
Acta Cybernetica 19 (2009) 517–536.

Complexity of Problems Concerning Reset Words

for Some Partial Cases of Automata

Pavel Martyugin∗

Abstract

A word w is called a reset word for a deterministic finite automaton A

if it maps all states of A to one state. A word w is called a compressing to

M states for a deterministic finite automaton A if it maps all states of A to

at most M states. We consider several subclasses of automata: aperiodic, D-

trivial, monotonic, partially monotonic automata and automata with a zero

state. For these subclasses we study the computational complexity of the

following problems. Does there exist a reset word for a given automaton?

Does there exist a reset word of given length for a given automaton? What

is the length of the shortest reset word for a given automaton? Moreover, we

consider complexity of the same problems for compressing words.

Keywords: synchronization, automata, reset words, computational com-

plexity

1 Synchronization

A deterministic finite automaton (DFA) A is a triple 〈Q,Σ, δ〉, where Q is a finite
set of states, Σ is a finite alphabet, and δ : Q×Σ → Q is a totally defined transition
function. The function δ extends in a unique way to an action Q × Σ∗ → Q of the
free monoid Σ∗ over Σ; this extension is also denoted by δ. We denote δ(q, w) by
q.w. We also define for S ⊆ Q, w ∈ Σ∗, δ(S,w) = S.w = {q.w|q ∈ S}.

A DFA A is called synchronizing if there exists a word w ∈ Σ∗ whose action
resets A , that is, leaves the automaton in one particular state no matter at which
state in Q it started: δ(q, w) = δ(q′, w) for all q, q′ ∈ Q. Any word w with this
property is said to be a reset or synchronizing word for the automaton.

In [1], Černý produced for each n a synchronizing automaton with n states
and 2 input letters whose shortest reset word has length (n − 1)2 and conjectured
that these automata represent the worst possible case, that is, every synchronizing
automaton with n states can be reset by a word of length (n− 1)2. The conjecture
is arguably the most longstanding open problem in the combinatorial theory of
finite automata.

∗Ural State University, E-mail: martugin@mail.ru

518 Pavel Martyugin

Upper bounds within the confines of the Černý conjecture have been obtained
for the maximum length of the shortest reset words for synchronizing automata
in some special classes, see, e.g., [2, 6, 7, 9, 10, 13, 14]. Some of these classes are
considered in this paper.

One of these classes is the class of commutative DFA. An automaton A =
(Q,Σ, δ) is said to be commutative if its transformation monoid is commutative,
that is, for every state q ∈ Q and for all letters a, b ∈ Σ, δ(q, ab) = δ(q, ba). Rystsov
in [10] proved that every commutative synchronizing automaton with n states has
a reset word of length n − 1. This means that the Černý conjecture is true for
commutative automata.

Another class of DFA considered by Rystsov in [11] is a class of automata with
simple idempotents. Let A = (Q,Σ, δ) be a DFA. Let a ∈ Σ. If δ(Q, a) = Q, then
the letter a is called a permutation. If δ(Q, a2) = δ(Q, a), then the letter a is called
an idempotent. If the letter a is an idempotent and |δ(Q, a)| = |Q| − 1 then a is
called a simple idempotent. If for DFA A all letters are permutations or simple
idempotents, then such an automaton is called an automaton with simple idempo-
tents. Every n-state synchronizing automaton with simple idempotents admits a
reset word of length 2(n − 1)2 (see [11]).

Another natural class of DFA is a class of automata with a zero state. A state
z of a DFA A = 〈Q,Σ, δ〉 is said to be a zero state if δ(z, a) = z for all a ∈ Σ. It
is clear that a synchronizing automaton may have at most one zero state and each
word that resets a synchronizing automaton possessing a zero state must bring all
states to the zero state. A rather straightforward argument shows that any n-state

synchronizing automaton can be reset by a word of length n(n−1)
2 , see, e.g., [10].

This upper bound is in fact tight because, for each n, there exists a synchronizing
automaton with n states and n−1 input letters which cannot be reset by any word

of length less than n(n−1)
2 . In [5] it was proved that for each integer n ≥ 8, there

exists a synchronizing automaton with n states and 2 input letters such that the

length of the shortest reset word for this automaton is
⌈

n2+6n−16
4

⌉

.

Another two classes of DFA can be defined via Greens Relations H and D .
Let M be a transition monoid of some DFA A . Let U, V ⊆ M . Denote UV =
{uv|u ∈ U, v ∈ V }. The relations H and D can be defined on any monoid. Let
M be a finite monoid and u, v ∈ M then uH v ⇔ uM = vM and Mu = Mv;
uDv ⇔ MuM = MvM . An automaton is called aperiodic or H -trivial if its
transition semigroup has no nontrivial H -classes. An automaton is called D-
trivial if its transition semigroup has no nontrivial D-classes. Every synchronizing

strongly connected aperiodic automaton has a reset word of length ⌊n(n+1)
6 ⌋ (see

[9]). Moreover, any synchronizing aperiodic automaton has a reset word of length
n(n−1)

2 .

We also consider another three classes of automata. A DFA A = (Q,Σ, δ) is
called monotonic if its state set admits a linear order ≤ such that for each letter
a ∈ Σ the transformation δ(, a) of Q preserves ≤ in the sense that δ(q, a) ≤ δ(q′, a)
whenever q ≤ q′. Every synchronizing monotonic automaton has a reset word of
length at most n− 1 (see [6]). A DFA is called cyclically monotonic if its state set

Complexity of Problems Concerning Reset Words 519

admits a cyclic order preserving by an action of any letter. Every synchronizing
cyclically monotonic automaton has a reset word of length at most (n − 1)2 (see
[2]).

A deterministic incomplete automaton is an automaton with a partial transition
function (in an incomplete automaton the value δ(q, a) can be undefined on some
pairs (q, a)). A deterministic incomplete automaton is called partially monotonic if
its state set admits a linear order ≤ such that for each a ∈ Σ the partial transforma-
tion δ(, a) preserves the restriction of order to the domain of the transformation.
Every incomplete automaton A = (Q,Σ, δ) can be transformed to a complete au-
tomaton A ′ = (Q∪{end},Σ, δ′) by an adding of one state end such that if for some
q ∈ Q, a ∈ Σ the value δ(q, a) is undefined then δ′(q, a) = end. If the automaton
A is partially monotonic then we call the DFA A ′ partially monotonic too. Every
partially monotonic DFA is an aperiodic automaton with a zero state. Every syn-
chronizing partially monotonic automaton has a reset word of length at most n− 1
(n − 1) + ⌊n−2

2 ⌋. On the other hand, for any n ≥ 6 there exists a 2-letter partially
monotonic DFA such that its shortest reset word has length (n − 1) + ⌊n−2

2 ⌋ (see
[8]).

