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Statistical Language Models within the Algebra of

Weighted Rational Languages

Thomas Hanneforth∗ and Kay-Michael Würzner∗

Abstract

Statistical language models are an important tool in natural language pro-
cessing. They represent prior knowledge about a certain language which is
usually gained from a set of samples called a corpus. In this paper, we present
a novel way of creating N -gram language models using weighted finite au-
tomata. The construction of these models is formalised within the algebra
underlying weighted finite automata and expressed in terms of weighted ra-
tional languages and transductions. Besides the algebra we make use of five
special constant weighted transductions which rely only on the alphabet and
the model parameter N. In addition, we discuss efficient implementations of
these transductions in terms of virtual constructions.

Keywords: computational linguistics, weighted rational transductions, statistical
language modeling, N -gram models, weighted finite-state automata

1 Introduction

Weighted finite-state acceptors (WFSA) provide a convenient way to compactly
represent N -gram language models (cf. [3]) since they admit equivalence transfor-
mations like determinisation and minimisation [22] which compress common pre-
fixes and suffixes without changing the counts or probabilities associated with an
individual N -gram. Moreover, it is possible to represent all sub-distributions of
M -grams (with 1 ≤M < N) simultaneously with almost no additional space.

The usual way is to construct the language models on the basis of the manipula-
tion of states and transitions. Since the models are also required to be robust, it is
necessary to reserve some probability mass for unseen N -grams. This is commonly
achieved by combining a discounting method with a back-off [17] or interpolation
mechanism [15]. The adjusted probabilities are then reassigned for each N -gram
to existing or newly created transitions. The finite automata thus merely serve as
a data structure.
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In this paper, we present an approach which treats the creation of N -gram
models as a problem of modifying weighted languages rather than states and tran-
sitions. In particular, we only use operations from the algebra of weighted regular
languages (WRLs) and transductions (WRTs) like union and intersection to get
from a set of samples to a robust back-off model. Such an algebraic formalisation
has – at least to our knowledge – never been done before.

The results outlined in the remainder are by now mainly of theoretical interest.
We do not aim to replace the many excellent statistical toolkits by the machinery
proposed here. This work is rather a “case study” in viewing an important tool in
natural languages processing from a theoretical viewpoint. As such, we describe it
in a self-contained form.

This article is organised as follows: In Section 2, we will recall the notion of
language models in general and N -gram models in particular (may be skipped by
readers familiar with the topic). Section 3 introduces the formal preliminaries and
establishes the notation. The subsequent sections 4-7 deal with the creation of N -
gram and back-off models from scratch in the manner explained above. Matters of
complexity and implementation are discussed in each section. Proofs of correctness
of the outlined methods have been put in the appendix for reasons of readability.

2 Language Models

Language modeling is the task of assigning a probability to sequences of words.
Pr(w) is the prior probability of the sequence of words w. Language models are
used in many applications in natural language processing such as speech recognition,
machine translation, optical character recognition or part-of-speech tagging. See
[16] for an introduction to these topics and their relation to language models.

Using conditional probabilities, the joint probability of a sequence of words can
be decomposed as: 1

Pr(wm1 ) = Pr(w1)
m∏
i=2

Pr(wi|wi−1
1 ) . (1)

The interdependencies of words are reflected by assuming that the occurrence
of a word is a consequence of the occurrence of its predecessors. The conditional
probability of a sequence of words can be computed by normalising its frequency
relative to the frequency of its history (C(s) denotes the number of occurrences of a
substring s in w, Σ refers to a finite alphabet and the sum operator, respectively):

Pr(wi|wi−1
1 ) =

C(wi−1
1 · wi)∑

a∈Σ

C(wi−1
1 · a)

. (2)

1We denote a substring wi . . . wj with j ≥ i in a more compact way by wj
i . If i = j, we omit

the superscript and write simply wi for the ith character of w (starting at 1). If the subscript
exceeds the superscript, we implicitly denote the empty string ε.
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Frequency information is obtained from a (text) corpus which is usually defined as
a large collection of (annotated or unannotated) texts. In the remainder of this
article, we use the term corpus as denoting a finite disjunction of sentences. A
sentence roughly corresponds to its linguistic definition, but is not limited to that.
Some big natural language corpora are the DWDS-Korpus [11] or the Brown corpus
[18]. A probability distribution with respect to Σ∗ is an assignment of probabilities
to the strings in Σ∗ such that all the individual string probabilities sum up to one.

2.1 N-Gram Models

N -gram models are the most widely used type of language models. Their success
is based in their simplicity: They can be derived unsupervised, by just counting
sequences of words in a corpus and computing their relative frequency.

In the field of language modeling, an N -gram is a sequence of N elements taken
from a fixed and finite alphabet Σ, for example letters [29], words [3], morphemes,
etc.

In order to limit the number of possible contexts of a word, it is assumed that
sequences of words form Markov chains [20]. Thus, only the last N − 1 words
(sometimes also called the history of wi) affect the word wi:

Pr(wi|wi−1
1 ) ≈ Pr(wi|wi−1

i−(N−1)) . (3)

The number of possible contexts is then the size of the alphabet to the power of
N − 1 and therefore finite. The boundary case at the beginning of the sentence is
handled by N − 1 beginning-of-sentence markers (see Section 6 for details).

2.2 Smoothing

While theoretically possible, one will never find all potential N -grams in a corpus in
practice. The common solution to this problem is smoothing : Probability mass is
assigned to unseen events and/or other distributions which account for those events
are consulted. For N -gram models, this means to change the model in such a way
that it assigns a probability to any combination of N words of the vocabulary, deals
adequately with out-of-vocabulary items and, is still a probabilistic model.

Probabilistic N-gram models are characterised by the property that for every
context the probabilities of possible continuations sum up to one (h ∈ ΣN−1):

∀h
∑
wi

Pr(wi|h) = 1 . (4)

Many different smoothing methods for different purposes are available (cf. [6] for
a detailed summary and comparison of important smoothing methods).

For the purpose of this work, we recall the notions of discounting and back-off
smoothing.
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2.2.1 Discounting

The main idea behind this class of procedures is to redistribute probability mass
from seen to unseen events. A simple but effective discounting algorithm is the
so called Witten-Bell discounting, referring to method C in [30]. Witten-Bell dis-
counting is based on the intuition that the probability of novel events decreases
with the number of different events that are observed in the corpus. To implement
this idea, the frequencies of the N -grams are normalised by the number of different
N -grams sharing the same (N − 1)-gram prefix. The number of different events in
an event space is often called the number of types.

Definition 1 (Witten-Bell Type Number). Let T be a function Σ∗ → N :

T(wii−N+1) =
∑

a∈Σ,C(wi−1
i−N+1·a)6=0

1 .

Definition 2 (Witten-Bell Token Number). Let N be a function Σ∗ → N :

N(wii−N+1) =
∑
a∈Σ

C(wi−1
i−N+1 · a) .

With the help of the functions T and N it is possible to discount frequencies,
denoted by C̃:

C̃(wii−N+1) = C(wii−N+1)
N(wii−N+1)

N(wii−N+1) + T(wii−N+1)
. (5)

Adjusted probabilities P̃r can be computed from C̃ [16]. The freed frequency mass
is computed by: ∑

wii−N+1∈ΣN

C(wii−N+1)− C̃(wii−N+1)

=
∑

wii−N+1∈ΣN

C(wii−N+1)
T(wii−N+1)

N(wii−N+1) + T(wii−N+1)
.

(6)

2.2.2 Smoothing by Combining Different Distributions

Spreading saved probability mass equally among all unseen events is often too
simple. It seems reasonable to take different distributions into account. A common
way of doing that is the back-off strategy [17] which recursively uses the (N − 1)-
gram distribution whenever the N -gram distribution assigns a zero probability.
Equation (7) formalises this behavior by defining the back-off probability P̂r:

P̂r(wi|wi−1
i−N+1) = P̃r(wi|wi−1

i−N+1)

+ φ(P̃r(wi|wi−1
i−N+1))

· α(wi−1
i−N+1)P̂r(wi|wi−1

i−N+2) .

(7)
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Function φ indicates the need for backing-off to the immediately lower ordered
distribution:

φ(x) =

{
0 if x 6= 0
1 otherwise .

(8)

This ensures that one of the summands in Equation (7) will always be equal to
0. P̃r and α depend on the particular discounting algorithm and represent the
adjusted probabilities and the normalised freed probability mass, respectively:

α(h) =

{
1−

∑
wi

P̃r(wi|h) if C(h) > 0
1 otherwise .

(9)

The second case in Equation (9) covers events where the (N−1)-gram history is not
available. The lower ordered distribution is used unweighted in such cases. Since
lower ordered distributions are probabilistic by definition, the whole model keeps
this property.

The back-off recursion is terminated either by the (undiscounted) unigram dis-
tribution

P̂r(wi) = Pr(wi) . (10)

or by a uniform distribution which handles out-of-vocabulary items. Such a uni-
form distribution involves a non-probabilistic model, since any number of out-of-
vocabulary items is possible:

P̂r(ε) = Pr
unif

(ε) =
1∑
b∈Σ 1

. (11)

Back-off smoothing is compatible with all discounting algorithms. We use Witten-
Bell discounting as explained above.

3 Formal Preliminaries

In this section, we define the formal apparatus used in the remainder of this ar-
ticle. We start with the notion of a semiring, define weighted rational languages
and transductions, move to the definition of weighted finite-state acceptors and
transducers and a number of operations defined on them and finally clarify the re-
lationship between weighted languages on the one and finite automata on the other
hand.

3.1 Semirings

The weights of languages, transductions and automata are expressed in terms of a
semiring. The advantage in doing so lies in the abstraction and well-definedness of
operations and algorithms for different types of weights (e.g. [19, 25, 24]).
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Definition 3 (Semiring). A structure K = 〈K,⊕,⊗, 0, 1〉 is a semiring if

1. 〈K,⊕, 0〉 is a commutative monoid with 0 as the identity element for ⊕,

2. 〈K,⊗, 1〉 is a monoid with 1 as the identity element for ⊗,

3. ⊗ distributes over ⊕ (distribution of one operation over another will be de-
noted by �, e.g. ⊗ � ⊕) , and

4. 0 is an annihilator for ⊗: ∀a ∈ K, a⊗ 0 = 0⊗ a = 0 .

