterministic root-to-frontier Σ-algebra (or DR Σ-algebra for short) is a pair
A = (A,Σ), where A is a nonempty set and Σ is a ranked alphabet. Every σ ∈ Σm

is represented as a mapping σA : A → Am. We call A finite, if A is finite.
A system A = (A, a0, a) will represent a deterministic root-to-frontier ΣXn-

recognizer (or a DR ΣXn-recognizer for short), where A = (A,Σ) is a finite DR
Σ-algebra, a0 ∈ A is the initial state, and a = (A(1), . . . , A(n)) ∈ p(A)n is the final

state vector. If Σ or Xn is not specified, we speak of DR-recognizers.
Let A = (A, a0, a) be a DR ΣXn-recognizer. Let us define the mapping α :

TΣ(Xn) → p(A) as usual. For every p ∈ TΣ(Xn)

(i) if p = xi ∈ Xn, then α(p) = A(i),

(ii) if p = σ(p1, . . . , pm), then α(p) = {a ∈ A |σA(a) ∈ α(p1)× . . .× α(pm)}.

The tree language recognized by A is denoted by T (A) and is given by

T (A) = {p ∈ TΣ(Xn) | a0 ∈ α(p)}.

Tree languages recognized by DR-recognizers are also called DR-languages.
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Let A be a DR ΣXn-recognizer and a ∈ A one of its states. The tree language
recognized by A from the state a is defined by

T (A, a) = { p ∈ TΣ(Xn) | a ∈ α(p)}.

A state a is called 0-state if T (A, a) = ∅. A is called normalized if for all σ ∈ Σm and
a ∈ A it holds that each component of σA(a) is a 0-state or no component of σA(a)
is a 0-state. Moreover, A is called reduced if for all states a, b ∈ A it holds that
a 6= b implies T (A, a) 6= T (A, b). It is a well-known fact that every DR-language
can be recognized by a normalized and reduced DR-recognizer. For more details
we refer the reader to [6], [7] and [8].

Now we define the ordinary alphabet Σ̂ corresponding to the ranked alphabet
Σ. For all σ, τ ∈ Σ, let

(i) Σ̂σ = {σ1, . . . , σm}, if σ ∈ Σm (m > 0), and

(ii) Σ̂σ ∩ Σ̂τ = ∅, if σ 6= τ .

We define Σ̂ as Σ̂ =
⋃

(Σ̂σ | σ ∈ Σ).

For each x ∈ Xn, the set gx(t) of x-paths of a tree t ∈ TΣ(Xn) is defined as
follows:

(i) gx(x) = {e},

(ii) gx(y) = ∅ for y ∈ Xn, x 6= y,

(iii) gx(t) = σ1gx(t1)∪. . .∪σmgx(tm) for t = σ(t1, . . . , tm), σ ∈ Σm, ti ∈ TΣ(Xn),
1 ≤ i ≤ m, m > 0.

The mappings gx are extended to ΣXn-tree languages in the natural way, that
is, for any tree language T ⊆ TΣ(Xn) and variable x ∈ Xn, let gx(T ) =

⋃

t∈T gx(t).

The sets gx(T ) ⊆ Σ̂∗ are also denoted by Tx and are called the path languages of
T. Moreover, let us define g(T ) as g(T ) =

⋃

x∈X Tx. A tree language T ⊆ TΣ(Xn)
is said to be closed if a tree t ∈ TΣ(Xn) is in T if and only if gx(t) ⊆ Tx for all
x ∈ Xn. It is a well-known result that a regular tree language is DR-recognizable
if and only if it is closed (cf. [1] and [11]).