2 Complexity

It is natural to consider computational complexity of various problems arising from
the study of automata synchronization. Most natural questions are: is the given
automaton synchronizing or not, and what is the length of the shortest reset word
for a given automaton?

In [2], Eppstein presented an algorithm which checks whether the given DFA
A = (Q,Σ, δ) is synchronizing. This algorithm works within O(|Σ| · |Q|2) + |Q|3

times bound. Moreover, for a synchronizing automaton this algorithm finds some
reset word. This word can be not a shortest reset word for A .

In [3], Salomaa proved that the following problem is NP-hard. Let a DFA A

and an integer number L be given. The question is the following: is there a word of
length ≤ L resetting the automaton A . This problem remains NP-complete even
if the input automaton has a 2-letter alphabet.

In [4], Samotij considered another problem. Let a DFA A and an integer
number L be given. The question is the following: is the length of the shortest
reset word for automaton A equal to L. It turns out that this problem is NP-
hard and co-NP-hard. To prove these statements the construction from [3] can be
applied. This method gives also that the considered problem remains NP-hard and
co-NP-hard for 2-letter automata.

There is a further natural problem for DFA. Given a DFA A = (Q,Σ, δ), we
define a rank of the word w ∈ Σ∗ as the cardinality of the image of the transfor-
mation δ(, w) of the set Q. (Thus, in this terminology reset words are exactly
the words of rank 1). In 1978 Pin conjectured that for every M , if an n-state
automaton admits a word of rank at most M , then it also has a word with rank
at most M and of length (n − M)2. But Kari [12] has found a counterexample in

520 Pavel Martyugin

the case n − M = 4. Let some word have a rank M in the automaton A . Then
we say that this word compresses the automaton A to M states. We consider the
complexity of the problem of finding the length of the shortest word compressing
a given automaton to M states.

In the present paper we consider these problems for partial cases of the DFA.
We give a denotation to any considered class of DFA. Let

• DFA be the denotation of the class of all DFA,

• COM be the denotation of the class of commutative automata,

• SIMPID be the denotation of the class of automata with simple idempotents,

• APER be the denotation of the class of aperiodic automata,

• D-TRIV be the denotation of the class of D-trivial automata,

• MON be the denotation of the class of monotonic automata,

• PMON be the denotation of the class of partially monotonic automata,

• ZERO be the denotation of the class of automata with a zero state.

Let C be some class of DFA. Let us give formal definitions of the following
problems.

Problem: SY N(C)
Input: A DFA A = (Q,Σ, δ) from the class C.
Question: Is there a reset word w ∈ Σ∗ for the automaton A ?

Problem: SY N(C,≤ L)
Input: A DFA A = (Q,Σ, δ) from the class C and an integer L > 0.
Question: Is there a reset word w ∈ Σ∗ of length ≤ L for the automaton A ?

Problem: SY N(C,= L)
Input: A DFA A = (Q,Σ, δ) from the class C and an integer L > 0.
Question: Does the shortest reset word w ∈ Σ∗ for the automaton A have

length L?

Problem: COMP (C,M,≤ L)
Input: A DFA A = (Q,Σ, δ) from the class C and integers M,L > 0.
Question: Is there a word w ∈ Σ∗ of length ≤ L such that |δ(Q,w)| ≤ M?

Problem: COMP (C,M,= L)
Input: A DFA A = (Q,Σ, δ) from the class C and integers M,L > 0.
Question: Does the shortest word w ∈ Σ∗ such that |δ(Q,w)| ≤ M have

length L?

Complexity of Problems Concerning Reset Words 521

In applications automata usually have not an arbitrary alphabet, but an alpha-
bet of fixed size. If the input of some PROBLEM contains only automata having
an alphabet of size ≤ k for some fixed k, then we call such a problem k-PROBLEM
(for example, k-SY N(ZERO)).

Let the DFA A = (Q,Σ, δ), |Q| = n, |Σ| = k and the integer L > 0 be input
data. In this paper we obtain the following results.

• The problems SY N(ZERO), SY N(D-TRIV), SY N(MON),
SY N(PMON) can be solved in time O(nk).

• The problems SY N(ZERO,≤ L), SY N(APER,≤ L), SY N(D-TRIV,≤
L), SY N(PMON,≤ L) are NP-complete together with the corresponding
k-problems for k ≥ 2.

• The problems SY N(ZERO,= L), SY N(APER,= L), SY N(D-TRIV,=
L), SY N(PMON,= L) are NP-hard and co-NP-hard together with the cor-
responding k-problems for k ≥ 2.

• The problem SY N(COM) can be solved in time O(kn ln n).

• The problem SY N(COM,≤ L) is NP-complete.

• The problem k-SY N(COM,≤ L) for some fixed k ≥ 1 can be solved in time
O(nk lnn).

• The problem SY N(COM,= L) is NP-hard and co-NP-hard.

• The problem k-SY N(COM,= L) for some fixed k ≥ 1 can be solved in time
O(nk lnn).

• The problem SY N(SIMPID,≤ L) is NP-complete.

• The problem 2-SY N(SIMPID,≤ L) can be solved in time O(n).

• The problem SY N(SIMPID,= L) is NP-hard and co-NP-hard.

• The problem 2-SY N(SIMPID,= L) can be solved in time O(n).

• The problems COMP (MON,M,≤ L) and k-COMP (MON,M,≤ L) for
k ≥ 2 are NP-complete.

• The problems COMP (MON,M,= L) and k-COMP (MON,M,= L) for
k ≥ 2 are NP-hard and co-NP-hard.

The problems SY N(APER) and SY N(SIMPID) can be solved in time
O(kn2) because these problems can be solved in such time for arbitrary input
DFA (not necessarily aperiodic or automata with simple idempotents), see [2].
It follows from [2] that the problems SY N(MON,≤ L) and SY N(MON,= L)

522 Pavel Martyugin

can be solved in time O(kn2) (the algorithm from [2] works with cyclically mono-
tonic automata; any monotonic automaton is cyclically monotonic). The only open
question is what is the complexity of the problems k-SY N(SIMPID,≤ L) and
k-SY N(SIMPID,= L) for fixed k > 2?

For the sequel, we need some notation. We denote by |Q| the cardinality of a
set Q. We denote the set of all subsets of a set Q by 2Q. For a word w ∈ {a, b}∗,
we denote by |w| the length of w and by w[i], where 1 ≤ i ≤ |w|, the ith letter in
w from the left. If 1 ≤ i ≤ j ≤ |w|, we denote by w[i, j] the word w[i] · · ·w[j].