Examples for semirings are the boolean semiring B = 〈{0, 1},∨,∧, 0, 1〉, the real
semiring R = 〈R∪{∞},+, ·, 0, 1〉, the log semiring L = 〈R∪{∞},+log,+,∞, 0〉2 or
the tropical semiring T = 〈R+ ∪ {∞},min,+,∞, 0〉. A special significance in the
remainder of this work lays on the probability semiring P = 〈R+ ∪ {∞},+, ·, 0, 1〉
since its properties make it suitable for representing probabilities.3

To be well-defined, some operations on languages and automata demand partic-
ular properties of the used semirings. See [19] for a detailed summary on semirings
and their properties. For the scope of this article, we need the definitions of idem-
potency, divisibility, commutativity and completeness.

Definition 4 (Idempotent Semiring). A semiring K is called idempotent if a⊕a = a
for all a ∈ K.

Definition 4 means that in case of non-idempotent semirings the ⊕ operation
is effectively additive in a sense that it sums weights. The probability and the log
semiring are non-idempotent.

Definition 5 (Division Semiring). A semiring K is a division semiring iff ∀a ∈
K \ {0}, ∃!b ∈ K such that a⊗ b = 1.

Divisibility (cf. [9]) is a formalisation of the demand for closure under multi-
plicative inversion needed for division of elements in K. This property is adapted
from a special class of rings called the divisible rings.

Definition 6 (Commutative Semiring). A semiring is said to be commutative when
the ⊗ operation is commutative; that is ∀a, b ∈ K, a⊗ b = b⊗ a.

The requirement that sums of an infinite number of elements are well defined
is expressed as completeness (e.g. [10]).

Definition 7 (Complete Semiring). A semiring K is called complete if it is possible
to define sums for all families (ai|i ∈ I) of elements in K, where I is an arbitrary
index set, such that the following conditions are satisfied:

2a+log b =def − log(2−a + 2−b)
3The terms ‘probability semiring’ and ‘real semiring’ are interchanged freely in the correspond-

ing literature. The following distinction seems sensible: Since real numbers can be both positive
and negative, the real semiring should be defined over R. Probability on the other hand will
always be positive, thus in R+.
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(i)
⊕

i∈∅ ai = 0,
⊕

i∈{j} ai = aj,
⊕

i∈{j,k} ai = aj ⊕ ak for j 6= k ,

(ii)
⊕

j∈J(
⊕

i∈Ij ai) =
⊕

i∈I ai, if
⋃
j∈J Ij = I and Ij ∩ Ij′ = ∅ for j 6= j′ ,

(iii)
⊕

i∈I(c⊗ ai) = c⊗ (
⊕

i∈I ai),
⊕

i∈I(ai ⊗ c) = (
⊕

i∈I ai)⊗ c .

In the following, we restrict our attention to commutative, divisible, complete
and non-idempotent semirings. For better transparency, we primarily use the real
semiring R and the probability semiring P in definitions, lemmas and proofs, but
also use the more general semiring notation with ⊕ and ⊗.4

We will denote semirings with capital letters in calligraphic character style like
P, K.

3.2 Weighted Rational Languages and Transductions

Every formal language can be represented as a weighted language.

Definition 8 (Weighted Language). A weighted language L is a mapping Σ∗ → K,
where Σ denotes a finite set of symbols (called the alphabet) and K a semiring.

This definition applies to all formal languages. The different types of languages
are distinguished by the operations that are allowed to construct the subset of Σ∗

from the singletons in Σ (see below).

Definition 9 (Weighted Transduction). A weighted transduction S is a mapping
Σ∗×Γ∗ → K, where Σ and Γ denote finite sets of symbols (called the input and the
output alphabet, resp.) and K a semiring.

Weighted rational languages (WRL) and weighted rational transductions (WRT)
are a proper subset of the weighted languages and transductions. They can be con-
structed from singletons in a finite alphabet Σ using scaling, union, concatenation,
composition and closure [26]. In addition to these, we use a set of operations on
WRLs and WRTs summarised in Table 1.

Definition 10 equates any WRL with its identity transduction.

Definition 10 (Identity Transduction). Given a WRL L : Σ∗ → K, its identity
transduction ID(L) : Σ∗ × Σ∗ → K is defined as:

∀x, y ∈ Σ∗, ID(L)(x, y) =

{
L(x) if x = y

0 otherwise .

An often used complex operation is application:

Definition 11 (Application). The application of a WRT S : Σ∗ × Γ∗ → K to a
WRL L : Σ∗ → K is a mapping S[L] : Γ∗ → K defined by

∀y ∈ Γ∗, S[L](y) =
⊕
x∈Σ∗

L(x)⊗ S(x, y) .

4In practice, P’s isomorphic counter part, the log semiring L would be used instead for reasons
of numerical stability.
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Table 1: Operations on WRLs and WRTs
Let S: Σ∗×∆∗ → K, and Q: ∆∗×Γ∗ → K, denote two WRTs and let L1: Σ∗ → K,
and L2: Σ∗ → K, denote two WRLs.a Let a, b and c, d be chosen from the same
alphabet (augmented with ε), respectively. For S (also S1, S2), let the operands x
and y range over Σ∗ and ∆∗, resp. For Q, let x and y range over ∆∗ and Γ∗, resp.
For L1 and L2, x, y ∈ Σ∗.

singleton {(a, c)}(b, d) = 1 if a = b and c = d, 0 otherwise

singleton {a}(b) = 1 if a = b, 0 otherwise
union (sum) (S1 ∪ S2)(x, y) = S1(x, y)⊕ S2(x, y)

concatenation (S1 · S2)(x, y) =
⊕

tu=x,vw=y

S1(t, v)⊗ S2(u,w)

scaling kQ(x, y) = k ⊗ Q(x, y) (k ∈ K)

power Q0(ε, ε) = 1

Q0(x 6= ε, y 6= ε) = 0

Qn+1(x, y) = (Q · Qn)(x, y)

closure Q∗(x, y) =
⊕
k≥0

Qk(x, y)

composition (S ◦ Q)(x, y) =
⊕
z∈∆∗

S(x, z)⊗ Q(z, y)

1st projection π1(S)(x) =
⊕
y∈∆∗

S(x, y)

2nd projection π2(S)(y) =
⊕
x∈Σ∗

S(x, y)

crossproduct (L1 × L2)(x, y) = L1(x)⊗ L2(y)
intersection (L1 ∩ L2)(x) = L1(x)⊗ L2(x)

aUsing the identity transduction from Definition 10, the operations union, concatenation,
power, scaling, and closure also apply to weighted rational languages.

Application is a short-cut for composing the identity transduction of L with S

and taking the 2nd projection afterwards.

Definition 12 (Language Projection). Given a WRL L : Σ∗ → K, the language
projection of L – denoted by πL(L) – is defined as

∀x ∈ Σ∗, πL(L)(x) =

{
1 if L(x) 6= 0
0 otherwise .
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Since language projection is an operation which only replaces the weights of its
operand, WRLs and WRTs are closed under it (see the result for length preserving
homomorphisms in [8]).

Definition 13 (⊗-negation). Given a WRL L : Σ∗ → K over a division semiring
K, the ⊗-negation of L – denoted by L−1 – is defined as

∀x ∈ Σ∗, L−1(x) =

{
a if L(x) 6= 0 ∧ a⊗ L(x) = 1
0 otherwise .

Further on, we use capital script letters like L, P to denote weighted languages
and transductions.

3.3 Weighted Finite-State Automata

Every WRL and every WRT can be represented by at least one weighted finite-state
acceptor or transducer, respectively.

Definition 14 (WFSA). A weighted finite-state acceptor (henceforth WFSA, cf.
[24]) A = 〈Σ, Q, q0, F, E, λ, ρ〉 over a semiring K is a 7-tuple with

1. Σ, the finite input alphabet,

2. Q, the finite set of states,

3. q0 ∈ Q, the start state,

4. F ⊆ Q, the set of final states,

5. E ⊆ Q×Q× (Σ ∪ {ε})×K, the set of transitions,

6. λ ∈ K, the initial weight, and

7. ρ : F → K, the final weight function mapping final states to elements in K.

An extension of WFSAs are the weighted finite-state transducers.

Definition 15 (WFST). A weighted finite-state transducer (henceforth WFST)
〈Σ,∆, Q, q0, F, E, λ, ρ〉 over a semiring K is a 8-tuple with

1. Σ, Q, q0, F , λ and ρ are defined in the same manner as in the case of WFSAs,

2. ∆, the finite output alphabet, and

3. E ⊆ Q×Q× (Σ ∪ {ε})× (∆ ∪ {ε})×K, the set of transitions.

The weight assigned by a WFSA A to a string x ∈ Σ∗ is determined by Defini-
tion 16.
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Definition 16 (Weight of a String). Let A = 〈Σ, Q, q0, F, E, λ, ρ〉 be a WFSA over
a semiring K. Let π be a path in A, that is, a sequence of adjacent transitions.
Let n[π] denote the state reached at the end of π. Let Π(Q1, x,Q2) denote the set
of all paths from q1 ∈ Q1 to q2 ∈ Q2 labeled with x ∈ Σ∗. Let ω(π) denote the
⊗-multiplication of the weights of the transitions along the path π. The weight
assigned to a string x ∈ Σ∗ by A, denoted by JxKA, is defined as:

JxKA =
⊕

π∈
∏

({q0},x,F )

λ⊗ ω(π)⊗ ρ(n(π)) .

