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Abstract

We present a resolution based reasoning algorithm called DL calculus that

decides concept satisfiability for the SℋQ language. Unlike existing resolu-

tion based approaches, the DL calculus is defined directly on DL expressions.

We argue that working on this high level of abstraction provides an easier to

grasp algorithm with less intermediary transformation steps and increased ef-

ficiency. We give a proof of the completeness of our algorithm that relies solely

on the AℒCℋQ tableau method, without requiring any further background

knowledge.

1 Introduction and background

The Tableau Method [1] has long provided the theoretical background for DL rea-
soning and most existing DL reasoners implement some of its numerous variants.
The typical DL reasoning tasks can be reduced to consistency checking and this is
exactly what the Tableau Method provides. While the Tableau itself has proven
to be very efficient, the reduction to consistency check is rather costly for some
reasoning tasks. In particular, the ABox reasoning task instance retrieval requires
running the Tableau Method for every single individual that appears in the knowl-
edge base. Several techniques have been developed to make tableau-based reasoning
more efficient on large data sets, (see e.g. [4]), that are used by the state-of-the-art
DL reasoners, such as RacerPro [5] or Pellet [11].

Other approaches use first-order resolution for reasoning. A resolution-based
inference algorithm is described in [7] which is not as sensitive to the increase
of the ABox size as the tableau-based methods. The system KAON2 [10] is an
implementation of this approach, providing reasoning services over the description
logic language SℋℐQ. The algorithm used in KAON2 in itself is not any more
efficient for instance retrieval than the Tableau, but several steps that involve only
the TBox can be performed before accessing the ABox, after which some axioms
can be eliminated because they play no further role in the reasoning. This yields
a qualitatively simpler set of axioms which then can be used for an efficient, query
driven data reasoning. For the second phase of reasoning KAON2 uses a disjunctive
datalog engine and not the original calculus. Thanks to the preprocessing, query
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answering is very focused, i.e., it accesses as little part of the ABox as possible.
However, in order for this to work, KAON2 still needs to go through the whole
ABox once at the end of the first phase.

Reading the whole ABox is not a feasible option in case the ABox is bigger than
the available memory or the content of the ABox changes so frequently that on-the-
fly ABox access is an utmost necessity. Typical such scenarios include reasoning on
web-scale or using description logic ontologies directly on top of existing information
sources, such as in a DL based information integration system.

We have developed a DL ABox reasoner called DLog [9], available to download
at http://dlog-reasoner.sourceforge.net, which is built on similar principles
to KAON2. We will only highlight two main differences. First, instead of a datalog
engine, we use the reasoning mechanism of the Prolog language [3] to perform the
second phase (see [8]). Second, we use a modified resolution calculus (see [12]) that
allows us to perform more inference steps in the first phase, thanks to which more
axioms can be eliminated, yielding an even simpler set of axioms to work with in
the second phase. The important difference is that while the approach of [10] can
only guarantee that there are no nested functional symbols, our calculus ensures
that no function symbols remain at all. This makes the subsequent reasoning easier
and we can perform focused, query driven reasoning without any transformation
that would require going through the ABox even once.

[12] describes the first phase of the reasoning algorithm implmented in DLog.
The DL calculus presented in [13] aims to improve on this algorithm. We move the
resolution-based reasoning from the level of first-order clauses to DL axioms, which
saves us many intermediary transformation steps. Our current paper is the revised
and corrected version of [13]. To avoid a problem in the proof published in [13], we
had to restrict the calculus from the SℋℐQ language to the SℋQ language. We
hope to lift this restriction in the near future.

Our work is yet incomplete in that we only provide an algorithm for TBox
reasoning. Although we sketch an extension to ABox reasoning at the end of the
paper, we do not yet have a proof for its correctness.

This paper is structured as follows. First, in Section 2 we give a brief intro-
duction to Description Logics and in particular the SℋQ language. In Section 3
we present the DL calculus that performs consistency check for a SℋQ TBox, and
show that it can also be used to decide concept satisfiability. In Section 4 we dis-
cuss the time complexity of the algorithm. In Section 5 we prove the soundness of
the DL calculus. In Section 6 we prove that the calculus is complete. Section 7
introduces our future work, in particular the extension of the DL calculus to ABox
reasoning. Finally, Section 8 concludes by giving a brief summary of our results.

