
Acta Cybernetica19 (2009) 537–552.

On Pure Multi-Pushdown Automata that Perform
Complete Pushdown Pops

Tomá̌s Masopust∗and Alexander Meduna∗

Abstract

This paper introduces and discusses pure multi-pushdown automata that remove
symbols from their pushdowns only by performing complete pushdown pops. This
means that during a pop operation, the entire pushdown is compared with a prefix of
the input, and if they match, the whole contents of the pushdown is erased and the
input is advanced by the prefix. The paper proves that these automata define an infinite
hierarchy of language families identical with the infinite hierarchy of language families
resulting from right linear simple matrix grammars. In addition, this paper discusses
some other extensions of these automata with respect to operations they can perform
with their pushdowns. More specifically, it discusses pure multi-pushdown automata
that perform complete pushdown pops that are allowed to join two pushdowns and/or
create a new pushdown.

Keywords: pure multi-pushdown automaton, complete pushdown pop, infinite hierar-
chy.

1 Introduction

Indisputably,pushdown automata fulfill a crucial role in formal language theory. There-
fore, it comes as no surprise that this theory has introduced many variants of these automata
(consult, for example, [1, 5, 6, 7, 8, 11, 12, 14, 17, 18] for more details).

It is well-known that the family of languages accepted by pushdown automata (with
only one pushdown) coincides with the family of context-free languages and that adding
any more pushdown makes these automata as powerful as Turing machines. Considering
the pushdown alphabet, it is not hard to see that any number of pushdown symbols can
be encoded by two different pushdown symbols. However, if the pushdown alphabet is a
singleton (more precisely, we have one pushdown symbolA, and a bottom-of-pushdown
symbolZ, Z 6= A, Z appears only on the bottom of the pushdown), we obtain so-called
counter automata or counter machines. It is known that these automata accept languages
from a proper subfamily of the family of context-free languages if they are equipped with
only one counter, or the family of recursively enumerable languages if they are equipped

∗Faculty of Information Technology, Brno University of Technology, Božeťechova 2, Brno 61266, Czech
Republic, E-mail:tomas.masopust@mail.muni.cz, meduna@fit.vutbr.cz.

538 Tomá̌s Masopust and Alexander Meduna

with two or more counters (see [9]). Furthermore, the pushdown alphabet can, in general,
contain symbols that are not in the input alphabet, i.e., symbols that will never occur as a
part of the input. If the pushdown automata are restricted so that the pushdown alphabet
does not contain any such symbols, we obtain so-calledpure pushdown automata. Clearly,
with respect to the cardinality of the input alphabet, pure pushdown automata with only
one input symbol are as powerful as counter automata, whereas with two or more differ-
ent input symbols they are as powerful as pushdown automata. Therefore, the family of
languages accepted by pure pushdown automata with only one pushdown coincides ei-
ther with the family of languages accepted by one-counter automata, or with the family
of context-free languages. Finally, it immediately follows from the previous explanations
that pure pushdown automata with two or more pushdowns are as powerful as Turing ma-
chines. For an overview of multi-pushdown automata see the paper by Fischer [4] and the
references therein.

The present paper continues the investigations in this classical topic of formal language
theory. More specifically, it discusses pure multi-pushdown automata that can remove
symbols from their pushdowns only by performing a complete pushdown pop. This means
that during a pop operation, the entire pushdown is compared with a prefix of the input,
and if they match, the whole contents of the pushdown is eliminated and, simultaneously,
the input is advanced by the prefix. This paper demonstrates that these automata define
an infinite hierarchy of language families identical with the infinite hierarchy of language
families resulting from the following grammars and automata:

1. equal matrix languages (see Siromoney [16]);

2. right linear simple matrix grammars (see Ibarra [10]);

3. multi-tape one-way non-writing automata (see Fischer and Rosenberg [5]);

4. finite-turn checking automata (see Siromoney [17]);

5. all-move self-regulating finite automata (see Meduna and Masopust [13]).

In addition, this paper discusses pure multi-pushdown automata that perform complete
pushdown pops that are allowed (in some sense) to join two pushdowns and/or introduce
a new pushdown. These operations imply another infinite hierarchy of language families
dependent upon the number of pushdowns.

In its conclusion, this paper formulates some open problems.

2 Preliminaries and Definitions

In this paper, we assume that the reader is familiar with the theory of automata and for-
mal languages (see [15]). For an alphabet (finite nonempty set)V , V ∗ represents the free
monoid generated byV . The unit ofV ∗ is denoted byε. SetV + = V ∗−{ε}. Forw ∈V ∗

andW ⊆ V , wR denotes the mirror image ofw andoccur(w,W) denotes the number of
occurrences of symbols fromW in w. Let LREG denote the family of regular languages.

On Pure Multi-Pushdown Automata that Perform Complete Pushdown Pops 539

A context-free grammar is a quadrupleG = (N,T,P,S), whereN is a nonterminal
alphabet,T is a terminal alphabet such thatN ∩ T = /0, V = N ∪ T , S ∈ N is the start
symbol, andP is a finite set of productions of the formA → v, whereA ∈ N andv ∈V ∗.

In what follows, productions fromP are labeled by elements of a finite setQ chosen so
that there is a bijectionlab from P to Q. Then,Q = lab(P) = {lab(p) : p ∈ P} is said to
be a set ofproduction labels. For the brevity, we hereafter writeq : A → v ∈ P instead of
A → v ∈ P with lab(A → v) = q.

Let q : A → v ∈ P andx,y ∈ V ∗. Then,G makes a derivation step fromxAy to xvy,
written asxAy ⇒ xvy. In the standard way, we define⇒m, for m ≥ 0, ⇒+, and⇒∗. To
express thatG performsx ⇒m y, for somex,y ∈ V ∗, by using a sequence of productions
q1,q2, . . . ,qm, we write x ⇒m y [q1q2 . . .qm]. The language generated by a context-free
grammarG is defined asL(G) = {w ∈ T ∗ : S ⇒∗ w} and is said to be acontext-free lan-
guage. The family of all context-free languages is denoted byLCF .