A WFSA is called unambiguous, if there is for each input string x at most a single
path in A. As a special case, each state q in a deterministic WFSA has at most a
single target state for each a ∈ Σ. Note that in case of unambiguous/deterministic
WFSAs, the ⊕-operation in Definition 16 has no effect, since there is for every
input string only a single path from q0 to a final state.

In addition to the automata-algebraic operations like union, intersection, con-
catenation etc., we use three equivalence operations, e.g. operations which only
change the structure of a WFSA but not the weighted language it accepts, para-
metrised with respect to a semiring K: rm-εK for ε-removal, detK for determinisa-
tion of WFSAs, and minK for minimisation. We omit the subscript for the semiring
if it is understood from the context.

If K is a divisible semiring, we denote by neg⊗K the operation, which replaces
the initial weight λ and each transition and final state weight a of a WFSA A by
its multiplicative inverse, denoted by λ−1 and a−1 respectively. Note that A must
be at least unambiguous to obtain the correct result corresponding to Definition
13. Although not every WFSA can be determinised [21], those WFSAs to which
we apply neg⊗K have an equivalent deterministic counterpart.

Typographically, we will render acceptors and transducers with letters in Gothic
type, for example E, K.

4 N-Gram Counting

As shown in Section 2, frequencies of events are necessary for creating N -gram
word models. This section shows how to obtain these frequencies.

4.1 Text Corpora as Weighted Finite-State Automata

Text corpora can be easily represented as acyclic weighted finite state acceptors
over the real semiring. This approach is advantageous since acyclic WFSAs always
admit equivalence transformations like determinisation and minimisation [21].
Fig. 1 shows a WFSA K constructed from a toy corpus.5

5We adopt the convention that transition labels are of the form a/w in case of acceptors and
a : b/w when depicting transducers: a ∈ Σ ∪ {ε} denotes the input symbol of the transition,
b ∈ ∆ ∪ {ε} is its output symbol and w ∈ K its weight. In the context of an WFST, a transition
labeled with a stands for the identity transduction a : a. Similar, the final weight ρ(p) assigned to
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Figure 1: A toy corpus over Σ = {a, b} represented as a WFSA K.

The number of occurrences of a given sentence s can be computed along Defi-
nition 16; for example JaabbKK = 1 · 8 · 0.5 · 1 · 1 · 1 = 4.

4.2 N-gram Counting

An approach for countingN -grams with WFSTs has been proposed in [2]. We adopt
this approach and repeat the resulting definitions using the notation introduced in
Section 3. For the purpose of counting N -grams, a special transducer which realises
a rational transduction F : Σ∗ × Σ∗ → R is used:

∀x, y ∈ Σ∗, F(x, y) = ((Σ× {ε})∗ · ID(L) · (Σ× {ε})∗) (x, y) (12)

where L is a WRL mapping Σ∗ to R, such that the number of strings x with
L(x) 6= 0 is finite. In the case of N -gram counting, the domain of L needs to
be ΣN (in which case we write FN (x, y)). To gain some information about which
words occurred at the beginning or end of a sentence in the corpus, we augment
the alphabet Σ with two special symbols <s> and </s> marking the beginning
and the end of each sentence, respectively. For that purpose, we prefix our corpus
WRL with N − 1 <s>-symbols and append N − 1 </s>-symbols at its end (this
also simplifies the computation of the conditional probabilities, see Section 6). Fig.
2 shows an example for N = 3. Note that the delimiter symbols are treated in an
optimised manner.

Counting is performed by applying the counting WRT FN to the weighted
language K given by the corpus:

Definition 17 (N -gram counting). Given a WRL K : Σ∗ → R representing a
corpus, the N -gram counts CN : Σ∗ → R are obtained by:

CN = FN [K] .

a final state p (printed as a double circle) is stated after /. If the weight is omitted, it is assumed
to be 1.
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Figure 2: Transducer for counting trigrams over Σ = {a, b,<s>,</s>}.

We also call CN an N -gram count WRL. For details on the procedure and a
proof of its correctness we refer the reader to [2].

The trigram counts for the example corpus (Figure 1) are shown in Figure 3
(after optimising – that is removal of ε-transitions, determinisation, and minimi-
sation – the corresponding WFSA). Note that for the purpose of demonstrating
non-robust language models first (cf. Section 6) we have chosen a corpus over
Σ = {a, b,< s>,</s>} which contains each meaningful trigram in ΣN at least
once resulting in an almost complete WSA.6 Note that trigrams ending in <s> or
starting with </s> cannot exist.

To get the count C(w1 . . . wN ) associated with a specific N -gram w1 . . . wN we
compute Jw1 . . . wN KCN – the weight assigned to w1 . . . wN by CN according to
Definition 16. For example, Jab</s>K of Figure 3 is 1 · 28 · 0.5 · 0.5 · 1 = 7.

4.3 Implementation and Complexity

The structure and therefore the size of the WFST FN corresponding to FN depends
on the model parameter N and the size of the underlying alphabet. Its state
number |Q| equals N + 1 and the number of transitions |E| is |Σ|(N + 2). Its space
complexity is within O(N |Σ|), thus the size of FN may become problematic for
huge alphabets. As already suggested in [2], a solution to this problem are lazy
automata, the states and transitions of which are constructed on-demand. Such
automata are usually obtained from lazy versions of the finite-state algorithms.
For example, an algorithm for the lazy composition of WRTs is presented in [28].
The drawback of such approaches is that the basic operands have to be explicitly
represented.

Other approaches (among others, see [4]) try to construct automata virtually
right from the beginning. Regularities in their structure are used to define states

6A (W)FSA is called complete with respect to an alphabet Σ if each state has outgoing tran-
sitions for each symbol a ∈ Σ.
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Figure 3: Trigrams in the toy corpus after optimisation.

and transitions implicitly by some calculation specification.

The simple structure of FN makes it suitable for a virtual construction: The
set of states Q is simply

⋃N
q=0{q} with N being the only final state. The set of

transitions E has three different subsets: Ei, containing all transitions from the
initial state, Em, containing all transitions from non-initial and non-final states
and Ef containing all transitions to the final state. Transitions in Em for example
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lead from state q to state q+ 1 with each symbol a ∈ Σ while emitting this symbol.
The formal construction of FN can be found in Definition 35 in Appendix B.

Definition 35 enables a virtual construction. Implementations of access func-
tions to states and transitions work in O(1) time while consuming only a constant
amount of memory. We have implemented this special representation of FN within
the framework of [12].

Given a corpus WFSA K and an N -gram counter FN , counting is performed
most efficiently by the following sequence of automata operations:

CN = min(det(rm-ε(π2(K ◦ FN )))) . (13)

Since the number ofN -gram paths after composition is bounded by |K| and since the
result is acyclic, ε-removal, determinisation (which is essentially the construction
of a trie from the found N -grams), and minimisation (including weight-pushing)
can be performed in O(|K|) time [27, 25, 24, 13].7

5 Probabilisation

The next step in constructing an N -gram language model is to compute the con-
ditional probabilities of the events according to their frequency. This is done by
normalising their counts (this equation is also called maximum likelihood estima-
tion, see [16]):

Pr(wi|wi−1
i−N+1) =

C(wi−1
i−N+1 · wi)∑

a∈Σ

C(wi−1
i−N+1 · a)

. (14)

Thus, the frequency of an N -gram is divided by the sum of the frequencies of
all N -grams sharing the same (N − 1)-gram prefix.

5.1 Conditional Probabilities

In order to normalise the N -gram counts as stated in equation (14), the weights of
all N -grams sharing the same (N −1)-gram prefix have to be collected. Both parts
of the division need to have the same language projection to guarantee that no
N -grams are lost. The N -grams are therefore ‘reweighted’ by their corresponding
collected prefix weights. This reweighting is done by a suffix expansion performed
by a WRT EkN : ΣN ×ΣN → R which maps all N -gram suffixes of length k to each
other, what effectively assigns each weight to every symbol.

Definition 18 (Suffix expansion). Given a finite alphabet Σ and model parameters
N > 0 and k ≤ N , a WRT EkN : ΣN × ΣN → R is defined as

∀x, y ∈ ΣN , EkN (x, y) = (ID(ΣN−k) · (Σ× Σ)k) (x, y) .

7|A| = |QA|+ |EA|, that is, the size of a WFSA A is measured in terms of the size of its state
set and its number of transitions.
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The first N−k steps of this transduction are an identity mapping. The following
k steps create – to speak in terms of the underlying WFST – non-deterministic
paths: The crossproduct of Σ with Σ results in |Σ| transitions for every symbol
a ∈ Σ. The corresponding transducer for E1

3 is shown in Figure 4.8 By applying
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Figure 4: The unigram suffix expansion for trigrams E1
3 for Σ = {a, b,<s>,</s>}.

E1
N to the N -gram counts, the weights of all N -grams are expanded. The chosen
k = 1 cares for the summing over the unigram suffixes and the N -grams bear
the sum of the weight of the N -grams sharing the same (N − 1)-gram prefixes as
demanded by Equation (14). The extended weights are ⊗-negated and intersected
with the N -gram counts to perform the normalisation. Given the N -gram counts
CN as computed in Section 4, PcN (CN) : ΣN → R, w = wN1 7→ Pr(wN |wN−1

1 )
implements this series of rational operations.

Definition 19 (Conditional N -gram probabilisation). Given a WRL CN : ΣN →
R, wN1 7→ C(w), PcN (CN ) is defined as9

PcN (CN ) =
(
CN ∩ (E1

N [CN ])−1
)
.

An example of the application of Definition 19 is shown in Figure 5.
In Figure 5, the probability of seeing a b after having seen an ab – that is,

Pr(b|ab) = JabbK – is 0.4.

8Again, some transitions related to the delimiters were removed for reasons of clarity.
9Note that the joint N-gram probabilisation (which reflects the joint probability of each N -

gram), is computed by Pj
N (CN ) =

(
CN ∩ (EN

N [CN ])−1
)
. The language weight of such an proba-

bilisation, that is
⊕

x∈CN
Pj

N (CN )(x), equals 1.
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Figure 5: Conditional probabilised trigrams from the example corpus.