For any integer n ∈ N and sets S1, . . . , Sn, let πi : S1 × . . . × Sn → Si be the
i-th projection, that is, πi(s1, . . . , si, . . . , sn) = si for all si ∈ Si and 1 ≤ i ≤ n.
Let Σ be a ranked alphabet, and let Σ̂ be the alphabet corresponding to it. Let
A = (A,Σ) be a DR Σ-algebra. For every u ∈ Σ̂∗, the mapping uA : A → A is
defined as follows:

(i) If u = e, then auA = a, and

(ii) if u = σjv, then auA = πj(σ(a))v
A for all a ∈ A, σ ∈ Σm, v ∈ Σ̂∗, and

j ∈ {1, . . . ,m}.
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The mapping defined above can be extended to subsets of Σ̂∗ in the natural way.
In the rest of this paper we will omit the superscript A in uA if the DR Σ-algebra
A inducing uA is obvious.

A DR Σ-algebra A = (A,Σ) is nilpotent, if there are an integer k ≥ 0 and an
element ā ∈ A such that au = ā for all a ∈ A and u ∈ Σ̂∗ with |u| ≥ k. The state ā
is called the nilpotent element of A and the least k for which the above condition
holds is called the degree of nilpotency of A. A DR ΣXn-recognizer A = (A, a0, a)
is nilpotent if the underlying DR Σ-algebra A is nilpotent. Finally, a ΣXn-tree
language T is nilpotent if it can be recognized by a nilpotent DR ΣXn-recognizer.

Remark 5. A different definition of nilpotent DR Σ-algebras and a typical charac-
terization can be found in [3]. We will show that the two definitions define the same
set of DR Σ-algebras.

Let A = (A,Σ) be a DR Σ-algebra, let a ∈ A be an element and let t ∈ TΣ(Xn)
be a tree. We define the word fr(at) ∈ A∗ as follows:

(i) if t ∈ X , then fr(at) = a,

(ii) if t = σ(t1, . . . , tm), then fr(at) = fr(a1t1) . . . fr(amtm), where
σ ∈ Σm, σA(a) = (a1, . . . , am), t1, . . . , tm ∈ TΣ(Xn), m > 0.

For any tree t ∈ TΣ(Xn), let mh(t) = min{|u| : u ∈ g(t)}, that is, mh(t) is
the length of the shortest path leading from the root of t to a leaf. Now we recall
the definition of nilpotent DR Σ-algebra from [3]. A DR Σ-algebra A = (A,Σ) is
nilpotent if there are an integer k ≥ 0 and an element ā ∈ A such that for all a ∈ A
and t ∈ TΣ(Xn) with mh(t) ≥ k, fr(at) = āl for a natural number l. This ā is called
the nilpotent element of A and the least k for which the above condition holds is
called the degree of nilpotency of A.

Lemma 7. The two definitions of nilpotent DR languages above define the same

set of DR Σ-algebras.

Proof. Let A = (A,Σ) be a DR Σ-algebra, let k be an integer, and let ā ∈ A be
an element such that for any a ∈ A and t ∈ TΣ(Xn) with mh(t) ≥ k we have
fr(at) = āl for a natural number l. Let us now take a word u ∈ Σ̂∗ such that
|u| ≥ k. By taking any tree p ∈ TΣ(Xn) for which u is the shortest path in g(p) we
have fr(ap) = āl

′

for a natural number l′. That means au = ā.
Conversely, let k ≥ 0 be an integer and ā ∈ A a state such that for every a ∈ A

and u ∈ Σ̂∗ with |u| ≥ k, au = ā holds. Let us now take a tree p ∈ TΣ(Xn) for
which mh(p) ≥ k. Since every path in g(p) is at least k long, we have fr(ap) = āl

for a natural number l. Therefore the two definitions define the same set of DR
Σ-algebras.

A DR Σ-algebraA = (A,Σ) is calledmonotone if there is a partial ordering≤ on
A such that a ≤ πi(σ(a)) for all a ∈ A, σ ∈ Σm and 1 ≤ i ≤ m. Moreover, we say
that a DR ΣXn-recognizer A is a monotone DR ΣXn-recognizer if the underlying
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DR Σ-algebra A is monotone. Finally, a language T ⊆ TΣ(Xn) is monotone, if
T = T (A) for a monotone DR ΣXn-recognizer A.

As in the string case, there is a basic correlation between the nilpotent and
monotone DR-languages that we state in

Lemma 8. Every nilpotent DR-language is monotone.

