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Homomorphisms Preserving Types of Density∗

Helmut Jürgensen† and Ian McQuillan‡

Abstract

The concept of density in a free monoid can be generalized from the in-

fix relation to arbitrary relations. Many of the properties known for density

can be established over these more general notions of densities. In this pa-

per, we investigate homomorphisms which preserve different types of density.

We demonstrate a strict hierarchy between families of homomorphisms which

preserve density over different types of relations. However, as with the case

of endomorphisms, a similar hierarchy for weak-coding homomorphisms col-

lapses. We also present an algorithm to decide whether a homomorphism

preserves density over any relation which satisfies some natural conditions.
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1 Introduction

A language is dense if every word over the alphabet is the infix of some word in the
language. One can use other relations ̺ in place of the infix relation to define other
types of density. Then, a language could be ̺-dense, with traditionally density
being a special case where ̺ = ≤i, the infix order. These types of densities arise
naturally in the theory of codes (see [4]). Indeed, the notions of density, residues,
ideals, closure, independence and maximality can be defined for arbitrary relations
and properties can be established over these more general notions [3].

We will especially examine those relations which are important for the theory
of codes. In particular, the length, prefix, suffix, infix, embedding, outfix, division,
commutation and power relations. These produce the following families of codes, re-
spectively, when examining independent sets [4, 5]: block codes (also called uniform
codes), prefix codes, suffix codes, infix codes, hypercodes, outfix codes, 2-ps-codes,
2-codes and a superset of the 2-codes. Here, we will examine the same relations
with respect to density.
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A homomorphism α from X∗ to Y ∗ is said to preserve density if α(L) is dense
over Y for every dense language L over X. For our purposes, we will say that a
homomorphism α preserves ̺-density if α(L) is ̺-dense over Y for every ̺-dense
language L over X. The work in [3] mainly concerns determining which endomor-
phisms (homomorphisms where X = Y ) preserve different types of densities. It is
shown there that if ̺ is reflexive, transitive and compatible with homomorphisms
(that is, (x, y) ∈ ̺ implies (α(x), α(y)) ∈ ̺) where ̺ ⊆ ωn, for some n (a large
relation containing many standard relations), then a homomorphisms α preserves
̺-density if and only if α restricted to X is a permutation of X. Many types of
densities apply here including density defined with the prefix, suffix, infix, power,
commutation and division relations. Hence, one gets “regular” density as a special
case. In [3] it is left as an open problem to study the same problem over arbitrary
homomorphisms, that is, homomorphisms where the alphabets X and Y can differ.

In this paper, we tackle the problem for weak-coding homomorphisms, and also
for arbitrary homomorphisms. If ̺ is alphabet preserving ((x, y) ∈ ̺ implies the
set of letters of x is a subset of the letters of y), reflexive, and compatible with a
homomorphism α from X∗ to Y ∗, then α preserves density if and only if every letter
of Y appears in α(X). For arbitrary homomorphisms, the situation turns out to be
quite a bit more complex. Indeed, the family of homomorphisms which preserves
different types of densities forms a sometimes strict, sometimes collapsing hierarchy
established in Theorem 3. The property used to separate, or collapse families in
the hierarchy is given in Definition 8. This says that two relations ̺1 and ̺2 are
densely equivalent if for every finite language L, L∗ is ̺1-dense if and only if L∗

is ̺2-dense. Then, Theorem 2 establishes that two relations which are transitive,
reflexive and compatible with arbitrary homomorphisms are densely equivalent if
and only if the families of homomorphisms preserving both types of density are
identical. Hence, we can determine where the hierarchies collapse or are strict by
deciding whether the two relations are densely equivalent. In addition, in Section
6 we show that we can decide if a given homomorphism preserves ̺-density for any
of prefix, suffix, infix, embedded, equality, division, commutation or power density.

2 Preliminaries and notation

In this section, we define the mathematical preliminaries necessary for this paper.

The symbol N denotes the set of positive integers and N0 = N ∪ {0}. For a set
S, let |S| denote the cardinality of S. Let S and T be sets and α a mapping of S
into T . For a subset S′ of S, α|S′ denotes the restriction of α to S′.

For a binary relation ̺ ⊆ S × T , the set dom(̺) = {s | s ∈ S,∃t ∈ T, (s, t) ∈ ̺}
is the domain of ̺. Moreover, ̺−1 = {(t, s) | (s, t) ∈ ̺} is the inverse of ̺, and, for
s ∈ S, ̺(s) = {t | t ∈ T, (s, t) ∈ ̺}. Consequently, ̺−1(t) = {s | s ∈ S, (s, t) ∈ ̺}
for t ∈ T . In the sequel, for a binary relation ̺ ⊆ S × T, x ∈ S, y ∈ T , we use,
interchangeably, the notation (x, y) ∈ ̺ and x ̺ y.

Let Γ be a countably infinite alphabet. In this paper, a finite alphabet will
be any finite X ⊆ Γ. Furthermore, X and Y will be finite alphabets throughout
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this paper. Then X∗ is the set of all words over X including the empty word λ.
Let w ∈ X∗ and a ∈ X, then |w|a is the number of occurrences of a in w and
|w| =

∑

a∈X |w|a is the length of w. A language over X is a subset of X∗ and a
language is any set whereby there exists an alphabet X such that L ⊆ X∗. For a
language L over X, alph(L) is the set of all a ∈ X with |w|a > 0 for some w ∈ L.
For a word w ∈ X∗, we define the reversal of w, denoted wR by wR = w if w = λ
and wR = an · · · a1 if w = a1 · · · an, n ≥ 1, ai ∈ X, 1 ≤ i ≤ n.

Let X,Y be finite alphabets. Then a function α from X∗ to Y ∗ such that
α(xy) = α(x)α(y) for all x, y ∈ X∗ is called a homomorphism. A homomorphism
α : X∗ → Y ∗ is called a coding if |α(a)| = 1 for every a ∈ X. Also, α is called a
weak coding if |α(a)| ≤ 1 for every a ∈ X. Moreover, α is called an endomorphism
if X = Y .

Let L,R ⊆ Σ∗. We denote by R−1L = {z ∈ Σ∗ | yz ∈ L for some y ∈ R} and
LR−1 = {z ∈ Σ∗ | zy ∈ L for some y ∈ R}.

3 Relations

We will use certain relations frequently which are important for code-related lan-
guages [5, 4].

Example 1. Let w and v be arbitrary words in Γ∗.

1. Embedding order: w ≤e v if and only if there exist n ∈ N0, w1, . . . , wn and
v0, v1, . . . , vn in Γ∗ such that w = w1w2 · · ·wn and v = v0w1v1w2 · · ·wnvn.