Lemma 1 (Correctness of conditional N -gram probabilisation). Definition 19 com-
putes the conditional probability of each N -gram as a special case of Equation (14)
(with i = N):

Pr(wN |wN−1
1 ) =

C(wN1 )∑
a∈Σ

C(wN−1
1 · a)

. (15)
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Proof. See Appendix A.

Note that an advantage of the automata/language theoretic approach is that
Definition 19 computes the conditional probabilities of all found N -grams simulta-
neously.

5.1.1 Implementation and Complexity

The most efficient implementation of Definition 19 in terms of WFSA operations
is the following:

CN ∩ neg⊗(min(det(π2(CN ◦ E1
N )))) . (16)

A problem could arise through the constant factor associated with the alphabet
size in Definition 18, since the number of transitions in a WFSA corresponding to
(Σ×Σ)k is |Σ|2k. So the approach may become unfeasible in case of the big alphabet
sizes commonly encountered in corpus linguistics. The composition operation ◦
maps every transition t in CN leading to a final state to |Σ| transitions in the
result. Since the operand of neg⊗ must be deterministic, all transitions resulting
from suffix expansion must be (additively) combined by determinisation.

To get rid of the constant introduced by the size of the alphabet, we define a
special symbol <?>, called the default symbol (see [5]). During intersection and
composition, <?> matches every unmatched symbol labeling a transition leaving a
state q. The definition of suffix expansion is then changed to the one in Definition
20:

Definition 20 (Revised suffix expansion). Given two finite alphabets Σ and ∆ and
model parameters N > 0 and k ≤ N , a WRT E

k,∆
N : ΣN × (ΣN−k · ∆k) → R is

defined as

∀x, y ∈ ΣN , E
k,∆
N (x, y) = (ID(ΣN−k) · (Σ×∆)k) (x, y) .

Note that EkN is a special case of Definition 20. The special suffix expansion
using <?> is then E

k,{<?>}
N .

To reflect the special semantics of <?>, the implementations of ∩ and ◦ are
changed to ∩<?> and ◦<?>, respectively. Equation (16) becomes

CN ∩<?> neg⊗(min(det(π2(CN ◦<?> E1
N )))) . (17)

The complexity of the suffix expansion, projection, determinisation and minimisa-
tion is then in O(|CN |). If we assume that CN is deterministic, the complexity of
the final intersection step is also in O(|CN |), since both operands contain exactly
the same N -grams (they have the same language projection), thus are isomorphic.

The possible types of symbols in a (W)FSA may be cross-classified according
to Table 2. Following Table 2, the default symbol <?> can be seen as a con-
ditionally interpreted input consuming symbol. We will need its non-consuming
counterpart, the failure transition symbol φ (see [1]) in Section 7 to create robust
back-off language models.
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+consuming –consuming
+conditional <?> φ
–conditional a ∈ Σ ε

Table 2: A cross-classification of symbols labeling transitions in an FSA

In parallel to the counting WRT, it is possible to define a calculation for Ek,∆N
which enables its virtual construction. The calculation is given in Definition 36 (see
Appendix B).

We move to the creation of non-robust language models.

6 Creating Non-Robust Language Models

The result of the counting and the normalisation procedure PcN is a weighted lan-
guage ΣN → R. It assigns the conditional probability Pr(wi|wi−1

i−N+1) to every
N -gram in the corpus. A maximum likelihood model is characterised by the fol-
lowing equation:

Pr(wm1 ) =
m∏
i=1

Pr(wi|wi−1
i−N+1) . (18)

It is a weighted language Σ∗ → R. Therefore, PcN has to be transformed to accept
sequences of any length. Simply taking its closure is not sufficient, since the result
would be a mapping from (ΣN )∗ → R: everyN -gram could be followed by any other
N -gram, every input symbol would have to be processed N times (as illustrated in
example 1) and only strings with a length equal to a multiple of N would be in its
domain.

Example 1 (Illustration of the necessary bigram overlapping).
Given input a b c

w1 w2 w3

Pr(w3
1) = Pr(a ) · Pr(b |a ) · Pr(c |b )

To process (overlap) a ab bc

To correctly reflect Equation (18), N -grams need to be overlapped in a way
such that every (N−1)-gram suffix is simultaneously treated as an (N−1)-gram
prefix. In order to achieve this, a specialisation of the concatenation operation
called overlapping or domino concatenation is introduced.

Definition 21 (Domino (Overlapping) Concatenation). The overlapping concate-
nation of two WRTs S : Σ∗ ×∆∗ → R and Q : Σ∗ ×∆∗ → R – denoted by S ·N Q

– is a mapping Σ∗ ×∆∗ → R defined by

∀x ∈ Σ∗,∀y ∈ ∆∗, (S ·N Q)(x, y) =
⊕

x=u·vN−1
1 ·w,y=st

S(u · vN−1
1 , s)⊗ Q(vN−1

1 · w, t) .

The ·N operator is rational, as long as N is a constant.
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6.1 N-Gram Models as WRLs

With the overlapping concatenation at hand, it is possible to use the closure of the
conditional probability distribution as the basis of the N -gram model. It is used to
filter non-overlapping sequences of N -grams. A transduction DN : (ΣN )∗×Σ∗ → R
is defined which uses ·N in this way. To avoid their multiple processing, DN deletes
overlapping prefixes by simply omitting them from its output.

Definition 22 (N -gram Concatenator). Given a finite alphabet Σ, the N -gram
concatenator is a WRT DN : (ΣN )∗ × Σ∗ → R, defined as

∀x, y ∈ Σ∗, DN (x, y) =
(

ΣN ∪
(

ΣN ·N
∞

·N©
i=0

( ⋃
wN1 ∈ΣN

{(wN1 , wN )}
)))

(x, y) .

Fig. 6 shows a trigram concatenator for Σ = {a, b}. Note that the N -gram con-
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Figure 6: Trigram concatenator for Σ = {a, b}. States are labeled with their
histories. The dashed transitions correspond to the overlaps.

catenator factors out the structure of an N -gram model (cf. [14], p.83) and makes
it available to the algebraic formalisation independently from the corpus under
consideration.

To handle the special cases for 1 ≤ M < N in Equation (18) uniformly, we
prefix our input sentence with N − 1 <s>-symbols marking the sentence begin.
Additionally, we postfix it with the same number of </s>-symbols marking its
end, in order to guarantee that our language model seen as a WFSA has a unique
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final state (which is reached after reading the last </s>-symbol). For the model’s
structure, this means that only those N -grams starting with (<s>)N−1 and those
ending in (</s>)N−1 may be accepted in the beginning and at the end, respec-
tively. To reflect this, we unfold the closure of the conditional probabilities PcN by
intersecting it with the WRL UN .

Definition 23 (Unfolding N -grams). Let Σ be an alphabet and N the model pa-
rameter. UN : Σ∗ → R is defined as:

∀x ∈ (ΣN )∗, UN (x) =
(
{<s>N−1} · Σ · (ΣN )∗ · Σ · {</s>N−1}

)
(x) .

Definition 24 applies the N-gram concatenator DN to the intersection of the
closure of the probabilised N -grams and the unfolding WRL.

Definition 24 (Non-robust language models). Let CN be an N -gram count WRL as
defined in Definition 17, such that CN (x) 6= 0, ∀x ∈ ΣN . The non-robust language
model MN (CN ) is a weighted rational transduction Σ∗ → P, x ∈ Σ+ 7→ Pr(x)

MN (CN ) = DN [(PcN (CN ))∗ ∩ UN ] .

Note that for the following theorem, we make the assumption that our input
corpora are complete, that is, they contain every possible N -gram w ∈ ΣN . We
will relax this condition in Section 7.

Theorem 1 (Adequacy of Definition 24). MN (CN )(w) correctly computes the de-
composed conditional probability of Equation (18) for each delimited input string
w.

Proof. The proof is a special case (the two cases 1a) of the proof of Theorem 2 (cf.
Appendix A).

There is a relation between automata representing N -gram models and de
Bruijn graphs [7]: A de Bruijn graph is a directed graph which represents the
overlaps of sequences of a certain length n given a finite alphabet Σ. Each length
n sequence of symbols in Σ is represented as a vertex in the graph. Let q denote
the vertex for a sequence wi+n−1

i , then q has a single edge for each symbol a ∈ Σ
connecting it to the vertex r representing wi+n−1

i+1 · a. Thus, the structure of de
Bruijn graphs is comparable to that of N -gram models over complete corpora.

6.2 Implementation and Complexity

Again, combining the WFSA for PcN and the WFST for DN is basically application
followed by optimisation:

MN = rm-ε
(
π2
(
((Pc

N )∗ ∩ UN ) ◦DN

))
. (19)

If (Pc
N )∗ ∩ UN is deterministic and since DN is input deterministic by definition,

their composition will be input deterministic too. After taking the 2nd projection,
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the ε-transitions resulting from the overlaps have to be removed. Although the
result is a cyclic WFSA, its (unconnected) ε-subgraph will be acyclic, in fact, we
will find a number of unconnected ε-chains of length N−1. These ε-transitions can
be removed in linear time with respect to the size of the result of the application
[23], which in turn is bounded by the size of Pc

N . Thus, the time complexity of
Equation (19) is in O(|Pc

N |).
Even though DN depends only on the (constant) alphabet Σ and the model

constant N , its space complexity is in O(ΣN−1), since DN has to keep track of
the different histories of length N − 1 to ensure correct overlaps. So, a naive
implementation runs into difficulties even with moderate alphabet sizes. But we
can do better if we exploit the regular structure of DN and replace actual states and
transitions by functions computing them on demand. The trigram concatenator of
Figure 6 is shown slightly modified in Figure 7. Labels of states have been replaced
by state numbers and two additional states are introduced to simplify the virtual
construction. In addition, we assume a bijective function idx : Σ → N mapping
each alphabet symbol to a unique index r, 0 ≤ r < |Σ|. The labels of the transitions
are replaced by their corresponding indices. Ignoring state 0, the first part of the
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Figure 7: Trigram concatenator for Σ = {a, b}. States are labeled with numbers.

automaton shown in Figure 7 can be seen as a binary tree with root 1, yield 4 . . . 7
and a consecutive labeling. The successor of a state q given an alphabet symbol a
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can be calculated by q ∗ |Σ|+ idx(a)− (|Σ| − 2) in the general case.