Corollary 4. Let A = (A, a0, a) be a nilpotent DR ΣXnrecognizer where A =
(A,Σ). There exists a linear ordering ≤ on A such that a ≤ πi(σ(a)) holds for all

a ∈ A, σ ∈ Σm and i ∈ {1, . . . ,m}.

Similarly to the string case, the converse of Lemma 8 does not hold.

4 Simple approach

Before we continue, we have to clarify some details regarding some particular ope-
rations on tree languages. The σ-product of ΣXn-tree languages T1, . . . , Tm is the
tree language σ(T1, . . . , Tm) = {σ(t1, . . . , tm) | ti ∈ Ti, 1 ≤ i ≤ m}, where m > 0
and σ ∈ Σm. We assume that the reader is familiar with the operations of union,
x-product and x-iteration. In the sequel, we use the operation of x-product in
right-to-left manner, that is, for any tree languages S, T ⊆ TΣ(Xn) the x-product
T ·x S is interpreted as a tree language in which the trees are obtained by taking a
tree s from S and replacing every leaf symbol x in s by a tree from T . Note that
different occurrences of x may be replaced by different trees from T . We will also
assume that T ·y R ·x S always means T ·y (R ·x S) for any variables x, y ∈ Xn and
tree languages S,R, T ⊆ TΣ(Xn).

Let Σ be a ranked alphabet and let Xn be a set of variables. The set RE(ΣXn)
of all regular ΣXn-expressions and the tree language T (η) represented by η ∈
RE(ΣXn) are defined in parallel as follows:

• ∅ ∈ RE(ΣXn), T (∅) = ∅,

• ∀x ∈ Xn : x ∈ RE(ΣXn), T (x) = {x},

If σ ∈ Σm, η1, η2, . . . , ηm ∈ RE(ΣXn), x ∈ Xn, m > 0, then

• (η1) + (η2) ∈ RE(ΣXn), T ((η1) + (η2)) = T (η1) ∪ T (η2),

• (η2) ·x (η1) ∈ RE(ΣXn), T ((η2) ·x (η1)) = T (η2) ·x T (η1),

• (η1)
∗,x ∈ RE(ΣXn), T ((η1)

∗,x) = T (η1)
∗,x,

• σ(η1, . . . , ηm) ∈ RE(ΣXn), T (σ(η1, . . . , ηm)) = σ(T (η1), . . . , T (ηm)).

Some parentheses can be omitted from regular ΣXn-expressions, if a precedence
relation is assumed between the operations of σ-product, x-iteration, x-product,
and union in the given order.

Let A = (A, a0, a) be a nilpotent DR ΣXn-recognizer, where A = (A,Σ), A =
{a0, . . . , ak} and a = (A(1), . . . , A(n)). Due to Corollary 4 we assume that a0 ≤
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a1 ≤ . . . ≤ ak holds and we can also suppose that ak is the nilpotent element of
A. Let Ξk = {ξ0, . . . , ξk} be a set of auxiliary variables for which Xn ∩ Ξk = ∅
holds, and let φ : A → Ξk be a bijective mapping defined by φ(ai) = ξi for every
0 ≤ i ≤ k. Since every nilpotent DR-language is monotone, we may recall the
trivial regular expression belonging to A (ηA for short), which is defined in [9] as
follows:

ηA = ηk ·ξk ηk−1 ·ξk−1
. . . ·ξ1 η0,

where for each i = 0, . . . , k,

ηi = (pi1 + · · ·+ pili + yi1 + · · ·+ yiri) ·ξi (t
i
1 + · · ·+ tiji)

∗,ξi ,

and where

1) yi1, . . . , y
i
ri

are all the elements of the set {xz ∈ Xn| ai ∈ A(z), 1 ≤ z ≤ n},

2) pis = σ(ξi1 , . . . , ξim) for such σ ∈ Σm and ξiv ∈ Ξk (1 ≤ v ≤ m) that
σ(ai) = (φ−1(ξi1), . . . , φ

−1(ξim)) and ai /∈
⋃

1≤v≤m{πv(σ(ai))} hold for every
s ∈ {1, . . . , li},

3) tis = σ(ξi1 , . . . , ξim) for such σ ∈ Σm and ξiv ∈ Ξk (1 ≤ v ≤ m) that σ(ai) =
(φ−1(ξi1 ), . . . , φ

−1(ξim )) and ai ∈
⋃

1≤v≤m{πv(σ(ai))} hold for every s ∈
{1, . . . , ji},

4) | {pi1, . . . , p
i
li
} | + | {ti1, . . . , t

i
ji
} | = | Σ |.