2 Description Logic

Description Logics (DLs) is a family of simple logic languages used for knowledge
representation (for a detailed introduction see [1]). The language expressions use
two main building blocks: atomic concepts that represent sets of objects and atomic
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roles that are used to describe relations between objects and stand for sets of object
pairs. These building blocks can be combined to create composite concepts – as
well as composite roles for some DL variants.

2.1 Terminological Axioms and Assertions

A DL statement can be an assertion about concrete individuals or it can express
some general knowledge, very much like a rule. Statements of the first kind are
called data assertions that are altogether referred to as the Assertion box, or ABox.
Rule-like statements are called terminology axioms that constitute the Terminology
box, or TBox.

2.2 The SℋQ language

All that has been said so far is true of all DL languages. The members of the
language family differ in the constructors that are available for building composite
concepts and roles. We will be concerned with the SℋQ language and give a brief
summary to its syntax.

Consider a set NC of atomic concepts, NR of atomic roles and finitely many
constant names. Using nothing but these, we can already make simple assertions.
We can describe that an individual satisfies some atomic concept (A(a)), some
atomic role holds between two individuals (R(a, b)), two individuals are equal (a =
b) or they are distinct (a ∕= b). We can declare some role to be transitive (Trans(R)).
We can force a role to be subsumed by another (R1 ⊑ R2), i.e., that every object
pair that satisfies the first role also satisfies the second.

Let ⊑∗ the reflexive-transitive closure of the ⊑ relation. A role R is said to be
simple if there is no role S such that Trans(S) and S ⊑∗ R hold.

There are no role constructors in the SℋQ language. However, the following
concept constructions are available:

A Atomic concept, A ∈ NC

⊤ top (universal concept)
⊥ bottom (empty concept)
¬C complement of C
C1 ⊓ C2 intersection of C1 and C2

C1 ⊔ C2 union of C1 and C2

∀R.C value restriction (R, C arbitrary role and concept)
∃R.C existential resctriction (R, C arbitrary role and concept)
≤ nS.C at-most number restriction (S simple role, C arbitrary concept)
≥ nS.C at-least number restriction (S simple role, C arbitrary concept)

Two arbitrary concepts (simple or composite) can be asserted to be equivalent
(C ≡ D), or that the one is subsumed by the other (C ⊑ D). In summary, we give
the valid statements of the SℋQ language in Table 1.
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Table 1: SℋQ axioms

SℋQ TBox
C ⊑ D C, D arbitrary concepts
C ≡ D C, D arbitrary concepts
R ⊑ S R, S arbitrary roles
Trans(R) R arbitrary role

SℋQ ABox
C(a) C arbitrary concept
R(a, b) R arbitrary role
a = b

a ∕= b

3 The DL Calculus

In this section we present a reasoning algorithm, called DL calculus, which decides
the consistency of a SℋQ TBox. Evidently, such an algorithm can be used for
deciding concept satisfiability as well. To see this, suppose we want to know whether
concept C is satisfiable in the presence of TBox T . Take a role R that appears
neither in T nor in C. Let us consider a new TBox T ′ = T ∪ {⊤ ⊑ ∃R.C}. Given
that R is a new role name, it is easy to see that the newly added axiom will only
introduce inconsistency to the TBox if C is unsatisfiable. C is satisfiable in the
presence of TBox T if and only if T ′ is consistent. Hence, by giving an algorithm
for TBox consistency check, we also provide an algorithm for concept satisfiability
check.

The algorithm can be summarized as follows. We determine a set of concepts
that have to be satisfied by each individual of an interpretation in order for the
TBox to be true. Next, we introduce inference rules that derive a new concept from
two concepts. Using the inference rules, we saturate the knowledge base, i.e., we
apply the rules as long as possible and add the consequent to the knowledge base.
We also apply redundancy elimination: whenever a concept extends another, it can
be safely eliminated from the knowledge base [2]. It can be shown that saturation
terminates. We claim that the knowledge base is inconsistent if and only if the
saturated set contains the empty concept (⊥).

3.1 Preprocessing

We first eliminate transitivity from the knowledge base. It can be shown (see [10])
that any SℋQ knowledge base KB can be transformed into a knowledge base KB’
that contains no transitivity axioms and KB’ is satisfiable if and only if KB is
satisfiable.