3 Checking the synchronizability

Proposition 3.1. Let C be a subclass of DFA, then
1. The problems SYN(C) and k-SYN(C) for k ≥ 1 can be solved in time O(n2k),

where n is a number of states, k is an alphabet size.
2. The problems SY N(C,≤ L) and k-SY N(C,≤ L) for k ≥ 1 belong to NP.

Proof. From [2] we have that the problem SY N(DFA) can be solved in time
O(n2k). From [3] we have that the problem SY N(DFA,≤ L) belongs to NP. The
problems SY N(C) and k-SY N(C) are partial cases of the problem SY N(DFA).
Therefore they can be solved in time O(n2k) too. The problems SY N(C,≤ L)
and k-SY N(C,≤ L) are partial cases of the problem SY N(DFA,≤ L). Therefore
these problems belong to NP.

Proposition 3.2. The problem SY N(ZERO) can be solved in time O(nk), where
n is a number of states, k is an alphabet size.

Proof. We construct an algorithm checking whether the DFA A is synchronizing or
not. Let q0 be a zero state in automaton A . Our algorithm is a breadth first search
from the state q0 in the automaton A . We move along the arrows in back direction.
If some state q ∈ Q was not visited during the search, then the automaton is not
synchronizing, because there is no word w ∈ Σ such that q.w = q0. Otherwise
the automaton is synchronizing. Every arrow can be used no more than once
during the search. Therefore, the complexity of the algorithm is O(nk), because
the automaton A contains exactly nk arrows.

Proposition 3.3. The problems SY N(D-TRIV) and SY N(PMON) can be
solved in time O(nk), where n is a number of states, k is an alphabet size.

Proof. Any D-trivial automaton is R-trivial. For every R-trivial automaton A =
(Q,Σ, δ) the linear order ≤ can be defined on the set Q such that for any q ∈
Q, a ∈ Σ, q.a ≥ q. Let Q = {1, . . . , n} and 1 < 2 < . . . < n, then for any word
w ∈ Σ∗, n.w = n. Therefore, the state n is a zero state in the automaton A . From
Proposition 3.2, we have that the problem SY N(D-TRIV) can be solved in time
O(nk).

There is a state end in any partially monotonic DFA. The state end is always a
zero state. Therefore, any partially monotonic automaton has a zero state. Hence,
the problem SY N(PMON) can be solved in time O(nk).

Complexity of Problems Concerning Reset Words 523

Proposition 3.4. The problem SY N(MON) can be solved in time O(nk), where
n is a number of states, k is an alphabet size.

Proof. The automaton A is monotonic, therefore there is a linear order ≤ on the
set Q such that for any q1, q2 ∈ Q and a ∈ Σ if q1 ≤ q2 then q1.a ≤ q2.a. Let Q =
{1, . . . , n} and 1 < 2 < . . . < n, then for any word w ∈ Σ∗, 1.w ≤ 2.w ≤ . . . ≤ n.w.
Therefore, a word w is synchronizing if and only if 1.w = n.w.

Let p = max{q ∈ Q|∃w ∈ Σ∗, 1.w = q}. Let v ∈ Σ∗ such that 1.v = p. If
n.w > p for every word w ∈ Σ∗ then n.w > p ≥ 1.w by the choice of p, therefore
the automaton A is not synchronizing. If there is a word u ∈ Σ∗ such that n.u ≤ p,
then the word uv resets the automaton A into the state p (because for any q ∈ Q,
q.uv ≤ n.uv ≤ p.v ≤ p, and q.uv ≥ 1.uv ≥ 1.v = p). Our algorithm finds words
u and v. The letter u[1] can be found in time O(k), then the letter u[2] can be
found in time O(k) and so on. Therefore, the word u can be found in time O(nk).
The word v can be found in the same way in time O(nk). Hence, the problem
SY N(MON) can be solved in time O(nk).

4 Finding the length of the shortest reset words

We will use the classical NP-complete problem SAT to prove the NP-hardness of
different problems.

Problem: SAT
Input: A set of Boolean variables x1, . . . , xn (the value of any variable can

be 0 or 1) and a set of p Boolean expressions (which are called clauses) of kind
ci(x1, . . . , xn) = yi

1 ∨ . . . ∨ yi
si

, i ∈ {1, . . . , p} where yi
j ∈ {xℓ|ℓ ∈ {1, . . . , n}} ∪

{¬xℓ|ℓ ∈ {1, . . . , n}}.
Question: Is there values for variables x1, . . . , xn ∈ {0, 1} such that for any

i ∈ {1, . . . , p}, ci(x1, . . . , xn) = 1?

In [3] and [4] the complexity of the problems SY N(DFA,≤ L) and
SY N(DFA,= L) were considered. In the next proposition we formulate these
results and recall a construction from the proof of these results (the construction
is taken from [3]).

Proposition 4.1.

1. The problems SY N(DFA,≤ L) and k-SY N(DFA,≤ L) for k ≥ 2 are
NP-hard.

2. The problems SY N(DFA,= L) and k-SY N(DFA,= L) for k ≥ 2 are
NP-hard and co-NP-hard.

Proof. 1. The problems SY N(DFA,≤ L) and k-SY N(DFA,≤ L) for k ≥ 2
belong to NP (see Proposition 3.1).

We reduce the problem SAT to the problem 2-SY N(DFA,≤ L). Let the set of
clauses c1(x1, . . . , xn), . . . , cp(x1, . . . , xn) over the variables x1, . . . , xn be an input

524 Pavel Martyugin

of the problem SAT . We are going to construct a 2-letter automaton Adfa =
(Q, {a, b}, δ) and a number L. Let Σ = {a, b}, Q = {q(m, i)|i ∈ {1, . . . , p},m ∈
{1, n + 1} ∪ {end}. Let i ∈ {1, . . . , p},m ∈ {1, . . . , n}, then

q(m, i).a =

{

end, if xm is contained in ci without ¬
q(m + 1, i), otherwise

,

q(m, i).b =

{

end, if ¬xm is contained in ci

q(m + 1, i), otherwise
.

For i ∈ {1, . . . , p}, let q(n + 1, i).a = q(n + 1, i).b = end, end.a = end.b = end. We
put L = n.

An example of the automaton Adfa is represented by the Figure 1. The action
of the letter a is denoted by solid lines. The action of the letter b is denoted by
dotted lines. The figure contains three columns of states. In the i-th column there
are states of kind q(m, i) for fixed i. In any horizontal row there are states of kind
q(m, i) for some fixed m.

x1 ∨ ¬x2 x2 ∨ ¬x3 ¬x1 ∨ ¬x3

x1

x2

x3

1

2

n = 3

n + 1

Figure 1: Automaton Adfa for clauses x1 ∨ ¬x2, x2 ∨ ¬x3, ¬x1 ∨ ¬x3

It is easy to see that the automaton Adfa has polynomial size. It follows from
[3] that there exists a reset word of length L for the automaton Adfa if and only
if there exist values of the variables x1, . . . , xp such that c1(x1, . . . , xn) = . . . =
cp(x1, . . . , xn) = 1. Therefore, the problem 2-SY N(DFA,≤ L) is NP-complete.

