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Recognizable Tree Series with Discounting
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Abstract

We consider weighted tree automata with discounting over commutative

semirings. For their behaviors we establish a Kleene theorem and an MSO-

logic characterization. We introduce also weighted Muller tree automata with

discounting over the max-plus and the min-plus semirings, and we show their

expressive equivalence with two fragments of weighted MSO-sentences.
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1 Introduction

Weighted tree automata over finite trees have been considered by many researchers
(cf. [22] for an extended literature) and have contributed in important areas of
Computer Science like code selection [3, 20] and monadic second-order evaluations
on graphs [33]. Weighted tree automata models are obtained by classical tree
automata, top-down or bottom-up, whose transitions are equipped with weights
mainly from a semiring. The weights might model resources used for the execution
of transitions, the time needed or reliability. For an excellent survey on weighted
tree automata we refer the reader to [22] (cf. also [2]).

If we require that weighted tree automata can work also on infinite trees, then
clearly the underlying semiring should admit infinite sums and products satisfying
special axioms (cf. [32]). Discounting is a common strategy to face problems arising
on systems with non-terminating behavior, in particular in economic mathematics,
in Markov decision processes, and in game theory (cf. [9, 21, 34]). This method
was incorporated for weighted automata over infinite words by Droste and Kuske
in [14]. More precisely, the authors considered weighted automata over the max-
plus and min-plus semirings, acting on infinite words, and employed a discounting
parameter which permitted the summation of infinitely many values. In this way,
they achieved a Kleene theorem for the infinitary series obtained as the behav-
iors of their automata. They also considered weighted automata with discounting
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over finite words, and they showed a Kleene-Schützenberger theorem for the se-
ries accepted by these automata. In [5, 6] further properties of weighted automata
with discounting over infinite words were investigated. A weighted MSO-logic with
discounting has been introduced in [16] and a Büchi-type characterization of infini-
tary recognizable series with discounting has been established. Kuich [27] proved
Kleene theorems for weighted automata with discounting acting on finite and in-
finite words over Conway semirings. Recently, in [17] the authors investigated
weighted automata with discounting over semirings and finitely generated graded
monoids.

In this paper, we introduce weighted tree automata with discounting, acting on
finite trees, and our first goal is a Kleene theorem for their behaviors. Furthermore,
we consider a weighted MSO-logic on trees with discounting, and in our second
main result we show the expressive equivalence of weighted tree automata with
discounting with two fragments of this logic. One of these fragments has a purely
syntactic definition provided that the underlying semiring is additively locally finite.
Our MSO-logic is a slight modification of the MSO-logic in [18] and goes back to
the pioneering work of Droste and Gastin [11] (cf. also [13]) in which weighted
logics over semirings were considered for the first time. Very recently, in [19] (cf.
also [22]) the authors achieved a purely syntactic description in terms of MSO-logic
for weighted tree automata over arbitrary semirings. The discounting method for
stochastic tree automata has been also considered in [30, 31].

Infinite trees play a crucial role in practical applications, namely in program
optimization [23], and in proving termination of non-deterministic or concurrent
programs under any reasonable notion of fairness [25]. Furthermore, tree automata
over infinite trees contribute to program synthesis in model checking [38]. All
these applications are based on the fundamental fact that every program can be
described by an infinite tree (cf. [8, 23, 39]). Weighted Muller tree automata were
investigated in [32] but for the underlying semirings special completeness axioms
were required. Currently, several tools for model checking are built in a weighted
setting, in particular over De Morgan algebras (cf. [4, 7, 24]). Therefore, taking
into account the contribution of tree automata to program synthesis [38], we wish
to study the extension of these models in a weighted setting for semirings, like max-
plus and min-plus, which are already used in practical applications. For this we
introduce weighted Muller tree automata with discounting, over the max-plus and
the min-plus semirings, and in our third main result we state their characterization
in terms of weighted (purely syntactically defined) MSO-logic.

The proofs of our results are similar to the corresponding ones in [15, 18, 32].
Nevertheless, they are more technical because of the involvement of discounting
parameters. We present only a few of them which are representative for the dis-
counting techniques. The reader can find detailed proofs in [28]. In the paper, we
notify the corresponding results from [15, 18, 32] by e.g. (cf. [15], Lm 4.8).
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2 Preliminaries

2.1 Trees

We denote by N the set of natural numbers and let N+ = N\{0}. The prefix relation
≤ over N

∗ is a partial order defined in the usual way: for every w, v ∈ N
∗, w ≤ v iff

there exists u ∈ N
∗ such that wu = v. A set A ⊆ N

∗ is called prefix-closed if v ∈ A
implies w ∈ A for every w ≤ v.

A ranked alphabet Σ is a pair (Σ, rkΣ) (simply denoted by Σ) where Σ is a finite
set and rkΣ : Σ → N. As usual, we set Σk = {σ ∈ Σ | rkΣ(σ) = k} for every k ≥ 0,
and deg(Σ) = max{k ∈ N | Σk 6= ∅}.

A tree t over Σ is a partial mapping t : N
∗
+ → Σ such that the domain dom(t)

of t is a non-empty prefix-closed set, and for every w ∈ dom(t) if t(w) ∈ Σk k ≥ 0,
then for i ∈ N+, wi ∈ dom(t) iff 1 ≤ i ≤ k. The elements of dom(t) are called the
nodes of t. For every σ ∈ Σ we set domσ(t) = {w ∈ dom(t) | t(w) = σ} and, for
every A ⊆ Σ we let domA(t) = {w ∈ dom(t) | t(w) ∈ A}. A tree t is called finite
(resp. infinite) if its domain is finite (resp. infinite). As usual, we shall denote by
TΣ (resp. Tω

Σ ) the set of all finite (resp. infinite) trees over Σ. Clearly, TΣ = ∅ iff
Σ0 = ∅.

The set TΣ can also be inductively defined as the smallest set T such that (i)
Σ0 ⊆ T and (ii) if k ≥ 1, σ ∈ Σk, and t1, . . . , tk ∈ T , then σ(t1, . . . , tk) ∈ T. For
every finite set A with A ∩ Σ = ∅, we shall write TΣ(A) for the set of finite trees
over the ranked alphabet Σ′, where Σ′

0 = Σ0 ∪A and Σ′
k = Σk for every k > 0. The

height ht(t) of every finite tree t ∈ TΣ is defined by ht(t) = max{|w| | w ∈ dom(t)}
where |w| denotes the length of the word w. Let a ∈ Σ0 and t ∈ TΣ with doma(t) =
{w1, . . . , wm} such that w1 ≤lex . . . ≤lex wm where ≤lex, is the lexicographic order
over N

∗. Then, for t1, . . . , tm ∈ TΣ we write t ·a (t1, . . . , tm) for the tree obtained
by substituting ti for a at wi (1 ≤ i ≤ n) in t.

In the rest of the paper, Σ and Γ will denote an arbitrary ranked alpha-
bet, if not specified otherwise. Moreover, we assume that Σ0 6= ∅ and
Γ0 6= ∅.

A relabeling from Σ to Γ is a surjective mapping h : Σ → Γ such that h(σ) ∈ Γk

for every σ ∈ Σk, k ≥ 0. Then h is extended to a mapping h : TΣ → TΓ by letting
dom(h(t)) = dom(t) and h(t)(w) = h(t(w)) for every t ∈ TΣ and w ∈ dom(t).

2.2 Semirings

A semiring (K,+, ·, 0, 1) consists of a set K equipped with two binary operations
+ and ·, and two constant elements 0 and 1 such that (K,+, 0) is a commutative
monoid, (K, ·, 1) is a monoid, multiplication distributes over addition, and 0·a = a ·
0 = 0 for every a ∈ K. If the operations and the constant elements are understood,
then the semiring is simply denoted by K. A semiring K is called commutative
if the monoid (K, ·, 1) is commutative. The second main result of our paper will
apply to commutative semirings K which are additively locally finite, i.e., such
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that every finitely generated submonoid of (K,+, 0) is finite. For examples of
additively locally finite semirings we refer the reader to [16]. In this paper we
mainly deal with the additively locally finite semiring max-plus (or arctic) Rmax =
(R+ ∪ {−∞},max,+,−∞, 0) where R+ = {r ∈ R | r ≥ 0} and −∞ + x = −∞ for
every x ∈ R+ ∪{−∞}. Our results remain valid as well, over the additively locally
finite semiring min-plus (or tropical) (R+ ∪ {∞},min,+,∞, 0) with ∞ + x = ∞
for every x ∈ R+ ∪ {∞}.

Let K1 and K2 be two semirings. A mapping f : K1 → K2 is called a semiring
homomorphism (or simply a homomorphism) if f(a+b) = f(a)+f(b) and f(a ·b) =
f(a) · f(b) for every a, b ∈ K1, and f(0) = 0 and f(1) = 1. A homomorphism
f : K → K is an endomorphism of K. The set End(K) of all endomorphisms of
K is a monoid with operation the usual composition mapping ◦ and unit element
the identity mapping on K. If no confusion arises, we shall alternatively denote the
operation · of K and the composition operation ◦ of End(K) by concatenation.

Example 1. Consider the max-plus semiring Rmax and extend the multiplication
· over R+ by letting p · (−∞) = (−∞) · p = −∞ for every p ∈ R+ ∪ {−∞}. Then
the mapping p : Rmax → Rmax (p ∈ R+) given by x 7−→ p ·x is an endomorphism of
Rmax. Conversely, every endomorphism of Rmax is of this form (cf. [14], Lm. 15).

In the rest of the paper, K will denote an arbitrary commutative semi-
ring if not specified otherwise.

2.3 Discounting

A discounting over Σ and K is a family Φ = (Φk)k≥1 of mappings Φk : Σk →

(End(K))
k

for k ≥ 1. For every σ ∈ Σk (k ≥ 1) we shall write
(
Φ1

σ, . . . ,Φ
k
σ

)
for

the k-tuple Φk (σ) . If no confusion arises with the rank of σ, then we simply denote
Φk (σ) by Φσ. The discounting Φ is alternatively called a Φ-discounting. For every
t ∈ TΣ and every w ∈ dom(t), we define the endomorphism Φt

w of K as follows:

Φt
w =

{
id if w = ε

Φi1
t(ε) ◦ Φi2

t(i1)
◦ . . . ◦ Φin

t(i1...in−1)
if w = i1 . . . in, i1, . . . , in ∈ N+, n > 0

where id is the identity endomorphism of K.