For n ≥ 1, ann-right linear simple matrix grammar (defined in [16] (as equal matrix
grammars) and in [10], see also [19]) is an(n+3)-tupleG = (N1,N2, . . . ,Nn,T,P,S), where
N1,N2, . . . ,Nn are pairwise disjoint nonterminal alphabets,T is a terminal alphabet,N =
N1∪N2∪ ·· ·∪Nn, S 6∈ N ∪T is the start symbol,N ∩T = /0, andP is a finite set of matrix
productions of the following three forms:

1. [S → X1X2 . . .Xn], Xi ∈ Ni, 1≤ i ≤ n;
2. [X1 → w1Y1,X2 → w2Y2, . . . ,Xn → wnYn], wi ∈ T ∗, Xi,Yi ∈ Ni, 1≤ i ≤ n;
3. [X1 → w1,X2 → w2, . . . ,Xn → wn], Xi ∈ Ni, wi ∈ T ∗, 1≤ i ≤ n.

For x,y ∈ (N ∪T ∪{S})∗, x ⇒ y provided that

1. eitherx = S and[S → y] ∈ P,

2. orx = y1X1y2X2 . . .ynXn, y = y1x1y2x2 . . .ynxn, and[X1 → x1, . . . ,Xn → xn] ∈ P.

As usual, we define⇒m, for m ≥ 0, ⇒+, and⇒∗. The language generated by ann-right
linear simple matrix grammarG is defined asL(G) = {w ∈ T ∗ : S ⇒∗ w} and is said to be
an n-right linear simple matrix language. The family of alln-right linear simple matrix
languages is denoted byL n

R .
A programmed grammar is a quadrupleG = (N,T,P,S), whereN is a nonterminal

alphabet,T is a terminal alphabet such thatN ∩ T = /0, V = N ∪ T , S ∈ N is the start
symbol, andP is a finite set of productions of the form(q : A → v,g(q)), whereq : A → v
is a labeled context-free production andg(q) ⊆ lab(P).

In every derivation ofG, any two consecutive steps,x ⇒ y ⇒ z, made by productions
(p : A → u,g(p)) and(q : B → v,g(q)), respectively, satisfyq ∈ g(p). As usual, we define
⇒m, for m ≥ 0, ⇒+, and⇒∗. The language generated by a programmed grammarG is
defined asL(G) = {w ∈ T ∗ : S ⇒∗ w} and is said to be aprogrammed language. The
family of all programmed languages is denoted byLP.

Let D be a derivation of a stringw ∈ V ∗ in G of the formw1 ⇒ w2 ⇒ . . . ⇒ wr, for
somer ≥ 1, whereS = w1 andwr = w. SetInd(D,G) = max{occur(wi,N) : 1≤ i ≤ r}.
For w ∈ T ∗, setInd(w,G) = min{Ind(D,G) : D is a derivation ofw in G}. Theindex of G
is defined asInd(G) = max{Ind(w,G) : w ∈ L(G)}.

540 Tomá̌s Masopust and Alexander Meduna

For L ∈ LP, set Ind(L) = min{Ind(G) : L(G) = L, G is a programmed grammar}.
Finally, letL n

P = {L∈LP : Ind(L)≤ n}, for all n≥ 1, denote the family of allprogrammed
languages of index n.

2.1 Pure Multi-Pushdown Automata that Perform Complete Push-
down Pops

Let n be a positive integer. Apure n-pushdown automaton that performs complete push-
down pops, annPPDA for short, is a quadruple

M = (Q,T,R,s) ,

whereQ is a finite set of states,T is an alphabet of input symbols,R ⊆ S ×S is a set of
rules,S = S1∪S2∪S3∪S4,

• S1 = {〈q,pop〉 : q ∈ Q}

• S2 = {〈q,push, i,a〉 : q ∈ Q, 1≤ i ≤ n, a ∈ T ∪{ε}}

• S3 = {〈q,new, i〉 : q ∈ Q, 1≤ i ≤ n}

• S4 = {〈q, join, i〉 : q ∈ Q, 2≤ i ≤ n}

ands /∈ S is the start state. In what follows, we use the notationp → q for (p,q) ∈ R.
A configuration ofM is a string over

(T ∗{$}∪{ε})n × (S ∪{s})×T ∗ .

Let 1≤ k ≤ n andp → q ∈ R. We define the relation⇒ depending on the left-hand side of
p → q, i.e., p, as follows:

1. $nsw ⇒ $nqw, for p = s;

2. wk$. . .$w2$w1$pwR
1w ⇒ wk$. . .$w2$qw for p = 〈r,pop〉;

3. wk$. . .$wi$. . .$w1$pw ⇒ wk$. . .wia. . .$w1$qw, for p = 〈r,push, i,a〉 andi ≤ k;

4. wk$. . .$wi$. . .$w1$pw⇒wk$. . .$wi$$. . .$w1$qw, for p = 〈r,new, i〉 andi≤ k < n;

5. wk$. . .$w1$pw ⇒ wk. . .$w1$qw, for p = 〈r,new,k +1〉 andk < n;

6. wk$. . .$wi$wi−1$. . .$w1$pw ⇒ wk$. . .$wiwi−1$. . .$w1$qw, for p = 〈r, join, i〉 and
i ≤ k.

Remark 1. Note that symbols $ denote the tops ofM’s pushdowns and that the automaton
cannot make a computational step unless there is at least one pushdown.

On Pure Multi-Pushdown Automata that Perform Complete Pushdown Pops 541

In the standard way, we define⇒m, for m ≥ 0, and⇒∗. Then, the language of an
nPPDAM is defined as

L(M) = {w ∈ T ∗ : $nsw ⇒∗ q, for someq ∈ S } ,

where $nsw ⇒∗ q is said to be asuccessful computation of M on w.
Finally, for I ⊆ {1,2,3,4},

L
n

I =
{

L(M) : M = (Q,T,R,s) is annPPDA withR ⊆
⋃

i∈I

Si ×
⋃

i∈I

Si

}

.