Let k > 2. The problem 2-SY N(DFA,≤ L) reduces to the problem
k-SY N(DFA,≤ L) with adding k − 2 new letters. Any new letter acts identically
on the set of states. Moreover, the problem 2-SY N(DFA,≤ L) is a partial case
of the problem SY N(DFA,≤ L). Therefore, the problems SY N(DFA,≤ L) and
k-SY N(DFA,≤ L) for k ≥ 2 are NP-complete.

2. The proof of the NP-hardness of the problems SY N(DFA,= L) and k-
SY N(DFA,= L) for k ≥ 2 is the same. To prove the co-NP-hardness we should
construct the automaton Adfa again using the clauses c1, . . . , cp. Now we put
L = n + 1. Then we ask: does the shortest reset word for the automaton Adfa

Complexity of Problems Concerning Reset Words 525

has length L. The length of the shortest reset word for the automaton Adfa is less
or equal to L = n + 1, because there are only n + 1 rows of states and the state
end in the automaton Adfa and every letter maps every state from the some row
to a state from the next row or to the state end. The shortest reset word for the
automaton Adfa has length L if and only if there are no values for the variables
x1, . . . , xn such that c1(x1, . . . , xn) = . . . = cp(x1, . . . , xn) = 1. Therefore the
problems SY N(DFA,= L) and k-SY N(DFA,= L) for k ≥ 2 are co-NP-hard.

Now we consider the same problems for some subclasses of automata. It is very
easy to prove the NP-hardness for these subclasses because the automaton Adfa

belongs to each of these classes.

Proposition 4.2. 1. The problems SY N(ZERO,≤ L), SY N(APER,≤ L),
SY N(D-TRIV,≤ L), SY N(PMON,≤ L) are NP-complete together with the cor-
responding k-problems for k ≥ 2.

2. The problems SY N(ZERO,= L), SY N(APER,= L), SY N(D-TRIV,=
L), SY N(PMON,= L) are NP-hard and co-NP-hard together with the correspond-
ing k-problems for k ≥ 2.

Proof. Let us prove that the DFA Adfa = (Q, {a, b}, δ) is a D-trivial, aperiodic,
partially monotonic automaton with a zero state. Is can be easily proved that the
state end is a zero state in the automaton Adfa. Therefore Adfa is an automaton
with a zero state.

Now we prove that the automaton Adfa is partially monotonic. Let us define
the linear order ≤ on the set Q\{end}. We put q(m1, i1) ≤ q(m2, i2), if i1 < i2,
or i1 = i2 and m1 ≤ m2. It is easily proved that if q, q′ ∈ Q\{end}, q ≤ q′ and
α ∈ {a, b} such that q.α 6= end and q′.α 6= end then q.α ≤ q′.α. Therefore Adfa is
partially monotonic.

Now we prove that the automaton Adfa is D-trivial. Let M be a transition
monoid of the DFA Adfa. Let words u, v ∈ Σ∗ act on the state Q as different
transitions. This means that there is a state q ∈ Q such that q.u 6= q.v. It is easy
to see that q 6= end, therefore q = q(m, i) for some m ∈ {1, . . . , n}, i ∈ {1, . . . , p}.
We put q(n+2, i) = end for any i ∈ {1, . . . , p}. From the definition of the Adfa, we
have that q.u = q(m1, i) and q.v = q(m2, i) for some m1 6= m2. Let m1 < m2. Let
us take f, g ∈ M . The state q.fvg is equal to q(m3, i) for some m3 ≥ m2 > m1.
Hence, fvg 6= λuλ, for any f, g ∈ M , where λ is an empty word. Therefore,
MuM 6= MvM and (u, v) /∈ D . Thus, the automaton Adfa is D-trivial. Every
D-trivial automaton is aperiodic, therefore Adfa is aperiodic.

5 Commutative automata

Proposition 5.1. The problem SY N(COM) can be solved in time O(kn ln n),
where n = |Q|, k = |Σ|.

Proof. Let Σ = {a1, . . . , ak}. Every synchronizing commutative DFA A with n
states can be synchronized by a word of length n − 1 (see [10]). Whence, there

526 Pavel Martyugin

exists a reset word for the automaton A , containing at most n − 1 occurrences
of the letter a1, at most n − 1 occurrences of the letter a2, and so on. If we add
one extra letter to a reset word then we obtain a reset word again. Moreover, the
letters contained in a reset word can be permuted and the obtained word will be
a reset word again. Therefore, the word w = an−1

1 an−1
2 . . . an−1

k synchronizes every
n-state automaton with alphabet {a1, . . . , ak}. It means that |Q.w| = 1 if and only
if the automaton A is synchronizing. The value Q.w can be calculated in time
O(kn ln n), using the famous idea of the fast power calculation.

If the transformation defined by some word u is known, then for every set
S ⊆ Q, the set S.u can be calculated in time O(n). Let a ∈ Σ. The transformation
defined by the word an−1 can be calculated in time O(n ln n) using the fast power
calculation. Therefore, if we already know the set Q.an−1

1 an−1
2 . . . an−1

j−1 , then the

calculation of the set Q.an−1
1 an−1

2 . . . an−1
j−1 an−1

j takes time O(n ln n). Whence, the
set Q.w can be calculated in time O(kn ln n). When all the calculations are finished,
we should look at the cardinality of the set Q.w. If |Q.w| = 1, then the automaton
A is synchronizing, if |Q.w| 6= 1, then A is not synchronizing. The proposition is
proved.

Proposition 5.2. Let k ≥ 1, then the problems k-SY N(COM,≤ L) and k-
SY N(COM,= L) can be solved in time O(nk lnn), where n = |Q|.

Proof. Every synchronizing commutative automaton A = (Q,Σ, δ) with n states
has a reset word of length at most n−1. Let Σ = {a1, . . . , ak}. If we take a shortest
reset word and place its letters in the alphabetic order, we obtain a shortest reset
word of kind as1

1 as2

2 . . . ask

k . Therefore we can search a shortest reset word among
the words of this kind and length at most n − 1.