2. Length order: w ≤u v if and only if w = v or |w| < |v|.

3. Prefix order: w ≤p v if and only if v = wx for some x ∈ Γ∗.

4. Suffix order: w ≤s v if and only if v = xw for some x ∈ Γ∗.

5. Outfix relation: w ≤o v if and only if there are w1, u, w2 ∈ Γ∗ such that
v = w1uw2 and w = w1w2.

6. Infix order: w ≤i v if and only if v = xwy for some x, y ∈ Γ∗.

7. Division order: w ≤d v if and only if v = wx = yw for some x, y ∈ Γ∗.

8. Commute order: w ≤c v if and only if v = xw = wx for some x ∈ Γ∗.

9. Power order: w ≤f v if and only if v = wn for some n ≥ 1.

10. Equality order: w =e v if and only if w = v.

Each of these relations is reflexive and all are transitive except the outfix rela-
tion. They are ordered by inclusion as follows [3]:

=e ( ≤f ( ≤c ( ≤d (

{

≤p

≤s

}

(

{

≤i

≤o

}

( ≤e ( ≤u.
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We also consider the infinite chain

ω1 ( ω2 ( · · · ( wn ( ≤e

of binary relations such that ω1 = ≤i and ≤i ∪≤o ( ωn for n > 1 which is defined
as follows:

Definition 1. Let n ∈ N. For u, v ∈ Γ∗, let (u, v) ∈ ωn if and only if

∃u1, u2, . . . , un, v0, v1, . . . , vn (u = u1u2 · · ·un ∧ v = v0u1v1u2 · · ·unvn).

Note that limn→∞ ωn =
⋃∞

n=1 ωn = ≤e. That is, the transitive closure of any
ωn is ≤e.

We also use the following property of relations with respect to homomorphisms:

Definition 2. Let ̺ be a binary relation on Γ∗ and let α be a homomorphism from
X∗ to Y ∗. The relation ̺ is compatible with α if, for all x, y ∈ X∗, the inclusion
(x, y) ∈ ̺ implies (α(x), α(y)) ∈ ̺.

All of the relations listed in Example 1, except ≤u are compatible with any
homomorphism of X∗ to Y ∗.

We define the following property of relations which is useful for characterizing
weak-coding homomorphisms preserving density:

Definition 3. For a relation ̺ on Γ∗, we say that ̺ is alphabet preserving if
(x, y) ∈ ̺ implies alph(x) ⊆ alph(y).

All of the relations listed in Example 1, except ≤u are alphabet preserving.

4 Densities

Next, we give some definitions from [3] used to describe different types of densities.
Let S be an arbitrary, fixed, non-empty set. Most of the results in this paper

concern the special case where S is a free monoid; however, we give the definition
in the same generality as [3].

Definition 4. Let ̺ be a binary relation on S and let L ⊆ S. The set L is said to
be ̺-dense if, for every x ∈ S, there is a y ∈ L such that (x, y) ∈ ̺.

For S = X∗ and ̺ = ≤i, we arrive at the usual notion of density. Next, we
define the property which is studied extensively in the sequel.

Definition 5. Let ̺ be a relation on Γ∗ and let α be a homomorphism of X∗ into
Y ∗. Then α is said to preserve ̺-density if, for any L ⊆ X∗, α(L) is ̺-dense over
Y ∗ whenever L is ̺-dense over X∗.

We would also like to be able to compare the families of homomorphisms which
preserve different types of density. Naturally, each homomorphism α from X∗ into
Y ∗ can be represented by a set of ordered pairs, (w,α(w)) for each w ∈ X∗.
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Definition 6. Let ̺ be a binary relation on Γ∗. Then we denote the family of ho-
momorphisms preserving ̺-density by H(̺). We denote the family of weak-coding
homomorphisms preserving ̺-density by W (̺). We denote the family of endomor-
phisms preserving ̺-density by E(̺).

It follows from Corollary 6.9 of [3] that an endomorphism preserves ̺-density,
for any ̺ ∈ {=e,≤f ,≤c,≤d,≤p,≤s,≤i} if and only if ̺|X is a permutation of X.
Hence, we can immediately establish the following collapsed hierarchy:

Theorem 1. [3] E(=e) = E(≤f) = E(≤c) = E(≤d) = E(≤p) = E(≤s) = E(≤i).

We will show in this paper that this collapsing of the hierarchy will not hold
true for arbitrary homomorphisms.

In addition, we use the following definition.

Definition 7. Let α : X∗ → Y ∗ be a homomorphism. Then we define im|X(α) =
{α(a) | a ∈ X} and max(α) = max{|α(a)| | a ∈ X}. In addition, for each
b ∈ Y , let µα(b) be the smallest member of N0 such that bµα(b) ∈ im|X(α) and let
µα(Y ) = max{µα(b) | b ∈ Y }.

5 Homomorphisms preserving density

We start by including some results from [3] which we use throughout the paper.
Again, we will only provide results when S is a free monoid.

Lemma 1. [3]

1. Let L1 ⊆ L2 ⊆ S and let ̺ be a binary relation on S. If L1 is ̺-dense then
L2 is ̺-dense.

2. Let ̺1 and ̺2 be two binary relations on S such that ̺1 ⊆ ̺2 and let L ⊆ S.
If L is ̺1-dense then it is ̺2-dense.

Proposition 1. [3] Let α : X∗ → Y ∗ be a homomorphism and let ̺ be a binary
relation on Γ∗ and contained in ωn for some n ∈ N. If α(X∗) is ̺-dense then the
following statements hold true:

1. For every a ∈ Y , there is an element b ∈ X and a positive integer ka,b such
that α(b) = aka,b .

2. |Y | ≤ |X|.

We can rephrase condition (1) above by stating that for every a ∈ Y , it follows
that µα(a) > 0. Condition (2) implies that for most of the standard binary relations,
homomorphisms will only preserve that type of density if the target alphabet is no
larger then the domain alphabet.

Next, we show that, for coding or weak coding homomorphisms, preserving
density essentially amounts to examining alphabets.
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Lemma 2. Let ̺ be an alphabet preserving binary relation on Γ∗ such that there
exists some ̺-dense language over X∗ and also let α : X∗ → Y ∗ be a homomorphism
which preserves ̺-density. Then alph(α(X∗)) = Y and alph(α(X)) = Y .

Proof. Let L be ̺-dense over X∗. Then X∗ must be ̺-dense by Lemma 1(1). Thus,
for every u ∈ X∗, there exists v ∈ X∗ such that (u, v) ∈ ̺ and alph(u) ⊆ alph(v).
Therefore, for every u′ ∈ Y ∗, there exists v′ ∈ α(X∗) such that (u′, v′) ∈ ̺. In
particular, for every y ∈ Y , there exists v′ ∈ α(X∗) such that (y, v′) ∈ ̺. But
alph(y) ⊆ alph(v′). Hence, y ∈ alph(α(X∗)) for every y ∈ Y .