In each ηi the part (pi1 + · · ·+ pili + yi1 + · · ·+ yiri) is called the terminating part

of ηi, furthermore, the part (ti1 + · · ·+ tiji)
∗,ξi is called the iterating part of ηi. The

expressions of the form ηk ·ξk . . . η1 ·ξ1 η0 are called chains.
Let us now observe the regular Σ(Xn∪Ξk)-expression ηA that is detailed above.

It is obvious that in each ηi (0 ≤ i < k) the iterating part is empty because there
is no symbol σ ∈ Σm and state a ∈ A \ {ak} for which a ∈

⋃

1≤v≤m{πv(σ(a))}.
Thus we can omit these iterating parts from ηA. By these omissions we simplified
the trivial regular expression belonging to A, and we will call the result the plain

regular expression belonging to A (denoted by ζA).

5 Characterization

Let S ⊆ TΣ(Xn) be a tree language and let p ∈ TΣ(Xn) be a tree. The height

height(p), root root(p), leaves leaves(p) and the set of subtrees Sub(p) of the tree
p are defined as follows:

(i) If p ∈ Xn, then height(p) = 0, root(p) = p, leaves(p) = {p}, and Sub(p) =
{p}.

(ii) If p = σ(t1, . . . , tm), σ ∈ Σm, ti ∈ TΣ(Xn), 1 ≤ i ≤ m, m > 0, then
height(p) = 1 + max{height(ti) : 1 ≤ i ≤ m}, root(p) = σ, leaves(p) =
⋃

1≤i≤m leaves(ti), and Sub(p) = {p} ∪
⋃

1≤i≤m(Sub(ti)).
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The above functions (except height) are extended from trees to tree languages
as follows: root(S) = {root(p) | p ∈ S}, leaves(S) =

⋃

p∈S leaves(p), and Sub(S) =
⋃

p∈S Sub(p).
For any tree language S ⊆ TΣ(Xn), let the set of operational symbols appearing

in S be defined as root(Sub(S))\Xn and let it be denoted by ΣS . For any language
S ⊆ TΣ(Xn) and variable x ∈ Xn, let ΣS,x denote the set {σ ∈ Σm | ∃u ∈

gx(S), ∃v ∈ Σ̂∗, ∃i ∈ {1, . . . ,m} : uσiv ∈ g(S), m > 0}.
Later we will use the following lemma.

Lemma 9. Every finite DR-language is nilpotent

Proof. Let T be a finite DR-language and let us assume that the DR ΣXn-recognizer
A recognizes T . It is obvious that A is nilpotent with the degree of nilpotency of
1 +max{height(t) : t ∈ T }.

The following lemma is similar to Theorem 18 in [9] with the only difference
that monotonicity is not included.

Lemma 10. Let S and T be DR-languages, and let x ∈ Xn. If root(T )∩ΣS,x = ∅,
then T ·x S is deterministic.

Proof. The proof is the same as the proof of Theorem 18 in [9] except that we have
to omit monotonicity from the conditions and conclusion.

We say that a tree language S ⊆ TΣ(Xn) is path complete if for every word
u ∈ g(S) and for every prefix w = w1 . . . wl−1wl of u, the word w1 . . . wl−1w̄ is a
prefix of a word from g(S) for all w̄, w1, . . . , wl ∈ Σ̂, l ∈ N .

Lemma 11. Let x ∈ Xn be a variable and let S ⊆ TΣ(Xn), T ⊆ TΣ(Xn), and

T ·x S be DR-languages. If S and T are path complete, then so is T ·x S.