3 Main Results

In this section, we demonstrate two infinite language hierarchies generated by pure multi-
pushdown automata that perform complete pushdown pops according to their pushdown
operations and the number of pushdowns. First, however, we generalize these automata so
that they are allowed to push a string to their pushdowns in one computational step instead
of only one symbol or the empty string.

3.1 GeneralizednPPDAs

A generalized nPPDA is annPPDA M = (Q,T,R,s) with R ⊆ S ′×S ′, whereS ′ is a
finite subset ofS1∪S ′

2∪S3∪S4; setsS1, S3, S4 are as in the case of standardnPPDA,
andS2 is modified so thata ∈ T is replaced withu ∈ T ∗:

• S ′
2 = {〈q,push, i,u〉 : q ∈ Q, 1≤ i ≤ n, u ∈ T ∗}.

Correspondingly, the computational step is modified as follows:

3. wk$. . .$wi$. . .$w1$〈p,push, i,u〉w ⇒ wk$. . .wiu. . .$w1$qw, for i ≤ k.

The other computational steps are defined as in the case of standardnPPDA.
First, we prove that this generalization has no effect to the acceptance power of these

automata.

Lemma 1. Let M be a generalized nPPDA, for some n ≥ 1. Then, there is an nPPDA, M′,
such that L(M) = L(M′).

Informally, whatM does in one derivation step,M′ does in the-length-of-the-added-
string steps.

Proof. Let M = (Q,T,R,s) be a generalizednPPDA. Construct the followingnPPDAM′ =
(Q′,T,R′,s) by the following algorithm (Sis as in the definition in Section 2.1):

1. SetR′ = {p → q ∈ R : p,q ∈ S ∪{s}} andQ′ = Q;

2. For eachp → 〈q,push, i,a1a2 . . .ak〉 ∈ R with ai ∈ T , for i = 1, . . . ,k, k ≥ 2, add

a) statesqi,1
a1a2...ak ,q

i,2
a1a2...ak , . . . ,q

i,k
a1a2...ak to Q′;

542 Tomá̌s Masopust and Alexander Meduna

b) p → 〈qi,1
a1a2...ak ,push, i,a1〉 to R′;

c) 〈qi, j
a1a2...ak ,push, i,a j〉 → 〈qi, j+1

a1...ak ,push, i,a j+1〉 to R′, for j = 1, . . . ,k−1;

d) for each〈q,push, i,a1a2 . . .ak〉 → r ∈ R, add

〈qi,k
a1a2...ak ,push, i,ak〉 → r to

{

R′ for r ∈ S ,
R otherwise.

3. If R′ has been changed, then go to step 2.

It is not hard to see thatL(M) = L(M′).

3.2 Language Families

Consider anarbitraryI ⊆ {1,2,3,4}. It is not hard to see that if 16∈ I, thenL n
I = /0; such

an automaton cannot remove $s from its configurations. Furthermore, if 1∈ I and 26∈ I,
thenL n

I = {ε}; of course, such an automaton can remove all symbols $ but cannot read
any nonempty input. Thus, there are only four sets of interest:{1,2}, {1,2,3}, {1,2,4},
{1,2,3,4}. The following two lemmas are obvious.

Lemma 2. For all n ≥ 1,

1. L n
{1,2} ⊆ L n

{1,2,3} ⊆ L n
{1,2,3,4},

2. L n
{1,2} ⊆ L n

{1,2,4} ⊆ L n
{1,2,3,4}.

Lemma 3. L 1
{1,2} = L 1

{1,2,3,4} = LREG.

Now, consider an automaton with pop, push, and join operations. We will show how
the join operation can be simulated by only push and pop operations without any change of
the accepted language. Notice that the join operation applied to theith pushdown appends
the content of theith pushdown to the bottom of the (i−1)st pushdown. Thus, to push a
symbol to thejth pushdown in this automaton, for somej ≥ i, equals to skipping the join
operation and pushing the symbol to the (j +1)st pushdown. This is generalized and done
by a sequence of the formi1i2 . . . im added to states, for somem ≤ n, whereik ∈ {1,0},
for k = 1, . . . ,m, andik = 0 if and only if theikth pushdown has been joined. Then, the
automaton starts with a sequence ofn 1s, 11. . .1, in its start state, and to push a symbol to
the ith pushdown means to push the symbol to thelth pushdown, wherel is the position
of the ith 1 in the sequence from the left. Analogously, to make the pop operation, say
from a state with 10. . .0il . . . ik, where 2≤ l ≤ k andil = 1, the new automaton makesl−1
pop operations and goes to a state withil . . . ik. Finally, to join theith pushdown means to
replace theith 1 with 0 in the state by the push operation pushingε to the first pushdown.

Hence, we have the following lemma.

Lemma 4. For all n ≥ 1, L n
{1,2} = L n

{1,2,4}.

Corollary 1. For all n ≥ 1, L n
{1,2} = L n

{1,2,4} ⊆ L n
{1,2,3} ⊆ L n

{1,2,3,4}.

As far as theL n
{1,2,3} language families are concerned,n ≥ 2, we only know the fol-

lowing result.

On Pure Multi-Pushdown Automata that Perform Complete Pushdown Pops 543

Theorem 1. For all n ≥ 2, L n
{1,2} ⊂ L n

{1,2,3}.

Proof. Let L = {akbk : k ≥ 1}. Clearly,L ∈ L 2
{1,2}. Ibarra [10, Theorem 4.7] showed that

L∗ /∈ L m
{1,2}, for m ≥ 1. To prove this theorem, we show thatL∗ ∈ L 2

{1,2,3}.