Lemma 3. Let ̺ be a binary relation on Γ∗ and assume that there exists some
̺-dense language over X∗ and let α : X∗ → Y ∗ be a weak coding homomorphism.
If alph(α(X∗)) = Y and ̺ is compatible with α, then α preserves ̺-density.

Proof. Let L be a ̺-dense language over X∗ and let y = a1a2 · · · an ∈ Y ∗ with
ai ∈ Y, 1 ≤ i ≤ n (the case where y = λ is similar). Since alph(α(X∗)) = Y
and α is a weak coding homomorphism, there must exist b1, . . . , bn ∈ X where
α(b1 · · · bn) = a1 · · · an. However, since L is ̺-dense, there must exist v ∈ L
such that (b1 · · · bn, v) ∈ ̺. But ̺ is compatible with α, so (α(b1 · · · bn), α(v)) =
(a1 · · · an, α(v)) ∈ ̺ and α(v) ∈ α(L). Hence, α(L) is ̺-dense.

We sum up the two previous lemmas as follows:

Proposition 2. Let ̺ be an alphabet preserving binary relation on Γ∗ such that
there exists some ̺-dense language over X∗. Also, let α : X∗ → Y ∗ be a weak
coding homomorphism (or indeed a coding homomorphism) whereby ̺ is compatible
with α. Then α preserves ̺-density if and only if alph(α(X∗)) = Y and this holds
true if and only if alph(α(X)) = Y .

Since every reflexive relation will allow X∗ to be ̺-dense, we get the following:

Corollary 1. Let ̺ be an alphabet preserving, reflexive binary relation on Γ∗. Also,
let α : X∗ → Y ∗ be a weak coding homomorphism (or indeed a coding homomor-
phism) whereby ̺ is compatible with α. Then α preserves ̺-density if and only if
alph(α(X∗)) = Y and this holds true if and only if alph(α(X)) = Y .

The conditions of compatibility and alphabet preserving relations as above apply
to a large variety of specific relations including the classical notion of density.

Corollary 2. For ̺ ∈ {=e,≤f ,≤c,≤d,≤p,≤s,≤i,≤o,≤e}, a weak coding homo-
morphism (or indeed a coding homomorphism) α : X∗ → Y ∗ preserves ̺-density if
and only if alph(α(X∗)) = Y and this holds true if and only if alph(α(X)) = Y .

Consequently, the hierarchy for weak-coding homomorphisms completely col-
lapses.

Corollary 3. W (=e) = W (≤f) = W (≤c) = W (≤d) = W (≤p) = W (≤s) =
W (≤i) = W (≤o) = W (≤e).
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The following is essentially an extension of results in [3] from endomorphisms
to arbitrary homomorphisms. It says that under certain conditions, determining
whether α(X∗) is dense is equivalent to determining whether α preserves density.

Proposition 3. Let α : X∗ → Y ∗ be a homomorphism and let ̺ be a binary
relation on Γ∗. Then the following statements are true.

1. If ̺ is transitive and compatible with α and if α(X∗) is ̺-dense over Y ∗ then,
for every L ⊆ X∗ which is ̺-dense over X∗, also α(L) is ̺-dense over Y ∗.

2. If there is an L ⊆ X∗ such that α(L) is ̺-dense over Y ∗, then α(X∗) is
̺-dense over Y ∗.

Proof. (1) Let y ∈ Y ∗. As α(X∗) is ̺-dense, there exists z ∈ α(X∗) with (y, z) ∈ ̺.
Let z′ ∈ α−1(z). As L is ̺-dense, there exists x′ ∈ L with (z′, x′) ∈ ̺. Let y′ =
α(x′). Hence y′ ∈ α(L) and by compatibility, (z, y′) ∈ ̺. Since (y, z), (z, y′) ∈ ̺,
then (y, y′) ∈ ̺ by transitivity.

(2) Let L ⊆ X∗ be such that α(L) is ̺-dense over Y ∗. Since α(L) ⊆ α(X∗),
then Lemma 1(1) implies that α(X∗) is ̺-dense over Y ∗.

We use this to show that, under certain natural conditions, determining whether
a homomorphism preserves density amounts to checking whether a single regular
language is dense.

Proposition 4. Let α : X∗ → Y ∗ be a homomorphism, let ̺ be a binary relation on
Γ∗ which is transitive and compatible with α and assume that there exists L ⊆ X∗

which is ̺-dense over X∗. Then the following conditions are equivalent:

1. α preserves ̺-density.

2. α(X∗) is ̺-dense over Y ∗.

3. im|X(α)∗ is ̺-dense over Y ∗.

Proof. (1) ⇒ (2) is true by Propositon 3(2).
(2) ⇐ (1) is true by Proposition 3(1).
(2) ⇔ (3) is true because im|X(α) = α(X) and so im|X(α)∗ = (α(X))∗ =

α(X∗).

Furthermore, if ̺ is also reflexive, then (x, x) ∈ ̺ for every x ∈ X∗ and so X∗

is ̺-dense over X∗ and we can simplify the proposition above.

Corollary 4. Let α : X∗ → Y ∗ be a homomorphism and let ̺ be a binary relation
on Γ∗ which is transitive, reflexive and compatible with α. Then X∗ is ̺-dense over
X∗ and also the following conditions are equivalent:

1. α preserves ̺-density.

2. α(X∗) is ̺-dense over Y ∗.
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3. im|X(α)∗ is ̺-dense over Y ∗.

We would like to be able to study, formally, the families of homomorphisms
preserving density.

Definition 8. Let ̺1, ̺2 be two binary relations on Γ∗. If, for every finite language
L, L∗ is ̺1-dense implies that L∗ is ̺2-dense, then we say ̺1 is densely smaller
than ̺2. If, for every finite language L, L∗ is ̺1-dense if and only if L∗ is ̺2-dense,
then we say that ̺1 and ̺2 are densely equivalent.

This property is the key to studying families of homomorphisms preserving
̺-density where ̺ is reflexive, transitive and compatible with arbitrary homomor-
phisms. We will use it to collapse or separate the different families preserving
density.

Theorem 2. Let ̺1, ̺2 be two binary relations on Γ∗ which are transitive, reflexive
and compatible with arbitrary homomorphisms. Then the following are true:

1. ̺1 ⊆ ̺2 implies H(̺1) ⊆ H(̺2).

2. H(̺1) ⊆ H(̺2) if and only if ̺1 is densely smaller than ̺2.

3. H(̺1) = H(̺2) if and only if ̺1 is densely equivalent to ̺2.

Proof. (1) For the first statement, let α : X∗ → Y ∗ be a homomorphism which
preserves ̺1-density. Then im|X(α)∗ is ̺1-dense over Y ∗, by Corollary 4. Then
im|X(α)∗ is ̺2-dense over Y ∗ by Lemma 1(2). Hence, α preserves ̺2-density, again
by Corollary 4.

