Acta Cyberneticd 9 (2009) 537-552.

On Pure Multi-Pushdown Automata that Perform
Complete Pushdwn Pops

Tomés Masopustand Alexander Meduria

Abstract

This paper introduces and discusses pure multi-pushdown automata that remove
symbols from their pushdowns only by performing complete pushdown pops. This
means that during a pop operation, the entire pushdown is compared with a prefix of
the input, and if they match, the whole contents of the pushdown is erased and the
input is advanced by the prefix. The paper proves that these automata define an infinite
hierarchy of language families identical with the infinite hierarchy of language families
resulting from right linear simple matrix grammars. In addition, this paper discusses
some other extensions of these automata with respect to operations they can perform
with their pushdowns. More specifically, it discusses pure multi-pushdown automata
that perform complete pushdown pops that are allowed to join two pushdowns and/or
create a new pushdown.

Keywords: pure multi-pushdown automaton, complete pushdown pop, infinite hierar-
chy.

1 Introduction

Indisputably,pushdown automata fulfill a crucial role in formal language theory. There-
fore, it comes as no surprise that this theory has introduced many variants of these automata
(consult, for example, [1, 5, 6, 7, 8, 11, 12, 14, 17, 18] for more details).

It is well-known that the family of languages accepted by pushdown automata (with
only one pushdown) coincides with the family of context-free languages and that adding
any more pushdown makes these automata as powerful as Turing machines. Considering
the pushdown alphabet, it is not hard to see that any number of pushdown symbols can
be encoded by two different pushdown symbols. However, if the pushdown alphabet is a
singleton (more precisely, we have one pushdown symbaind a bottom-of-pushdown
symbolZ, Z # A, Z appears only on the bottom of the pushdown), we obtain so-called
counter automata or counter machines. It is known that these automata accept languages
from a proper subfamily of the family of context-free languages if they are equipped with
only one counter, or the family of recursively enumerable languages if they are equipped

*Faculty of Information Technology, Brno University of Technology, Bi#chova 2, Brno 61266, Czech
Republic, E-mailtomas .masopust@mail .muni.cz, meduna@fit.vutbr.cz.

538 Tomas Masopust and Alexander Meduna

with two or more counters (see [9]). Furthermore, the pushdown alphabet can, in general,
contain symbols that are not in the input alphabet, i.e., symbols that will never occur as a
part of the input. If the pushdown automata are restricted so that the pushdown alphabet
does not contain any such symbols, we obtain so-calleelpushdown automata. Clearly,

with respect to the cardinality of the input alphabet, pure pushdown automata with only
one input symbol are as powerful as counter automata, whereas with two or more differ-
ent input symbols they are as powerful as pushdown automata. Therefore, the family of
languages accepted by pure pushdown automata with only one pushdown coincides ei-
ther with the family of languages accepted by one-counter automata, or with the family
of context-free languages. Finally, it immediately follows from the previous explanations
that pure pushdown automata with two or more pushdowns are as powerful as Turing ma-
chines. For an overview of multi-pushdown automata see the paper by Fischer [4] and the
references therein.

The present paper continues the investigations in this classical topic of formal language
theory. More specifically, it discusses pure multi-pushdown automata that can remove
symbols from their pushdowns only by performing a complete pushdown pop. This means
that during a pop operation, the entire pushdown is compared with a prefix of the input,
and if they match, the whole contents of the pushdown is eliminated and, simultaneously,
the input is advanced by the prefix. This paper demonstrates that these automata define
an infinite hierarchy of language families identical with the infinite hierarchy of language
families resulting from the following grammars and automata:

1. equal matrix languages (see Siromoney [16]);

2. right linear simple matrix grammars (see Ibarra [10]);

3. multi-tape one-way non-writing automata (see Fischer and Rosenberg [5]);
4. finite-turn checking automata (see Siromoney [17]);

5. all-move self-regulating finite automata (see Meduna and Masopust [13]).

In addition, this paper discusses pure multi-pushdown automata that perform complete
pushdown pops that are allowed (in some sense) to join two pushdowns and/or introduce
a new pushdown. These operations imply another infinite hierarchy of language families
dependent upon the number of pushdowns.

In its conclusion, this paper formulates some open problems.

2 Preliminaries and Definitions

In this paper, we assume that the reader is familiar with the theory of automata and for-
mal languages (see [15]). For an alphabet (finite nonemptysat) represents the free
monoid generated by. The unit ofV* is denoted by. SetV* =V* —{e}. Forwe V*

andW C V, wR denotes the mirror image of and occur (w,W) denotes the number of
occurrences of symbols froWv in w. Let Zrec denote the family of regular languages.

On Pure Multi-Pushdown Automata that Perform Complete Pushdown Pops 539

A context-free grammar is a quadrupleG = (N, T,P,S), whereN is a nonterminal
alphabet, T is a terminal alphabet such thetNT =0,V =NUT, Se N is the start
symbol, andP is a finite set of productions of the forA— v, whereA € N andv € V*.