Next, we internalize the TBox, i.e., we transform all axioms into a set of concepts
that have to be satisfied by each individual. For instance, the axiom C ⊑ D is
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equivalent to the axiom ⊤ ⊑ ¬C ⊔D, which amounts to saying that ¬C ⊔D has
to be satisfied by all individuals.

Internalization is followed by structural transformation which eliminates the
nesting of composite concepts into each other. A SℋQ expression that appears in
the TBox can be of arbitrary complexity, i.e., all sorts of composite concepts can
appear within another concept. This makes reasoning very difficult. To solve this
problem, we eliminate nesting composite concepts into each other by introducing
new concept symbols that serve as names for embedded concepts. For details, see
[10].

Finally, we make a small syntactic transformation: concepts ∀R.C and ∃R.D

are replaced with equivalent concepts (≤ 0R.¬C) and (≥ 1R.D), respectively. As
a result, we obtain the following types of concepts, where L is a possibly negated
atomic concept and R an arbitrary role:

L1 ⊔ L2 ⊔ ⋅ ⋅ ⋅ ⊔ Li

L1 ⊔ (≥ kR.L2)

L1 ⊔ (≤ nR.L2)

3.2 Notation

Before presenting the inference rules, we define some important notions. A literal
concept (typically denoted with L) is a possibly negated atomic concept. A bool
concept contains no role expressions (allowing only negation, union and intersec-
tion). We use capital letters from the beginning of the alphabet (A,B,C . . . ) to
refer to bool concepts. In the following, we will always assume that a bool con-
cept is presented in a simplest disjunctive normal form, i.e., it is the disjunction of
conjunctions of literal concepts. So for example, instead of A ⊔ A ⊔ (B ⊓ ¬B ⊓ C)
we write A, and A ⊓ ¬A is replaced with ⊥. To achieve this, we apply eagerly the
simplification rules presented in Figure 2 (see Subsection 3.5). When the inference
rules (see Figure 1) do not preserve disjunctive normal form (DNF), we will use the
explicit dnf operator:

dnf (A ⊓B) =

⎧



⎨



⎩

dnf (A1 ⊓B) ⊔ dnf (A2 ⊓B) if A = A1 ⊔A2

dnf (A ⊓B1) ⊔ dnf (A ⊓B2) if B = B1 ⊔B2

(A ⊓B) otherwise

The dnf operator is defined only for concepts that are the intersection of two
concepts. The bool concepts in the premises are always in DNF and the conclusion
contains either the union or the intersection of such concepts. The union of two
DNF concepts is also in DNF so we only need to apply the dnf operator to transform
the intersection of two DNF concepts.

3.3 Ordering

Let ≻ be a total ordering, called a precedence, on the set of (atomic concept, atomic
role, natural number, logic) symbols, such that ≥≻≤≻ R ≻ n ≻ C ≻ ¬ ≻ ⊔ ≻
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⊓ ≻ ⊤ ≻ ⊥ for any atomic concept C, atomic role name R and natural number
n; furthermore for any two natural numbers n1 ≻ n2 if and only if n1 > n2. We
define a corresponding lexicographic path ordering ≻lpo (see [2]) as follows:

s = f(s1, . . . , sm) ≻lpo g(t1, . . . , tn) = t if and only if

1. f ≻ g and s ≻lpo ti, for all i with 1 ≤ i ≤ n; or

2. f = g and, for some j, we have (s1, . . . , sj−1) = (t1, . . . , tj−1), sj ≻lpo tj ,
and s ≻lpo tk, for all k with j < k ≤ n; or

3. sj રlpo t, for some j with 1 ≤ j ≤ m.

In order for the above definition to be applicable, we treat concept (≥ kS.A) as
≥(k, S,A) and concept (≤ nR.D) as ≤(n,R,D). If the precedence is total on
the symbols of the language, then the lexicographic path ordering is total on DL
expressions. For simplicity, we often write ≻ instead of ≻lpo when it does not lead
to confusion. Note a couple properties of our ordering that will be useful later:

1. A ≥-concept is greater than any ≤-concept or any bool concept.

2. A ≤-concept is greater than any bool concept.

3. C1 = (≤ n1R1.A1) is greater than C2 = (≤ n2R2.A2) if and only if:

∙ R1 ≻ R2 or

∙ R1 = R2 and n1 > n2 or

∙ R1 = R2, n1 = n2 and A1 ≻ A2

Definition 1 (maximal concept). Given a set N of concepts, concept C ∈ N is
maximal in N if C is greater than any other concept in N .