(2) Assume that H(̺1) ⊆ H(̺2). Let L = {w1, . . . , wn} be a finite language
and assume L∗ is ̺1-dense. Let a1, . . . , an be n distinct symbols of Γ. Consider
the homomorphism α defined by mapping ai to wi for each i, 1 ≤ i ≤ n. Then
im|X(α) = L. Thus, α must preserve ̺1-density since im|X(α)∗ = L∗ is ̺1-dense,
̺1 is compatible with arbitrary homomorphisms by assumption, and by Corollary 4.
By the assumption, α must also preserve ̺2-density, and thus L∗ must be ̺2-dense,
again by Corollary 4.

Conversely, assume that ̺1 is densely smaller than ̺2. Let α : X∗ → Y ∗

be a homomorphism which preserves ̺1-density. Then im|X(α)∗ is ̺1-dense by
Corollary 4 and is thus ̺2-dense since ̺1 is densely smaller than ̺2. Hence, α
preserves ̺2-density, again by Corollary 4.

(3) Immediate from (2).

So, by the first statement of the previous theorem, we can set up a hierarchy
among all relations in Example 1 which are transitive, reflexive and compatible
with arbitrary homomorphisms as follows:

Corollary 5. For z ∈ {p, s}, H(=e) ⊆ H(≤f) ⊆ H(≤c) ⊆ H(≤d) ⊆ H(≤z) ⊆
H(≤i) ⊆ H(≤e).
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Proposition 5. Let α be a homomorphism from X∗ into Y ∗. Then α preserves
=e-density if and only if Y ⊆ im|X(α).

Proof. Assume that α preserves =e-density. Thus, for every w ∈ Y ∗, w ∈ im|X(α)∗

by Corollary 4. Suppose a ∈ Y such that a /∈ im|X(α). But (a, x) ∈ =e implies
x = a ∈ im|X(α), a contradiction. Hence Y ⊆ im|X(α).

Conversely, assume Y ⊆ im|X(α). Let w ∈ Y ∗. Then w ∈ im|X(α)∗ and
(w,w) ∈ =e, and thus α preserves =e-density.

Further, for the case of the embedding relation, we get the following simple
characterization.

Proposition 6. Let α : X∗ → Y ∗ be a homomorphism and let ̺ be a binary
relation on Γ∗ which is alphabet preserving, transitive and compatible with α such
that ≤e ⊆ ̺. Then the following are equivalent:

1. α preserves ≤e-density.

2. α preserves ̺-density.

3. alph(im|X(α)) = Y .

Proof. (1) ⇒ (2) It must be true that im|X(α)∗ is ≤e-dense over Y ∗ and thus
im|X(α)∗ is ̺-dense over Y ∗ by Lemma 1(2). Consequently, α preserves ̺-density
by Corollary 4 and the fact that ̺ must be reflexive since ≤e is and ≤e ⊆ ̺.

(2) ⇒ (3) This is immediate by Lemma 2 and the fact that ̺ must be reflexive
and hence there must exist some ̺-dense language over X∗.

(3) ⇒ (1) Assume alph(im|X(α)∗) = Y . Let w ∈ Y ∗ with w = a1 · · · an, ai ∈
Y, 1 ≤ i ≤ n. For each ai, there exists xi ∈ im|X(α) such that ai ∈ alph(xi). Let
v = x1 · · ·xn ∈ im|X(α)∗. Also, w ≤e v and so im|X(α)∗ is ≤e-dense over Y ∗.
Hence, α preserves ≤e-density by Corollary 4.

Using the division relation is identical to using both the prefix and suffix rela-
tions.

Proposition 7. Let α : X∗ → Y ∗ be a homomorphism. Then α preserves ≤d-
density if and only if α preserves both ≤p and ≤s density. Thus, H(≤d) = (H(≤p)∩
H(≤s)).

Proof. Assume that α preserves ≤d-density. Thus, im|X(α)∗ is ≤d-dense over Y ∗

by Corollary 4. However, ≤d⊆≤p and ≤d⊆≤s and by Lemma 1(2), im|X(α)∗ is
≤p-dense and also ≤s-dense. Again, using Corollary 4, α-preserves ≤p-density and
also ≤s-density.

Assume that α preserves both ≤s-density and ≤p-density. Therefore, im|X(α)∗

is ≤s-dense and also ≤p-dense by Corollary 4. Let w ∈ Y ∗. Then, there exists
u1 ∈ im|X(α)∗ and u2 ∈ im|X(α)∗ such that w ≤p u1 and w ≤s u2. Hence,
there exists x, y ∈ Y ∗ such that u1 = wx and u2 = yw. Moreover, u1 and u2 are in
im|X(α)∗ and so u1u2 ∈ im|X(α)∗. Indeed, w ≤d u1u2 and so im|X(α)∗ is ≤d-dense
over Y ∗ and α preserves ≤d-density by Corollary 4.
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We can collapse part of the hierarchy of Corollary 5 using the commutation and
division relations as seen by the following proposition.

Proposition 8. Let α : X∗ → Y ∗ be a homomorphism. Then α preserves ≤c-
density if and only if α preserves ≤f-density. Thus, H(≤f) = H(≤c).

Proof. Assume that α preserves ≤c-density. Hence, im|X(α)∗ is ≤c-dense over
Y ∗, by Proposition 4. Let w ∈ Y ∗. Then, there exists v ∈ im|X(α)∗ such that
w ≤c v; that is, there exists x ∈ Y ∗ such that v = wx = xw. If w = λ, then
λ ≤f λ ∈ im|X(α)∗. If x = λ, then w = v and w ≤f v. Assume then, that
w 6= λ and x 6= λ. It is well-known (see for example Lemma 1.7 of [5]) that for
two words r, s with r 6= λ and s 6= λ, if rs = sr, then r and s are powers of a
common word. Thus, there exists u ∈ Y ∗ such that x = un, w = um and hence
v = un+m with u ∈ Y + and n,m ∈ N0. Since v = um+n ∈ im|X(α)∗, we obtain
v′ = vm = um(m+n) = wm+n ∈ im|X(α)∗. Indeed, w ≤f v′ ∈ im|X(α)∗ and so
im|X(α)∗ is ≤f -dense over Y ∗ and α preserves ≤f -density by Corollary 4.

Assume that α preserves ≤f -density. Thus, im|X(α)∗ is ≤f -dense over Y ∗ by
Corollary 4. However, ≤f ⊆ ≤c and by Lemma 1(2), im|X(α)∗ is ≤c-dense. Again,
by Corollary 4, α preserves ≤c-density.