Example 2. Consider state 3 and symbol b with idx(b) = 1 in Figure 7. The
correct destination state of the transition is state 7. Thus,

7 = 3 ∗ 2 + 1− (2− 2).

The transitions within the tree part are denoted by Et.
Transitions from states greater or equal than the first state of the yield qy (state

4 in Figure 7) perform the overlap.

Definition 25 (Calculation of qy). Given a finite alphabet Σ and a model parameter
N , the state qy is calculated as follows:

qy =
|Σ|N−1 + (|Σ| − 2)

|Σ| − 1
.

qy is used to identify the states which do not allow branching. The transitions
leaving those states are divided into the overlap transitions Eo and the loop transi-
tions El. The computation of their destinations is simple, but one has to take care
of the fact that only one symbol may be processed.
The complete calculation specification which enables a virtual construction of DN

is given in Definition 37 in Appendix B. The virtual construction of UN is straight-
forward.
The next section focuses on robust language models.

7 Robust Language Models

Up to this point, the achieved models are only robust when based on corpora
containing all possible N -grams which is an unrealistic assumption. As described
in Section 2.2, smoothing methods have to be applied in order to solve this problem.
Back-off smoothing can be described as ‘relying on the highest order distribution
which is available’. The following figure illustrates this behavior on the automata
level (taken from [2]):

wi−2 wi−1

wi−1 wi

wi−1

wi

wi

wi

wi

ε
φ

φ

φ

Figure 8: A trigram back-off model represented as a schematic FSA.

As suggested in [2], in those cases where – given a specific history – no transition
for the next word wi is available, a failure transition (marked by φ) to the nearest
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shorter history is traversed and wi is processed if possible. If not, the history is
shortened again until the history-less state is reached. Language models as achieved
in Section 6 have to be extended to include such failure transitions to the lower
ordered distributions. Following Section 2.2, it is necessary to apply a discounting
algorithm in order to free probability mass for them.

For computing the probability of a (delimited) string wm1 in a back-off model,
we use the Markov probability decomposition as in Equation (18), but replace Pr
with the back-off probability P̂r:

Pr(wm1 ) =
m∏
i=1

P̂r(wi|wi−1
i−N+1) . (20)

7.1 Discounting

From the many existing discounting approaches, it is especially Witten-Bell dis-
counting which is suited for modifying N -gram counts in a finite-state algebraic
manner. The calculations for the discounted frequencies as well as for the freed
frequency mass were given above in equations (5) and (6).

As explained above, Witten-Bell discounting uses the number of observed types
following a history to estimate the probability of previously unseen events. Frequen-
cies are discounted in relation to this number. Given a representation of N -gram
counts, the number of types for each history can be computed with the help of the
language projection (Definition 12) and the suffix expansion operator EkN (Defini-
tion 18). The idea is to first map all N -gram counts to 1 and then sum over the
1-gram suffixes.

Definition 26 (Witten-Bell Type Number). Given a WRL L : ΣN → R, a WRL
TN : ΣN → R is defined as follows:

TN (L) = E1
N [πL(L)] .

TN directly corresponds to function T from Definition (1).

Lemma 2 (Correspondence of T and TN ). Given a WRL L : ΣN → R, ∀wN1 ∈
ΣN : TN (L)(wN1 ) = T(wN1 ).

Proof. See Appendix A.

Definition 27 defines the analogon to N of Definition 2.

Definition 27 (Witten-Bell Token Number). Given a WRL L : ΣN → R, a WRL
NN : ΣN → R is defined as follows:

NN (L) = E1
N [L] .

Lemma 3 (Correspondence of N and NN ). Given a WRL L : ΣN → R, ∀wN1 ∈
ΣN : NN (L)(wN1 ) = N(wN1 ).
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Proof. The proof is analogous to the proof of Lemma 2.

The nominator of Equation (5) (which is at the same time the first summand
of the denominator) has been used for obtaining conditional probabilities before
(Section 5). Thus, everything needed for Witten-Bell discounting is at hand: we
reconstruct Equation (5) using corresponding operations on WRLs. To reflect the
N -gram discounting process, we actually operate on CN .

Definition 28 (Witten-Bell Discounting). Given a WRL L : ΣN → R, we define
WD
N (L) : ΣN → R, w ∈ ΣN 7→ C̃(w) as

WD
N (L) = L ∩ (NN (L) ∩ (NN (L) ∪ TN (L))−1) ,

and WR
N (L) : ΣN → R, w ∈ ΣN 7→ C(w)− C̃(w) as

WR
N (L) = L ∩ (TN (L) ∩ (NN (L) ∪ TN (L))−1) .

The second part of Definition 28 computes the freed frequency mass by refor-
mulating Equation (6).

Again, we make use of the fact that the real semiring R is closed under mul-
tiplicative inverses to show that Definition 28 corresponds to the Witten-Bell dis-
counted frequencies (resp. the freed frequency mass).

Lemma 4 (Reconstruction of Witten-Bell Discounting). Given an N -gram count
WRL CN : ΣN → R, wN1 7→ C(wN1 ), WD

N (CN )(wN1 ) maps an N -gram to its Witten-
Bell discounted frequency C̃(wN1 ).

Proof. See Appendix A.

The following equivalence holds:

Lemma 5 (Witten-Bell Decomposition). Given an N -gram count WRL L : ΣN →
R, WD

N (L) ∪WR
N (L) = L.

Proof. See Appendix A.

An example of the discounting process is shown in Figure 9. Both parts of
the Witten-Bell decomposition are used for reconstructing the back-off strategy as
explained in the next section.

7.2 Back-off

The previously reserved frequency mass now has to be reallocated to the lower
ordered distributions which need to be discounted as well (except the unigram dis-
tribution terminating the recursion). All involved distributions are then combined
in a special representation to which the robust overlapping concatenation operator
is applied.

The first step is to transform the adjusted frequencies into conditional probabil-
ities. In principle, the procedure from Section 5 can be used with the difference that
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Figure 9: Witten-Bell decomposition for the bigrams of the corpus. The WFSA
on the left is the discounted WFSA. Both WFSAs are already probabilised after
Definition 29.

both have to be normalised in relation to the original counts instead of normalising
them in relation to themselves. PcN is therefore modified to use the discounted
frequencies (resp. the discounts, indicated by a second superscript) as the first
argument of the integrated intersection operation.

Definition 29 (Witten-Bell Discounted Probabilities). Let L denote an N -gram
count WRL ΣN → R, then P

c,D
N : ΣN → R is defined as

P
c,D
N (L) = WD

N (L) ∩ (NN (L))−1,

and P
c,R
N : ΣN → R is defined as

P
c,R
N (L) = WR

N (L) ∩ (NN (L))−1.

P
c,D
N and P

c,R
N denote the Witten-Bell discounted probabilities and the freed

probability mass of the N -grams when applied to CN, respectively. Note that the
union of P

c,D
N and P

c,R
N yields PcN .

Lemma 6 (Witten-Bell Discounted Probabilities). Given CN : ΣN → R, w =
wN1 ∈ ΣN 7→ C(w), P

c,D
N (CN )(w) and P

c,R
N (CN )(w) compute P̃r(wN |wN−1

1 ) and
P̆r(wN |wN−1

1 ), the Witten-Bell discounted probabilities and the freed probability
mass, respectively.
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Proof. Lemma 6 results from Lemma 1 and Lemma 4.

Lemma 7 (Union of P
c,D
N and P

c,R
N ). Let L denote an N -gram count WRL ΣN →

R:
P
c,D
N (L) ∪ P

c,R
N (L) = PcN (L) .

Proof. See Appendix A.

7.2.1 The Unified Distribution

To create a model which contains all N . . . 1-gram distributions, these have to be
combined in some way. The aim is to enable the application of an overlapping filter
- as in the non-back-off case - to the closure of the combination YN which therefore
must, according to Equation (7), meet some requirements:

1. The single distributions must be discriminated from each other, since exactly
one may account for a single event.

2. The single distributions must be ordered in a way that the back-off strategy
is reflected.

3. The discounting factors α() of Equation (7) are context-dependent. They
have to be assigned correctly.

The first point is realised by prefixing each M -gram distribution with N −M
α-symbols. Hence, their difference and hierarchy originates in the number of αs
preceding them. α is a special symbol which is not part of Σ. It has no special
semantics, is processed as any other symbol and will be deleted later. To comply
with the third point, an α is appended to every (M −1)-gram prefix (1 < M ≤ N).
This α will be identified with the back-off weight of the prefix it is attached to. We
define the unified distribution YN .

Definition 30 (Unified Distribution YN ). Given a WRL L : Σ∗ → R representing
a corpus, the combined representation of all 1 . . . N -gram distributions YN (L) :
ΣN → R is defined as:

YN (L) = αN−1 ·Pc1(F1[L])∪
N⋃

M=2

(
αN−M ·

(
P
c,D
M (FM [L])∪E

1,{α}
M [Pc,RM (FM [L])]

))
.

The base part of YN (L) is defined by the unigram distribution Pc1(F1[L]) which
is prefixed with N−1 α-symbols. Note that in the case of unigrams, conditional and
joint distributions are the same. The other part of the unified distribution contains
for every M (with 1 < M ≤ N) a sublanguage which is the union of two weighted
subsets: first the discounted M -gram probability distribution P

c,D
M (FM [L]) and

second the residual probability mass P
c,R
M (FM [L]). For the latter, the suffix expan-

sion WRT E
1,{α}
M ensures that it consists of words w1 . . . wM−1 ·α whose associated

weight corresponds to the α(wM−1
1 )-value in Equation (7) and which is computed
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Figure 10: Unified distribution containing all {1, 2, 3}-gram subdistributions.
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by the smoothing method. Note that the strings in YN (L) are by definition all of
length N .