In what follows, productions fror® are labeled by elements of a finite §ethosen so
that there is a bijectiohab from P to Q. Then,Q = lab(P) = {lab(p) : p € P} is said to
be a set oproduction labels. For the brevity, we hereafter writg: A — v € P instead of
A—vePwithlab(A—v)=q.

Letg: A— vePandxyecV*. Then,G makes a derivation step fromfy to xvy,
written asxAy = xvy. In the standard way, we defire™, for m> 0, =T, and=*. To
express thaG performsx =My, for somex,y € V*, by using a sequence of productions
01,02, - --,0qm, we writex ="y [102...0m|. The language generated by a context-free
grammarG is defined as.(G) = {we T* : S=* w} and is said to be eontext-free lan-
guage. The family of all context-free languages is denoted%iy.

Forn > 1, ann-right linear simple matrix grammar (defined in [16] (as equal matrix
grammars) and in [10], see also [19]) is@+3)-tupleG = (N1, Np,..., Ny, T,P,S), where
N1,No, ..., Ny are pairwise disjoint nonterminal alphabetsis a terminal alphabety =
N1 UNaU---UNp, S€NUT is the start symbolNNT = 0, andP is a finite set of matrix
productions of the following three forms:

1. [S—>X1X2...Xn], XieN,1<i<n;
2. [Xy —wiY, Xo = WoYa, Xn = WnYn], W eTH X, YieN,1<i<n;
3. X1 — Wy, Xo — Wa, ..., Xq — Wh], XeN,weT1<i<n

Forx,y e (NUTU{S})*, x="y provided that
1. eitherx=Sand[S— Y] € P,

2. orx=y1X1y2Xo...YnXn, Y = Y1X1Y2X2 . .. Yn¥Xn, @NA[Xy — X1,...,Xq — Xn] € P.

As usual, we defines™, for m> 0, =, and=*. The language generated by rnight
linear simple matrix grammda is defined a& (G) = {we T*: S=" w} and is said to be
ann-right linear simple matrix language. The family of alln-right linear simple matrix
languages is denoted b¥Y.

A programmed grammar is a quadrupleG = (N, T,P,S), whereN is a nonterminal
alphabet, T is a terminal alphabet such thetnT =0,V =NUT, Se N is the start
symbol, andP is a finite set of productions of the forfm: A — v,g(q)), whereq: A—v
is a labeled context-free production ag@)) C lab(P).

In every derivation of5, any two consecutive steps=-y = z, made by productions
(p:A—u,g(p)) and(g: B— v,g(q)), respectively, satisfy € g(p). As usual, we define
=M form> 0, =7, and=*. The language generated by a programmed gran@riar
defined ad (G) = {we T*: S="* w} and is said to be grogrammed language. The
family of all programmed languages is denoted Hy.

Let D be a derivation of a stringy € V* in G of the formw; = w, = ... = w;, for
somer > 1, whereS=w; andw, = w. Setlnd(D,G) = max{occur(wi,N): 1 <i<r}.
Forw e T*, setind(w,G) = min{Ind(D,G) : D is a derivation ofv in G}. Theindex of G
is defined a$nd(G) = max{Indw,G) : we L(G)}.

540 Tomas Masopust and Alexander Meduna

ForL € %, setlnd(L) = min{Ind(G) : L(G) =L, G is a programmed grammar}.
Finally, let. 4} = {L € % :Ind(L) <n}, foralln> 1, denote the family of affrogrammed
languages of index n.

2.1 Pure Multi-Pushdown Automata that Perform Complete Push-
down Pops

Let n be a positive integer. Aure n-pushdown automaton that performs complete push-
down pops, annPPDA for short, is a quadruple

M = (Q’T7R7S)7

whereQ is a finite set of state§, is an alphabet of input symbolR,C .¥ x .# is a set of
rules,. = .U % U.SU. %4,

o 1 =1{(q,pop) : g€ Q}

o 2 ={(q,push,i,a):qeQ,1<i<nacTu{e}}
o ={(qnew,i):qeQ 1<i<n}

o S={(g,joini):qeQ,2<i<n}

ands ¢ . is the start state. In what follows, we use the notaper g for (p,q) € R
A configuration ofM is a string over

(TH$uU{e)" x (L U{s}) xT*.

Let1<k<nandp— ge R We define the relatios> depending on the left-hand side of
p— q,i.e.,p, as follows:

1. $sw= $"gw, forp=s,

2. Wi .. SnuSwi SpwRw = wi$. .. SweSqw for p = (r, pop);

3. Wi k.. Sws. . S Spw = wie$. . Bwias. .. Swi$gw, for p = (r,push,i,a) andi <k;
4. we .. Iws. . SwSpw = wi S, . Swi$Ss. .. SwiSqw, for p= (r,new,i) andi <k < n;
5 w$. .. dwSpw = Sws. .. SwiSaqw, for p= (r,new,k+ 1) andk < n;

6. Wk, .. dwdwi_1$. . IwiSpw = wi B, .. Iwiwi_1$. .. SwiSqw, for p= (r,jain,i) and
i<k

Remark 1. Note that symbols $ denote the topswt pushdowns and that the automaton
cannot make a computational step unless there is at least one pushdown.