This shows that the converse of Theorem 2(1) is not true because ≤f ( ≤c.
We observe the following with respect to the difference between prefix and suffix
density which will become useful in separating some parts of the hierarchy.

Proposition 9. Let L ⊆ Y ∗. Then L is ≤p-dense if and only if LR is ≤s-dense.
Equivalently, L is ≤s-dense if and only if LR is ≤p-dense.

Proof. Suppose L is ≤p-dense. Let w ∈ Y ∗ and consider wR. Indeed, wR ≤p v
for some v ∈ L; that is, v = wrx, x ∈ Y ∗. Then vR = xRw ∈ LR. Furthermore,
(w, vr) ∈ ≤s.

Conversely, suppose LR is ≤s-dense. Let w ∈ Y ∗ and consider wR. Then
wR ≤s vR for some v ∈ L; that is, vR = xwR for some x ∈ Y ∗. Indeed, v = wxR

and (w, v) ∈ ≤p.

We now turn to separating the hierarchy of Corollary 5 between the infix and
embedding relations. The following two families can be separated by showing that
they are not densely equivalent using the language {aba}.

Proposition 10. H(≤i) ( H(≤e).

Proof. Consider the language L1 = {aba} and let α be a homomorphism that maps
a to aba. Then α preserves ≤e-density by Proposition 6.

Suppose that L∗
1 is ≤i-dense. Let w = bb. Clearly, bb is not an infix of any word

in L∗
1.

Since L∗
1 is ≤e-dense but L∗

1 is not ≤i-dense, it follows from Theorem 2(3) that
H(≤i) ( H(≤e).
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In the following, we are able to separate the the homomorphisms which preserve
both prefix and suffix density with those that preserve each of prefix and suffix
individually. Moreover, prefix and suffix are both incomparable.

For the proofs which follow, for n ∈ N0, let π(n) be 0 if n is even and 1 otherwise.

Proposition 11. For z ∈ {p, s},

(H(≤p) ∩ H(≤s)) ( H(≤z) ( (H(≤p) ∪ H(≤s)).

Also, H(≤p) 6⊆ H(≤s) and H(≤s) 6⊆ H(≤p).

Proof. Consider the language L = {a2, b, ab} and let Y = {a, b}. We want to show
that L∗ is ≤p-dense over Y ∗. Let w ∈ Y ∗. If w ∈ {λ} ∪ a∗ ∪ b∗ then there exists
v ∈ L∗ such that w ≤p v. Otherwise,

w = an1bm1an2bm2 · · · ankbmk ,

with n1,mk ≥ 0, n2, . . . , nk,m1, . . . ,mk−1 > 0. Consider,

v = (a2)⌊n1/2⌋(ab)π(n1)(b)m1−π(n1) · · · (a2)⌊nk/2⌋(ab)⌊nk⌋(b)nk−π(nk).

Indeed, w ≤p v. Thus, L∗ is ≤p-dense over {a, b}∗.
We would like to show that L∗ is not ≤s-dense over {a, b}∗. Suppose otherwise.

Consider the word w = ba. Then there exists v = u1 · · ·uk with ba ≤s v and k ≥ 1.
Since ba ends with the letter a, necessarily uk = a2, but a2 6= ba, a contradiction.

By Theorem 2, this shows that the ≤p relation is not densely smaller than the
≤s relation and that H(≤p) 6⊆ H(≤s). Furthermore, consider the language LR. By
Proposition 9, LR is ≤s-dense but is not ≤p-dense. Therefore, by Theorem 2, this
shows that the ≤s relation is not densely smaller than the ≤p relation and that
H(≤s) 6⊆ H(≤p). Therefore, (H(≤p) ∩ H(≤s)) ( H(≤p) and (H(≤p) ∩ H(≤s)) (

H(≤s). In addition, H(≤p) ( (H(≤p)∪H(≤s)) and H(≤s) ( (H(≤p)∪H(≤s)).

We still need to separate =e-density from ≤f -density.

Proposition 12. H(=e) ( H(≤f)

Proof. Let L = {a2, b, ba, ab}. and let Y = {a, b}. First we define a homomorphism
α which maps a to a2, b to b, c to ba and d to ab. Indeed, α does not preserve
=e-density by Proposition 5 and since a /∈ im|X(α).

We now want to show that L∗ = im|X(α)∗ is ≤f -dense and hence α preserves
≤f -density. Let w ∈ Y ∗. If w ∈ {λ}∪a∗ ∪ b∗, then there exists v ∈ L∗ with w ≤f v.
Otherwise,

w = bn1am1bn2am2 · · · bnkamk ,

with k ≥ 1, n1,mk ≥ 0,m1, . . . ,mk−1, n2, . . . , nk > 0.

Case 1: Assume that mk is even. Then we rewrite

w = (b)n1(a2)⌊m1/2⌋(ab)π(m1)(b)n2−π(m2) · · ·

· · · (a2)⌊mk−1/2⌋(ab)π(mk−1)(b)nk−π(mk−1)(a2)mk/2.
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Furthermore, (w,w) ∈≤f .

Case 2: Assume that n1 > 0 and mk is odd. Then we rewrite

w = (b)n1−π(m1)(ba)π(m1)(a2)⌊m1/2⌋ · · ·

· · · (b)nk−π(mk)(ba)π(mk)(a2)⌊mk/2⌋.

Furthermore, (w,w) ∈≤f .

Case 3: Assume that n1 = 0, mk is odd and m1 is even. Then we rewrite

w = (a2)m1/2(b)n2−π(m2)(ba)π(m2)(a2)⌊m2/2⌋ · · ·

· · · (b)nk−π(mk)(ba)π(mk)(a2)⌊mk/2⌋.

Furthermore, (w,w) ∈≤f .

Case 4: Assume that n1 = 0, mk is odd and m1 is odd. Then

w2 = am1bn2am2 · · · bnkamkam1bn2am2 · · · bnkamk .

Then we rewrite

w2 = (a2)⌊m1/2⌋(ab)π(m1)(b)n2−π(m1) · · ·

· · · (a2)⌊mk−1/2⌋(ab)π(mk−1)(b)nk−π(mk−1)

(a2)(mk+m1)/2(b)n2−π(m2)(ba)π(m2)(a2)⌊m2/2⌋ · · ·

· · · (b)nk−π(mk)(ba)π(mk)(a2)⌊mk/2⌋.

Furthermore, (w,w2) ∈≤f .
Therefore, L∗ = im|X(α)∗ is ≤f -dense and hence α preserves ≤f -density by

Corollary 4.