If the numbers s1, . . . , sk−1 are fixed, then the set Q.as1

1 as2

2 . . . a
sk−1

k−1 can be
found. For fixed numbers s1, . . . , sk−1, the number sk can be found by the bi-
nary search as a minimal s such that |Q.as1

1 as2

2 . . . a
sk−1

k−1 as
k| = 1. Every set of

the form Q.as1

1 as2

2 . . . a
sk−1

k−1 and the sets Q.as1

1 as2

2 . . . as
k (which appear during the

binary search) can be calculated in time O(kn ln n) using the fast power calcu-
lation. The number k is fixed, hence O(kn ln n) = O(n ln n). Therefore, the
shortest reset word of language as1

1 as2

2 . . . a∗

k can be found in time O(n ln n) for
every vector (s1, . . . , sk−1) with s1 + . . . + sk−1 < n. The number of these vec-
tors is

(

n+k−2
k−1

)

= O(nk−1). To find the answer, the length of the shortest reset
word should be compared with L. The complete working time of the algorithm is
O(nk lnn). The proposition is proved.

Proposition 5.3. The problem SY N(COM,≤ L) is NP-complete. The problem
SY N(COM,= L) is NP-hard and co-NP-hard.

Proof. Let us consider the proof of NP-completeness of the problem
SY N(DFA,≤ L) from [4] (it is called there SYNCH WORD). We prove that the
automaton from this proof is commutative. We reduce the problem SAT to the
problem SY N(COM,≤ L). Let the set of clauses
c1(x1, . . . , xn), . . . , cp(x1, . . . , xn) over the boolean variables x1, . . . , xn be an input

Complexity of Problems Concerning Reset Words 527

of the problem SAT . We are going to construct an automaton Acom = (Q,Σ, δ)
and a number L such that there exists a reset word of length L for the automaton
Acom if and only if there exist values of the variables x1, . . . , xn such that
c1(x1, . . . , xn) = 1, . . . , cp(x1, . . . , xn) = 1.

Let Acom = (Q,Σ, δ), where Q = {v1, . . . , vn, q1, . . . , qp, end},
Σ = {a1, b1, . . . , an, bn}, and the function δ is the following:

For m ∈ {1, . . . , n}, vm.am = vm.bm = end,

for j ∈ {1, . . . , n}, j 6= m, vm.aj = vm.bj = vm,

For i ∈ {1, . . . , p}, m ∈ {1, . . . , n},

qi.am =

{

end, if xm is contained in ci without ¬
qi, otherwise

,

qi.bm =

{

end, if ¬xm is contained in ci

qi, otherwise
,

For m ∈ {1, . . . , n}, end.am = end.bm = end.

An example of the automaton Acom for clauses x1∨¬x2, x2∨¬x3 and ¬x1∨¬x3 is
represented by Figure 2. We put L = n. It is evident that the size of the automaton
Acom is polynomial with respect to the input size.

v1

v2

v3

q1

q2

q3

end

x1

x2

x3

¬x2 ∨ x1

¬x3 ∨ x2

¬x1 ∨ ¬x3

a1, b1

a2, b2

a3, b3

a2, b2, a3, b3

a1, b1, a3, b3

a1, b1, a2, b2

a1, b2

a2, b3

b1, b3

a2, b1, a3, b3

a1, b1, b2, a3

a1, a2, b2, a3

Figure 2: Automaton Acom for clauses x1 ∨ ¬x2, x2 ∨ ¬x3, ¬x1 ∨ ¬x3

There is no letter which maps the state end to another state. Whence, the
automaton Acom can be synchronized only to the state end and the states v1, . . . , vn

should be mapped to the state end. Therefore, for every m ∈ {1, . . . , n} one of the
letters am and bm should be used. This means that there is no reset word of length
less than n.

528 Pavel Martyugin

Let there exist values of the variables x1, . . . , xn such that c1(x1, . . . , xn) =
1, . . . , cp(x1, . . . , xn) = 1. Consider the word w of length n where

w[m] =

{

am, if xm = 1
bm, if xm = 0

for m ∈ {1, . . . , n}.

For every i ∈ {1, . . . , p}, ci(x1, . . . , xn) = 1. Therefore there exists a number m
such that xm without ¬ is contained in ci and xm = 1, in this case w[m] = am;
or ¬xm is contained in ci and xm = 0, in this case w[m] = bm. In both cases
qi.w[m] = end. Therefore Q.w = {end}.

Assume that there exists a reset word w of length n for the automaton Acom.
For each m ∈ {1, . . . , n} there exists one and only one of letters am and bm in the
word w. We put

xm =

{

1, if am is contained in w
0, if bm is contained in w

.

If the letter am maps the state qi to the state end, then the value xm = 1 provides
ci = 1. If the letter bm maps the state qi to the state end, then the value xm = 0
provides ci = 1. Thus c1(x1, . . . , xn) = 1, . . . , cp(x1, . . . , xn) = 1.

Now we prove that the automaton Acom is commutative. Let α, β ∈ Σ.

• Let m ∈ {1, . . . , n}. If α /∈ {am, bm} and β /∈ {am, bm}, then vm.αβ =
vm.βα = vm, else vm.αβ = vm.βα = end.

• Let i ∈ {1, . . . , p}. If qi.α 6= end and qi..β 6= end, then qi.αβ = qi.βα = qi,
else qi.αβ = qi.βα = end.

• end.αβ = end.βα = end.

Whence the automaton Acom is commutative.
For any synchronizing commutative automaton A = (Q,Σ, δ) the length of

the shortest reset word does not exceed |Q| − 1 (see [10]). This means that if
L ≥ |Q| − 1, then for solving problem SY N(COM,≤ L) it is enough to check
whether the automaton is synchronizing. It can be done in polynomial time. Thus,
the problem SY N(COM,≤ L) is contained in the class NP.

The proof of the NP-hardness of the problem SY N(COM,= L) is the same.
Our proof of the co-NP-hardness and the proof from [4] are different (the proof
from [4] is more complicated). To prove the co-NP-hardness we should construct
the automaton Acom again using the clauses c1, . . . , cp. Now we put L = n+1. Then
we ask the question: is it correct that a shortest reset word for the automaton Acom

has length L. The shortest reset word for the automaton Acom has length L if and
only if there are no values for the variables x1, . . . , xn such that c1(x1, . . . , xn) =
. . . = cp(x1, . . . , xn) = 1. Therefore the problem SY N(COM,= L) is co-NP-hard.
The proposition is proved.

Thus, the problems k-SY N(COM,≤ L) and k-SY N(COM,= L) for a fixed
number k ≥ 1 can be solved in polynomial time, but at the same time the problems
SY N(COM,≤ L) and SY N(COM,= L) are hard.