In Sections 3-5, Φ will denote a discounting over Σ and K.

2.4 Tree series

A formal tree series ( or tree series for short) over Σ and K, is a mapping S :
TΣ → K. As usual we denote by (S, t) the coefficient S(t) for every t ∈ TΣ. The
support of S is the tree language supp(S) = {t ∈ TΣ | (S, t) 6= 0}. The class of all
tree series over Σ and K is denoted by K 〈〈TΣ〉〉, and the class of polynomials (i.e.,
tree series with finite support) is denoted by K 〈TΣ〉.
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For every tree language L ⊆ TΣ, the characteristic series 1L ∈ K 〈〈TΣ〉〉 of L
with respect to K is determined by (1L, t) = 1 if t ∈ L, and (1L, t) = 0 otherwise, for
every t ∈ TΣ. Let S, T ∈ K 〈〈TΣ〉〉 and k ∈ K. The sum S+T , the scalar products kS
and Sk, and the Hadamard product S⊙T are defined by (S+T, t) = (S, t)+(T, t),
(kS, t) = k · (S, t) and (Sk, t) = (S, t) · k, and (S ⊙ T, t) = (S, t) · (T, t) for every
t ∈ TΣ. Clearly, (K 〈〈TΣ〉〉 ,+,⊙,0,1) and (K 〈TΣ〉 ,+,⊙,0,1) are commutative
semirings, where 0 is the tree series (over Σ and K) with all its coefficients being
0, and 1 is the tree series (over Σ and K) with all its coefficients being 1.

Let h : Σ → Γ be a relabeling. For every tree series S ∈ K 〈〈TΣ〉〉 the tree
series h(S) ∈ K 〈〈TΓ〉〉 is defined for every s ∈ TΓ by (h(S), s) =

∑
t∈h−1(s)

(S, t).

Similarly, for every T ∈ K 〈〈TΓ〉〉 the tree series h−1(T ) ∈ K 〈〈TΣ〉〉 is determined
by (h−1(T ), t) = (T, h(t)) for every t ∈ TΣ.

3 Φ-recognizable tree series

In this section, we study Φ-recognizable tree series obtained as behaviors of weighted
tree automata with Φ-discounting. Intuitively, for every input tree t the weight of
every node of t is discounted according to the distance of the node from the root
of t; the longer the distance is the greater the grade of discounting is; nodes of the
same level get a weight with the same grade of discounting. Our weighted tree au-
tomata are bottom-up models without initial distribution. By standard automata
constructions, it can be seen that they are equivalent to weighted tree automata
with initial distribution. Furthermore, they are equivalent to the corresponding
top-down models, with and without terminal distribution (cf. [28]). Firstly, we in-
troduce our weighted tree automata with Φ-discounting and we state normalization
results. Then, in Subsection 3.2 we investigate closure properties of Φ-recognizable
tree series.

3.1 Weighted tree automata with Φ-discounting

Definition 1. A weighted tree automaton with Φ-discounting (Φ-wta for short)
over Σ and K is a triple M = (Q,wt, ter) where Q is the finite state set, wt :⋃
k≥0

Qk × Σk × Q → K is the mapping assigning weights to the transitions of the

automaton, and ter : Q→ K is the final distribution.

Let t ∈ TΣ(Q) (without any loss we assume that Σ∩Q = ∅) and P ⊆ Q. A run
of M over t using P is a mapping rt : dom(t) → Q such that rt (w) = t(w) for
every w ∈ domQ(t) and rt (w) ∈ P for every w ∈ dom (t) \ (domQ(t) ∪ {ε}). The
run rt is called a q-run whenever rt(ε) = q. We shall denote by RP

M (t, q) the set of

all q-runs of M over t using P, and by RM (t, q) the set RQ
M (t, q) . Moreover, we

let RM (t) =
⋃

q∈Q

RM (t, q) .
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The weight of a run rt ∈ RP
M (t, q) at w ∈ dom(t) is given by

wt (rt, w) =
{
wt ((rt(w1), . . . , rt(w.rkΣ(t(w)))), t(w), rt(w)) if t (w) ∈ Σk, k ≥ 0
1 if t (w) ∈ Q.

The running Φ-weight of rt, denoted by rweightM (rt) (or simply rweight (rt)), is
the value

rweightM(rt) =
∏

w∈dom(t)

Φt
w (wt(rt, w))

and the Φ-weight of rt, denoted by weightM(rt) (or simply weight(rt)), is given
by

weightM(rt) = rweightM(rt) · ter(rt(ε)).

For every P ⊆ Q, q ∈ Q we let ‖M‖ (P, q) be the tree series in K 〈〈TΣ(Q)〉〉 deter-
mined by

(‖M‖ (P, q) , t) =





∑
rt∈RP

M(t,q)

rweightM (rt) if t ∈ TΣ (Q) \Q

0 otherwise.

The Φ-behavior (or simply behavior) of M is the tree series ‖M‖ ∈ K 〈〈TΣ〉〉
defined for every t ∈ TΣ by

(‖M‖ , t) =
∑

rt∈RM(t)

weightM(rt).

Clearly,

(‖M‖ , t) =
∑

q∈Q

(‖M‖ (Q, q) , t) · ter(q).

for every t ∈ TΣ

A tree series S ∈ K 〈〈TΣ〉〉 is called Φ-recognizable if there is a Φ-wta M over
Σ and K such that S = ‖M‖. We shall denote by Rec(Σ,K,Φ) the class of all
Φ-recognizable tree series over Σ and K. Clearly, if our Φ-discounting employs only
the identity mapping on K, i.e, Φσ = (id, . . . , id) for every σ ∈ Σk (k ≥ 1), then
Rec(Σ,K,Φ) = Rec(Σ,K) the class of recognizable formal tree series over Σ and
K (cf. [1, 22]). Two Φ-wta M and M′ are equivalent if ‖M‖ = ‖M′‖.

Next, we give examples of Φ-recognizable tree series over Rmax obtained as
behaviors of deterministic Φ-wta. More precisely, a (Φ-)wta M = (Q,wt, ter)
over Σ and K is called deterministic (cf. [2]) if for every k ≥ 0, σ ∈ Σk, and
q1, . . . , qk ∈ Q there is at most one q ∈ Q such that wt ((q1, . . . , qk) , σ, q) 6= 0.

Example 2. Let Σ be a ranked alphabet with Σ0 = {a},Σ2 = {σ, γ}, and Σ3 =
{δ}. We consider the Φ-wta M = ({q}, wt, ter) over Σ and Rmax with its weight
assignment mapping defined by wt((q, q), σ, q) = 1 and wt(a, q) = wt((q, q), γ, q) =



Recognizable Tree Series with Discounting 417

wt((q, q, q), δ, q) = 0. The final distribution is given by ter(q) = 0. We define a Φ-
discounting over Σ and Rmax specified by Φσ = (1, 1), Φγ = (0, 0), and Φδ = (0, 0, 0)
(cf. Example 1).

Then for every t ∈ TΣ the coefficient (‖M‖ , t) equals the number of occurrences
of σ in the greatest initial σ-subtree of t. One can easily show that there is no
deterministic wta without discounting over Σ and Rmax accepting the same tree
series.

Example 3. Consider the ranked alphabet Σ of the previous example and let
t ∈ TΣ. We say that the pattern δ(σ, σ, δ) occurs in t if there are trees t′, s, si ∈ TΣ

(1 ≤ i ≤ 7) such that t = t′ ·a s and s = δ (σ (s1, s2) , σ (s3, s4) , δ (s5, s6, s7)) .
We construct a deterministic Φ-wta M =(Q,wt, ter) over Σ and Rmax, whose Φ-
behavior returns for every input tree t ∈ TΣ the number of occurrences of the
pattern δ(σ, σ, δ) in the greatest initial subtree of t which does not contain any
symbol γ. Our Φ-discounting now is given by Φσ = (1, 1), Φγ = (0, 0), and Φδ =
(1, 1, 1). The Φ-wta M is determined by Q = {q1, q2, q3} , ter (q) = 0 for every
q ∈ Q, and

- wt (a, q1) = 0
- wt ((p1, p2) , σ, q2) = wt ((p1, p2) , γ, q1) = 0 for every p1, p2 ∈ Q,
- wt ((q2, q2, q3) , δ, q3) = 1, and
- wt ((p1, p2, p3) , δ, q3) = 0 for every p1, p2, p3 ∈ Q with (p1, p2, p3) 6= (q2, q2, q3).

Any other transition is assigned the value −∞. Clearly, M is deterministic and by
standard arguments we can show that ‖M‖ cannot be accepted by any deterministic
wta without discounting over Σ and Rmax.

Next we establish two normalized forms of Φ-wta; they will be used for the
proofs of the results in Section 4.

A Φ-wta M = (Q,wt, ter) is final weight normalized (cf. [15], Def. 4.7) if there
is one state qf ∈ Q such that

• ter (qf ) = 1 and, for every q ∈ Q with q 6= qf , ter(q) = 0,

• for every k > 0, σ ∈ Σk, q1, . . . , qk, q ∈ Q, if there is an 1 ≤ i ≤ k with qi = qf ,
then wt ((q1, . . . , qk) , σ, q) = 0.

In this case we write M =(Q,wt, qf ) .

Lemma 1. (cf. [15], Lm 4.8) For every Φ-wta M there is an equivalent final
weight normalized Φ-wta M′. Moreover, M′ can be chosen to have one more state
than M.