On Pure Multi-Pushdown Automata that Perform Complete Pushdown Pops 541

In the standard way, we define™, for m > 0, and=*. Then, the language of an
NPPDAM is defined as

L(M)={weT":$"sw="q, for someq e .},
where $sw =* qis said to be auccessful computation of M on w.

Finally, forl C {1,2,3,4},

2" ={L(M):M = (QT,R 9 isannPPDAWIthRC | J.# x |J#} -

icl iel
3 Main Results

In this section, we demonstrate two infinite language hierarchies generated by pure multi-
pushdown automata that perform complete pushdown pops according to their pushdown
operations and the number of pushdowns. First, however, we generalize these automata so
that they are allowed to push a string to their pushdowns in one computational step instead
of only one symbol or the empty string.

3.1 GeneralizednPPDAs

A generalized nPPDA is annPPDAM = (Q,T,R s) with RC .9/ x ./, where.%’ is a
finite subset of”1 U.7) U 73U .74; sets71, .3, /4 are as in the case of standaf@PDA,
and.#, is modified so thah € T is replaced withu € T*:

o) ={(g,push,i,u):qeQ,1<i<nueT*}.
Correspondingly, the computational step is modified as follows:
3. Wk, dws. . S B(p, push,i, uyw = wi . .. Bwus. .. Swi$aw, fori < k.

The other computational steps are defined as in the case of stafRiiDA.
First, we prove that this generalization has no effect to the acceptance power of these
automata.

Lemma 1. Let M be a generalized nPPDA, for somen > 1. Then, thereis an nPPDA, M,
such that L(M) = L(M’).

Informally, whatM does in one derivation stepy)’ does in the-length-of-the-added-
string steps.

Proof. LetM = (Q,T,R,s) be a generalizedPPDA. Construct the followingPPDAM’ =
(Q,T,R,s) by the following algorithm (.#is as in the definition in Section 2.1):

1. SetR ={p—qeR:p,ge SU{s}} andQ =Q;
2. For eachp — (q,push,i,ajay...a) € Rwitha € T,fori=1,... k, k> 2, add

i1 i,2 ik .
a) statesld; a,...a, Jasap...a¢5 - - - » Oy ap...3 (O Q;

542 Tomas Masopust and Alexander Meduna

b) p— (hla,. a, PUSH,i,a1) tOR;
C) (Gilay. a, PUSh,i,aj) — (g %, push,i,aj 1) toR, for j =1,....k—1;

d) for each(q,push,i,aja,...a) —r € R add

ik . R forre.”,
(Gayay.. oy, PUSh, i, a) — T to{ R otherwise.

3. If R has been changed, then go to step 2.
It is not hard to see that(M) = L(M’). O

3.2 Language Families

Consider ararbitraryl C {1,2,3,4}. Itis not hard to see that if¢ |, then.Z" = 0; such

an automaton cannot remove $s from its configurations. Furthermore; ifdnd 2¢ 1,
then 4" = {&}; of course, such an automaton can remove all symbols $ but cannot read
any nonempty input. Thus, there are only four sets of intefes®}, {1,2,3}, {1,2,4},
{1,2,3,4}. The following two lemmas are obvious.

Lemma?2. Foralln>1,
L 0o € L3 €4

(1234}’
2. L0 S Loay C L1232y

Lemma 3. ‘Z{ll’z} = ‘,2”{11_’2_’374} = %ReG.

Now, consider an automaton with pop, push, and join operations. We will show how
the join operation can be simulated by only push and pop operations without any change of
the accepted language. Notice that the join operation applied tthtbashdown appends
the content of théth pushdown to the bottom of the-{i1)st pushdown. Thus, to push a
symbol to thejth pushdown in this automaton, for somme i, equals to skipping the join
operation and pushing the symbol to thje{1)st pushdown. This is generalized and done
by a sequence of the formi,...in added to states, for sonme < n, whereiy € {1,0},
fork=1,....m, andix = 0 if and only if theixth pushdown has been joined. Then, the
automaton starts with a sequencendfs, 11..1, in its start state, and to push a symbol to
theith pushdown means to push the symbol toltihepushdown, whergis the position
of theith 1 in the sequence from the left. Analogously, to make the pop operation, say
from a state with 10..0i, ...ix, where 2<| <k andi; = 1, the new automaton makkes 1
pop operations and goes to a state vijith.ix. Finally, to join theith pushdown means to
replace theth 1 with 0 in the state by the push operation pustang the first pushdown.

Hence, we have the following lemma.

Lemma4. Foralln>1, Z{”LZ} = Z{nl,ZA}'

Corollary 1. Foralln>1, 92”{”172} = .;2”{”1727 e 3{”17233} - DS,”{”LZV& 2

As far as the#)

123} language families are concernedy> 2, we only know the fol-
lowing result.

On Pure Multi-Pushdown Automata that Perform Complete Pushdown Pops 543

Theorem 1. For all n> 2, .,2’{”1’2} - .Z{”lﬁzﬁ}.