Fig. 10 shows the unified distribution for the trigrams of the example corpus.

Lemma 8 (YN defines a conditional probability distribution over (Σ ∪ {α})N ).

Proof. All strings in YN are of length N and are either of the form αN−1Σ (unigram
case) or of the form αN−MΣM−1(α|Σ) (for 1 < M ≤ N) and originate from a
single subset in Definition 30 since all those subsets are mutually disjoint. In the
unigram case, for each symbol a ∈ Pc1(F1[L]), αN−1Pc1(F1[L]) is associated with the
conditional probability Pr(a|αN−1), since Pc1(F1[L]) is a probability distribution
by construction. By Lemma 7, the union of P

c,D
M and P

c,R
M gives a conditional

probability distribution over (Σ ∪ {α})M . Prefixing it with N −M αs results in a
conditional probability distribution over (Σ ∪ {α})N .

7.2.2 Back-off Navigation

Concerning the second point in the enumeration above, the possible sequences of
M -grams according to Equation (7) have to be taken into account.

Example 3. Consider the trigram case and the input abcde, c|ab has been pro-
cessed, thus d|bc is to be read next. If the trigram bcd and the bigram cd are not
available we back-off successively to d|c and to d. Now that d has been processed, e
comes next. Since we already know that cd does not exist, concatenating e|cd can
not be correct. The correct continuation is e|d, the second case in Equation (9).
This motivates why the wi-transition from the ε-state in Figure 8 first traverses a
bigram state before eventually going back to the trigram level.

Simply using the closure of YN as the input of the N -gram concatenator is thus
not correct. Instead, we define a WRT called back-off navigator which ensures that
incorrect sequences of M -grams are filtered from (YN )∗.

Definition 31 (Back-off Navigator). A WRL BN : ((Σ ∪ {α})N )∗ → R is defined
for a finite alphabet Σ and the model parameter N as follows:

BN = (ΣN )∗ ∪BN−1,N .

The back-off part BM,N (with 0 ≤ M < N) is recursively defined in the following
way:

BM,N =

{ε} if M = 0(
ΣM · {α · αN−M} ·BM−1,N · ΣM · {αN−M−1}

)∗
if M > 0 .

BM,N accounts for the impossibility of recognizing a symbol in the M + 1-
subdistribution of an N -gram model (0 < M < N). This failure – indicated
by α – may happen after having read M symbols. We then enter the nearest
subdistribution which we find in (YN )∗ after reading an α-prefix of length N −M .
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Here, we may successfully process the M -gram or recursively back-off to the lower
ordered distribution. In both cases – motivated by Example 3 and defined in
Equation (9) – we continue processing in the nearest superdistribution which we
find in (YN )∗ after reading a prefix of N −M − 1 αs. Note that the length of all
strings in BN is a multiple of N .

Fig. 11 shows the trigram navigator implementing the back-off strategy for
N = 3. Since we prefix the input to the model as well as the sentences of the
training corpus with N − 1 delimiter symbols, failure can only occur after reading
N − 1 symbols, because every suffix of an N -gram of length N − 1 also acts as a
prefix of an N -gram (this can be easily shown by induction). This motivates why
the back-off navigator in Figure 11 has α transitions only in state 2 (back-off from
trigrams to bigrams) and state 5 (back-off to the unigrams). The remaining α-
transitions serve to navigate to the nearest sub- (states 3, 6, 7) or superdistribution
(state 9).
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Figure 11: Back-off Navigator B3.

Lemma 9 (Backoff-αs). Let P
c,R
M (1 < M ≤ N) be as defined in Definition 29.

For each string wM1 ,
(
E

1,{α}
M [Pc,RM ]

)
(wM−1

1 α) is equal to α(wM−1
1 ) in Equation (7).

Proof. As defined in Equation (9), α(wM−1
1 ) is the residual probability mass com-

puted by the discounting method for history wM−1
1 . By Lemma 6, P

c,R
M con-

tains exactly that probability mass for all M -grams. By definition of application,(
E

1,{α}
M [Pc,RM ]

)
(wM−1

1 α) maps the sum of all conditional probabilities of all strings
wM−1

1 a for a ∈ Σ to wM−1
1 α.

7.2.3 Robust Overlapping Concatenation

The overlapping concatenation ·N is the basis for the operator DN which filters
sequences of non-overlapping N -grams from the closure of all N -grams (ΣN )∗. In
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parallel, a robust overlapping concatenation ·φN is defined which allows the short-
ening and extension of histories during overlapping.

Definition 32 (Robust Overlapping Concatenation). The robust overlapping con-
catenation S ·αN Q of two weighted transductions S and Q is a mapping (Σ∪{α})∗×
(∆ ∪ {α})∗ → R defined by

∀x ∈ Σ∗,∀y ∈ ∆∗, (S ·αN Q)(x, y) = S(x, y) ·N Q(x, y) ∪⊕
x=u·vN−2

1 ·α·w,y=st

N−1⋃
i=1

S
(
u · vN−2

1 · α, s
)
⊗ Q(αi · vN−2

i · w, t) .

·αN successively increases the number of αs to be processed while shortening the
N -gram history vN−2

1 .

Example 4. In the trigram case, Definition 32 boils down to the following cases
for input abc(d):10

a · bc ·N bc · d Normal, non-failure case
a · bα ·αN αb · c Processing in the 2-grams by shortening the history to b
α · bα ·αN αα · c Processing in the 1-grams by shortening the history to ε
α · αc ·N αc · d 1-grams → 2-grams

Cases 2 and 3 in Example 4 are distinguished from the others by the failure-
indicating α at the last position of the first trigram. Note that the last case is
handled by the standard overlapping mechanism if α is treated as a normal symbol
in Σ.

Now, everything is prepared to define the WRT which repeatedly applies ·αN to
an input string. The αs which trigger the shortening of the histories in Definition
32 are introduced by occurrences of failure symbols φ in the input string.

Definition 33 (Robust N -gram Concatenator D
φ
N ). Let Dα

N be as in Definition
22 with (Σ∪{α}) in place of Σ and ·αN instead of ·N . D

φ
N is a mapping (Σ∪{α})∗×

(Σ ∪ {φ})∗ → R defined by

D
φ
N = Dα

N ◦ (ID(Σ \ {α}) ∪ ({α} × {φ}))∗ .

Note that Dα
N outputs – as before – only the last symbol of each N -gram,

which may be α in the failure case (cf. Definition 22). D
φ
N then simply replaces

this occurrence of α by φ. Observe furthermore that Definition 33 is over-general,
since it admits more αs than necessary. This over-generality is harmless since the
sequences of αs and Σs are further constrained by the back-off navigator BN (see
Definition 34).

Fig. 12 shows the robust version of the trigram concatenator of Figure 6. Dashed
transitions correspond to backing-off to the lower bigram and unigram distributions.
Note that the actual implementation of D

φ
N (see Figure 12) uses a weaker equiv-

10These cases are also the base of the proof of Theorem 2 (cf. Section 7.3).
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Figure 12: Robust trigram concatenator for Σ = {a, b}. The dashed transitions
account for the back-off cases.

alence relation with respect to the states’ right relation.11 The implementation
merges some non-equivalent states to allow for a compact representation of D

φ
N

which only differs minimally from the non-robust counterpart (following the back-
off scheme, we would have to split for example state 10 in Figure 12 into two states
to distinguish between the two possible continuations after having failed with the
last input symbol b or successfully processed it. The concatenator in Figure 12 thus
accepts for example the sequence bbbααb which is not admissible after the back-off
scheme in Figure 11). Again, this coarsening is harmless because of the filter BN .

7.3 Putting It All Together

The back-off language model is obtained by applying BN , UαN and D
φ
N to the unified

distribution.

Definition 34 (Robust language model). Let L be a weighted language over Σ∗.
Let UαN be the N -gram unfolder of Definition 23 where (Σ ∪ {α}) is used in place
of Σ. The robust language model M

φ
N (L) is a WRT Σ∗ → P, w ∈ Σ∗ 7→ P̂r(w):

M
φ
N (L) = D

φ
N

[
YN (L)∗ ∩ UαN ∩BN

]
.

11The right relation of a state q in a WFST T (right language in the case of WFSAs) is the
WRT accepted by T when q is taken as the start state. Two states are equivalent (and can thus
be merged during minimisation), if they have the same right relation.
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We assume a mechanism which introduces the special failure symbol φ at the
“right” places in w. Since the interpretation of φ is procedural in nature, we
delegate this task to a special WFSA intersection algorithm. Note that the length
of φ is 0.
From a procedural viewpoint, Definition 34 works in the following way:

• Each symbol in the input – a “normal” symbol a ∈ Σ or φ – triggers a full
cycle through YN . Symbols a ∈ Σ are mapped to themselves while φ is
mapped to the appropriate α()-value of the back-off Equation (7).

• An occurrence of φ is found in the input w (actually, the places where φ can
occur are constrained by YN ).

• φ is mapped to α in the upper part of the relation by Definition 33.

• This α triggers other αs to be inserted into the relation’s upper part by
Definition 32.

• These additional αs determine the correct subdistribution in Y∗N including
the determination of the correct α()-values of Equation (7).

• In addition, these αs are subject to the filtering of the back-off navigator
BN which also handles the navigation to the correct superdistribution after
having read a number of φs.

Since complete trigram models tend to be large and our focus lies on the demonstra-
tion of the back-off mechanism, we depart from our previous example. Fig. 13 shows
a back-off model following Definition 34 on the basis of the corpus a|baaaa|baaaa.
For a better understanding of this example, the states are labeled with their histo-
ries. Also, the two states corresponding to the initial <s>-prefix have been deleted.