Let a ∈ Σ0. A tree series S ∈ K 〈〈TΣ〉〉 is called a-proper if (S, a) = 0. We shall
denote by Ka 〈〈TΣ〉〉 the class of all a-proper tree series over Σ and K. Consider
a Φ-wta M = (Q,wt, ter) over Σ and K. We let Ia = {q ∈ Q | wt (a, q) 6= 0} , and
we call Ia the set of initial a-states of M. The Φ-wta M is called initial a-state
normalized (cf. [15], Def. 4.10) if there is a state qa ∈ Q such that Ia = {qa} ,
wt (a, qa) = 1, and wt ((q1, . . . , qk), σ, qa) = 0 for every σ ∈ Σ \ {a}.
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Lemma 2. (cf. [15], Lm. 4.11) Let M = (Q,wt, ter) be a Φ-wta over Σ and
K and a ∈ Σ0. Then there is an initial a-state normalized Φ-wta M′ such that
(‖M′‖ , t) = (‖M‖ , t) for every t ∈ TΣ \ {a}. Moreover, M′ can be chosen to have
one more state than M.

Proof. We construct the Φ-wta M′ = (Q′, wt′, ter′) with Q′ = Q ∪ {qa} . The final
distribution ter′ is given by ter′ (qa) = 0 and by ter′ (q) = ter (q) for every q ∈ Q.
The weight assignment mapping wt′ is defined as follows:

• wt′ ((q1, . . . , qk) , σ, q) =

∑








∏
1≤i≤k

qi=qa

Φi
σ (wt (a, pi))


 · wt ((p1, . . . , pk) , σ, q) |

p1, . . . , pk ∈ Q, and pi = qi if qi ∈ Q





for every k ≥ 0, σ ∈ Σk \ {a}, q1, . . . , qk ∈ Q′, and q ∈ Q

• wt′ ((q1, . . . , qk) , σ, qa) = 0 for every k ≥ 0, σ ∈ Σk \ {a}, and q1, . . . , qk ∈ Q′

• wt′ (a, q) = 0 for every q ∈ Q

• wt′ (a, qa) = 1.

Obviously, M′ is initial a-state normalized and qa is the initial a-state. Observe
that for every t ∈ TΣ, r

′
t ∈ RM′ (t) , and w ∈ dom (t) , if t (w) 6= a and r′t (w) = qa,

then weightM′ (r′t) = 0. We will show that (‖M′‖ , t) = (‖M‖ , t) for every t ∈ TΣ \
{a}. Let t 6= a. For every q ∈ Q, we define the mapping v : RM (t, q) → RM′ (t, q)
as follows. For every run rt ∈ RM (t, q) and every w ∈ dom(t) we put

(v (rt)) (w) =

{
rt (w) if t (w) 6= a
qa otherwise.

We set prea (t) = {w ∈ dom (t) | there exists an i ∈ N+ such that t(wi) = a},
i.e., the set of all nodes of t which are predecessors of the a-labeled nodes. Let
prea (t) = {w1, . . . , wm} . Then for every 1 ≤ j ≤ m, we set doma,j(t) =
{i | t (wji) = a} =

{
ij1, . . . , ijkj

}
(with ij1 < . . . < ijkj

) which indicates the set of
all a-labeled nodes following wj . Clearly, doma (t) =

⋃
1≤j≤m

{wji | i ∈ doma,j(t)}.

Finally we define the a-surrounding of t to be the set sura (t) = prea (t)∪doma (t) .
Let q ∈ Q and r′t ∈ RM′ (t, q) with r′t (w) = qa for every w ∈ doma (t) . Then we
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calculate

∑

rt∈v−1(r′
t)

∏

w∈sura(t)

Φt
w (wt (rt, w))

=
∑

rt∈v−1(r′
t)

∏

1≤j≤m


 ∏

i∈doma,j(t)

Φt
wji (wt (rt, wji))


 · Φt

wj
(wt (rt, wj))

=
∑

rt∈v−1(r′
t)

∏

1≤j≤m


 ∏

1≤l≤kj

Φt
wjijl

(wt (a, rt (wjijl)))




· Φt
wj



wt







rt (wj1) , . . . , rt (wj (ij1 − 1)) , rt (wjij1) ,
rt (wj (ij1 + 1)) , . . . , rt (wj (ij2 − 1)) , rt (wjij2) ,
. . . , rt

(
wj

(
ij(kj−1) + 1

))
, . . . , rt

(
wj

(
ijkj

− 1
))
,

rt
(
wjijkj

)
, rt
(
wj

(
ijkj

+ 1
))
, . . . , rt (wjρj)


 ,

t(wj), rt (wj)







=
∏

1≤j≤m

∑





(
∏

1≤l≤kj

Φt
wjijl

(wt (a, pjl))

)
·

Φt
wj


wt







r′t (wj1) , . . . , r′t (wj (ij1 − 1)) , pj1,
r′t (wj (ij1 + 1)) , . . . , r′t (wj (ij2 − 1)) ,

pj2, . . . , pjkj
, . . . , r′t (wjρj)


 ,

t(wj), r
′
t (wj)







| pj1, . . . , pjkj
∈ Q





where for every 1 ≤ j ≤ m we assume that rk(t (wj)) = ρj . On the other side

∏

w∈sura(t)

Φt
w (wt′ (r′t, w))

=
∏

1≤j≤m


Φt

wj
(wt′ (r′t, wj)) ·

∏

i∈doma,j(t)

Φt
wji (wt′ (r′t, wji))




=
∏

1≤j≤m

Φt
wj

(wt′ (r′t, wj))

=
∏

1≤j≤m

Φt
wj

(wt′ ((r′t (wj1) , . . . , r′t (wjρj)) , t(wj), r
′
t (wj))) ,
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which equals

∏

1≤j≤m

Φt
wj




∑





(
∏

1≤l≤kj

Φ
ijl

t(wj)
(wt (a, pjl))

)

·wt







r′t (wj1) , . . . , r′t (wj (ij1 − 1)) ,
pj1, r

′
t (wj (ij1 + 1)) , . . . ,

r′t (wj (ij2 − 1)) , pj2, . . . , pjkj
, . . . ,

r′t (wjρj)


 ,

t (wj) , r
′
t (wj)




| pj1, . . . , pjkj
∈ Q








=
∏

1≤j≤m

∑





(
∏

1≤l≤kj

Φt
wjijl

(wt (a, pjl))

)
·

Φt
wj



wt







r′t (wj1) , . . . , r′t (wj (ij1 − 1)) ,
pj1, r

′
t (wj (ij1 + 1)) , . . . ,

r′t (wj (ij2 − 1)) , pj2, . . . , pjkj
,

. . . , r′t (wjρj)


 ,

t(wj), r
′
t (wj)







| pj1, . . . , pjkj
∈ Q





.

Now, we can easily show that (‖M‖ , t) = (‖M′‖ , t).

3.2 Properties of Φ-recognizable tree series

Proposition 1. (i) (cf. [18], Lm. 3.3) The class Rec(Σ,K,Φ) is closed under
sum, scalar product, and Hadamard product.

(ii) (cf. [18], Lm. 3.4) Let h : Σ → Γ be a relabeling. Furthermore, for the
Φ-discounting over Σ and K assume that Φσ = Φσ′ whenever h(σ) = h(σ′)
for every σ, σ′ ∈ Σk, k ≥ 1. Let Φ′ = (Φ′

k)
k≥1 be the discounting over Γ and

K determined for every γ ∈ Γk (k ≥ 1) by Φ′
γ = Φσ for every σ ∈ Σk (k ≥ 1)

with h(σ) = γ. If S ∈ Rec(Σ,K,Φ), then h(S) ∈ Rec(Γ,K,Φ′). Furthermore,
if T ∈ Rec(Γ,K,Φ′), then h−1(T ) ∈ Rec(Σ,K,Φ).1

(iii) (cf. [18], Lm. 3.3) Let L ⊆ TΣ be a recognizable tree language. Then 1L ∈
Rec(Σ,K,Φ).

A tree series S ∈ K 〈〈TΣ〉〉 is called a recognizable step function if S =∑
1≤j≤n

kj1Lj
where kj ∈ K and Lj ⊆ TΣ (1 ≤ j ≤ n and n ∈ N) are recogniz-

able tree languages. By Proposition 1 such a tree series is Φ-recognizable. The
class of recognizable tree languages is closed under the Boolean operations, there-
fore for every recognizable step function S =

∑
1≤j≤n

kj1Lj
we may assume the family

(Lj)j∈J
to be a partition of TΣ.

1Statement (ii) requires that deg(Σ) = deg(Γ) which is guaranteed by the surjectivity of the
relabeling h (cf. definition of relabeling on page 413).
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Proposition 2. (i) (cf. [12]) The class of all recognizable step functions over Σ
and K is closed under sum, scalar product, and Hadamard product.

(ii) Let h : Σ → Γ be a relabeling. If T ∈ K 〈〈TΓ〉〉 is a recognizable step function,
then h−1(T ) ∈ K 〈〈TΣ〉〉 is also a recognizable step function.

(iii) (cf. [16], Prop. 16) Let K be additively locally finite, h : Σ → Γ a relabeling,
and S ∈ K 〈〈TΣ〉〉 a recognizable step function. Then the tree series h(S) ∈
K 〈〈TΓ〉〉 is also a recognizable step function.

4 Φ-rational tree series and a Kleene theorem

In this section we introduce the Φ-rational operations on formal tree series and we
show a Kleene theorem for Φ-recognizable tree series.

Let k ≥ 1, σ ∈ Σk. The Φ-top-concatenation with σ is the operation σΦ :
K 〈〈TΣ〉〉

k → K 〈〈TΣ〉〉 on tree series defined for every S1, . . . , Sk ∈ K 〈〈TΣ〉〉 and
t ∈ TΣ by

(σΦ (S1, . . . , Sk) , t) =

{
Φ1

σ ((S1, t1)) · . . . · Φ
k
σ ((Sk, tk)) if t = σ (t1, . . . , tk)

0 otherwise.