Complexity of Problems Concerning Reset Words 529

6 Automata with simple idempotents

A construction similar to the construction of the automaton Acom can be used to
estimate the computational complexity of problems stated for the class of DFA with
simple idempotents. As for commutative automata, the complexity of the problems
SY N(SIMPID,≤ L) and SY N(SIMPID,= L) differ from the corresponding 2-
problems.

Proposition 6.1. The problem SY N(SIMPID,≤ L) is NP-complete. The prob-
lem SY N(SIMPID,= L) is NP-hard and co-NP-hard.

Proof. We reduce the problem SAT to the problem SY N(SIMPID,≤ L).

Let the input of the problem SAT is a set of clauses c1(x1, . . . , xn), . . . ,
cp(x1, . . . , xn) over the variables x1, . . . , xn. We are going to construct an automa-
ton Asid = (Q,Σ, δ) and a number L such that there exists a reset word of length
L for the automaton Asid if and only if there exist values of the variables x1, . . . , xp

such that c1(x1, . . . , xn) = 1, . . . , cp(x1, . . . , xn) = 1.

Let Asid = (Q,Σ, δ), where Q = {v1, . . . , vn, q1, . . . , qp, u, r1, . . . , rp, end}, Σ =
{a1, b1, . . . , an, bn, z, y1, . . . , yp}, and the function δ is the following:

For m ∈ {1, . . . , n}, vm.am = vm.bm = u, u.am = u.bm = vm

For j ∈ {1, . . . , n}, j 6= m, vm.aj = vm.bj = vm

For i ∈ {1, . . . , p}, m ∈ {1, . . . , n},
if xm is contained in ci without ¬, then qi.am = ri, ri.am = qi

else qi.am = qi, ri.am = ri

if ¬xm is contained in ci, then qi.bm = ri, ri.bm = qi

else qi.bm = qi, ri.bm = ri

For q ∈ Q, q.z =

{

end, if q = u
q, otherwise

For i ∈ {1, . . . , p}, and q ∈ Q, q.yi =

{

end, if q = ri

q, otherwise

For m ∈ {1, . . . , n}, i ∈ {1, . . . , p}, end.am = end.bm = end.yi = end.z = end.

An example of the automaton Asid for clauses x1∨¬x2, x2∨¬x3 and ¬x1∨¬x3

is represented by Figure 3. We put L = 2n + 2p + 1. It is obvious that the size
of the automaton Asid is a function with respect to the input size. The letters
a1, . . . , an, b1, . . . , bn are permutations of the set Q, the letters z, y1, . . . , yp are
simple idempotents. Whence Asid is an automaton with simple idempotents.

The state end can be mapped only to the state end. Therefore the automaton
Asid can be synchronized only to the state end. The automaton Asid contains
n + 2p + 2 states. At most one state (except end) can be mapped to the state end
under an action of one letter. The only letters that map some states to the state
end are z, y1, . . . , yp. This means that every reset word should contain at least
n+2p+1 letters from the set {z, y1, . . . , yp}. Furthermore, a word maps the states

530 Pavel Martyugin

v1

v2

v3

u

r1

r2

r3

q1

q2

q3

x1

x2

x3

x1 ∨ ¬x2

x2 ∨ ¬x3

¬x1 ∨ ¬x3

end

Σ\{a1, b1}

Σ\{a2, b2}

Σ\{a3, b3}

y1, y2, y3 Σ

Σ\{y1, a1, b2}

Σ\{y2, a2, b3}

Σ\{y3, b1, b3}

Σ\{a1, b2}

Σ\{a2, b3}

Σ\{b1, b3}

a1, b1

a2, b2

a3, b3

z

y1

y2

y3

a1, b2

a2, b3

b1, b3

Figure 3: Automaton Asid for clauses x1 ∨ ¬x2, x2 ∨ ¬x3, ¬x1 ∨ ¬x3

v1, . . . , vn to the state end only if it contains a letter from every pair {am, bm} for
m ∈ {1, . . . , n}. Therefore there is no reset word of length less than 2n + 2p + 1.

Let there exist values of the variables x1, . . . , xn such that c1(x1, . . . , xn) =
. . . = cp(x1, . . . , xn) = 1. We construct a word w ∈ Σ∗ of length 2n + 2p + 1. We
put w[1, p + 1] = zy1 . . . yp. The states u, r1, . . . , rp map to the state end under

the action of the word w[1, p + 1]. We put w[p + 2] =

{

a1, if x1 = 1
b1, if x1 = 0

and

w[p + 3] = z. In this case the state v1 also maps to the state end. Let after the
variable x1 get value, t1 of clauses ci1(1), . . . , ci1(t1) become true (=1 independently
of the values of x2, . . . , xn). Then we put w[p + 4, p + t1 + 3] = yi1(1) . . . yi1(t1),
and the states qi1(1), . . . , qi1(t1) map to the state end. In the same way, we put

w[p+t1+4] =

{

a2, if x2 = 1
b2, if x2 = 0

and w[p+t1+5] = z. Let then the variable x2 get

value, t2 of the clauses ci2(1), . . . , ci2(t2) become true (we consider only the clauses
been false before the variable x2 get a value). We put w[p+ t1 +6, p+ t1 + t2 +5] =
yi2(1) . . . yi2(t2). We repeat this process for all variables. For every variable xi a
number ti is defined. All the clauses becomes true after all the variables get their
values. Therefore t1 + . . . + tn = p, and the length of the word w is equal to
2n + 2p + 1. Furthermore, Q.w = end.

Assume that there exists a reset word w of length 2n + 2p + 1 for the automa-
ton Asid. If w is a reset word, then it contains at least n + 2p + 1 letters from
the set {z, y1, . . . , yp} and just one letter from every pair {am, bm}. The states
q1, . . . , qp map to the states r1, . . . , rp under the action of word w, because for
each m ∈ {1, . . . , n} the letter am or the letter bm is contained in w. We put

xm =

{

1, if am is contained in w
0, if bm is contained in w

, m ∈ {1, . . . , n}. If the letter am maps the

state qi to ri, then the equality xm = 1 provides ci(x1, . . . , xn) = 1; if the letter
bm maps the state qi to ri, then the equality xm = 0 provides ci(x1, . . . , xn) = 1.
Thus all the clauses are true.

Complexity of Problems Concerning Reset Words 531

A length of every reset word for the given synchronizing automaton A =
(Q,Σ, δ) with simple idempotents does no exceed 2(|Q| − 1)2 (see [11]). It means
that if L ≥ 2(|Q| − 1)2, then it is enough to check whether the automaton is syn-
chronizing. It can be done in polynomial time. We can check in polynomial time
whether the word w ∈ Σ∗ of length L is a reset word for the automaton A . Thus,
the problem SY N(SIMPID,≤ L) is in the class NP.