Indeed, the last case in the above proof is necessary as shown by the example
where w = aba. If w ∈ L∗, then w = u1u2, where u1 is necessarily ab and u2 is a.
However, a /∈ L. That being said, w2 = abaaba = (ab)(aa)(ba) ∈ L∗.

Note that in the proof above, it would have been immediate to show that L∗

was ≤d-dense since L = LR and thus L∗ is both ≤p and ≤s dense by Proposition 9
and thus is ≤d-dense by Proposition 11. That being said, it was not immediate
that L∗ was ≤f -dense.

Next, we separate the union of the homomorphisms preserving prefix and suffix
density with those preserving infix density.

Proposition 13. H(≤p) ∪ H(≤s) ( H(≤i).

Proof. The inclusion is immediate from Corollary 5. For the strictness, consider
the language L = {a2, b, bab, aba, aaab, baaa} ⊆ Y ∗ where Y = {a, b}. We first
prove the following claim:

Claim 1. For each n > 1,m ≥ 0, z = (ba)mban ∈ L∗.
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Proof. First assume that n is odd and m = 0 mod 3. Then

z = ((bab)(aba))m/3(baaa)(a2)⌊n/2⌋−1.

Assume that n is odd and m = 1 mod 3. Then

z = (b)(aba)((bab)(aba))(m−1)/3(a2)⌊n/2⌋.

Assume that n is odd and m = 2 mod 3. Then

z = ((bab)(aba))(m+1)/3(a2)⌊n/2⌋.

Assume that n is even and m = 0 mod 3. Then

z = ((bab)(aba))m/3(b)(a2)n/2.

Assume that n is even and m = 1 mod 3. Then

z = (bab)((aba)(bab))(m−1)/3(a2)n/2.

Assume that n is even and m = 2 mod 3. Then

z = (b)(aba)((bab)(aba))(m−2)/3(b)(a2)n/2.

Let Y$ = Y ∪{$1, $2, $3, $4}, where $1, $2, $3, $4 are new symbols. We will show
that L∗ is ≤i-dense over Y ∗. We define four rewriting rules as follows:

w1 →1 w2 if and only if w1 = x(ba)mbancy, w2 = x$1cy, x, y ∈ Y ∗
$ ,

m > 0, n > 1, c ∈ {b, $1}, x, y ∈ Y ∗
$ , ba 6≤s x.

w1 →2 w2 if and only if w1 = xbancy, w2 = x$2cy, x, y ∈ Y ∗
$ ,

n > 1, c ∈ {b, $1, $2}, x, y ∈ Y ∗
$ .

w1 →3 w2 if and only if w1 = xabay, w2 = x$3y, x, y ∈ Y ∗
$ .

w1 →4 w2 if and only if w1 = xbaby, w2 = x$4y, x, y ∈ Y ∗
$ .

Furthermore, for each i ∈ {1, 2, 3, 4}, let w1 →
(∗)
i w2 if and only if there exists

n ∈ N and n words y1, . . . , yn ∈ Y ∗
$ such that w1 = y1 →i y2 →i · · · →i yn = w2

and there does not exist any z ∈ Y ∗
$ such that yn →i z.

Let w ∈ Y ∗. We would like to create x, y ∈ Y ∗ such that xwy ∈ L∗. Let

w1, w2, w3, w
′ be any words in Y ∗

$ such that w →
(∗)
1 w1 →

(∗)
2 w2 →

(∗)
3 w3 →

(∗)
4

w′. Let w′ = x1$γ1
x2$γ2

· · · $γk−1
xk and w3 = z1$τ1

z2$τ2
· · · $τl−1

zl where k, l ≥
1, xj , zj ∈ Y ∗ and all $ symbols are in {$1, $2, $3, $4}.

Now, examining the rewriting rules, we see (ba)mban, ban ∈ L∗,m > 0, n > 1
by Claim 1 and also aba, bab ∈ L∗. Thus, it is sufficient to find x, y ∈ Y ∗ such that
xx1, x2, x3, . . . , xk−1, xky ∈ L∗ as this implies xwy ∈ L∗.
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We will show that for each i, 2 ≤ i ≤ k − 1 with k ≥ 2, it must be true that
a /∈ alph(xi). Suppose otherwise.

First, an, n > 1 cannot be an infix of any z2, . . . , zl if l > 1. Otherwise, $ja
n

must be an infix of w3 for some j ∈ {1, 2} and the first two rewriting rules can
only leave a b or a $ symbol after a $ symbol. In addition, ban, n > 1 cannot be
an infix of z1. Thus, an, n > 1 cannot be an infix of xi, otherwise $γi−1

an must be
an infix of w′, γi−1 can be neither 1 nor 2 and if γi−1 is 3 or 4, then ban ≤i w3, a
contradiction.

Thus, xi ∈ {a, abna, abm, bma | n > 1,m ≥ 1} since an, aba, bab are not infixes
of xi for n > 1. Suppose that xi = av, v ∈ Y ∗. Then γi−1 ∈ {3, 4}. If it is 3,
then abaav ≤i w2, a contradiction. If it is 4, then babav ≤i w3, a contradiction.
Hence xi = bma,m ≥ 1 and $γi−1

bma$γi
≤i w′. If γi = 3, then baab ≤i w3, a

contradiction. If γi = 4, then aba ≤i w4. So γi is either 1 or 2. If it is 2, then
babanc ≤i w1, c ∈ {b, $1}. Furthermore, it cannot be 1 since ba ≤s bma.

Hence, for each i, 2 ≤ i ≤ k − 1 with k ≥ 2, it is true that xi ∈ b∗ ⊆ L∗.
Thus, we still need to verify that there exists x, y with xx1, xky ∈ L∗. Indeed, x1

must be of the form an1bn2an3 , n1, n2 ≥ 0 and n3 either 0 or 1. If n3 = 0, then x
can be empty if n is even and a if n1 is odd. Also, n2 > 0 necessarily. So assume
n2 > 0 and n3 = 1. We reach a contradiction similarly to the case above. Similarly
for the case of x1, xk must also equal an1bn2an3 , n1, n2 ≥ 0, n3 either 0 or 1. If
n1 = 0 or n2 = 0, we are done. Otherwise, $γk−1

must be $3 or $4. If it is $3, then
abaan1b ≤i w2, a contradiction. If it is $4, then baba ≤i w3, a contradiction. Lastly,
if k = 1 then x ∈ a∗b∗a∗, and we are done.

To show that L∗ is not ≤p-dense, let w = abba. It is clear that there does not
exist any v ∈ L∗ such that w ≤p v. Thus L∗ is not ≤p-dense. Moreover, L∗ is not
≤s-dense, since L = LR and by Proposition 9. Then H(≤p)∪H(≤s) ( H(≤i).

Finally, we determine that the inclusion between H(≤f) and H(≤d) is strict.