Let S, T ∈ K 〈〈TΣ〉〉 and a ∈ Σ0. The (a,Φ)-concatenation of S and T is the
tree series S ·a,Φ T ∈ K 〈〈TΣ〉〉 defined for every t ∈ TΣ by

(S ·a,Φ T, t) =
∑

s,t1,...,tr∈TΣ,t=s·a(t1,...,tr)

doma(s)={w1,...,wr}

(S, s) · Φt
w1

((T, t1)) · . . . · Φ
t
wr

((T, tr)) .

Proposition 3. (cf. [15], Lm. 3.3) The (a,Φ)-concatenation of tree series is asso-
ciative, i.e., for every S, T,R ∈ K 〈〈TΣ〉〉 it holds S ·a,Φ(T ·a,Φ R) = (S ·a,Φ T )·a,ΦR.

Proof. For every t ∈ TΣ we have

(S ·a,Φ (T ·a,Φ R) , t)

=
∑

s,t1,...,tr∈TΣ,t=s·a(t1,...,tr)

doma(s)={w1,...,wr}

(S, s) ·
r∏

i=1

Φt
wi

((T ·a,Φ R, ti))

=
∑

s,t1,...,tr∈TΣ,t=s·a(t1,...,tr)

doma(s)={w1,...,wr}

(S, s)

·
r∏

i=1

Φt
wi




∑

vi,ui1,...,uini
∈TΣ,ti=vi·a(ui1,...,uini)

doma(vi)={wi
1
,...,wi

ni
}

(T, vi) ·
ni∏

ji=1

Φti

wi
ji

((R, uiji
))



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=
∑

s,t1,...,tr∈TΣ,t=s·a(t1,...,tr)

doma(s)={w1,...,wr}

(S, s)

·
r∏

i=1




∑
vi,ui1,...,uini

∈TΣ,ti=vi·a(ui1,...,uini)
doma(vi)={wi

1
,...,wi

ni
}

Φt
wi

((T, vi))

·
ni∏

ji=1

Φt
wi

◦ Φti

wi
ji

((R, uiji
))




=
∑

s,t1,...,tr,vi,ui1,...,uini
∈TΣ

t=s·a(t1,...,tr),ti=vi·a(ui1,...,uini)
doma(s)={w1,...,wr},doma(vi)={wi

1
,...,wi

ni
}

(S, s)

·
r∏

i=1


Φt

wi
((T, vi)) ·

ni∏

ji=1

Φt
wiw

i
ji

((R, uiji
))


 .

On the other side

((S ·a,Φ T ) ·a,Φ R, t)

=
∑

v,u1,...,uq∈TΣ,t=v·a(u1,...,uq)

doma(v)={w1,...,wq}


(S ·a,Φ T, v) ·

q∏

j=1

Φt
wj

((R, uj))




=
∑

v,u1,...,uq∈TΣ,t=v·a(u1,...,uq)

doma(v)={w1,...,wq}




∑
s,s1,...,sr∈TΣ,v=s·a(s1,...,sr)

doma(s)={w′
1
,...,w′

r}

(S, s) ·
r∏

i=1

Φv
w′

i
((T, si))

·
q∏

j=1

Φt
wj

((R, uj))




=
∑

v,u1,...,uq,s,s1,...,sr∈TΣ

t=v·a(u1,...,uq),v=s·a(s1,...,sr)

doma(v)={w1,...,wq},doma(s)={w′
1
,...,w′

r}

(S, s) ·
r∏

i=1

Φt
w′

i
((T, si)) ·

q∏

j=1

Φt
wj

((R, uj)) .

The last equality is true since every node of v is also a node of t. Clearly, there is a
one to one correspondence between the two ways of decomposing t. This also implies
that the occurred endomorphisms at each node of the corresponding decompositions
coincide. Therefore, we get (S ·a,Φ (T ·a,Φ R) , t) = ((S ·a,Φ T ) ·a,Φ R, t) for every
t ∈ TΣ and thus S ·a,Φ (T ·a,Φ R) = (S ·a,Φ T ) ·a,Φ R.
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Following [15] we introduce power discounted iterations of tree series. More
precisely, let S ∈ K 〈〈TΣ〉〉 and a ∈ Σ0. The nth (a,Φ)-iteration of S is the tree
series Sn

a,Φ ∈ K 〈〈TΣ〉〉 defined inductively as follows:

(i) S0
a,Φ = 0 and

(ii) Sn+1
a,Φ = S ·a,Φ S

n
a,Φ + 1a for every n ≥ 0.

Lemma 3. (cf. [15], Lm. 3.10) Let S ∈ Ka 〈〈TΣ〉〉 and t ∈ TΣ. If n ≥ ht (t) + 1,

then
(
Sn+1

a,Φ , t
)

=
(
Sn

a,Φ, t
)
.

Now we are ready to define the (a,Φ)-Kleene star of a-proper tree series.

Definition 2. (cf. [15], Def. 3.11) Let S ∈ Ka 〈〈TΣ〉〉. The (a,Φ)-Kleene star
(or simply (a,Φ)-star) of S is a tree series S∗

a,Φ ∈ K 〈〈TΣ〉〉 which is defined in the

following way. For every t ∈ TΣ we set
(
S∗

a,Φ, t
)

=
(
S

ht(t)+1
a,Φ , t

)
.

Lemma 4. (cf. [15], Lm. 3.13) Let S ∈ Ka 〈〈TΣ〉〉. Then S∗
a,Φ = S ·a,Φ S

∗
a,Φ + 1a.

Definition 3. The set Rat-Exp(Σ,K,Φ) of Φ-rational expressions (over Σ and K)
is defined inductively as the smallest set R satisfying the following conditions. For
every Φ-rational expression ζ ∈ Rat-Exp(Σ,K,Φ) we define its semantics ‖ζ‖ ∈
K 〈〈TΣ〉〉 simultaneously.

• For every a ∈ Σ0, the expression a ∈ R and ‖a‖ = 1a,

• for every k ≥ 1, σ ∈ Σk, and ζ1, . . . , ζk ∈ R, the expression σΦ (ζ1, . . . , ζk) ∈ R
and ‖σΦ (ζ1, . . . , ζk)‖ = σΦ (‖ζ1‖ , . . . , ‖ζk‖) ,

• for every ζ ∈ R and k ∈ K, the expression kζ ∈ R and ‖kζ‖ = k · ‖ζ‖ ,

• for every ζ1, ζ2 ∈ R, the expression ζ1 + ζ2 ∈ R and ‖ζ1 + ζ2‖ = ‖ζ1‖+ ‖ζ2‖ ,

• for every ζ1, ζ2 ∈ R and a ∈ Σ0, the expression ζ1·a,Φζ2 ∈ R and ‖ζ1 ·a,Φ ζ2‖ =
‖ζ1‖ ·a,Φ ‖ζ2‖ , and

• for every ζ ∈ R and a ∈ Σ0 such that ‖ζ‖ is a-proper, the expression ζ∗a,Φ ∈ R

and
∥∥ζ∗a,Φ

∥∥ = ‖ζ‖∗a,Φ .

A tree series S ∈ K 〈〈TΣ〉〉 is called Φ-rational over Σ and K if there is a
ζ ∈ Rat-Exp(Σ,K,Φ) such that S = ‖ζ‖ . The class of all Φ-rational tree series
over Σ and K is denoted by Rat(Σ,K,Φ). Clearly, the first four conditions in
the above definition imply that K 〈TΣ〉 ⊆ Rat(Σ,K,Φ). Moreover, Rat(Σ,K,Φ) is
the smallest subclass of K 〈〈TΣ〉〉 which has this property and is closed under the
Φ-rational operations on tree series.

Next, we wish to establish a Kleene theorem showing the coincidence of Φ-
recognizable and Φ-rational tree series. For this, we shall need the subsequent
lemma.



424 Eleni Mandrali and George Rahonis

Lemma 5. (cf. [15], Lm. 5.1) Consider a Φ-wta M =(Q,wt, ter). Let P ⊆ Q, q ∈
Q, and p ∈ Q \ P. Then

‖M‖ (P ∪ {p} , q) = ‖M‖ (P, q) ·p,Φ ‖M‖ (P, p)
∗
p,Φ .

Let Q be a finite set of nullary symbols with Q∩Σ = ∅. Then Rat(Σ∪Q,K,Φ)
denotes the class of Φ-rational tree series over Σ ∪Q and K defined by Φ-rational
expressions from Rat-Exp(Σ ∪Q,K,Φ). We set

Rat(Σ + fin,K,Φ) =
⋃

Q finite

Rat(Σ ∪Q,K,Φ)

and
Rec(Σ + fin,K,Φ) =

⋃

Q finite

Rec(Σ ∪Q,K,Φ).

Now, we are ready to prove one half of our Kleene theorem.

Proposition 4. (cf. [15], Thm. 5.2) Rec(Σ,K,Φ) ⊆ Rat(Σ + fin,K,Φ)|TΣ
.

Proof. Let M = (Q,wt, qf ) be a final weight normalized Φ-wta with
Q = {q1, . . . , qn}. We show that ‖M‖ ∈ Rat(Σ ∪ Q,K,Φ). Note that (‖M‖ , t) =
(‖M‖ (Q, qf ) , t) for every t ∈ TΣ. So

‖M‖ = (. . . ((‖M‖ (Q, qf ) ·Φ,q1
0) ·Φ,q2

0) . . .) ·Φ,qn
0|TΣ

.

Thus it remains to prove that for every P ⊆ Q and q ∈ Q, the tree series
‖M‖ (P, q) ∈ Rat(Σ ∪ Q,K,Φ). To this end, we apply induction on the number
of elements of P . Let P = ∅. For every k ≥ 0, σ ∈ Σk, and p1, . . . , pk ∈ Q, we
define the run rσ

p1,...,pk,q : dom (σ (p1, . . . , pk)) → Q of M over σ (p1, . . . , pk) using
∅, such that rσ

p1,...,pk,q (ε) = q, and rσ
p1,...,pk,q (i) = pi for every 1 ≤ i ≤ k. Then we

have

R∅
M (t, q) =





{
rσ
p1,...,pk,q

}
if t = σ (p1, . . . , pk) , k ≥ 0, σ ∈ Σk, p1, . . . , pk ∈ Q

{rq} if t = q
∅ otherwise.