The automaton starts with the initial configuration $$sakbkw, for somew ∈ L∗. Then, it
simultaneously generatesak andbk in the first and the second pushdown, respectively, i.e.,
the configuration is of the formbkakpakbkw, for somep∈S . Then, the automaton pops
the first pushdown (readingak from the input) and creates a new one on the second position,
i.e., its configuration is bkqbkw, for someq ∈ S . Then, it pops the first pushdown again
(readingbk from the input) and creates a new pushdown, i.e., the configuration is $$rw, for
somer ∈ S . Thus, the cycle can be repeated. The formal proof is left to the reader.

Corollary 2. L 2
{1,2,3}−

⋃∞
n=1L n

{1,2} 6= /0.

In the following two sections, language familiesL n
{1,2} andL n

{1,2,3,4} are discussed.
Note that most of the questions concerning language familiesL n

{1,2,3} are open (see the
last section for more details).

3.3 Language FamiliesL n
{1,2}

First, let us give an example. Note that in casen = 2, this example shows that the language,
L, from the proof of Theorem 1 is inL 2

{1,2} as stated there.

Example 1. Consider annPPDAM = ({s,q},{a1,a2, . . . ,an},R,s) with R having the fol-
lowing rules:

1. s → 〈q,push,1,a1〉,

2. 〈q,push, i,ai〉 → 〈q,push, i+1,ai+1〉, for i = 1, . . . ,n−1,

3. 〈q,push,n,an〉 → 〈q,push,1,a1〉,

4. 〈q,push,n,an〉 → 〈q,pop〉,

5. 〈q,pop〉 → 〈q,pop〉.

Then,L(M) = {ak
1ak

2 . . .ak
n : k ≥ 1}.

In the following, we prove that the power ofnPPDAswith push and pop operations is
precisely the power ofn-right linear simple matrix grammars. First, however, notice that
any such automaton,M, has the property that there is preciselyn pop operations in any of
its successful computations; clearly, the automaton has to popn pushdowns and no new
pushdown can be created. Moreover, we can prove that there is an equivalent automaton,
M′, such that in any successful computation ofM′, no pop operation precedes a push
operation. To show this, letM′ simulateM but if M pops the pushdown,M′ skips the pop
operation and increases the number of pop operations skipped so far recorded in its state.
Thus, in any time,M′ knows the number of pop operations applied in the corresponding

544 Tomá̌s Masopust and Alexander Meduna

computation ofM, sayk, 0≤ k ≤ n. Then, ifM pushes a symbol to theith pushdown,M′

pushes this symbol to the(i+k)th pushdown. Clearly,M′ finishes (pops all its pushdowns
one by one) only ifM has performedn pop operations.

Lemma 5. Let n ≥ 1 and L ∈ L n
{1,2}. Then, there is an nPPDA, M, such that L(M) = L

and its sequence of operations applied during any successful computation, starting from s,
is of the form

s, push1, push2, . . . , pushk, pop1, pop2, . . . , popn

for some k ≥ 1, pushi ∈ S2, for all i = 1, . . . ,k, and pop j ∈ S1, for all j = 1, . . . ,n.

Proof. This immediately follows from the previous arguments and the fact that if there is
no push operation in the successful computation, then we can pushε to the first pushdown,
i.e., for some statet, push1 = 〈t,push,1,ε〉.

Lemma 6. For all n ≥ 1, L n
{1,2} ⊆ L n

R .

Proof. Let M = (Q,T,R,s) be annPPDA with R ⊆ (S1 ∪S2)× (S1 ∪S2) satisfying
the condition from Lemma 5. Clearly, without loss of generality, we can assume that
pop1 = pop2 = · · · = popn = 〈r,pop〉, for somer ∈ Q. Thus,S1 = {〈r,pop〉}.

Let G = (N1, . . . ,Nn,T,P,SG) and setNi = (S1 ∪S2)×{i}, for all i = 1, . . . ,n. Set
P = {SG → 〈〈r,pop〉,1〉〈〈r,pop〉,2〉. . .〈〈r,pop〉,n〉 : 〈r,pop〉 ∈ S1}.

If q → p ∈ R is of the form

1. 〈t,push, i,a〉 → 〈r,pop〉, add
[〈〈r,pop〉,1〉 → 〈q,1〉, . . . ,〈〈r,pop〉, i〉 → a〈q, i〉, . . . ,〈〈r,pop〉,n〉 → 〈q,n〉] to P;

2. 〈r,push, i,a〉 → 〈t,push, j,b〉, add
[〈p,1〉 → 〈q,1〉, . . . ,〈p, i〉 → a〈q, i〉, . . . ,〈p,n〉 → 〈q,n〉] to P;

3. s → p, add
[〈p,1〉 → ε, . . . ,〈p, i〉 → ε, . . . ,〈p,n〉 → ε] to P.

Note thatM starts withs → p, continues withp → q followed by the application of
a rule of the formp → 〈r,pop〉, for somep,q ∈ S2, and finishes with〈r,pop〉 → 〈r,pop〉
appliedn-times. Denote the sequence of applied rules bys, p1, . . . , pk, pop1, . . . , popn,
for somek ≥ 1. Then,G simulatesM by the following sequence of productions: the
initial production (simulating alln pop operations) followed by a sequence of productions
p′k, . . . , p′1,s

′, where p′k is constructed frompk as in 1, p′i from pi as in 2, for all i =
1, . . . ,k−1, ands′ from s as in 3.

Lemma 7. For all n ≥ 1, L n
R ⊆ L n

{1,2}.