Theorem 2 (Robust language model M
φ
N ). Given M

φ
N (L)(w) as defined in Defi-

nition 34, M
φ
N (L)(w) computes the correct probability for a delimited input string

w after equations (20), (7) and (9).

Proof. See Appendix A.

7.4 Implementation and Complexity

The observations of Section 6.2 carry over to the back-off case. Of course, the
intersection of UαN and BN in Definition 34 can be done by a virtual intersection
algorithm. Due to their sizes, all three WRTs should be virtually constructed as
well.

The application of the language model M
φ
N to a (delimited) input string w is as

usual the intersection of the trivially weighted WFSA for w with Mφ
N , the WFSA

corresponding to M
φ
N . Since Mφ

N contains transitions labeled with the special
failure symbol φ, the normal intersection algorithm must be augmented with a
mechanism which treats φ as a conditional ε-transition.
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Figure 13: A back-off trigram model for the corpus (a|baaaa|baaaa).

8 Conclusion and Further Work

In the previous sections, we have tried to show – to our knowledge for the first time –
that the construction of language models can be defined on the formal language level
alone without resorting to algorithms which manipulate the underlying WFSAs on
a state level. We therefore make use of certain semiring properties, as for example
divisibility, to model arithmetic statements like discounting procedures within the
algebra of WRLs – an approach which may be applied to many other problems in
the field of language processing.

Our formalisation is modular and can be seen as generator – Y∗N – and a sequence
of filters:

• The unified distribution YN accounts for the probabilities and combines dis-
counted and residual probabilities for various values of M without caring
about the back-off structure and specific N -gram histories.

• The N -gram unfolder ensures the macro structure of the model (cf. [14],
p.83) with the delimiters at the beginning and end of each sentence.

• The back-off navigator reproduces the back-off strategy at a very general
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level, again without distinguishing specific N -gram histories or calculating
probabilities.

• Finally, the robust overlapping concatenation mechanism provides a correct
handling of N -gram histories of various length by filtering out illegal ones.

We gave hints for efficient implementations of the five auxiliary WRTs which depend
only on Σ and N . All steps are already implemented in the framework of [12].12

As previously pointed out, our work is primarily a theoretical one. The huge
intermediate automata may prevent its practical application for corpora of the sizes
currently used in NLP. Future work will therefore have to concentrate on mecha-
nisms which allow the creation of individual language models for small parts of the
underlying corpus and their subsequent combination. In addition, we currently in-
vestigate parallel versions of the automata algorithms which exploit multi-processor
technology now available.

Another task is the reformulation of state-of-the-art discounting and smoothing
methods and the clarification of the relationship between back-off and the other
important strategy – interpolation – on a language-theoretic level.
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A Proofs

Lemma 1 (Correctness of conditional N -gram probabilisation). Definition 19 com-
putes the conditional probability of each N -gram as a special case of Equation (14)
(with i = N):

Pr(wN |wN−1
1 ) =

C(wN1 )∑
a∈Σ

C(wN−1
1 · a)

. (21)

Proof.

E1
N [CN ](wN1 )

=
⊕
x∈Σ∗

(
CN (x)⊗ E1

N (x,wN1 )
)

def. of application

=
⊕
x∈Σ∗

(
CN (x)⊗ (ID(ΣN−1) · (Σ× Σ))(x,wN1 )

)
def. of E1

N

=
⊕
a∈Σ

(
CN (wN−1

1 · a)⊗ ΣN−1(wN−1
1 )⊗ (Σ× Σ)(a,wN )

)
def. ID, ·

=
⊕
a∈Σ

(
CN (wN−1

1 · a)

⊗ {(wN−1
1 )}(wN−1

1 )⊗ Σ(a)⊗ Σ(wN )
)

def. of ∪ and ×

=
⊕
a∈Σ

(
CN (wN−1

1 · a)

⊗ {(wN−1
1 )}(wN−1

1 )⊗ {a}(a)⊗ {wN}(wN )
)

def. of ∪

=
⊕
a∈Σ

(
CN (wN−1

1 · a)⊗ 1
)

def. of singleton

=
⊕
a∈Σ

CN (wN−1
1 · a) neutral element

Since both operands of the intersection in Definition 19 have the same language
projection, ⊗-negation replaces each weight of an N -gram by its multiplicative
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inverse, and intersection ⊗-multiplies weights, Definition 19 mimics Equation (15).

Lemma 2 (Correspondence of T and TN ). Given a WRL L : ΣN → R, ∀wN1 ∈
ΣN : TN (L)(wN1 ) = T(wN1 )

Proof.

TN (L)(wN1 )

=E1
N [πL(L)](wN1 ) def. 26

=
⊕
x∈Σ∗

(
πL(L)(x)⊗ E1

N (x,wN1 )
)

def. of application

=
⊕
x∈Σ∗

(
πL(L)(x)⊗ (ID(ΣN−1) · (Σ× Σ))(x,wN1 )

)
def. of E1

N

=
⊕
a∈Σ

(
πL(L)(wN−1

1 · a)⊗ ΣN−1(wN−1
1 )⊗ (Σ× Σ)(a,wN )

)
def. ID, ·

=
⊕
a∈Σ

(
πL(L)(wN−1

1 · a)

⊗ {(wN−1
1 )}(wN−1

1 )⊗ Σ(a)⊗ Σ(wN )
)

def. of ∪ and ×

=
⊕
a∈Σ

(
πL(L)(wN−1

1 · a)

⊗ {(wN−1
1 )}(wN−1

1 )⊗ {a}(a)⊗ {wN}(wN )
)

def. of ∪

=
⊕
a∈Σ

(
πL(L)(wN−1

1 · a)
)

def. singleton, 1

=
⊕
a∈Σ

{
1 if L(wN−1

1 · a) 6= 0
0 otherwise .

def. πL

Lemma 4 (Reconstruction of Witten-Bell Discounting). Given a WRL CN : ΣN →
R, wN1 7→ C(wN1 ), WD

N (CN )(wN1 ) maps an N -gram to its Witten-Bell discounted
frequency C̃(wN1 ).

Proof.

WD
N (CN )(wN1 )

=
(
CN ∩

(
NN (CN ) ∩

(
NN (CN ) ∪ T(CN ))−1

))
(wN1 ) def. 28

=CN (wN1 )⊗
(
NN (CN )(wN1 )⊗

(
NN (CN )(wN1 )⊕ T(CN )(wN1 )

)−1) def. of ∪ and ∩

= C(wN1 )⊗
(
N(wN1 )⊗

(
N(wN1 )⊕ T(wN1 )

)−1) def. of C, N, T

Since a−1 is 1
a in the probability semiring, the last line is equal to Equation (5).

The proof for WR
N is constructed in the same manner.
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Lemma 5 (Witten-Bell Decomposition). Given a WRL L : ΣN → R, WD
N (L) ∪

WR
N (L) = L.

Proof.

WD
N (L) ∪WR

N (L)

=
(
L ∩ (NN (L) ∩ (NN (L) ∪ TN (L))−1)

)
∪(

L ∩ (TN (L) ∩ (NN (L) ∪ TN (L))−1)
)

def. of WD
N , WR

N

=
(
(L ∩NN (L)) ∩ (NN (L) ∪ TN (L))−1

)
∪(

(L ∩ TN (L)) ∩ (NN (L) ∪ TN (L))−1
)

assoc. of ∩

=((L ∩NN (L)) ∪ (L ∩ TN (L))) ∩ (NN (L) ∪ TN (L))−1 ∩ � ∪

=L ∩
(
(NN (L) ∪ TN (L)) ∩ (NN (L) ∪ TN (L))−1

)
∩ � ∪

=
⊕
x∈L

(
L(x) ⊗

(
(NN (L)(x)⊕ TN (L)(x))⊗ (NN (L)(x)⊕ TN (L)(x))−1

))
def. of L, ∪, ∩

=
⊕
x∈L

(
L(x)⊗ 1

)
def. of −1

=L def. of L, 1

Lemma 7 (Union of P
c,D
N and P

c,R
N ). Let L denote a WRL ΣN → R:

P
c,D
N (L) ∪ P

c,R
N (L) = PcN (L) .

Proof.

P
c,D
N (L) ∪ P

c,R
N (L)

= (WD
N (L) ∩ (NN (L))−1) ∪ (WR

N (L) ∩ (NN (L))−1) by def. 29

= (WD
N (L) ∪WR

N (L)) ∩ (NN (L))−1 by ∩ � ∪

= L ∩ (NN (L))−1 by lem. 5

= L ∩ (E1
N [L])−1 by def. 27

= PcN (L) by def. 19

Theorem 2 (Robust language model M
φ
N ). Given M

φ
N (L)(w) as defined in Defi-

nition 34, M
φ
N (L)(w) computes the correct probability for a delimited input string

w after equations (20), (7) and (9).
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Proof. Introductory remarks:

• For reasons of simplicity, we restrict the proof to the case of N = 3. Proofs
for other values for N are analogous.

• Observe that the length of all strings in YN (L)∗, UαN , BN and π1(Dφ
N ) is a

multiple of N . The back-off navigator BN places the most specific constraints
on the form of the strings to which D

φ
N is applied. Thus, in the trigram case,

the shortest strings in Y3(L)∗ ∩B3 (besides ε, which is ruled out by UαN ) are
of one of the following forms: Σ3 or Σ2α · αΣ2 or Σ2α · αΣα · α2Σ · αΣ2 .

• Note that the length of φ is 0.

• For the reader’s better understanding, we spell out the three different cases
of Equation (7) for N = 3:

P̂r(wi|wi−1
i−2) =


P̃r(wi|wi−1

i−2) if C(wii−2) > 0
α(wi−1

i−2) · P̃r(wi|wi−1) if C(wii−2) = 0 & C(wii−1) > 0
α(wi−1

i−2) · α(wi−1) · Pr(wi) otherwise .

(22)
Remember that the values of the αs in Equation (22) may be 1 in case the
history is not present (cf. Equation (9)).

Since Uα3 introduces the sentence delimiters, the proof is by induction on the length
of the string w =<s>2w′</s>2.