Note that (‖M‖ (∅, q) , q) = 0 by definition. Thus supp (‖M‖ (∅, q)) ⊆ Σ(Q) where
Σ (Q) = {σ (p1, . . . , pk) | k ≥ 0, σ ∈ Σk, p1, . . . , pk ∈ Q} , i.e., ‖M‖ (∅, q) is a poly-
nomial, and hence a Φ-rational tree series.

For the induction step, assume that for every q ∈ Q the tree series ‖M‖ (P, q)
is Φ-rational over Σ ∪ Q and K. Let p ∈ Q \ P. Then, by Lemma 5 we get
that ‖M‖ (P ∪ {p} , q) is Φ-rational over Σ ∪Q and K which in turn implies that
‖M‖ ∈ Rat(Σ ∪Q,K,Φ).

Example 4 (Example 3 continued). We shall construct a Φ-rational expression for
the Φ-recognizable tree series ‖M‖ of Example 3 on page 417. Consider the next
expressions
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ζ0 = 0 + a, ζqi
= 0 + qi for every i = 1, 2, 3,

ζ1 =

(
max

p1,p2∈Q
(0 + γΦ (p1, p2))

)∗

q1,Φ

, ζ2 =

(
max

p1,p2∈Q
(0 + σΦ (p1, p2))

)∗

q2,Φ

,

ζ3 = 1 + δΦ (q2, q2, q3) , ζ4 = max
p1,p2,p3∈Q

(p1,p2,p3) 6=(q2,q2,q3)

(0 + δΦ (p1, p2, p3)) , and

ζ5 = max
(
(max (ζ3, ζ4))

∗
q3,Φ , ζq2

)

We have that ‖M‖ equals the restriction on TΣ of the semantics of the Φ-rational
expression

(((
(ζ5 ·q2,Φ max (ζ2, ζq1

) ·q1,Φ max (ζ1, ζq3
))

∗
q3,Φ

)
·q1,Φ ζ0

)
·q2,Φ −∞

)
·q3,Φ −∞,

where we identify −∞ and the constant tree series that takes all trees to −∞.

In the sequel, we establish the inclusion Rat(Σ,K,Φ) ⊆ Rec(Σ,K,Φ). For this,
it suffices to show that the class Rec(Σ,K,Φ) contains the tree series 1a (for every
a ∈ Σ0) and is closed under the Φ-rational operations on tree series.

Lemma 6.

(i) (cf. [15], Lm. 6.1) For every a ∈ Σ0, the tree series 1a ∈ Rec(Σ,K,Φ).

(ii) (cf. [15], Lm. 6.2) The class Rec(Σ,K,Φ) is closed under Φ-top-concatena-
tion.

(iii) (cf. [15], Lm. 6.5) Let S1, S2 ∈ Rec(Σ,K,Φ) and a ∈ Σ0. Then the (a,Φ)-
concatenation of S2 and S1 is a Φ-recognizable tree series, i.e., S2 ·a,Φ S1 ∈
Rec(Σ,K,Φ).

(iv) (cf. [15], Lm. 6.7) Let a ∈ Σ0 and S ∈ Ka 〈〈TΣ〉〉 be Φ-recognizable. Then
S∗

a,Φ ∈ Rec(Σ,K,Φ).

Proof. (iii) Let M1= (Q1, wt1, qf1
) and M2=(Q2, wt2, qf2

) be final weight nor-
malized Φ-wta with ‖M1‖ = S1 and ‖M2‖ = S2, and let us assume that Q1 ∩
Q2 = ∅. We consider the final weight normalized Φ-wta M = (Q,wt, qf2

) with
Q = (Q1 ∪Q2) \ {qf1

} . For every k ≥ 0, σ ∈ Σk, q1, . . . , qk, q ∈ Q we set

wt ((q1, . . . , qk) , σ, q)

=





wt1 ((q1, . . . , qk) , σ, q) if q1, . . . , qk, q ∈ Q1

wt1 ((q1, . . . , qk) , σ, qf1
) · wt2 (a, q) if k 6= 0, q1, . . . , qk ∈ Q1, and q ∈ Q2

wt2 ((q1, . . . , qk) , σ, q) if k 6= 0, q1, . . . , qk, q ∈ Q2

wt2 (σ, q) + wt1(σ, qf1
) · wt2(a, q) if k = 0, σ 6= a, and q ∈ Q2

wt1(a, qf1
) · wt2(a, q) if k = 0, σ = a, and q ∈ Q2

0 otherwise.

Then we can show that ‖M‖ = ‖M2‖ ·a,Φ ‖M1‖.
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Theorem 1. (cf. [15], Thm. 6.8)

(i) Rec(Σ,K,Φ) is closed under the Φ-rational operations.

(ii) Rat(Σ,K,Φ) ⊆ Rec(Σ,K,Φ).

Let Q∞ be an infinite set such that Q ⊆ Q∞ for every finite set Q. We define
the operation lift∞ :

⋃
Q finite set

K 〈〈TΣ (Q)〉〉 → K 〈〈TΣ (Q∞)〉〉 in the following way.

Let Q be a finite set and S ∈ K 〈〈TΣ (Q)〉〉 . For every t ∈ TΣ (Q∞) we let

(lift∞ (S) , t) =

{
(S, t) if t ∈ TΣ (Q)
0 otherwise.

Now, we are ready to state our first main result, namely the Kleene theorem for
Φ-recognizable tree series.

Theorem 2 (Kleene theorem). (cf. [15], Thm. 7.1)

lift∞ (Rec(Σ + fin,K,Φ)) = lift∞ (Rat(Σ + fin,K,Φ)) .

Proof. By Theorem 1(ii) we have Rat(Σ,K,Φ) ⊆ Rec(Σ,K,Φ). This implies that
Rat(Σ ∪Q,K,Φ) ⊆ Rec(Σ ∪Q,K,Φ), for every finite set Q. Therefore
Rat(Σ + fin,K,Φ) ⊆ Rec(Σ + fin,K,Φ) and thus

lift∞ (Rat(Σ + fin,K,Φ)) ⊆ lift∞ (Rec(Σ + fin,K,Φ)) .

Conversely, let S ∈ lift∞ (Rec(Σ + fin,K,Φ)). Then, there is a finite set Q and
S′ ∈ Rec(Σ∪Q,K,Φ) such that S = lift∞ (S′). Then, by the proof of Proposition
4, there is another finite set Q′ and a rational expression ζ ∈ Rat-Exp(Σ ∪ Q ∪
Q′,K,Φ) such that ‖ζ‖ |TΣ∪Q

= S′ and for every q ∈ Q′, we have (‖ζ‖ , q) = 0. Then
lift∞ (S′) = lift∞ (‖ζ‖) , hence S = lift∞ (‖ζ‖) ∈ lift∞ (Rat(Σ + fin,K,Φ)).

5 Weighted MSO-logic with Φ-discounting over

finite trees

In this section, we introduce a weighted monadic second-order logic (abbreviated
to weighted MSO-logic) with Φ-discounting over finite trees, and characterize the
class Rec(Σ,K,Φ) in terms of this logic. The syntax of our MSO-formulas is the
one used in [18] but here we exclude second-order universal quantifiers since we do
not need them for the description of our automata. For the semantics of our MSO-
formulas, we employ the Φ-discounting. Let us first recall some basic terminology
and definitions from [18].

Let V be a finite set of first and second-order variables. A tree t ∈ TΣ is
represented by the structure

(
dom(t), edge1, . . . , edgedeg(Σ), (labelσ)σ∈Σ

)
where for

every w, u ∈ dom(t) and j ∈ {1, . . . ,deg(Σ)}, edgej(w, u) holds true iff u = wj and
labelσ(w) holds true iff t(w) = σ. A (t,V)-assignment ρ is a mapping assigning
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elements of dom(t) to first order variables from V, and subsets of dom(t) to second-
order variables from V. If x is a first order variable and w ∈ dom(t), then we denote
by ρ[x → w] the (t,V ∪ {x})-assignment which associates w to x and acts as ρ on
V \{x}. The notation ρ[X → I] for a second-order variable X and a set I ⊆ dom(t)
has a similar meaning.

In the rest of the paper, V will denote an arbitrary finite set of first and
second-order variables.

Now, we consider the ranked alphabet ΣV = Σ × {0, 1}V with rkΣV
(σ, f) =

rkΣ(σ) for every σ ∈ Σ and f ∈ {0, 1}V . For every (σ, f) ∈ ΣV we denote by (σ, f)1
and (σ, f)2 the symbols σ and f , respectively. A tree s ∈ TΣV

is called valid if
for every first order variable x ∈ V, there is exactly one node w of s such that
(s(w)2) (x) = 1. The set of all valid finite trees over ΣV is denoted by T v

ΣV
. Every

valid tree s ∈ TΣV
corresponds to a pair (t, ρ) where t ∈ TΣ and ρ is a (t,V)-

assignment, in the following way. It holds dom(t) = dom(s) and t(w) = s(w)1 for
every w ∈ dom(s), and for every first order variable x, second-order variable X,
and every node w ∈ dom(s), we have ρ(x) = w iff (s(w)2) (x) = 1, and w ∈ ρ(X)
iff (s(w)2) (X) = 1. Then, we say that s and (t, ρ) correspond to each other . In the
following, we identify every valid tree s with its corresponding pair (t, ρ).

Corollary 1. The characteristic series 1T v
ΣV

: TΣV
→ K is Φ-recognizable.

Let ϕ be an MSO-formula over trees [36, 37] with Free(ϕ) ⊆ V. As usual we
shall write Σϕ for ΣFree(ϕ). For every (t, ρ) ∈ TΣV

we let (t, ρ) |= ϕ whenever
(t, ρ) satisfies ϕ (cf. [26]). The well-known result of Thatcher and Wright [35], and
Doner [10] states that the tree language LV(ϕ) = {(t, ρ) ∈ T v

ΣV
| (t, ρ) |= ϕ} is

recognizable; conversely, for every recognizable tree language L ⊆ TΣ there exists
an MSO-sentence ϕ, such that L = L(ϕ) where L(ϕ) = LFree(ϕ)(ϕ).