Proof. Let n ≥ 1 andG = (N1, . . . ,Nn,T,P,S) be ann-right linear simple matrix gram-
mar. Construct the following generalizednPPDAM = (Q,T,R,s), whereQ = {(x,m) : x ∈
N1 . . .Nn, m ∈ P}∪{S} andR is defined as follows:

1. Forα = X1 . . .Xn ∈ N1 . . .Nn andm = [X1 → w1, . . . ,Xn → wn] ∈ P with wi ∈ T ∗, for
all i = 1,2, . . . ,n, adds → 〈(α,m),push,1,wR

1〉 to R;

On Pure Multi-Pushdown Automata that Perform Complete Pushdown Pops 545

2. Forα = X1 . . .Xn, β =Y1 . . .Yn ∈ N1 . . .Nn, andm′ = [Y1 → v1X1, . . . ,Yn → vnXn]∈ P,
add〈(α,m),push,n,wR

n 〉 → 〈(β ,m′),push,1,vR
1〉 to R;

3. For α = Y1 . . .Yn ∈ N1 . . .Nn and m[i + 1] = Yi+1 → vi+1Xi+1 (m[i] denotes theith
element ofm) with vi+1 ∈ T ∗ andXi+1 ∈ N ∪{ε}, for all i = 1, . . . ,n−1, add
〈(α,m),push, i,vR

i 〉 → 〈(α,m),push, i+1,vR
i+1〉 to R;

4. Forα = X1 . . .Xn, if there is[S → X1 . . .Xn] ∈ P, add
〈(α,m),push,n,vR

n 〉 → 〈S,pop〉 to R;

5. Add〈S,pop〉 → 〈S,pop〉 to R.

Clearly,M simulates the derivation ofG bottom-up and whatG does in one derivation step,
M does inn steps. Then, according to Lemma 1, the proof is complete.

The following theorem presents the main result of this section.

Theorem 2. For all n ≥ 1, L n
{1,2} = L n

R .

Proof. This immediately follows from the previous two lemmas.

Corollary 3. For all n ≥ 1, L n
{1,2} ⊂ L

n+1
{1,2}.

Proof. This follows from the previous theorem and Theorem 2.3 in [10].

3.4 Language FamiliesL n
{1,2,3,4}

The following lemma shows that any language accepted by annPPDA can be generated by
a programmed grammar of indexn+1.

Lemma 8. For all n ≥ 1, L n
{1,2,3,4} ⊆ L

n+1
P .

Before the formal proof of the lemma, we provide some explanations to the construc-
tion. Informally, to annPPDA M, we construct a programmed grammar,G, of index
n + 1 so that theith nonterminal ofG, which is of the form〈Ai,k〉, 1≤ k ≤ n + 1, is as-
sociated with theith pushdown. Specifically, if the current content ofM’s pushdowns is
c2c1$b2b1$a2a1$ (corresponding to a stringa1a2b1b2c1c2), then the sentential form ofG is
of the form〈A1,4〉a1a2〈A2,4〉b1b2〈A3,4〉c1c2〈A4,4〉. Then, the pop operation is simulated
so that

〈A1,4〉a1a2〈A2,4〉b1b2〈A3,4〉c1c2〈A4,4〉

is replaced with
a1a2〈A1,3〉b1b2〈A2,3〉c1c2〈A3,3〉.

The push operation pushinga onto the second pushdown, i.e.,c2c1$b2b1a$a2a1$ corre-
sponding to a stringa1a2ab1b2c1c2, is simulated by replacing

〈A1,4〉a1a2〈A2,4〉b1b2〈A3,4〉c1c2〈A4,4〉

546 Tomá̌s Masopust and Alexander Meduna

with
〈A1,4〉a1a2〈A2,4〉ab1b2〈A3,4〉c1c2〈A4,4〉.

The operation introducing a new, say the first, pushdown, i.e.,c2c1$b2b1$a2a1$$, is simu-
lated by replacing

〈A1,4〉a1a2〈A2,4〉b1b2〈A3,4〉c1c2〈A4,4〉

with
〈A1,5〉〈A2,5〉a1a2〈A3,5〉b1b2〈A4,5〉c1c2〈A5,5〉.

Note that the previous first pushdown is the second from now on (till the other change).
Finally, the join operation of the first and the second pushdown (by a state of the form
〈r, join,2〉), i.e.,c2c1$b2b1a2a1$, is simulated by replacing

〈A1,4〉a1a2〈A2,4〉b1b2〈A3,4〉c1c2〈A4,4〉

with
〈A1,3〉a1a2b1b2〈A2,3〉c1c2〈A3,3〉.

The formal proof of Lemma 8 follows.

Proof. Let M = (Q,T,R,s) be annPPDA. Construct the following programmed grammar
G = (N,T,P,S), whereN = Q×{1, . . . ,n+1} andP is constructed as follows.

Set f (r) = {t : r → t ∈ R}, andg(f (r)) =
⋃

p∈ f (r) g(p) (the definition ofg(p) follows).

1. For any rules → p ∈ R, add

a) (S → 〈A1,n+1〉〈A2,n+1〉. . .〈An+1,n+1〉,g(p)) into P;

2. For allp ∈ S1 and 1≤ l ≤ n+1, add

a) ([p, l, p] : 〈A1, l〉 → ε,{[/,2,l, p] : [/,2,l, p] ∈ lab(P)});

3. For allp ∈ S1∪S4 and 1≤ i, l ≤ n+1, i ≥ 2, add

a) ([/, i, l, p] : 〈Ai, l〉 → 〈Ai−1, l〉,{[/, i+1,l, p]}), for i < l;

b) ([/, l, l, p] : 〈Al , l〉 → 〈Al−1, l〉,{[−,1,l, p]});

4. For allp ∈ S1∪S4 and 1≤ i, l ≤ n+1, l ≥ 2, add

a) ([−, i, l, p] : 〈Ai, l〉 → 〈Ai, l −1〉,{[−, i+1,l, p]}), for i < l −1;

b) ([−, l−1,l, p] : 〈Al−1, l〉 → 〈Al−1, l −1〉,g(f (p)));

5. For allp ∈ S2 and 1≤ i, l ≤ n+1, add

a) ([i, l, p] : 〈Ai, l〉 → 〈Ai, l〉a,g(f (p)));

6. For allp ∈ S3 and 1≤ i, l ≤ n+1, i ≤ n, add

a) ([∗, i, l, i, p] : 〈Ai, l〉 → 〈Ai+1, l〉,{[∗, i+1,l, i, p]}), for i < l;

b) ([∗, l, l, i, p] : 〈Al , l〉 → 〈Al+1, l〉,{[n, i+1,l, p]});