Proof. Let the conditions of the lemma hold. Let us take a word u from g(T ·x S)
and take a prefix w = w1 . . . wl−1wl of u where w1, . . . , wl ∈ Σ̂ and l ∈ N . Let
w̄ ∈ Σ̂ be also arbitrarily chosen. If u ∈ g(S) then w1 . . . wl−1w̄ is a prefix of a word
from g(S) because S is path complete, and so w1 . . . wl−1w̄ is a prefix of a word
from g(T ·x S). If u = uSuT where uS ∈ gx(S) and uT ∈ g(T ), then we differentiate
3 cases:

(i) If w is a prefix of uS then w1 . . . wl−1w̄ is a prefix of a word from g(S) because
S is path complete. Thus w1 . . . wl−1w̄ is a prefix of a word from g(T ·x S).

(ii) If uS = e then w1 . . . wl−1w̄ is a prefix of a word from g(T ) since T is path
complete. Hence w1 . . . wl−1w̄ is a prefix of a word from g(T ·x S).

(iii) If uS is a prefix of w then there is an integer i ∈ N such that uS = w1 . . . wi.
In this case wi+1 . . . wl−1w̄ is a prefix of a word from g(T ). Since uS ∈ gx(S)
w1 . . . wiwi+1 . . . wl−1w̄ is a prefix of a word from g(T ·x S).

Since in every case w1 . . . wl−1w̄ is a prefix of a word from g(T ·x S), we proved that
T ·x S is path complete.
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For any variable x ∈ Xn, a tree language S ⊆ TΣ(Xn) is said to be x-terminating

if the following condition holds. For every u ∈ g(S), if u is not a proper prefix of
any w ∈ g(S), then u ∈ gx(S).

Theorem 2. Let xi ∈ Xn be a variable and let S ⊆ TΣ(Xn) and T ⊆ TΣ(Xn) be

nilpotent DR-languages. If root(T ) ∩ ΣS,xi
= ∅ and S is finite, path complete and

xi-terminating, then T ·xi
S is nilpotent.

Proof. Let the conditions of the theorem hold. Let A = (A, a0, a) and B =
(B, b0,b) be reduced, connected and normalized nilpotent DR ΣXn-recognizers,
where A = (A,Σ), a = (A(1), . . . , A(n)), B = (B,Σ), b = (B(1), . . . , B(n)) and
A ∩ B = ∅ such that T (A) = S and T (B) = T . Let k and l be the degrees of
nilpotency of A and B, respectively, and also let ā and b̄ be the nilpotent elements
of A and B, respectively.

We construct a nilpotent DR ΣXn-recognizer C = (C, c0, c) that recognizes
T ·xi

S. Let C = (C,Σ), C = (A∪B)\ {ā}, c0 = a0 and c = (C(1), . . . , C(n)), where
c is defined in the following way:

C(j) =















A(j) ∪B(j) ∪ A(i), if xj ∈ T, j 6= i,

A(j) ∪B(j), if xj 6∈ T, j 6= i,

B(j) ∪ A(i), if xj ∈ T, j = i,
B(j), if xj 6∈ T, j = i.

The elements of Σ in C are represented as follows. For all σ ∈ Σ and c ∈ C, let

σC(c) =















σB(c), if c ∈ B,

σB(b0), if c ∈ A(i), σ ∈ root(T ),

σB(b0), if c ∈ A(i), cuA = ā for any u ∈ Σ̂,
σA(c), otherwise.