Next we introduce our weighted MSO-logic with Φ-discounting over trees. For
this we extend our Φ-discounting over Σ and K to a discounting over ΣV and K.
For simplicity we shall use the same symbol Φ. More precisely, for every (σ, f) ∈ ΣV

we set Φ(σ,f) = Φσ.

Definition 4. The set MSO(Σ,K) of all formulas of the weighted MSO-logic with
Φ-discounting over Σ and K on finite trees is defined to be the smallest set F such
that

• F contains all atomic formulas k, labelσ(x), edgei(x, y), x ∈ X and the nega-
tions ¬labelσ(x),¬edgei(x, y),¬(x ∈ X), and

• if ϕ,ψ ∈ F, then also ϕ ∨ ψ,ϕ ∧ ψ,∃x � ϕ,∃X � ϕ,∀x � ϕ ∈ F ,

where k ∈ K, σ ∈ Σ, 1 ≤ i ≤ deg(Σ), x, y are first order variables, and X is a
second-order variable.

Next we define the semantics of the formulas in MSO(Σ,K) as tree series in
K 〈〈TΣV

〉〉 . As in the word case [16], we employ the Φ-discounting only in the
semantics of first order universal quantifications.
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Definition 5. Let ϕ ∈ MSO(Σ,K) with Free(ϕ) ⊆ V. The Φ-semantics of ϕ is
a tree series ‖ϕ‖V ∈ K 〈〈TΣV

〉〉 defined as follows. Let s ∈ TΣV
. If s is not a

valid tree, then (‖ϕ‖V , s) = 0. Otherwise, let ρ be a (t,V)-assignment such that s
and (t, ρ) correspond to each other. Then, we inductively define (‖ϕ‖V , s) ∈ K as
follows:

- (‖k‖V , s) = k

- (‖labelσ(x)‖V , s) =

{
1 if t(ρ(x)) = σ
0 otherwise

- (‖edgei(x, y)‖V , s) =

{
1 if ρ(y) = ρ(x)i
0 otherwise

- (‖x ∈ X‖V , s) =

{
1 if ρ(x) ∈ ρ(X)
0 otherwise

- (‖¬ϕ‖V , s) =

{
1 if (‖ϕ‖V , s) = 0
0 if (‖ϕ‖V , s) = 1

,
provided that ϕ is of the form
labelσ(x), edgei(x, y), or x ∈ X

- (‖ϕ ∨ ψ‖V , s) = (‖ϕ‖V , s) + (‖ψ‖V , s)

- (‖ϕ ∧ ψ‖V , s) = (‖ϕ‖V , s) · (‖ψ‖V , s)

- (‖∃x � ϕ‖V , s) =
∑

w∈dom(t)

(
‖ϕ‖V∪{x} , s[x→ w]

)

- (‖∃X � ϕ‖V , s) =
∑

I⊆dom(t)

(
‖ϕ‖V∪{X} , s[X → I]

)

- (‖∀x � ϕ‖V , s) =
∏

w∈dom(t)

Φt
w

((
‖ϕ‖V∪{x} , s[x→ w]

))
.

We shall simply write ‖ϕ‖ for ‖ϕ‖Free(ϕ) . If ϕ has no free variables, i.e., if it is

a sentence, then ‖ϕ‖ ∈ K 〈〈TΣ〉〉 . One should observe that the Φ-semantics ‖ϕ‖V
of every formula ϕ ∈ MSO(Σ,K) is defined according to a finite set of variables V
containing Free(ϕ). Actually, this is not an essential restriction as it is announced
in the subsequent proposition.

Proposition 5. (cf. [11], Prop. 3.3) Let ϕ ∈ MSO(Σ,K) with Free(ϕ) ⊆ V.
Then

(‖ϕ‖V , s) =
(
‖ϕ‖ , s|Free(ϕ)

)

for every s ∈ T v
ΣV

. Moreover, the tree series ‖ϕ‖ is Φ-recognizable (resp. a recog-
nizable step function) over Σϕ iff ‖ϕ‖V is Φ-recognizable (resp. a recognizable step
function) over ΣV .

Definition 6. (i) A formula ϕ ∈ MSO(Σ,K) is called restricted if whenever ϕ
contains a universal first order quantification ∀x�ψ, then ‖ψ‖ is a recognizable
step function.
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(ii) A formula ϕ ∈ MSO(Σ,K) is called almost existential if whenever ϕ contains
a universal first order quantification ∀x � ψ and ψ contains a universal first
order quantification ∀y�ψ′, then ψ′ is composed from conjunctions of negations
of atomic formulas of the form edgei(z, z

′), where 1 ≤ i ≤ deg(Σ).

We denote by RMSO(Σ,K) the class of all restricted formulas of MSO(Σ,K),
and by REMSO(Σ,K) the class of all restricted existential MSO(Σ,K)-formulas,
i.e., formulas of the form ∃X1 . . . ∃Xn � ψ with ψ ∈ RMSO(Σ,K) containing no
set quantification. Furthermore, we let AEMSO(Σ,K) for the class of all almost
existential formulas of MSO(Σ,K). A tree series S ∈ K 〈〈TΣ〉〉 is called RMSO-Φ-
definable (resp. REMSO-Φ-definable, AEMSO-Φ-definable) if there is a sentence
ϕ ∈ RMSO(Σ,K) (resp. ϕ ∈ REMSO(Σ,K), ϕ ∈ AEMSO(Σ,K)) such that S =
‖ϕ‖. We let r-Mso(Σ,K,Φ) (resp. er-Mso(Σ,K,Φ), ae-Mso(Σ,K,Φ)) comprise all
RMSO-Φ-definable (resp. REMSO-Φ-definable, AEMSO-Φ-definable) tree series
over Σ and K.

Our second main result is the following.

Theorem 3. (i) Rec(Σ,K,Φ) = r-Mso(Σ,K,Φ) = er-Mso(Σ,K,Φ).

(ii) If K is additively locally finite, then Rec(Σ,K,Φ) = ae-Mso(Σ,K,Φ).

For the proof, we firstly show by induction on the structure of formulas ϕ that
r-Mso(Σ,K,Φ) ⊆ Rec(Σ,K,Φ), and whenever K is additively locally finite, then
ae-Mso(Σ,K,Φ) ⊆ Rec(Σ,K,Φ). This is incorporated in the subsequent lemma.

Lemma 7. Let ϕ,ψ ∈ MSO(Σ,K). Then

(i) (cf. [18], Lm. 5.2) if ϕ is an atomic formula or the negation of an atomic
formula, then ‖ϕ‖ is a recognizable step function,

(ii) (cf. [18], Lm. 5.3, and [16], Lm. 13) if ‖ϕ‖ , ‖ψ‖ are Φ-recognizable (resp.
recognizable step functions), then ‖ϕ ∨ ψ‖ and ‖ϕ ∧ ψ‖ are Φ-recognizable
(resp. recognizable step functions),

(iii) (cf. [18], Lm. 5.4) if ‖ϕ‖ is Φ-recognizable, then ‖∃x � ϕ‖ and ‖∃X � ϕ‖ are
Φ-recognizable,

(iv) if K is additively locally finite and ‖ϕ‖ is a recognizable step function, then
‖∃x � ϕ‖ and ‖∃X � ϕ‖ are recognizable step functions,

(v) if ‖ϕ‖ is a recognizable step function, then ‖∀x � ϕ‖ is Φ-recognizable, and

(vi) if ‖ϕ‖ = 1L, where L ⊆ T v
Σϕ

is a recognizable tree language, then ‖∀x � ϕ‖ is
a recognizable step function.

Proof. (iv) We follow the proof of Lemma 17 in [16] using our Proposition 2(iii) on
page 421.

(v) Let W = Free(ϕ) ∪ {x} and V = Free(∀x � ϕ) = W \ {x}. By Proposition

5 (in case x /∈ Free(ϕ)) let ‖ϕ‖W =
n∑

j=1

kj1Lj
, where kj ∈ K and Lj ⊆ T v

ΣW
are
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recognizable tree languages (1 ≤ j ≤ n). Furthermore, we assume that the family
(Lj)1≤j≤n

is a partition of T v
ΣW

.

Let Σ̃ = Σ × {1, . . . , n} be the ranked alphabet with rkΣ̃ ((σ, j)) = rkΣ (σ)

for every (σ, j) ∈ Σ̃. Every tree s ∈ T v

Σ̃V
can be written as a triple (t, v, ρ) where

(t, ρ) ∈ T v
ΣV
, dom(t) = dom(s), and v is a mapping v : dom (s) → {1, . . . , n}

determined by v (w) = j whenever s (w) = (σ, j, f) for some σ ∈ Σ and f ∈ {0, 1}V .
Conversely, every such triple (t, v, ρ) corresponds to a tree s ∈ T v

Σ̃V
. Hence in the

sequel, we write the elements of T v

Σ̃V
in the form (t, v, ρ) . Let L̃ be the set of all

trees (t, v, ρ) ∈ T v

Σ̃V
such that for every w ∈ dom (t) and 1 ≤ j ≤ n if v (w) = j,

then (t, ρ [x→ w]) ∈ Lj .
Since (Lj)1≤j≤n

is a partition of T v
ΣW

, for every (t, ρ) ∈ T v
ΣV

there is a unique

v : dom (t) → {1, . . . , n} such that (t, v, ρ) ∈ L̃. By Lemma 5.5 in [18], we get

that L̃ is recognizable. Let M̃ =
(
Q, Σ̃V , δ, F

)
be a deterministic bottom-up tree

automaton accepting L̃. We consider the Φ-wta M = (Q,wt, ter) over Σ̃V and K

with weight assignment mapping wt defined for every m ≥ 0, (σ, j, f) ∈
(
Σ̃V

)
m

,

and q1, . . . , qm, q ∈ Q by

wt ((q1, . . . , qm) , (σ, j, f) , q) =

{
kj if δ(σ,j,f) (q1, . . . , qm) = q
0 otherwise.