On Pure Multi-Pushdown Automata that Perform Complete Pushdown Pops 547

7. For allp ∈ S3, 1≤ l ≤ n+1 and 1< i ≤ n+1, add

a) ([n, i, l, p] : 〈Ai, l〉 → 〈Ai−1, l〉〈Ai, l〉,{[+,1,l, p]});

8. For allp ∈ S3 and 1≤ i, l < n+1, add

a) ([+, i, l, p] : 〈Ai, l〉 → 〈Ai, l +1〉,{[+, i+1,l, p]}), for i < l +1;

b) ([+, l +1,l, p] : 〈Al+1, l〉 → 〈Al+1, l +1〉,g(f (p)));

9. For allp ∈ S4 and 1≤ i, l ≤ n+1, add

a) ([j, i, l, p] : 〈Ai, l〉 → ε,W), W = {[/, i + 1,l, p]}) if i < l, W = {[−,1,l, p]}
otherwise.

g(p) depends onp as follows:

p = 〈r,pop〉: g(p) = {[p, l, p] : [p, l, p] ∈ lab(P)};

p = 〈r,push, i,a〉: g(p) = {[i, l, p] : [i, l, p] ∈ lab(P)};

p = 〈r,new, i〉: g(p) = {[∗, i, l, i, p] : [∗, i, l, i, p] ∈ lab(P)};

p = 〈r, join, i〉: g(p) = {[j, i, l, p] : [j, i, l, p] ∈ lab(P)}.

Consider a configurationwk$. . .$w2$w1$pw of M and the corresponding sentential
form of G, i.e., (〈A1,k + 1〉w1〈A2,k + 1〉w2 . . .〈Ak,k + 1〉wk〈Ak+1,k + 1〉,g(p)). If p =
〈r,pop〉, G simulates the computational step as follows:

(〈A1,k +1〉w1〈A2,k +1〉w2 . . .〈Ak,k +1〉wk〈Ak+1,k +1〉,{[p,k +1,p]})

⇒ (w1〈A2,k +1〉w2 . . .〈Ak,k +1〉wk〈Ak+1,k +1〉,{[/,2,k +1,p]})

⇒k (w1〈A1,k +1〉w2 . . .〈Ak−1,k +1〉wk〈Ak,k +1〉,{[−,1,k +1,p]})

⇒k (w1〈A1,k〉w2 . . .〈Ak−1,k〉wk〈Ak,k〉,g(f (p))).

If p = 〈r,push, i,a〉, G simulates the computational step as follows:

(〈A1,k +1〉w1 . . .〈Ai,k +1〉wi . . .〈Ak,k +1〉wk〈Ak+1,k +1〉,{[i,k +1,p]})

⇒ (〈A1,k +1〉w1 . . .〈Ai,k +1〉awi . . .〈Ak,k +1〉wk〈Ak+1,k +1〉,g(f (p))).

If p = 〈r,new, i〉, G simulates the computational step as follows:

(〈A1,k +1〉w1 . . .wi−1〈Ai,k +1〉wi . . .wk〈Ak+1,k +1〉,{[∗, i,k +1,i, p]})

⇒k−i+1 (. . .wi−1〈Ai+1,k +1〉wi . . .wk〈Ak+2,k +1〉,{[n, i+1,k +1,p]})

⇒ (. . .wi−1〈Ai,k +1〉〈Ai+1,k +1〉wi . . .wk〈Ak+2,k +1〉,{[+,1,k +1,p]})

⇒k+2 (〈A1,k +2〉w1 . . .wk〈Ak+2,k +2〉,g(f (p))).

If p = 〈r, join, i〉, G simulates the computational step as follows:

(〈A1,k +1〉w1 . . .wi−1〈Ai,k +1〉wi . . .wk〈Ak+1,k +1〉,{[j, i,k +1,p]})

⇒ (. . .〈Ai−1,k +1〉wi−1wi〈Ai+1,k +1〉wi+1 . . . ,{[/, i+1,k +1,p]})

⇒k−i (. . .〈Ai−1,k +1〉wi−1wi〈Ai,k +1〉wi+1 . . .wk〈Ak,k +1〉,{[−,1,k +1,p]})

⇒k (〈A1,k〉w1 . . .〈Ai−1,k〉wi−1wi〈Ai,k〉 . . .wk〈Ak,k〉,g(f (p))).

548 Tomá̌s Masopust and Alexander Meduna

As any derivation ofG simulates a computation ofM, we haveL(M) = L(G).

The next lemma shows that any language generated by a programmed grammarof
indexn is accepted by an(n+1)PPDA.

Lemma 9. For all n ≥ 1, L n
P ⊆ L

n+1
{1,2,3,4}.

The main idea of the proof is to simulate a derivation of a programmed grammar,G,
of indexn by a generalized(n +1)PPDA,M, so that whatG generates to the right of the
rewritten nonterminal, sayAw1Bw2Cw3 ⇒ Aw1B′uw2Cw3, M pushes to its corresponding
pushdown,wR

3$wR
2uR$wR

1$. If G generates a string,v, to the left of the rewritten nonter-
minal, sayAw1Bw2Cw3 ⇒ Aw1vB′′w2Cw3, thenM creates a new pushdown just before
the pushdown corresponding to the rewritten nonterminal,wR

3$wR
2$$wR

1$, pushesvR to the
new pushdown,wR

3$wR
2vRwR

1$, and joins the two pushdowns,wR
3$wR

2$vRwR
1$. By this,

M putsvR to the bottom of the pushdown. In case of the first pushdown, the join operation
is replaced with the pop operation. The formal proof follows.

Proof. Let G = (N,T,P,S) be a programmed grammar of indexn, for somen ≥ 1. Con-
struct a generalized(n+1)PPDAM = (Q,T,R,s) as follows.