Proposition 14. H(≤f) ( (H(≤p) ∩ H(≤s)).

Proof. The inclusion is immediate from Theorem 2. For the strictness of the in-
clusion, consider the language L = Y 4 ∪ {b} \ {baab} over Y = {a, b}. We need to
prove that L∗ is both prefix and suffix dense. It is enough to show that it is prefix
dense, since L = LR using Proposition 9.

For w = a1 · · · am ∈ Y +,m ≥ 1, aj ∈ Y, 1 ≤ j ≤ m, let χ(w, n) = d1d2d3d4, di ∈
Y, 1 ≤ i ≤ 4, and di = ai+n−1 for 1 ≤ i ≤ 4, where we define am+1 = am+2 =
am+3 = a

Let w ∈ Y ∗. If w = λ then we can construct v ∈ L∗ such that w ≤p v. Assume
then that w ∈ Y +. Consider the two sequences {ci}i∈N over N and {ui}i∈N over
Y ∗ defined as follows:

ci =



















1, if i = 1,

ci−1 + 4, if i > 1, ci−1 + 4 ≤ |w| and χ(w, ci−1) 6= baab,

ci−1 + 1, if i > 1, ci−1 + 1 ≤ |w| and χ(w, ci−1) = baab,

undefined, otherwise,
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and

ui =











χ(w, ci), if ci > 0 and χ(w, ci) 6= baab,

b, if ci > 0 and χ(w, ci) = baab,

undefined, otherwise.

For each i, 1 ≤ i < l, |u1 · · ·ui| = ci+1 − 1. Let l be the largest integer such that ul

is defined (which must exist by the definitions) and consider the word v = u1 · · ·ul.
Thus l is also the largest integer such that cl is defined.

Claim 2. For each i, 1 ≤ i ≤ l, u1 · · ·ul ≤p waaa.

Proof. The claim follows when i = 1. Let j satisfy 1 ≤ j < l and assume that
u1 · · ·uj ≤p waaa. As noted above, cj+1 = |u1 · · ·uj | + 1. Consider uj+1 which
is the same as χ(w, cj+1) if χ(w, cj+1) 6= baab and b otherwise. If j + 1 < l, then
u1 · · ·uj+1 ≤p w and if j + 1 = l, then u1 · · ·uj+1 ≤p waaa.

Thus, u1 · · ·ul ≤p waaa. We would like to still show that w ≤p u1 · · ·ul. This
follows since 0 ≤ |u1 · · ·ul| − |w| ≤ 3. Furthermore, χ(w, ci) 6= baab is in L and b is
also in L. Hence, L∗ is ≤s-dense.

We now show that L∗ is not ≤f -dense. Assume otherwise and let w = baab.
Then there exists n ∈ N such that wn ∈ L∗. That is, (baab)n = u1 · · ·ul, ui ∈ L, 1 ≤
i ≤ l. Necessarily, u1 = b and ui = aabb for each i, 1 ≤ i ≤ l, a contradiction.

Combining Corollary 5 with Propositions 7, 8, 10, 11, 12, 13 and 14, we get the
following hierarchy which is far more detailed than the one of Corollary 5.

Theorem 3. For z ∈ {p, s},

H(=e) ( H(≤f) = H(≤c) ( H(≤d) = (H(≤p) ∩ H(≤s)) ( H(≤z) (

(H(≤p) ∪ H(≤s)) ( H(≤i) ( H(≤e).

Moreover, H(≤p) 6⊆ H(≤s) and H(≤s) 6⊆ H(≤p).

This is quite different from the special case for endomorphisms in Theorem 1
and for weak-coding homorphisms in Corollary 3 where the hierarchy collapses.

The property of being densely equivalent was important to establish which
parts of the hierarchy collapsed and which did not. Despite this, we used ad hoc
techniques in order to determine which two relations were densely equivalent. It is
an open question as to whether the results of this hierarchy can be condensed into
a more general and concise formulation.

6 Deciding if a homomorphism preserves density

We turn briefly to the question of deciding whether or not a homomorphism pre-
serves different types of density. It turns out that we have already done most of the
difficult work for most types. The proposition uses the construct of an a-transducer,
which is essentially a nondeterminsitic gsm which can output on λ-input [1].
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Proposition 15. Let α : X∗ → Y ∗ be an effectively given homomorphism and let
̺ be a binary relation on Γ∗ which is transitive, reflexive and compatible with α.
Then the following conditions hold:

1. If it is decidable whether a regular language L ⊆ Y ∗ is ̺-dense over Y ∗, then
it is decidable whether α preserves density.

2. If it is decidable whether ̺−1(L) = Y ∗ for every regular language L ⊆ Y ∗,
then it is decidable whether α preserves density.

3. If there is an a-transducer M̺ which satisfies M̺(L) = ̺−1(L) for every
L ⊆ Y ∗, then it is decidable whether α preserves density.

Proof. (1) This follows from Corollary 4 and the fact that im|X(α) is finite.

(2) Let L = im|X(α)∗ which is regular. We can decide whether ̺−1(L) = Y ∗.
Furthermore, ̺−1(L) = Y ∗ if and only if for every u ∈ Y ∗, there exists v ∈ L such
that (u, v) ∈ ̺. Thus, im|X(α)∗ is ̺-dense if and only if ̺−1(im|X(α)∗) = Y ∗,
which is decidable.

(3) If there is an a-transducer (or indeed a nondeterministic gsm mapping) M̺

which satisfies M̺(R) = ̺−1(R), for every R ⊆ Y ∗, then L′ = M̺(im|X(α)∗) is reg-
ular since the family of regular languages is closed under arbitrary a-transductions.
Further, the universe problem (given a language L, is L = Y ∗?) is decidable for
the family of regular languages and thus we can decide if L′ = Y ∗.

As an immediate consequence, we obtain decidability for the five relations
≤e,≤p,≤s,≤i,=e. For the case of the equality relation, one can decide this prop-
erty trivially using a much simpler characterization of Proposition 5, whereby, one
need only check whether Y ⊆ im|X(α) in order to determine whether or not a
homomorphism α preserves =e-density. Similarly, for the embedding relation, it
follows from Proposition 6 that we need only verify that alph(im|X(α)) = Y .

In addition, by Proposition 7, we know a homomorphism preserves ≤d-density
if and only if it preserves both prefix and suffix density. Hence, by Proposition 15,
we can decide whether a homomorphism preserves ≤d-density.

The problem is not so easy to decide for power and commutation density how-
ever. We need to start with the following characterization.

Proposition 16. Let α : X∗ → Y ∗ be a homomorphism. Then the following are
equivalent:

1. α preserves ≤f-density.

2. α preserves ≤c-density.