The final distribution ter is determined by ter (q) = 1 if q ∈ F, and ter (q) = 0
otherwise for every q ∈ Q.

Since M̃ is deterministic, for every (t, v, ρ) ∈ T v

Σ̃V
there is at most one run

r(t,v,ρ) of M̃ over (t, v, ρ). Moreover, since
∣∣∣M̃
∣∣∣ = L̃ we get

(‖M‖ , (t, v, ρ)) =





∏
w∈dom((t,v,ρ))

Φ
(t,v,ρ)
w

(
wt
(
r(t,v,ρ), w

))
if (t, v, ρ) ∈ L̃

0 otherwise.

Let (t, v, ρ) ∈ L̃. For every w ∈ dom (t) with v (w) = j, we have wt
(
r(t,v,ρ), w

)
= kj ,

and (t, ρ [x→ w]) ∈ Lj which in turn implies that
(
‖ϕ‖V∪{x} , (t, ρ [x→ w])

)
= kj .

We consider the relabeling h : Σ̃V → ΣV by h ((σ, j, f)) = (σ, f) for every (σ, j, f) ∈

Σ̃V . Then for every (t, ρ) ∈ T v
ΣV
,

(h (‖M‖) , (t, ρ)) =
∑

(t,v,ρ)∈h−1((t,ρ))

(‖M‖ , (t, v, ρ)) = (‖M‖ , (t, v, ρ))

(where (t, v, ρ) ∈ L̃)

=
∏

w∈dom((t,v,ρ))

Φ(t,v,ρ)
w

(
wt
(
r(t,v,ρ), w

))

=
∏

w∈dom(t)

Φt
w

((
‖ϕ‖V∪{x} , (t, ρ [x→ w])

))
= (‖∀x � ϕ‖ , (t, ρ)) .
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Therefore, ‖∀x � ϕ‖ = h (‖M‖) which by Proposition 1 on page 420 is Φ-recogniz-
able.

Proposition 6.

• r-Mso(Σ,K,Φ) ⊆ Rec(Σ,K,Φ).

• If K is additively locally finite, then ae-Mso(Σ,K,Φ) ⊆ Rec(Σ,K,Φ).

Proposition 7. Rec(Σ,K,Φ) ⊆ er-Mso(Σ,K,Φ) ∩ ae-Mso(Σ,K,Φ).

Proof of Theorem 3. It is immediate by Propositions 6 and 7.

6 Weighted Muller tree automata with

Φ-discounting

In this section, we investigate weighted Muller tree automata with Φ-discounting
acting on infinite trees. The underlying semiring is the max-plus semiring Rmax =
(R+ ∪ {−∞}, sup,+,−∞, 0), where we consider sup instead of max since we need
to compute over infinite trees. Our results can be applied to the min-plus semi-
ring (R+ ∪ {∞}, inf,+,∞, 0) as well. A weighted Muller tree automaton with
Φ-discounting computes the weight of a run (of an input infinite tree) by applying
the Φ-discounting over Rmax. By considering suitable endomorphisms for Φ, we do
not require any completeness axioms (for the sum operation) in Rmax (cf. [32]).
For a study on weighted Muller automata with Φ-discounting over infinite words
cf. [16].

An infinitary tree series S over Σ and Rmax is a mapping S : Tω
Σ → Rmax. The

class of all infinitary tree series over Σ and Rmax is denoted by Rmax 〈〈T
ω
Σ 〉〉. Let S ∈

Rmax 〈〈T
ω
Σ 〉〉. The image Im(S) of S is the set Im(S) = {k ∈ R+∪{−∞} | ∃t ∈ Tω

Σ

with (S, t) = k}. We say that S has bounded image if there is an m ∈ R+ such
that k ≤ m for every k ∈ Im(S). Consider an infinitary tree language L ⊆ Tω

Σ . The
characteristic series 0L : Tω

Σ → Rmax of L is defined in a similar way as for finitary
tree languages. Furthermore, for S, T ∈ Rmax 〈〈T

ω
Σ 〉〉 and k ∈ Rmax, the sum, the

scalar product, and the Hadamard product are now written as max(S, T ), k + S,
and S + T, respectively, and defined in the obvious way.

Let h : Σ → Γ be a relabeling. Then h is extended to a mapping h : Tω
Σ →

Tω
Γ such that dom(h(t)) = dom(t) and h(t)(w) = h(t(w)) for every t ∈ Tω

Σ and
w ∈ dom(t). Moreover, h can be extended to a partial mapping h : Rmax 〈〈T

ω
Σ 〉〉 →

Rmax 〈〈T
ω
Γ 〉〉 in the following way. For every S ∈ Rmax 〈〈T

ω
Σ 〉〉 with bounded image,

we define the series h(S) ∈ Rmax 〈〈T
ω
Γ 〉〉 by (h(S), s) = sup{(S, t) | t ∈ h−1(s)}

for every s ∈ Tω
Γ . Furthermore, for every T ∈ Rmax 〈〈T

ω
Γ 〉〉, the series h−1(T ) ∈

Rmax 〈〈T
ω
Σ 〉〉 is determined by

(
h−1(T ), t

)
= (T, h(t)) for every t ∈ Tω

Σ .
Let Φ = (Φk)k≥1 be a discounting over Σ and Rmax. Recall (cf. [14], and

Example 1 on page 414) that every endomorphism of Rmax is of the form p :



432 Eleni Mandrali and George Rahonis

Rmax → Rmax where p ∈ R+ and x 7−→ p · x for every x ∈ R+ ∪ {−∞} with
the convention that p · (−∞) = (−∞) · p = −∞ for every p ∈ R+ ∪ {−∞}. For

our Φ-discounting here, we require for every k ≥ 1, σ ∈ Σk that Φi
σ = pi

σ with

0 ≤ pi
σ < 1. Then, we simply write Φσ = pσ =

(
p1

σ, . . . , p
k
σ

)
for every k ≥ 1 and

σ ∈ Σk. Furthermore, for every t ∈ Tω
Σ and every w ∈ dom(t) we write pt

w for Φt
w

where

pt
w =

{
1 if w = ε

pi1
t(ε) · p

i2
t(i1)

· . . . · pin

t(i1...in−1)
if w = i1 . . . in with i1, . . . , in ∈ N+, n > 0.

We let mΦ = max
{
pi

σ | k ≥ 1, σ ∈ Σk, and 1 ≤ i ≤ k
}
. In the sequel, we shall use

also the concatenation notation for the multiplication in R+ ∪ {−∞}.

Definition 7. A weighted Muller tree automaton with Φ-discounting (Φ-wmta for
short) over Σ and Rmax is a quadruple M =(Q, in,wt,F), where Q is the finite
state set, in : Q→ Rmax is the initial distribution, wt :

⋃
k≥0

Q×Σk ×Q
k → Rmax is

the mapping assigning weights to the transitions of the automaton, and F ⊆ P (Q)
is the family of final states sets.

Let t ∈ Tω
Σ . A run of M over t is a mapping rt : dom(t) → Q. The weight of

rt at w ∈ dom (t) is the value

wt (rt, w) = wt (rt (w) , t (w) , (rt (w1) , . . . , rt (w.rkΣ (t (w))))) .

The Φ-weight (or simply weight) of rt, which is denoted by weightM (rt) (or simply
weight (rt)), is defined by

weightM (rt) = in (rt (ε)) +
∑

w∈dom(t)

pt
w

deg (Σ)
|w|

· wt (rt, w) .

One should observe that in comparison to the finitary case, here we divide every
summand of the infinite sum with a power of deg(Σ). This is needed to achieve the
convergence of the infinite sum. Indeed, let M =

max

{
wt (τ) | τ ∈

⋃
k≥0

Q× Σk ×Qk

}
. Then we have

∑

w∈dom(t)

pt
w

deg (Σ)
|w|

· wt (rt, w) ≤M ·
∑

n≥0

∑

w∈dom(t)

|w|=n

m
|w|
Φ

deg (Σ)
|w|

≤M ·
∑

n≥0

deg(Σ)n mn
Φ

deg (Σ)
n = M ·

1

1 −mΦ
.
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Every infinite prefix-closed chain π ⊆ dom(t) is called an infinite path of t. The
run rt is called successful if for every infinite path π of t, the set of states that
appear infinitely often along π, constitutes a final state set. We shall denote by
RM(t) the set of all runs of M over t, and by Rsuc

M (t) the set of all successful runs
in RM(t).

The Φ-behavior (or simply behavior) of M is the infinitary tree series ‖M‖ ∈
Rmax 〈〈T

ω
Σ 〉〉 whose coefficients are determined for every t ∈ Tω

Σ by

(‖M‖ , t) = sup{(weightM (rt)) | rt ∈ Rsuc
M (t)}.

Clearly, this supremum exists in Rmax since the values weightM(rt) are bounded
by N +M · 1

1−mΦ

, where N = max{in(q) | q ∈ Q}.

A tree series S ∈ Rmax 〈〈T
ω
Σ 〉〉 is said to be (Φ, ω)-recognizable (or Φ-Muller

recognizable) if there exists a Φ-wmta M over Σ and Rmax such that S = ‖M‖ .
The family of all (Φ, ω)-recognizable tree series over Σ and Rmax is denoted by
ω-Rec(Σ,Rmax,Φ). Clearly, every (Φ, ω)-recognizable tree series S ∈ Rmax 〈〈T

ω
Σ 〉〉

has bounded image. The next proposition collects closure properties of (Φ, ω)-
recognizable tree series.

Proposition 8. (i) (cf. [32], Prop. 8) The class ω-Rec(Σ,Rmax,Φ) is closed
under sum, scalar product, and Hadamard product.