1. SetQ = (lab(P)∪{+})×
⋃

k≤n Nk ×{0,1, . . . ,m + 1}, for m = max{k : A → u ∈
P, occur(u,N) = k};

2. For all p : A → u1B1u2B2 . . .ukBkuk+1 ∈ P, whereui ∈ T ∗ andB j ∈ N, for all i =
1, . . . ,k +1, j = 1, . . . ,k, k ≥ 0, and for all〈+,αAβ ,0〉 ∈Q, whereα,β ∈ N∗, and
l = occur(αA,N), add the following toR:

• s → 〈〈+,S,0〉,push,1,ε〉,
• 〈〈+,αAβ ,0〉,push,1,ε〉 → 〈〈p,αB1 . . .Bkβ ,k +1〉,push, l + k−1,uR

k+1〉,

• 〈〈p,αB1 . . .Bkβ ,k +1〉,push, l + k−1,uR
k+1〉 →

〈〈p,αB1 . . .Bkβ ,k〉,push, l + k−2,uR
k 〉,

• 〈〈p,αB1 . . .Bkβ ,k〉,push, l + k−2,uR
k 〉 →

〈〈p,αB1 . . .Bkβ ,k−1〉,push, l + k−3,uR
k−1〉,

...

• 〈〈p,αB1 . . .Bkβ ,2〉,push, l,uR
2〉 → 〈〈p,αB1 . . .Bkβ ,1〉,new, l〉,

• 〈〈p,αB1 . . .Bkβ ,1〉,new, l〉 → 〈〈p,αB1 . . .Bkβ ,1〉,push, l,uR
1〉,

• if l = 1, add

– 〈〈p,B1 . . .Bkβ ,1〉,push,1,uR
1〉 → 〈〈p,B1 . . .Bkβ ,0〉,pop〉,

– 〈〈p,B1 . . .Bkβ ,0〉,pop〉 → 〈〈+,B1 . . .Bkβ ,0〉,push,1,ε〉,
• if l ≥ 2, add

– 〈〈p,αB1 . . .Bkβ ,1〉,push, l,uR
1〉 → 〈〈p,αB1 . . .Bkβ ,0〉, join, l〉,

– 〈〈p,αB1 . . .Bkβ ,0〉, join, l〉 → 〈〈+,αB1 . . .Bkβ ,0〉,push,1,ε〉.

On Pure Multi-Pushdown Automata that Perform Complete Pushdown Pops 549

We have proved thatL(M) = L(G), whereM is a generalized(n+1)PPDA. The proof
now follows by Lemma 1.

Let n ≥ 1. Analogously as in [2, Theorem 3.1.7], we can prove that the language

Ln = {b(aib)2n−1 : i ≥ 1} ∈L
n

P −L
n−1

P .

Lemma 10. For all n ≥ 1, Ln ∈ L n
{1,2,3,4}.

Informally, the automaton hasn pushdowns and each but the one of them contains
aibai, for somei≥ 1. Thus, two symbolsa are put to a pushdown – one to the top and one to
the bottom. Finally, the symbolb is pushed to the bottom of alln−1 pushdowns, i.e., they
contain the stringaibaib. Obviously, by the operations new and pop,baib can be simulated
and compared with the prefix of the input symbol by symbol during the computation. Thus,
the automaton has readbaib, and the content of each ofn−1 pushdowns isaibaib, i.e., the
automaton has accepted the stringbaib(aib)2(n−1) = b(aib)2n−1.

Proof. If n = 1, the proof is trivial; just pushbaib to the pushdown. Thus, letn ≥ 2 and
M = (Q,{a,b},R,s) be annPPDA, whereQ = {0,p,q,r,s, t, f}, andR is constructed as
follows.

Phase 1.

1. s → 〈0,push,1,b〉,

2. 〈0,push,1,b〉 → 〈0,pop〉,

3. 〈0,pop〉 → 〈p,push,1,b〉,

4. for 2≤ i < n−1,

4a. 〈p,push, i,b〉 → 〈p,push, i+1,b〉,

4b. 〈p,push,n−1,b〉 → 〈q,new,1〉,

Phase 2.

5. 〈q,new,1〉 → 〈q,push,1,a〉,

6. 〈q,push,1,a〉 → 〈q,pop〉,

7. 〈q,pop〉 → 〈s,push,1,a〉,

8. for 1≤ i < n,

8a. 〈s,push, i,a〉 → 〈r,new, i+1〉,

8b. 〈r,new, i+1〉 → 〈r,push, i+1,a〉,

8c. 〈r,push, i+1,a〉 → 〈r, join, i+1〉,

8d. 〈r, join, i〉 → 〈s,push, i,a〉, i ≥ 2,

8e. 〈r, join,n〉 → 〈q,new,1〉,

8f. 〈r, join,n〉 → 〈t,new,1〉,

Phase 3.

9. 〈t,new,1〉 → 〈t,push,1,b〉,

10. 〈t,push,1,b〉 → 〈t,pop〉,

11. 〈t,pop〉 → 〈t,new,2〉,

12. for 2≤ i ≤ n,

12a. 〈t,new, i〉 → 〈t,push, i,b〉,

12b. 〈t,push, i,b〉 → 〈t, join, i〉,

12c. 〈t, join, i〉 → 〈t,new, i+1〉,

Phase 4.

13. 〈t,new,n+1〉 → 〈 f ,pop〉,

14. 〈 f ,pop〉 → 〈 f ,pop〉.

550 Tomá̌s Masopust and Alexander Meduna

Phase 1 readsb from the input and pushesb to n−1 pushdowns. Phase 2 repeatedly
readsa from the input and pushesa on the top and to the bottom of alln−1 pushdowns.
Phase 3 readsb from the input and pushesb to the bottom of alln−1 pushdowns. Finally,
Phase 4 pops alln−1 pushdowns. Clearly,baib has been read from the input and each of
n−1 pushdowns containsbaibai$, where the top of the pushdown is on the right. Thus,
we haveL(M) = Ln.

Corollary 4. For all n ≥ 1, L n
P ⊂ L

n+1
{1,2,3,4}.

Proof. The inclusion follows from Lemma 9 and the strictness from Lemma 10.