First we show that T (C) = T ·xi
S. In order to show T (C) ⊆ T ·xi

S, let us
consider the definition of c. Obviously, we need to keep B(j) in C(j) in all cases.
Then, in case of j 6= i we need to keep A(j) in C(j) to retain all xj -paths in T (C)
that we had in T (A). Finally, if xj ∈ T , then we need to derive xj in all states of
A(i) in C since in this case every path from gxi

(S) is in gxj
(T ·xi

S) as well. To show
T ·xi

S ⊆ T (C), let us consider the definition of σC(c) which is consisted of four
parts. In the first we guarantee a B-like processing in C. The second and the third
cases ensure that the processing of a word from T ·xi

S, that is in a state a ∈ A(i)

at the moment, can be continued in B. This is important because for any variable
xj ∈ Xn and every path uv ∈ gxj

(T ·xi
S) with v ∈ gxj

(T ) and u ∈ gxi
(S) we need

c0uv ∈ C(j). Finally, the fourth case manages the processing of any path g(S) in C.
Also, the condition root(T )∩ΣS,xi

= ∅ guarantees us that C can determine at every
step during the processing of a tree whether the next input symbol is evaluated in
A or in B. Thus we have T (C) = T ·xi

S.
Now we show that C is nilpotent. It is trivial that ā is the trap state of A

since S is finite. Furthermore, au = ā implies au′ = ā for every a ∈ A and
u, u′ ∈ Σ̂ because S is path complete. Moreover, since S is xi-terminating, every
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state a ∈ A \ {ā} with av = ā implies that a ∈ A(i) for any v ∈ Σ̂. Thus, knowing
that T is nilpotent, we easily get that cw = b̄ for every state c ∈ C and path w ∈ Σ̂∗

where |w| ≥ k + l. Therefore, C is nilpotent with the nilpotent element b̄ and with
the degree of nilpotency of not greater than k + l.

Lemma 12. The DR-language TΣ(Y ) is nilpotent for any Y ⊆ Xn.

Proof. Let T = TΣ(Y ) be a DR-language for which Y ⊆ Xn. We construct the
DR ΣX-recognizer A = (A, a0, a) where A = ({a0},Σ), σA(a0) = (a0, . . . , a0) for
all σ ∈ Σ, and a = (A(1), . . . , A(n)) where A(i) = {a0} if xi ∈ Y , ∅ otherwise.
Obviously, A is nilpotent with the nilpotent element a0 and with the degree of
nilpotency of 0.

A tree language represented by η = ηk ·ξk . . . ·ξ1 η0 is called a plain R-chain

language, if T (ηi) is finite and path complete, leaves(T (ηi) \Xn) ⊆ {ξi+1, . . . , ξk},
root(T (ηi+1)) ∩ ΣT (ηi·ξi ...·ξ1η0),ξi+1

= ∅ for all i ∈ {0, . . . , k − 1}, and T (ηk) =
Z ·ξk TΣ(Y ∪ {ξk}) where Y, Z ⊆ Xn.

Theorem 3. Let T ⊆ TΣ(Xn) be a DR-language. T is nilpotent iff it is a plain

R-chain language.

Proof. Let T be a nilpotent DR-language and let A be a reduced and normalized
nilpotent DR ΣXn-recognizer that recognizes T . By constructing the plain regular
expression ζA we represent T as a plain R-chain language.

Conversely, let η = ηk ·ξk . . . ·ξ1 η0 be a plain R-chain language for which T (η) =
T . Using Lemma 12 it is obvious that T (ηk) is nilpotent. By repeated use of
Lemma 10 and Lemma 11 we get that T (ηk−1 ·ξk−1

. . . ·ξ1 η0) is path complete
DR-language and is also nilpotent because of Lemma 9. Moreover, we see that
T (ηk−1 ·ξk−1

. . .·ξ1 η0) is ξk-terminating because every z-path of T (ηk−1 ·ξk−1
. . .·ξ1 η0)

is a proper prefix of a ξk-path of T (ηk−1 ·ξk−1
. . . ·ξ1 η0), z ∈ Xn. Thus using

Theorem 2 we get that T (ηk ·ξk . . . ·ξ1 η0) is nilpotent, hence T is nilpotent, too.

6 Conclusion

We have characterized nilpotent DR-languages by means of plain R-chain lan-
guages. To achieve this result, we have stated among others a condition by which
the class of DR-languages is closed under the operation of x-product. Unlike in
[9] we did not investigate the possibility of reducing plain R-chain languages nor
we have investigated the number of auxiliary variables in them, however similar
methods seem possible that we have seen in [9].
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