3. For every w ∈ Y ∗, there exists v ∈ im|X(α)∗ and an integer n, 1 ≤ n ≤
max(α) such that v = wn.
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4. For every w ∈ Y ∗, there exists an integer n, 1 ≤ n ≤ max(α) and either
w ∈ inf(im|X(α)) and there exists v ∈ im|X(α)∗ such that v = wn or there
exists n + 1 ordered pairs,

(y0, y
′
0), (y1, y

′
1), . . . , (yn, y′

n),

with yiy
′
i ∈ im|X(α) for 0 ≤ i ≤ n, y0 = y′

n = λ, {y′
0, . . . , y

′
n−1, y1, . . . , yn} ⊆

Y + and (y′
i)

−1w(yi+1)
−1 ∈ im|X(α)∗, 0 ≤ i < n.

Proof. (1) ⇔ (2) Immediate from Lemma 8.
(1) ⇒ (3) Assume that α preserves ≤f -density. Let w ∈ Y ∗. Then there exists

a minimal integer n ≥ 1 and v ∈ im|X(α)∗ with v = wn. If n ≤ max(α) then we
are done. Assume that n > max(α). Thus, wn = x1x2 · · ·xm, xi ∈ im|X(α). Thus,
for some integer j, 1 ≤ j ≤ max(α), there exists k1, k2 with k1 < k2 such that
|x1 · · ·xk1

| = l1|w| + j, l1 ∈ N0 and |x1 · · ·xk2
| = l2|w| + j, l2 ∈ N0. Thus, consider

v′ = x1 · · ·xk1
xk2+1 · · ·xm. Then, v′ = wn+l1−l2 ∈ im|X(α)∗. This contradicts the

minimality of n.
(3) ⇒ (4) Let w ∈ Y ∗. Then there exists v ∈ im|X(α)∗ and an integer n,

1 ≤ n ≤ max(α) such that v = wn with n minimal. If w ∈ inf(im|X(α)), then
we are done. Assume that w /∈ inf(im|X(α)). Thus, v = wn = x1x2 · · ·xm,
1 ≤ n ≤ max(α), xi ∈ im|X(α), 1 ≤ i ≤ m with m > 1. If n = 1, then there exists
(λ, x1), (xm, λ) such that x1, xm ∈ im|X(α) and (x1)

−1x1 · · ·xm(xm)−1 ∈ im|X(α)∗

(m must be greater than 1 and if m = 2 then (x1)
−1x1 · · ·xm(xm)−1 = λ ∈

im|X(α)∗). Assume that n > 1. Since w /∈ inf(im|X(α)), there exists i1, i1, . . . , in
such that i0 = 1 < i1 < · · · < in−1 < in = m where |x1 · · ·xij−1

| < j|w| <
|x1 · · ·xij

|, 1 ≤ j ≤ n − 1.

w w w· · ·

xi0

· · · y1 y′

1 · · ·
xi1

y2 y′

2 · · ·
xi2

yn−1 y′

n−1 · · ·
xin−1

xin

For each j, consider the ordered pair (yj , y
′
j) where yj is the prefix of xij

of length

j|w| − |x1 · · ·xij−1
| and y′

j = (yj)
−1xij

. Both yj 6= λ and y′
j 6= λ by the minimality

of n. So we have ordered pairs,

(λ, x1), (y1, y
′
1), . . . , (yn−1, y

′
n−1), (xm, λ).

Also, let y′
0 = x1 and yn = xm. Indeed, yjy

′
j ∈ im|X(α) for all j, 1 ≤ j ≤ n − 1

and x1, xm ∈ im|X(α). Moreover, for each j, 1 ≤ j ≤ n − 2, xij+1 · · ·xij+1−1 ∈
im|X(α)∗, x2 · · ·xi1−1 ∈ im|X(α)∗ and xin−1+1 · · ·xm−1 ∈ im|X(α)∗. Hence, for
each k, 0 ≤ k < n, (y′

k)−1w(yk+1)
−1 ∈ im|X(α)∗.

(4) ⇒ (1) Let w ∈ Y ∗. Then there exists 1 ≤ n ≤ max(α) satisfying the stated
assumptions. If w ∈ inf(im|X(α)) then there exists v ∈ im|X(α)∗ with v = wn, by
assumption. Otherwise, there exists n+1 ordered pairs, (y0, y

′
0), . . . , (yn, y′

n) where
yiy

′
i ∈ im|X(α), 0 ≤ i ≤ n, y0 = y′

n = λ and {y′
0, . . . , y

′
n−1, y1, . . . , yn} ⊆ Y + and

zi = (y′
i)

−1w(yi+1)
−1 ∈ im|X(α)∗, 0 ≤ i < n. Consider

v = y′
0z0y1y

′
1z1y2 · · · yn−1y

′
n−1zn−1yn.
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Indeed, v ∈ im|X(α)∗. Furthermore, v = wn.

We can then use this characterization to show that determining whether a ho-
momorphism preserves power density amounts to deciding the universe problem on
regular languages. The proof uses an NFA which nondeterministically guesses the
n + 1 ordered pairs in the proof above.

Proposition 17. Let α : X∗ → Y ∗ be an effectively given homomorphism. Then
we can construct a regular language L whereby L = Y ∗ if and only if α preserves
≤f-density.

Proof. Let M be a nondeterministic finite automata which nondeterministically
guesses an integer n, 1 ≤ n ≤ max(α) and n + 1 ordered pairs

(y0, y
′
0), . . . , (yn, y′

n),

where y0 = y′
n = λ, yiy

′
i ∈ im|X(α) for each i, 0 ≤ i ≤ n and also the set

{y′
1, . . . , y

′
n, y2, . . . , yn+1} ⊆ Y +. Then, on input w ∈ Y ∗ \ inf(im|X(α)) (intersect

Y ∗ with the complement of inf(im|X(α)) which is regular), in parallel, for each
i, 0 ≤ i ≤ n, M verifies that (y′

i)
−1w(yi+1)

−1 ∈ im|X(α)∗. Let L1 = L(M).
Furthermore, let L2 = {w | w ∈ inf(im|X(α)), wn ∈ im|X(α)∗, 1 ≤ n ≤ max(α)}.
It is clear that L2 is finite and can be effectively constructed. Let L = L1 ∪ L2.
Then L is regular and L = Y ∗ if and only if α preserves ≤f -density, by Proposition
16.

Combining Proposition 17 and 16, and the fact that the universe problem for
regular languages is decidable [2], we get decidability for ≤c- and ≤f -density. Col-
lecting the decidability over all relations together, we obtain:

Corollary 6. Let α : X∗ → Y ∗ be an effectively given homomorphism. Then it is
decidable whether α preserves ̺-density where ̺ ∈ {=e,≤f ,≤c,≤d,≤p,≤s,≤i,≤e}.
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