The following corollary summarizes the power ofnPPDAsknown so far.

Corollary 5. For all n ≥ 1, L n
{1,2,3,4} ⊆ L

n+1
P ⊂ L

n+2
{1,2,3,4}.

Proof. It follows immediately from Lemmas 8 and 9, and the previous corollary.

Analogously, we can prove that for alln ≥ 2,

Kn+1 = {ak
1ak

2 . . .ak
n+1 : k ≥ 1} ∈L

n
{1,2,3,4} ,

which proves the following result.

Corollary 6. For all n ≥ 2, L n
{1,2} ⊂ L n

{1,2,3,4}.

Proof. Ibarra [10, Theorem 2.3] proved thatKn+1 6∈ L n
R = L n

{1,2}.

Note that by the trick pushing the content of one pushdown to the bottomof the other,
we can prove that for alln ≥ 1, K2n−1 ∈ L n

{1,2,3,4}.

4 Conclusion

In this paper, we discussed two variants of pure multi-pushdown automata that perform
complete pushdown pops and proved two infinite language hierarchies they characterize
with respect to the number of pushdowns. The following theorem summarizes the results
of this paper.

Theorem 3. 1. LREG = L 1
{1,2} = L 1

{1,2,4} = L 1
{1,2,3} = L 1

{1,2,3,4}.

2. For all n ≥ 2, L n
{1,2} = L n

{1,2,4} ⊂ L n
{1,2,3} ⊆ L n

{1,2,3,4}.

3. For all n ≥ 1, L n
{1,2} ⊂ L

n+1
{1,2}.

4. For all n ≥ 1, L n
{1,2,3,4} ⊂ L

n+2
{1,2,3,4}.

On Pure Multi-Pushdown Automata that Perform Complete Pushdown Pops 551

Moreover, note that by Corollary 3.4 in [3], Corollary of Lemma 3.1.5 in [2], and
Corollary 5, any languageL ∈

⋃∞
n=1L n

{1,2,3,4} over a one-letter alphabet is regular.
On the other hand, this paper does not answer the question of whether the inclusions

L n
{1,2,3,4} ⊆ L

n+1
{1,2,3,4}, n ≥ 1, andL n

{1,2,3} ⊆ L n
{1,2,3,4}, n ≥ 2, are proper or not. How-

ever, we conjecture that these inclusions are proper. Furthermore, one of the interesting
questions concerning this is whether the language

Mn = {wn : w ∈ {a,b}∗}

is in L
n−1
{1,2,3,4}, for n ≥ 2. This is of interest because ifMn is not in L

n−1
{1,2,3,4}, then it

implies that

1. Mn ∈ L n
{1,2}∩ (L n

{1,2,3,4}−L
n−1
{1,2,3,4}) and that

2. L n
{1,2} 6⊆ L

n−1
{1,2,3,4},

as it is not hard to see thatMn ∈ L n
{1,2}. Another interesting question is whether the

languageKn+1 ∈ L n
{1,2,3} because if this is not true, then it impliesL n

{1,2,3} ⊂ L n
{1,2,3,4},

for n ≥ 2. Finally, the following question is of interest from the viewpoint of descriptional
complexity: what is the power of pure multi-pushdown automata that perform complete
pushdown pops with respect to the number of states?

Acknowledgements

The authors gratefully acknowledge useful suggestions and comments of the anonymous
referees.

This work was supported by the Czech Ministry of Education under the Research Plan
No. MSM 0021630528 and the Czech Grant Agency project No. GA201/07/0005.

References

[1] Courcelle, B. On jump deterministic pushdown automata.Math. Systems Theory,
11:87–109, 1977.

[2] Dassow, J. and P̆aun, Gh.Regulated Rewriting in Formal Language Theory. Springer-
Verlag, Berlin, 1989.

[3] Fernau, H. and Holzer, M. Regulated finite index language families collapse. Tech-
nical report, University of Tuebingen, 1996.

[4] Fischer, P. C. Multi-tape and infinite-state automata—a survey.Commun. ACM,
8(12):799–805, 1965.

[5] Fischer, P. C. and Rosenberg, A. L. Multitape one-way nonwriting automata.J.
Comput. System Sci., 2:88–101, 1968.

552 Tomá̌s Masopust and Alexander Meduna

[6] Ginsburg, S., Greibach, S. A., and Harrison, M. A. One-way stack automata.J. ACM,
14:389–418, 1967.

[7] Ginsburg, S. and Spanier, E. Finite-turn pushdown automata.SIAM J. Control,
4:429–453, 1968.

[8] Greibach, S. A. Checking automata and one-way stack languages.J. Comput. System
Sci., 3:196–217, 1969.

[9] Hopcroft, J. E. and Ullman, J. D.Formal Languages and Their Relation to Automata.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1969.

[10] Ibarra, O. H. Simple matrix languages.Inform. and Control, 17(4):359–394, 1970.

[11] Meduna, A. Simultaneously one-turn two-pushdown automata.Int. J. Comp. Math.,
80:679–687, 2003.

[12] Meduna, A. Deep pushdown automata.Acta Inform., 42(8–9):541–552, 2006.

[13] Meduna, A. and Masopust, T. Self-regulating finite automata.Acta Cybernet.,
18:135–153, 2007.

[14] Sakarovitch, J. Pushdown automata with terminating languages.Languages and
Automata Symposium, RIMS 421, Kyoto University, pages 15–29, 1981.

[15] Salomaa, A.Formal languages. Academic Press, New York, 1973.

[16] Siromoney, R. On equal matrix languages.Inform. and Control, 14:135–151, 1969.

[17] Siromoney, R. Finite-turn checking automata.J. Comput. System Sci., 5:549–559,
1971.

[18] Valiant, L. The equivalence problem for deterministic finite turn pushdown automata.
Inform. and Control, 81:265–279, 1989.

[19] Wood, D. m-paralleln-right linear simple matrix languages.Util. Math., 8:3–28,
1975.

Received 15th September 2008