Proof. LetL = {akbk:k>1}. Clearly,L € 92”{212}. Ibarra [10, Theorem 4.7] showed that
L* ¢ Z{"l"z}, form> 1. To prove this theorem, we show thdte 3{21_’2_’3}.

The automaton starts with the initial configuration $&&av, for somew € L*. Then, it
simultaneously generata$ andb in the first and the second pushdown, respectively, i.e.,
the configuration is of the formkakpakbkw, for somep € .. Then, the automaton pops
the first pushdown (readiraf from the input) and creates a new one on the second position,
i.e., its configuration is tqtiw, for someq € .7. Then, it pops the first pushdown again
(readingb® from the input) and creates a new pushdown, i.e., the configuration is $$rw, for
somer € .. Thus, the cycle can be repeated. The formal proof is left to the readér.

Corollary 2. .,2”{21‘2’3} —Unz1 2o # 0.

In the following two sections, language familiéﬁ{”lz} and ‘,2”{”123.4} are discussed.
Note that most of the questions concerning language famﬂﬁ’ﬁaa are open (see the
last section for more details). '

3.3 Language Familie {”12}

First, let us give an example. Note that in case 2, this example shows that the language,
L, from the proof of Theorem 1 is iﬁ”{zl 2} @S stated there.

Example 1. Consider amPPDAM = ({s,q},{a1,ay,...,an}, R S) with Rhaving the fol-
lowing rules:

1. s—(qg,push,1,as),

2. (q,push,i, &) — (q,push,i+1,841), fori=1,... n—1,

|
3. (g,push,n,an) — (g,push,1,a),
.

4. (g,push,n,an) — (g, pop),

5. (g, pop) — (g, pop).
Then,L(M) = {akak...ak: k> 1}. O

In the following, we prove that the power o0PPDAswith push and pop operations is
precisely the power afi-right linear simple matrix grammars. First, however, notice that
any such automatoiV, has the property that there is preciselgop operations in any of
its successful computations; clearly, the automaton has togshdowns and no new
pushdown can be created. Moreover, we can prove that there is an equivalent automaton,
M’, such that in any successful computationMf, no pop operation precedes a push
operation. To show this, lé¥l’ simulateM but if M pops the pushdowm’ skips the pop
operation and increases the number of pop operations skipped so far recorded in its state.
Thus, in any timeM’ knows the number of pop operations applied in the corresponding

544 Tomas Masopust and Alexander Meduna

computation oM, sayk, 0 < k < n. Then, ifM pushes a symbol to théh pushdownM’
pushes this symbol to tHé+ k)th pushdown. Clearly’ finishes (pops all its pushdowns
one by one) only iM has performed pop operations.

Lemma5. Leten>1landL € .,2”{”12}. Then, there is an nPPDA, M, such that L(M) =L

and its sequence of operations applied during any successful computation, starting froms,
is of the form

S, pushy, pushy,, pushk, Pops, POpz; . .., POPn
for somek > 1, push € 5, foralli=1,... k, and pop; € .1, foral j=1,...,n

Proof. This immediately follows from the previous arguments and the fact that if there is
no push operation in the successful computation, then we caregoghe first pushdown,
i.e., for some state push; = (t,push,1,¢). O
Lemma6. Foralln>1 .,2”{“12}
Proof. Let M = (Q,T,R,s) be annPPDA withR C (.1 U .%%) x (%1 U .¥3) satisfying
the condition from Lemma 5. Clearly, without loss of generality, we can assume that
pop1 = popz = --- = popn = (r, pop), for somer € Q. Thus,#1 = {(r,pop) }.

Let G = (Ng,...,Nn, T,P.S) and sefN; = (.#1U %) x {i}, foralli =1,...,n. Set
P={S — ({r,pop), 1){(r,pop),2)...({r,pop),n) : {r,pop) € 1}

If g— p € Ris of the form

c ..

1. (t,push,i,a) — (r,pop), add
[({r,pop), 1) — (@, 1), ..., ({r,pop),i) — a(q,i),..., {(r,pop),n) — (q,n)] to P;

2. (r,push,i,a) — (t,push, j,b), add
[(p.1) = {0, 1),....(p,0) — &(a,i),....(p,n) — (g,)] to P;

3. s—p,add
(p,1) —¢,....(p,i)—&,....,(p,n) — €] to P.

Note thatM starts withs — p, continues withp — q followed by the application of
a rule of the formp — (r,pop), for somep,q € .¥>, and finishes witHr, pop) — (r, pop)
appliedn-times. Denote the sequence of applied rulesskp, . .., pk, POP1,- - -, POPn,
for somek > 1. Then,G simulatesM by the following sequence of productions: the
initial production (simulating alh pop operations) followed by a sequence of productions
Pe.---» P}, S, wherep, is constructed fronpy as in 1, p{ from p; as in 2, for alli =
.,k—1, ands fromsas in 3. O
Lemma7. Foralln>1, 4% C f{”lz}
Proof. Letn > 1 andG = (Ny,...,N,, T,P,S) be ann-right linear simple matrix gram-
mar. Construct the following generalizaBPDAM = (Q,T,R,s), whereQ = {(x,m) : X €
Ni...Nh, me P}U{S} andRis defined as follows:

1. Fora =X;... Xy € N1...Nyandm= [X; — Wy, ..., X, — Wy] € Pwith w; € T*, for
alli=1,2,...,n, adds— {(a,m),push, 1,w) to R;

On Pure Multi-Pushdown Automata that Perform Complete Pushdown Pops 545

2. Fora =X1...Xn,[3 =Y1...Ys€N1...Np, andm = [Y1—>V1X1,...,Yn —>ann} cP,
add((a,m), push,n,wg) — ((B,nT),push,1,vf) to R;

3. Fora =Yi...Yn € N1...Ny andm(i + 1] =Yiy1 — viy1Xi+1 (M[i] denotes thath
element ofm) with vi;1 € T* andX;;1 e NU{e}, foralli=1,....n—1, add
((a,m),push,i,v) — ((a,m),push,i+ 1,3 ,) toR;

4. Fora =Xp... %y, ifthere is[S— X;... %Xy € P, add
((a,m),push,n,v§) — (S pop) to R;
5. Add (S pop) — (S pop) toR.

Clearly,M simulates the derivation @ bottom-up and whab does in one derivation step,
M does inn steps. Then, according to Lemma 1, the proof is complete. O

The following theorem presents the main result of this section.
Theorem2. For alln>1, .,2”{”1’2} =4
Proof. This immediately follows from the previous two lemmas. O

Corollary 3. Foralln>1, 4}, C g{nle}'

Proof. This follows from the previous theorem and Theorem 2.3 in [10]. O

3.4 Language FamilieSZ{”l_zi3 4}

The followving lemma shows that any language accepted byP&DA can be generated by
a programmed grammar of index- 1.

Lemma8. For all n>1, 2, , 5, C 25

Before the formal proof of the lemma, we provide some explanations to the construc-
tion. Informally, to annPPDA M, we construct a programmed gramm@, of index
n+ 1 so that théth nonterminal ofG, which is of the form(A k), 1<k <n+1, is as-
sociated with théth pushdown. Specifically, if the current contenthdd® pushdowns is
CoC1 $hpby $apay $ (corresponding to a strirey azbibac co), then the sentential form @ is
of the form (A1, 4)asax(Az, 4)b1bp(As, 4)c1C2(A4,4). Then, the pop operation is simulated
so that

<A1,4>a1a2<A2,4>b1b2<Ag,4>c1c2<A4,4>

is replaced with
aiay <A17 3>b1b2 <A2, 3>C1C2 <A3, 3> .

The push operation pushirggonto the second pushdown, i.e;c1$pbia$apar$ corre-
sponding to a stringyazab;byciCy, is simulated by replacing

<A1, 4>a1a2 <A27 4>b1b2 <A3, 4>C;|_C2 <A4, 4>

546 Tomas Masopust and Alexander Meduna

with
<A1, 4>a1a2 <A2, 4)ab1b2 <%, 4>C1C2 <A4, 4> .

The operation introducing a new, say the first, pushdown ce; $lpb1$apa $$, is simu-
lated by replacing
(A1,4)a1a2(A2,4)b1b2 (A3, 4)C1C2(A4,4)

with
(A1,5) (A2,5)a1a2(Az, 5)b1b2(A4,5)C1C2(As,5) .

Note that the previous first pushdown is the second from now on (till the other change).
Finally, the join operation of the first and the second pushdown (by a state of the form
(r,join,2)), i.e.,coci$bpbaxay $, is simulated by replacing

<A1, 4>a1a2 <A27 4>b1b2 <A3, 4>C102 <A4, 4>

with
<A1, 3>a1a2b1b2<A2, 3>C1C2 <A37 3> .

The formal proof of Lemma 8 follows.

Proof. LetM = (Q,T,R,s) be annPPDA. Construct the following programmed grammar
G=(N,T,PS), whereN =Qx {1,...,n+ 1} andP is constructed as follows.
Setf(r) ={t:r -t eR}, andg(f(r)) = Upct(r)9(p) (the definition ofg(p) follows).

1. Foranyrulss— pe R, add
a) (S— (A,n+1)(Az,n+1)...(Anr1,n+1),9(p)) into P;
2. Forallpe ¥ and 1<| <n+1, add
a) ([p.1,pl: (AL l) — &.{[/,2,1,p]: [/, 2,1, p] € 1ab(P)});
3. Forallpe AU and 1<i,l <n-+1,i > 2, add
a) ([/,L0 e (AL — (AL D) {[/,i+ 1,0, pl}), fori <1
b) ([/;1.1 01 (AL — (A, D) {[=, 1.1, pl});
4. Forallpe 21U and 1<i,1 <n+1,| > 2, add
a) ([-,i,L,p: (A = (AT =2) {[—,i+1,1,p]}), fori <|—1;
b) ([=1=1,1,p: (Ai_1,1) — (A—1, 1 = 1), 9(f(P));
5. Forallpe ¥ and 1<i,l <n+1, add
a) ([i,1,p] - (A1) — (AL Da,g(f(p)));
6. Forallpe ¥3and 1<i,l <n+1,i <n, add
a) ([*,0,1,i,p]: (A1) = (Aipa, 1), {[xi+1,1,i,p]}), fori < I;
b) ([, 1,11, 0l 2 (A1) = (A, 1) {[n i+ 1.1, pl});