The proof of the NP-hardness of the problem SY N(SIMPID,= L) is the
same. To prove the co-NP-hardness we should construct the automaton Asid again
using the clauses c1, . . . , cp and put L = 2n + 2p + 2. The shortest reset word
for the automaton Asid has length L if and only if there are no values for the
variables x1, . . . , xn such that c1(x1, . . . , xn) = . . . = cp(x1, . . . , xn) = 1. Therefore,
SY N(SIMPID,= L) is co-NP-hard. The proposition is proved.

Proposition 6.2. The problems 2-SY N(SIMPID), 2-SY N(SIMPID,≤ L) and
2-SY N(SIMPID,= L) can be solved in time O(n), where n = |Q|.

Proof. Let us consider the automaton A = (Q, {a, b}, δ) and let |Q| = n. If a and b
are permutations, then for n > 1 the automaton A is not synchronizing. If a and b
are simple idempotents, then for n > 3 the automaton A is not synchronizing too.
All variants of the automaton for n ≤ 3 can be easily considered in a constant time.
Therefore, we can assume that a is a simple idempotent and b is a permutation.

Let q1.a = q2 6= q1 for q1, q2 ∈ Q. The permutation b can be represented as a
product of simple cycles. If the permutation b consists of more than two cycles,
then the automaton A is not synchronizing, because the letter a can merge states
from at most two cycles. Let b consists of two cycles. In this case the states q1 and
q2 should contain in different cycles C1 and C2. Moreover, if the cycle C2 consists of
more then one state, then the automaton A is not synchronizing, because different
states from the cycle C2 cannot be merged. In this case the automaton A looks
like the automaton represented by Figure 4.

q2q1

b

b

bb

b

b

a
a, b

a

a

a

a

a

a
r r r

Figure 4: Automaton with two cycles

532 Pavel Martyugin

It is not difficult to check that the word a(ba)n−2 is a shortest reset word for
A in this case.

Let the letter b act on the set Q as a single cycle. Let Q = {1, . . . , n}, q1 = 1,
q2 = p for some p ∈ {1, . . . , n}, and n.b = n − 1, . . . , 2.b = 1, 1.b = n. Such an
automaton is represented by Figure 5.

q1

q2

b

b

b

b

b

b

a

a

a

a

a

a

a

a
r

r
r

r
r

r

Figure 5: Automaton with one cycle

For q2 = n, the automaton A is a Černý automaton with n states described
in [1]. Is it not difficult to obtain that if gcd(n, p) > 1 then the automaton A is
not synchronizing. If gcd(n, p) = 1, then the word a(bp−1a)n−2 is a shortest reset
word for the automaton A . The proof of this fact is very similar to the proof from
[1] (in [1] it was proved that the word a(bn−1a)n−2 is a shortest reset word for the
Černý automaton). We skip this proof here.

Let an automaton A be given. There exists a very simple algorithm taking
time O(n) and checking whether the automaton A can be represented by Figure
4 or by Figure 5. This algorithm finds the states q1 and q2, calculates the length
of cycles of permutation b. If the states q1 and q2 are contained in one cycle, then
the algorithm also finds the distance between q1 and q2 along the cycle. Finally,
the algorithm compares one of the values a(ba)n−2 (for the case of two cycles) and
a(bp−1a)n−2 (for the case of one cycle) with the number L. The proposition is
proved.

Thus, the problems 2-SY N(SIMPID,≤ L) and 2-SY N(SIMPID,= L) can
be solved in polynomial time, but at the same time the problems SY N(SIMPID,≤
L) and SY N(SIMPID,= L) are hard. The question about the computational
complexity of the problems k-SY N(SIMPID,≤ L) and k-SY N(SIMPID,= L)
for k > 2 is open.

Complexity of Problems Concerning Reset Words 533

7 Finding the length of shortest compressing

words

It was proved in [2] that the shortest synchronizing word for a given k-letter cycli-
cally monotonic automaton with n states can be found in time O(n2k). Every mono-
tonic automaton is cyclically monotonic too. Hence the problems SY N(MON,≤
L), k-SY N(MON,≤ L), SY N(MON,= L) and k-SY N(MON,= L) for k ≥ 1
can be solved in time O(n2k), i.e. in polynomial time. But there are problems
concerning synchronization of the monotonic DFA which cannot be solved in poly-
nomial time (if P 6= NP).

In the proof of the next proposition we use a token model of synchronization.
Let A = (Q,Σ, δ) be a DFA and w ∈ Σ∗. Suppose that at the beginning there is
a token on any state from Q. We apply letters of the word w step by step. The
action of the letter a ∈ Σ moves the token from the state q ∈ Q to the state δ(q, a).
If two tokens arrive at one state, then one of them must be removed. If after the
action of the word w there is only one token on the set Q, then the word w is a
reset word. If after the action of the word w there are M tokens on the states of
the set Q, then the word w compresses the automaton A to M states.

Proposition 7.1. 1. The problems COMP (MON,M,≤ L) and
k-COMP (MON,M,≤ L) for k ≥ 2 are NP-complete.

2. The problems COMP (MON,M,= L) and k-COMP (MON,M,= L) for
k ≥ 2 are NP-hard and co-NP-hard.

Proof. It can be checked in polynomial time, whenever a given word compresses a
given DFA to M states. Hence, the problem COMP (MON,M,≤ L) belongs to
NP. If we prove the NP-hardness of the problem 2-COMP (MON,M,≤ L) then
the NP-completeness of the problems COMP (MON,M,≤ L) and
k-COMP (MON,M,≤ L) for k ≥ 2 will be proved as well.

We reduce the problem SAT to the problem 2-COMP (MON,M,≤ L). Let
the input of the problem SAT is a set of clauses c1(x1, . . . , xn), . . . , cp(x1, . . . , xn)
over the variables x1, . . . , xn. We are going to construct a 2-letter automaton
Amon = (Q, {a, b}, δ) and the numbers M and L such that there exists a word of
length L compressing the automaton Amon to the M states if and only if there exist
values of variables x1, . . . , xn such that c1(x1, . . . , xn) = . . . = cp(x1, . . . , xn) = 1.

Let Σ = {a, b}, Q = {q(m′, i)|i ∈ {1, . . . , p},m′ ∈ {1, 2n + 2}}. Let i ∈
{1, . . . , p},m ∈ {1, . . . , n}, then

q(2m − 1, i).a =

{

q(2m + 2, i), if xm is contained in ci without ¬
q(2m + 1, i), otherwise

q(2m − 1, i).b =

{

q(2m + 2, i), if ¬xm is contained in ci

q(2m + 1, i), otherwise

q(2m, i).a = q(2m + 2, i), q(2m, i).b = q(2m + 2, i).

q(2n + 1, i).a = q(2n + 1, i).b = q(2n + 2, i).a = q(2n + 2, i).b = q(2n + 2, i).