(ii) (cf. [32], Prop. 9) Let h : Σ → Γ be a relabeling. Furthermore, for the Φ-
discounting over Σ and Rmax we assume that pσ = pσ′ whenever h(σ) = h(σ′)
for every σ, σ′ ∈ Σk, and k ≥ 1. Let Φ′ = (Φ′

k)
k≥1 be the discounting over

Γ and Rmax determined for every γ ∈ Γk (k ≥ 1) by p′γ = pσ for every
σ ∈ Σk (k ≥ 1) with h(σ) = γ. If S ∈ ω-Rec(Σ,Rmax,Φ), then h(S) ∈ ω-
Rec(Γ,Rmax,Φ

′). Furthermore, if T ∈ ω-Rec(Γ,Rmax,Φ
′), then h−1(T ) ∈ ω-

Rec(Σ,Rmax,Φ).

(iii) (cf. [32], Prop. 10) Let L ⊆ Tω
Σ be an ω-recognizable tree language. Then

0L ∈ ω-Rec(Σ,Rmax,Φ).

An infinitary tree series S ∈ Rmax 〈〈T
ω
Σ 〉〉 is called an ω-recognizable step function

(or Muller recognizable step function) if S = max
1≤j≤n

(
kj + 0Lj

)
where kj ∈ R+ ∪

{−∞} and Lj is an ω-recognizable tree language for every 1 ≤ j ≤ n.

Proposition 9. (i) (cf. [32], Prop. 11) The class of ω-recognizable step func-
tions over Σ and Rmax is closed under sum, scalar product, and Hadamard
product.

(ii) (cf. [32], Prop. 12) Let h : Σ → Γ be a relabeling. Then h : Rmax 〈〈T
ω
Σ 〉〉 →

Rmax 〈〈T
ω
Γ 〉〉 and h−1 : Rmax 〈〈T

ω
Γ 〉〉 → Rmax 〈〈T

ω
Σ 〉〉 preserve ω-recognizable

step functions.
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7 Weighted MSO-logic with Φ-discounting over

infinite trees

In this section we deal with weighted MSO-logic with Φ-discounting over the semi-
ring Rmax, and we interpret the semantics of weighted MSO-formulas as formal
series over infinite trees. In our logic here, we inlude the atomic formula x = y and
its negation as well as second-order universal quantifiers (cf. [32]).

Every infinite tree t ∈ Tω
Σ is represented by the structure (dom(t),edge1, . . . ,

edgedeg(Σ), (labelσ)σ∈Σ). The notions of a (t,V)-assignment and the set Tω,v
ΣV

of all
valid infinite trees over ΣV are defined as in the case of finite trees. Similarly, every
valid tree s ∈ Tω,v

ΣV
corresponds to a pair (t, ρ) where t ∈ Tω

Σ and ρ is a (t,V)-
assignment. The infinitary tree language Tω,v

ΣV
is ω-recognizable (cf. [32]), and thus

the characteristic series 0T
ω,v
ΣV

∈ Rmax

〈〈
Tω

ΣV

〉〉
is (Φ, ω)-recognizable.

Let ϕ be an MSO-formula [36, 37] over trees. Then for Free(ϕ) ⊆ V, the well-
known result of Rabin [29] states that the tree language Lω

V(ϕ) = {(t, ρ) ∈ Tω,v
ΣV

|
(t, ρ) |= ϕ} is ω-recognizable; conversely, for every ω-recognizable tree language
L ⊆ Tω

Σ there exists an MSO-sentence ϕ, such that L = Lω(ϕ), where we simply
write Lω(ϕ) for Lω

Free(ϕ)(ϕ).

Definition 8. The set MSO(Σ,Rmax) of all formulas of the weighted MSO-logic
with Φ-discounting over Σ and Rmax on infinite trees is defined to be the smallest
set F such that

• F contains all atomic formulas k, labelσ(x), edgei(x, y), x = y, x ∈ X and the
negations ¬labelσ(x),¬edgei(x, y),¬(x = y),¬(x ∈ X),

• if ϕ,ψ ∈ F, then ϕ ∨ ψ,ϕ ∧ ψ,∃x � ϕ,∃X � ϕ,∀x � ϕ ∈ F , and if ϕ does not
contain any constant k ∈ R+ \ {0}, then ∀X � ϕ ∈ F

where k ∈ R+ ∪ {−∞}, σ ∈ Σ, 1 ≤ i ≤ deg(Σ), x, y are first order variables, and
X is a second-order variable.

Next we define the semantics of the formulas in MSO(Rmax,Σ) as infinitary tree
series in Rmax

〈〈
Tω

ΣV

〉〉
.

Definition 9. Let ϕ ∈ MSO(Σ,Rmax) and Free(ϕ) ⊆ V. The Φ-semantics of
ϕ is an infinitary tree series ‖ϕ‖V ∈ Rmax

〈〈
Tω

ΣV

〉〉
defined as follows. Let s ∈

Tω
ΣV

. If s is not a valid tree, then (‖ϕ‖V , s) = −∞. Otherwise, let ρ be a (t,V)-
assignment such that s and (t, ρ) correspond to each other. Then, we inductively
define (‖ϕ‖V , s) as in Definition 5, where K = Rmax, except for the formulas x = y,
∀x � ϕ, and ∀X � ϕ where we set

- (‖x = y‖V , s) =

{
0 if ρ(x) = ρ(y)
−∞ otherwise

- (‖∀x � ϕ‖V , s) =
∑

w∈dom(t)

pt
w

deg(Σ)|w|

(
‖ϕ‖V∪{x} , s[x→ w]

)
.
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- (‖∀X � ϕ‖V , s) =
∑

I⊆dom(t)

(
‖ϕ‖V∪{X} , s[X → I]

)
.

Note that in the above definition of the semantics, the sums and products in
Definition 5 on page 428 are replaced respectively, by suprema and sums in Rmax.
Moreover, in case of ∀X � ϕ the infinite sum is well-defined, because by definition
the semantics of ϕ takes on only the values 0 and −∞. We shall simply write ‖ϕ‖
for ‖ϕ‖Free(ϕ). As in the case of finitary tree series we can show the subsequent
result.

Proposition 10. Let ϕ ∈ MSO(Σ,Rmax) with Free(ϕ) ⊆ V. Then

(‖ϕ‖V , s) =
(
‖ϕ‖ , s|Free(ϕ)

)

for every s ∈ Tω,v
ΣV

. Moreover, the tree series ‖ϕ‖ is (Φ, ω)-recognizable (resp.
an ω-recognizable step function) over Σϕ iff ‖ϕ‖V is (Φ, ω)-recognizable (resp. an
ω-recognizable step function) over ΣV .

Definition 10. A formula ϕ ∈ MSO(Σ,Rmax) is called restricted if whenever ϕ
contains a universal first order quantification ∀x � ψ, then ‖ψ‖ is an ω-recognizable
step function.

Definition 11. A formula ϕ ∈ MSO(Σ,Rmax) is called incomplete universal if
whenever ϕ contains a subformula ∀x �ψ such that ψ contains universal quantifiers,
then ψ cannot contain any constant k ∈ R+ \ {0}.

We denote by RMSO(Σ,Rmax) (resp. IUMSO(Σ,Rmax)) the class of all re-
stricted (resp. incomplete universal) formulas of MSO(Σ,Rmax). A tree series
S ∈ Rmax 〈〈T

ω
Σ 〉〉 is called RMSO-Φ-definable (resp. IUMSO-Φ-definable) if there is

a sentence ϕ ∈ RMSO(Σ,Rmax) (resp. ϕ ∈ IUMSO(Σ,Rmax)) such that S = ‖ϕ‖.
We denote by ω-r-Mso(Σ,Rmax,Φ) (resp. ω-iu-Mso(Σ,Rmax,Φ)) the class of all
RMSO-Φ-definable (resp. IUMSO-Φ-definable) infinitary tree series.

The main result of this section is the subsequent Rabin-type theorem.

Theorem 4. ω-Rec(Σ,Rmax,Φ) = ω-r-Mso(Σ,Rmax,Φ) = ω-iu-Mso(Σ,Rmax,Φ).

First, using induction on the structure of formulas, we state the inclusions
ω-r-Mso(Σ,Rmax,Φ) ⊆ ω-Rec(Σ,Rmax,Φ) and ω-iu-Mso(Σ,Rmax,Φ) ⊆
ω-Rec(Σ,Rmax,Φ).

Lemma 8. Let ϕ,ψ ∈ MSO(Σ,Rmax). Then

(i) (cf. [32], Lm. 22) if ϕ is an atomic formula or the negation of an atomic
formula, then ‖ϕ‖ is an ω-recognizable step function,

(ii) (cf. [32], Lm. 23) if ‖ϕ‖ , ‖ψ‖ are (Φ, ω)-recognizable (resp. ω-recognizable
step functions), then ‖ϕ ∨ ψ‖ and ‖ϕ ∧ ψ‖ are (Φ, ω)-recognizable (resp. ω-
recognizable step functions),
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(iii) (cf. [32], Lm. 24) if ‖ϕ‖ is (Φ, ω)-recognizable (resp. an ω-recognizable
step function), then ‖∃x � ϕ‖ and ‖∃X � ϕ‖ are (Φ, ω)-recognizable (resp. ω-
recognizable step functions),

(iv) (cf. [32], Lm. 25) if ‖ϕ‖ is an ω-recognizable step function, then ‖∀x � ϕ‖ is
(Φ, ω)-recognizable, and

(v) (cf. [32], Lm. 26) if ‖ϕ‖ = 0L where the tree language L ⊆ Tω,v
Σϕ

is ω-

recognizable, then ‖∀X � ϕ‖ is an ω-recognizable step function.

Therefore, we get

Proposition 11.

• ω-r-Mso(Σ,Rmax,Φ) ⊆ ω-Rec(Σ,Rmax,Φ).

• ω-iu-Mso(Σ,Rmax,Φ) ⊆ ω-Rec(Σ,Rmax,Φ).

Conversely, following the proof of Proposition 29 in [32] we state

Proposition 12.

ω-Rec(Σ,Rmax,Φ) ⊆ ω-r-Mso(Σ,Rmax,Φ) ∩ ω-iu-Mso(Σ,Rmax,Φ).

Proof of Theorem 4. It is immediate by Propositions 11 and 12.
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