On Pure Multi-Pushdown Automata that Perform Complete Pushdown Pops 547

7. Forallpe #3,1<I<n+1landl<i<n+1,add
a) ([n,i,1,p]: (AL — (A—1, DAL {[+ L1 pl};
8. Forallpe ¥ and 1<i,l <n+1, add

a) ([+,i,1,p]: (AL — (AL +2), {[+,i+1,1,p]}), fori <1+1;
b) ([+,1+1,1,p: (Ays,1) — (A, I +1),9(f(p)));

9. Forallpe ¥ and 1<i,l <n+1, add

a) ([, 0 - (A1) — e W), W={[/,i+1l,p})if i <I, W={[-,1,l,p]}
otherwise.

o(p) depends orp as follows:

(r,pop): g(p) ={[p,!,p]: [p,1,p| € 1ab(P)};
(r,push,i,a): g(p) = {[i,I,p]:[i,I,p] € lab(P)};
(

(

rnew,i): g(p) = {[*,i,l,i,p]: [+i,1,i,p] € lab(P)};

r.join,i): g(p) = {[j, 1,1, pl : [j, i,1, p] € lab(P)}.
Consider a configuratiom;$. . . wow $pw of M and the corresponding sentential

form of G, i.e., ((Ar, K+ 1)wi(Ag, K+ D)wa ... (A, K+ D)W (A1, K+ 1), 9(p)). If p=
(r,pop), G simulates the computational step as follows:

(A1, K+ L)wr (Ag, K+ 1wz (A, K+ L)Wic(Awr 1,k + 1), {[p,k+ 1, p]})
= (WilA2 ket DWa... Akt DWi(A1,k+ 1), {[/,2.k+1,p]})
=K (W (A k4 DWa. . (A1, K+ D)W (A, k+ 1), {[—, 1,k+1,p]})
=K (Wi (AL KW . (A1, KWi(AG k), g(F(p))).
If p= (r,push,i,a), G simulates the computational step as follows:
((Ag, k4w .. (AL K+ 1)wg . (A K+ Dwie (A g, k4 1), {[i,k+ 1, p})
= ((Ar,k+Lwy... (A k+ Daw; ... (A, k+ Dwe (A1, k+1),9(f(p))).
If p= (r,new,i), G simulates the computational step as follows:

(Ar, K+ Dywg .o wimg (AL K+ Dwg .o Wi (A1, K+ 1), {[*,1,k+1,i,p]})

T T T O
I

(
=k W (A, K DWW WA, k4 1), {[n, i+ 1,k+1,p]})
= oW (ALK D (A K+ DW . Wi(A 2, K+ 1), { [+, 1,k+1,p]})
=K2 (AL K+ 2)Wa . Wi (A2, k+2),9(F(P))).

If p=(r,join,i), G simulates the computational step as follows:

(AL K+ L)W .. Wi 1 (A K+ L)W Wi Ay 1,k + 1), {[j, i,k +1,p]})
= (<A| 1,k+1>W| 1W|<A|+l»k+1>W|+l {[/,i-i—l,k—i—l,p]})
=K ALK DWW (AL K+ DWW (A K+ 1), {[—, 1,k + 1, p]})
(

=K (AnKwe. . (AL KW 1w (AL K) - Wi (A k), o(F(P))).-

548 Tomas Masopust and Alexander Meduna

As any derivation ofs simulates a computation M, we haveL(M) = L(G). O

The next lemma shows that any language generated by a programmed grammar
indexn is accepted by am+ 1)PPDA.

Lemma9. Foraln>1, 4} C ‘,2”{”&173,4}.

The main idea of the proof is to simulate a derivation of a programmed gran®nar,
of indexn by a generalizedn+ 1)PPDA, M, so that whats generates to the right of the
rewritten nonterminal, safwi;Bw,Cws = Aw;B'uw,Cws, M pushes to its corresponding
pushdownwESwEuRSWES. If G generates a string, to the left of the rewritten nonter-
minal, sayAw;Bw,Cws = Aw;vB"W,Cws, thenM creates a new pushdown just before
the pushdown corresponding to the rewritten nontermimBBwi$$wi$, pushes® to the
new pushdownwswE\VR$wWEsS, and joins the two pushdownsS$wESVuwes. By this,
M putsv® to the bottom of the pushdown. In case of the first pushdown, the join operation
is replaced with the pop operation. The formal proof follows.

Proof. Let G = (N, T,P,S) be a programmed grammar of indexfor somen > 1. Con-
struct a generalizeth+ 1)PPDAM = (Q,T,R,s) as follows.