534 Pavel Martyugin

x1 ∨ ¬x2 x2 ∨ ¬x3 ¬x1 ∨ ¬x3

x1

x2

x3

1

2

3

4

5

6

7

8

Figure 6: Automaton Amon for clauses x1 ∨ ¬x2, x2 ∨ ¬x3, ¬x1 ∨ ¬x3

We also put M = p, L = n. An example of the automaton Amon is represented by
Figure 6. The action of the letter a is denoted with solid lines. The action of the
letter b is denoted with dotted lines. The figure contains three columns of states.
In the i-th column there are states of kind q(m, i) for fixed i. In any horizontal row
there are states q(m, i) for some fixed m.

We define a linear order ≤ on the set Q. We put

q(m1, i1) ≤ q(m2, i2), if i1 < i2, or i1 = i2 and m1 ≤ m2.

It is not difficult to verify that for each letter a ∈ Σ the transformation δ(, a) of
the set Q preserves ≤. Thus, the automaton Amon is monotonic. The size of the
automaton Amon is a polynomial in common number of clauses and variables.

The set Q can be represented as a table with p columns and 2n + 2 rows. In
the i-th column Ki there are states of kind q(∗, i), in the m-th row Rm there are
states of kind q(m, ∗). Suppose that there is a token on every state of the set Q at
the start of the synchronization. If some word compresses the automaton Amon to
p states, then it moves all tokens to the states q(2n + 2, 1), . . . , q(2n + 2, p), i.e. to
the 2n + 2-th row. Let some token be in the row Rm, m ∈ {1, · · · , 2n}. This token
can be moved to the row Rm+2 or to the row Rm+3 under the action of some letter.
Thus, if q ∈ R2 ∪ . . .∪R2n+2 and w ∈ Σ∗, |w| = n, then q.w ∈ R2n+2. Therefore, a
word w of length n compresses the automaton Amon if and only if R1.w = R2n+2.

Let there exist values of the variables x1, . . . , xn such that c1(x1, . . . , xn) = . . . =
cp(x1, . . . , xn) = 1. Consider a word w of length n such that

Complexity of Problems Concerning Reset Words 535

w[m] =

{

a, if xm = 1
b, if xm = 0

for m ∈ {1, . . . , n}. Let i ∈ {1, . . . , p}. Let m be a

minimal number from the set {1, . . . , n} such that xm = 1 and xm is contained in
ci without ¬, or xm = 0 and ¬xm is contained in ci. Then

q(1, i).w[1] = q(3, i), q(3, i).w[2] = q(5, i) . . . q(2m − 3, i).w[m − 1] = q(2m − 1, i)

q(2m − 1, i).w[m] = q(2m + 2, i)

q(2m + 2, i).w[m + 1] = q(2m + 4, i), . . . q(i, 2n).w[n] = q(i, 2n + 2)

Therefore, R1.w = R2n+2 and |Q.w| = p = M .

Let there exist a word w ∈ Σ∗ of length n such that |Q.w| = p. In this case

Q.w = {q(2n + 2, 1), . . . , q(2n + 2, p)}. We put xm =

{

1, if w[m] = a
0, if w[m] = b

. Let

i ∈ {1, . . . , p}, then q(1, i).w = q(2n + 2, i). Let us consider a token from the
state q(1, i). If each letter of the word w moves this token from row with number
j to row with number j + 2, then after applying the word w the token cannot
be on the state q(2n + 2, i). Therefore, there is an m ∈ {1, . . . , n} such that
q(2m − 1, i).w[m] = q(2m + 2, i). This holds only if the variable xm is contained
in ci without ¬ and xm = 1; or ¬xm is contained in ci and xm = 0. In this case
ci(x1, . . . , xn) = 1.

2. The statement can be proved using the idea of the proof of the NP and
co-NP-hardness of the problem 2-SY N(DFA). But in this case idea should be
applied to the automaton Amon.

Acknowledgement

The author is grateful to his supervisor Dr. D.S. Ananichev for suggesting the
research problem and for his valuable help. The author acknowledges support from
the Federal Education Agency of Russia, grant 2.1.1/3537, and from the Russian
Foundation for Basic Research, grant 09-01-12142.

References

[1] Černý, J. Poznámka k homogénnym eksperimentom s konecnými avtomatami.
Mat.-Fyz. Cas. Slovensk. Akad. Vied., 14:208–216, 1964 [in Slovak].

[2] Eppstein, D. Reset sequences for monotonic automata. SIAM J. Comput.,
19:500–510, 1990.

[3] Salomaa, A. Composition sequences for functions over a finite domain. Theor.
Comput. Sci., 292:263–281, 2003.

[4] Samotij, W. A note on the complexity of the problem of finding shortest
synchronizing words. Palermo, AUTOMATA 2007.

536 Pavel Martyugin

[5] Martugin, P. A series of slowly synchronizable automata with a zero state over
a small alphabet. Inf. and Comput., 206:1197–1203, 2008.

[6] Ananichev, D. S. and Volkov, M. V. Synchronizing monotonic automata.
Theoret. Comput. Sci., 327:225–239, 2004.

[7] Ananichev, D. S. and Volkov, M. V. Synchronizing generalized monotonic
automata. Theoret. Comput. Sci., 330:3–13, 2005.

[8] Ananichev, D. S. The mortality threshold for partially monotonic automata.
In de Felice, C. and Restivo, A., editors, Developments in Language Theory,
9th International Conference, DLT 2005, Palermo, Italy, July 4-8, 2005, Pro-
ceedings., Lecture Notes in Computer Science 3572, pages 112–121. Springer,
2005.

[9] Trahtman, A. N. The Černý conjecture for aperiodic automata. Discr. Math.
and Theoret. Comput. Sci., 9(2):3–10, 2007.

[10] Rystsov, I. C. Reset words for commutative and solvable automata. Theoret.
Comput. Sci., 172:273–279, 1997.

[11] Rystsov, I. C. Reset words for automata with simple idempotents. Kibernetika
i Sistemnyj Analiz, 3:32–39, 2000, [in Russian; English translation: Cybernetics
and System Analysis, 36:339–344, 2000]

[12] Kari, J. A counter example to a conjecture concerning synchronizing words in
finite automata. EATCS Bull., 73:146, 2001.

[13] Kari, J. Synchronizing finite automata on Eulerian digraphs. Theoret. Comput.
Sci., 295:223–232, 2003.

[14] Dubuc, L. Sur les automates circulaires et la conjecture de Černý. RAIRO
Inform. Theor. Appl., 32:21–34, 1998 [in French].

Received 30th September 2008