Induction hypothesis:
Let wk1 =<s>2 w′ </s>2 an input string of length k ≥ 4 (= 2(N − 1)):

D
φ
3

[
Y3(L)∗ ∩ Uα3 ∩B3

]
(wk1 ) =

k∏
i=3=N

P̂r(wi|wi−1
i−2) . (23)

Induction base : |w| = 0.
Case 1a: w = ε (this means that the trigram <s>2</s> is in Y3(L))

D
φ
3

[
(Y3)∗

]
(<s>2</s>2)

=
⊕
x∈Σ∗

(
(Y∗3)(x) ⊗ D

φ
3 (x,<s>2</s>2)

)
def. of appl.

=(Y∗3)(<s>2</s> · <s></s>2)

⊗
(
Σ3(<s>2</s>)

⊗ {(<s></s>2, </s>)}(<s></s>2, </s>)
)

def. of D
φ
3

=(Y∗3)(<s>2</s> · <s></s>2) ID, singleton, 1

=(Y3)(<s>2</s>)⊗ (Y3)(<s></s>2) closure

=(Pc,D3 )(<s>2</s>)⊗ (Pc,D3 )(<s></s>2) def. of Y3
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=P̃r(</s> |<s>2)⊗ P̃r(</s> |<s></s>) lem. 6

=P̂r(</s> |<s>2)⊗ P̂r(</s> |<s></s>) eqs. (20), (22, case 1)

Case 1b: w = φφ (this means that the trigram <s>2</s> is not in Y3(L), which
in turn entails that the trigram α <s></s> will also not be present in Y3(L)).
D
φ
3 will decompose <s>2φφ</s>2 into

(<s>2α,<s>2φ) · (α<s>α, φ) · (α2</s>,</s>) · (α</s>2, </s>)

whose first projection is also in Uα3 ∩B3.

Y∗3(<s>2α · α<s>α · α2</s> · α</s>2)

=Y3(<s>2α)⊗ Y3(α<s>α)⊗ Y3(α2</s>)⊗ Y3(α</s>2) closure

=P
c,R
3 (<s>2α)⊗ P

c,R
2 (<s>α)⊗ Pc1(</s>)⊗ P

c,D
2 (</s>2) def. 30

=
(
α(<s>2)⊗ α(<s>)⊗ Pr(</s>)

)
⊗ P̃r(</s>|</s>) lem. 9, lem. 6

=P̂r(</s>|<s>2) ⊗ P̃r(</s>|</s>) eq. (22, case 3)

=P̂r(</s>|<s>2) ⊗
(
1⊗ P̃r(</s>|</s>)

)
neutr. element of ⊗

=P̂r(</s>|<s>2)⊗ P̂r(</s>|<s></s>) eqs. (9), (22, case 2)

Induction step: Assume, the induction hypothesis holds for strings wi1 =<s>2

w′ </s>2 with 4 (=2(N−1)) ≤ i ≤ k. We show that it also holds for k + 1.
For the proof, there are two possible cases concerning the history wkk−1 of wk+1:13

1. wk1 = w′′wkk−1 or wk1 = w′′wk−1 φ wk: the history wkk−1 is present. Here
we have three subcases, depending on in which distribution we successfully
process wk+1:

a) wk+1
1 = wk1wk+1: trigrams

b) wk+1
1 = wk1φwk+1: bigrams

c) wk+1
1 = wk1φφwk+1: unigrams

2. wk1 = w′′wk−1 φφ wk: the history wkk−1 is not present, since wk was processed
(after reading two occurrences of φ) in the unigram distribution. Here we have
two subcases to consider, which can only occur after case 1c) above or 2b)
below:

a) wk+1
1 = wk−1

1 φφ wkwk+1: bigrams (superdistribution)

b) wk+1
1 = wk−1

1 φφ wk φ wk+1: unigrams

In the following, we give proofs for the 5 subcases mentioned above.
13Remark : With respect to the back-off navigator in Figure 11, this distinction is reflected in

the particular state the navigator is after having processed wk: In the first case, this state is 0,
while it is 9 in the second. In the general case of an N -gram navigator, there will be N − 1 such
states, and in turn N − 1 main cases to consider.
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1. a) D
φ
3 maps wk+1 to wk+1

k−1, which is also in B3.

Y3(wk+1
k−1)

=P
c,D
3 (wk+1

k−1) def. 30

=P̃r(wk+1|wkk−1) lem. 6

=P̂r(wk+1|wkk−1) eq. (22, case 1)

b) D
φ
3 maps φwk+1 to wkk−1α · αw

k+1
k , which is also in B3.

Y∗3(wkk−1α · αwk+1
k )

=Y3(wkk−1α)⊗ Y3(αwk+1
k ) def. of closure

=P
c,R
3 (wkk−1α)⊗ P

c,D
2 (wk+1

k ) def. 30

=α(wkk−1)⊗ P̃r(wk+1|wk) lem. 9, lem. 6

=P̂r(wk+1|wkk−1) eq. (22, case 2)

c) D
φ
3 maps φφwk+1 to wkk−1α ·αwkα ·α2wk+1. This string is not in B3, but

is a prefix of one of its strings, namely wkk−1α · αwkα · α2wk+1 · αwk+1
k .

The “missing” suffix αwk+1
k will be covered in case 2a) or 2b), which are

the only possible cases following 1c).

Y∗3(wkk−1α · αwkα · α2wk+1)

=Y3(wkk−1α)⊗ Y3(αwkα)⊗ Y3(α2wk+1) def. of closure

=P
c,R
3 (wkk−1α)⊗ P

c,R
2 (wkα)⊗ Pc1(wk+1) def. 30

=α(wkk−1)⊗ α(wk)⊗ Pr(wk+1) lem. 9, lem. 6

=P̂r(wk+1|wkk−1) eq. (22, case 3)

2. The following subcases cover the “missing” suffix of case 1c) above.

a) D
φ
3 maps wk+1 to αwk+1

k .

Y∗3(αwk+1
k )

=Y3(αwk+1
k ) def. of closure

=P
c,D
2 (wk+1

k ) def. 30

=P̃r(wk+1|wk) lem. 6

=1⊗ P̃r(wk+1|wk) eq. (9, case 2)

=P̂r(wk+1|wkk−1) eq. (22, case 2)

b) D
φ
3 maps φwk+1 to αwkα · α2wk+1.

Y∗3(αwkα · α2wk+1)
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=Y3(αwkα)⊗ Y3(α2wk+1) def. of closure

=P
c,R
2 (wkα)⊗ Pc1(wk+1) def. 30

=α(wk)⊗ Pr(wk+1) lem. 9, lem. 6

=1⊗ α(wk)⊗ Pr(wk+1) eq. (9, case 2)

=P̂r(wk+1|wkk−1) eq. (22, case 3)

Combining this with the induction hypothesis, we get

D
φ
3

[
Y3(L)∗ ∩ Uα3 ∩B3

]
(wk+1

1 ) =
k+1∏
i=N

P̂r(wi|wi−1
i−2) . (24)

Note that the N−1 sentence delimiters </s> ensure that the N -grams α </s>N−1

or a </s>N−1 for some a ∈ Σ are always present in YN such that the last step
of the computation of the decomposed back-off probability of an delimited input
sentence will always be case 1a) or case 2a).

B Constructions

Definition 35 (Construction of FN ). The weighted finite state transducer FN wrt
a semiring R is an 8-tuple 〈Q,Σ,Σ ∪ {ε}, 0, F, Ei ∪ Em ∪ Ef , 1, ρ〉 where

Q =
N⋃
i=0

{i}

F = {N}

Ei =
⋃
a∈Σ

{(0, 0, a, ε, 1)} ∪
⋃
a∈Σ

{(0, 1, a, a, 1)}

Em =
N−1⋃
i=1

⋃
a∈Σ

{(i, i+ 1, a, a, 1)}

Ef =
⋃
a∈Σ

{(N,N, a, ε, 1)}

∀q ∈ F, ρ(q) = 1

Definition 36 (Construction of EkN ). The weighted finite state transducer EkN wrt
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a semiring R is an 8-tuple 〈Q,Σ,Σ, 0, F, Em ∪ Ek, 1, ρ〉 where

Q =
N⋃
i=0

{i}

F = {N}

Em =
N−k−1⋃
i=0

⋃
a∈Σ

{(i, i+ 1, a, a, 1)}

Ek =
N−1⋃
i=N−k

⋃
a∈Σ

⋃
b∈Σ

{(i, i+ 1, a, b, 1)}

∀q ∈ F, ρ(q) = 1

Definition 37 (Construction of DN ). The weighted finite state transducer DN wrt
a semiring R is an 8-tuple 〈Q,Σ,Σ, 0, F, E0 ∪ Et ∪ Eo ∪ El, 1, ρ〉 where (using qy
from Definition 25):14

Q =
qy+|Σ|N−1∗(N−1)−1⋃

i=0

{i}

F =
qy+|Σ|N−1−1⋃

i=qy

{i}

E0 =
⋃
a∈Σ

{(0, 1, a)}

Et =
qy−1⋃
i=1

⋃
a∈Σ

{(
i,
(
i ∗ |Σ|+ idx(a)

)
−
(
|Σ| − 2

)
, a, a, 1

)}

Eo =
qy+|Σ|N−1∗(N−2)−1⋃

i=qy

{
(i, i+ |Σ|N−1, a, ε, 1)

∣∣idx(a) =

 i− qy

|Σ|N−2−
⌊

i−qy
|Σ|N−1

⌋
 mod |Σ|

}

El =
qy+|Σ|N−1∗(N−1)−1⋃
i=qy+|Σ|N−1∗(N−2)

{(i, idx(a) + 2, a, ε, 1)
∣∣idx(a) = (i− qy) mod |Σ|}

ρ(q) = 1,∀q ∈ F.

Received 15th August 2008
14bxc denotes the floor value of a number. E.g. b2.34c = 2.