1. SetQ = (1ab(P) U {+}) x UgenN¥x {0,1,....m+ 1}, for m= max{k: A— u €
P, occur (u,N) = k};

2. Forallp: A— uiBiuBs. .. uBguki1 € P, whereu; € T* andBj € N, for all i =
1,....,k+1,j=1,... k, k>0, and for all{+,a0AB,0) € Q, wherea, 8 € N*, and
| = occur(aA,N), add the following tdR:

e s— ((+,50),push,1,¢),
e ((+,aAB,0),push,1,€) — ((p,aBi... BB, k+1),push,l +k—1,uR ,),

(

(p,aB1...BB,k+1),push,l +k—1,uR ;) —
(p,aBs...BxB,k),push,| +k—2,uR),
(
(

p,aBs... BB, K), push,| +k—2,uf) —
p,aBs...BB,k—1),push,| +k—3,uR ,),

e ((p,aBy...BB,2),push,|,uf) — ((p,aB;...BxS3,1),new,l),
b <<p>aBl---BkB?l>7neN7l> - <<p,aBl...BkB,1>,pUSh,|,U?>,
e if | =1, add
- <<p7 Bl---Bkﬁvl>7DUShal7u?> - <<p7 Bl...BkB,O>,pop>,
- <<pa Bl--~Bkﬁvo>7p0p> - <<+1Bl'"BkB7O>7PUShalag>!
e if| >2, add
- <<p,aBl...Bkﬁ,l>,pUSh,|,U§> - <<paaBl---BkBaO>aj0in7|>!
- <<paaBl~~~BkBao>ajOin7l> - <<+aaBl~~~Bk1870>7pl‘ISha17£>'

On Pure Multi-Pushdown Automata that Perform Complete Pushdown Pops 549

We have proved thdt(M) = L(G), whereM is a generalizedn+ 1)PPDA. The proof

now follows by Lemma 1.

O

Letn> 1. Analogously as in [2, Theorem 3.1.7], we can prove that the language

Ln={b@@b)®1:i>1} e g0 — L1,

Lemma l1l0. Foralln>1,L,€e .,2”{”172,3,4}.

Informally, the automaton has pushdowns and each but the one of them contains
a'bal, for somd > 1. Thus, two symbola are put to a pushdown — one to the top and one to
the bottom. Finally, the symbdlis pushed to the bottom of all— 1 pushdowns, i.e., they
contain the string'ba'b. Obviously, by the operations new and pba’b can be simulated
and compared with the prefix of the input symbol by symbol during the computation. Thus,
the automaton has redd'b, and the content of each - 1 pushdowns iglba'b, i.e., the
automaton has accepted the strizgp(a'b)?("1) = b(a'b)2"~1.

Proof. If n= 1, the proof is trivial; just pusha'b to the pushdown. Thus, let> 2 and
M = (Q,{a,b},R s) be annPPDA, whereQ = {0,p,q,r,s,t, f}, andR is constructed as

follows.

Phase 1.
1. s— (0,push,1,b),
2. (0,push,1,b) — (0,pop),
3. (0,pop) — (p,push, 1,b),
4, for2<i<n-—1,
4a. (p,push,i,b) — (p,push,i+1,b),
4b. (p,push,n—1,b) — (q,new, 1),
Phase 2.
5. (g,new, 1) — (g,push,1,a),
6. (q,push,1,a) — (g, pop),
7. (9,pop) — (s,push,1,a),
8. for1<i<n,
8a. (s,push,i,a) — (r,new,i+1),
8b. (r,new,i+1) — (r,push,i+1,a),
8c. (r,push,i+1,a) — (r,join,i+1),

8d. (r,join,i) — (s,push,i,a), i > 2,
8e. (r,join,n) — (g, new, 1),
8f. (r,join,n) — (t,new, 1),

Phase 3.

9. (t,new,1) — (t,push,1,b),
10. (t,push,1,b) — (t,pop),
11. (t,pop) — (t,new,2),

12. for 2<i<n,

12a. (t,new,i) — (t,push,i,b),
12b. (t,push,i,b) — (t,join,i),
12c. (t,join,i) — (t,new,i+ 1),
Phase 4.

13. (t,new,n+1) — (f,pop),

14. (f,pop) — (f, pop).

550 Tomas Masopust and Alexander Meduna

Phase 1 reads from the input and pushdsto n— 1 pushdowns. Phase 2 repeatedly
readsa from the input and pusheson the top and to the bottom of ail- 1 pushdowns.
Phase 3 readsfrom the input and pushédsto the bottom of alh — 1 pushdowns. Finally,
Phase 4 pops afi— 1 pushdowns. Clearlypa'b has been read from the input and each of
n— 1 pushdowns contairtsa'ba'$, where the top of the pushdown is on the right. Thus,
we havel (M) = L. O

Corollary 4. Foralln>1, 48 C (175,

Proof. The inclusion follows from Lemma 9 and the strictness from Lemma 10. O
The following corollary summarizes the powerrdfPDAsknown so far.
Corollary 5. Foralln>1, %} ,5, C £ C 17,4

Proof. It follows immediately from Lemmas 8 and 9, and the previous corollary. [
Analogously, we can prove that for al> 2,
Kni1={afas... a1 k> 1} € 2] 534,
which proves the following result.
Corollary 6. For all n> 2, f{“l)z} C f{“1)2’3’4}.

Proof. Ibarra [10, Theorem 2.3] proved thiét, 1 ¢ 28 = .z{"l,z}. O

Note that by the trick pushing the content of one pushdown to the baitdhe other,
we can prove that for ali > 1,Kon 1 € .,2”{”123‘4}.

4 Conclusion

In this paper, we discussed two variants of pure multi-pushdown automata that perform
complete pushdown pops and proved two infinite language hierarchies they characterize
with respect to the number of pushdowns. The following theorem summarizes the results
of this paper.

Theorem3. 1. Zrec= .,2”{1172} = 92{117274} = 92”{11’2’3} = .,2”{11.2’3_’ 2
2. Foraln>2, .,%{”172} = ‘,%{”172_ 4 C ‘,2”{”1_213} - 92”{”172737 4

3. Foralln> 1,${qu} c g{nle}

2
4. Foralln>1, .,2”{”1"2_’3_4} C g{nf2,3,4}'

On Pure Multi-Pushdown Automata that Perform Complete Pushdown Pops 551

Moreover, note that by Corollary 3.4 in [3], Corollary of Lemma 3.1.5 in [2], and
Corollary 5, any language € Uy_; x{q&s’ 4y OVera one-letter alphabet is regular.

On the other hand, this paper does not answer the question of whether the inclusions
,2”{”1’2’3,4} - .Z{”lle’&ﬂ, n>1, andf{”lizs} C Z{”1’2’3,4}, n > 2, are proper or not. How-
ever, we conjecture that these inclusions are proper. Furthermore, one of the interesting
guestions concerning this is whether the language

M, = {w":we {ab}*}

is in Z{”lfzf374}, for n > 2. This is of interest because M, is not in f{nlle,g,zl}’ then it
implies that

L M€ .20 5, N (L1034 —L1234) and that

2. Lo L Llasay

as it is not hard to see th, € Z{”l’z}. Another interesting question is whether the
languageKn 1 € f{nl,zs} because if this is not true, then it impliég{“l’zﬁ} C f{nlz,a, ap

for n> 2. Finally, the following question is of interest from the viewpoint of descriptional
complexity: what is the power of pure multi-pushdown automata that perform complete
pushdown pops with respect to the number of states?

Acknowledgements

The authors gratefully acknowledge useful suggestions and comments of the anonymous
referees.

This work was supported by the Czech Ministry of Education under the Research Plan
No. MSM 0021630528 and the Czech Grant Agency project No. GA201/07/0005.

References

[1] Courcelle, B. On jump deterministic pushdown automatéath. Systems Theory,
11:87-109, 1977.

[2] Dassow, J. anddun, Gh Regulated Rewriting in Formal Language Theory. Springer-
Verlag, Berlin, 1989.

[3] Fernau, H. and Holzer, M. Regulated finite index language families collapse. Tech-
nical report, University of Tuebingen, 1996.

[4] Fischer, P. C. Multi-tape and infinite-state automata—a surv@égmmun. ACM,
8(12):799-805, 1965.

[5] Fischer, P. C. and Rosenberg, A. L. Multitape one-way nonwriting automata.
Comput. System ci., 2:88-101, 1968.

552 Tomas Masopust and Alexander Meduna

[6] Ginsburg, S., Greibach, S. A., and Harrison, M. A. One-way stack autoth#@Mm,
14:389-418, 1967.

[7] Ginsburg, S. and Spanier, E. Finite-turn pushdown autom&#AM J. Control,
4:429-453, 1968.

[8] Greibach, S. A. Checking automata and one-way stack languageésmput. System
i, 3:196-217, 1969.

[9] Hopcroft, J. E. and Ulliman, J. Orormal Languages and Their Relation to Automata.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1969.

[10] Ibarra, O. H. Simple matrix languagdsiform. and Control, 17(4):359-394, 1970.

[11] Meduna, A. Simultaneously one-turn two-pushdown automiataJ. Comp. Math.,
80:679-687, 2003.

[12] Meduna, A. Deep pushdown automakata Inform., 42(8-9):541-552, 2006.

[13] Meduna, A. and Masopust, T. Self-regulating finite automasscta Cybernet.,
18:135-153, 2007.

[14] Sakarovitch, J. Pushdown automata with terminating languagi@aguages and
Automata Symposium, RIMS 421, Kyoto University, pages 15-29, 1981.

[15] Salomaa, AFormal languages. Academic Press, New York, 1973.
[16] Siromoney, R. On equal matrix languagé&gorm. and Control, 14:135-151, 1969.

[17] Siromoney, R. Finite-turn checking automath.Comput. System Sci., 5:549-559,
1971.

[18] Valiant, L. The equivalence problem for deterministic finite turn pushdown automata.
Inform. and Control, 81:265-279, 1989.

[19] Wood, D. m-paralleln-right linear simple matrix languagedJtil. Math., 8:3-28,
1975.

Received 15th September 2008