Since the ordering ≻lpo is total, for any finite set N there is always a unique concept
C ∈ N that is maximal in N .

3.4 SℋQ-concepts

A derivation in the DL calculus generates concepts that are more general than the
ones obtained after preprocessing (see Subsection 3.1). We call this broader set
SℋQ-concepts, defined as follows (C,D,E stand for concepts containing no role
expressions):

C (bool concepts)

C ⊔
⊔

(≤ nR.D) (≤ -max concepts)

C ⊔
(

⊔

(≤ nR.D)
)

⊔ (≥ kS.E) (≥ -max concepts)

where bool concepts C,D,E are in DNF. Note two important properties of SℋQ-
concepts:
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1. A SℋQ-concept is a disjunction that contains at most one ≥-concept.

2. There are no nested concepts containing role expressions, i.e., a concept em-
bedded into a ≥-concept or a ≤-concept is always a bool concept.

According to the ordering defined in Subsection 3.3, each ≤-concept is greater than
any bool concept, so the maximal disjunct in a ≤-max concept is a ≤-concept.
Similarly, any ≥-concept is greater than any ≤- or bool concept, so the maximal
disjunct in a ≥-max concept is a ≥-concept. This is the rationale for naming these
concepts ≤-max and ≥-max, respectively.

Obviously, any concept obtained after preprocessing is a SℋQ-concept:

Proposition 1. For any SℋQ knowledge base KB, if we apply the transformations
described in Subsection 3.1 on KB, we obtain a set of SℋQ-concepts.

3.5 Inference Rules

The inference rules are presented in Figure 1, where Ci, Di, Ei are possibly empty
bool concepts. Wi stands for an arbitrary SℋQ-concept that can be empty as
well. Some of the rules do not preserve the disjunctive normal form (DNF) of bool
concepts. In such cases, we use the dnf operator as defined in Subsection 3.2. Note
that two disjunctive concepts are resolved along their respective maximal disjuncts
and the ordering that we imposed on the concepts yields a selection function. Since
the odering is total, we can always select the unique maximal disjunct to perform
the inference step.

Along with the inference rules, we use a futher set of rules that we call simpli-
fication rules and which are shown in Figure 2. These rules only have one premise
which is redundant in the presence of the conclusion and hence can be eliminated.
In other words, the simplification rules are used to simplify concepts and do not
deduce new concepts. Simplification rules are applied not only to SℋQ-concepts,
but also to subconcepts appearing in SℋQ-concepts. For example, S1 is used to
replace the concept C ⊔A⊔A with C ⊔A, but also to replace (≥ nR.(C ⊔A⊔A))
with (≥ nR.(C ⊔A)).

Rule1 corresponds to the classical resolution inference and Rule2 makes this
same inference possible for entities whose existence is required by ≥-concepts.
Rule3 and Rule4 are harder to understand. They address the interaction between
≥-concepts and ≤-concepts. Intuitively, if some entity satisfies ≤ nR.C and also
satisfies ≥ kS.D, then there is a potential for clash if concepts C and D are related,
more precisely if D is subsumed by C. In such cases D ⊓ ¬C is not satisfiable,
which either leads to contradiction if n < k (Rule3) or results in a tighter car-
dinality restriction on the entity (Rule4). If several ≥-concepts and a ≤-concept
are inconsistent together, then each ≥-concept is used to deduce a ≤-concept with
smaller cardinality (Rule4) until the ≤-concept completely disappears from the
conclusion (Rule3) and we obtain the empty concept.
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Rule1
C1 ⊔ (D1 ⊓A) C2 ⊔ (D2 ⊓ ¬A)

C1 ⊔ C2

where D1 ⊓A is maximal in C1 ⊔ (D1 ⊓A)

and D2 ⊓ ¬A is maximal in C2 ⊔ (D2 ⊓ ¬A)

Rule2
C W ⊔ (≥ nR.D)

W ⊔ (≥ nR.dnf (D ⊓ E))

where E is obtained by using Rule1 on premises C and D

Rule3
W1 ⊔ (≤ nR.C) W2 ⊔ (≥ kS.D)

W1 ⊔W2 ⊔ (≥ (k − n)S.dnf (D ⊓ ¬C))

n < k, S ⊑∗ R, (≤ nR.C) is maximal in W1 ⊔ (≤ nR.C)

and (≥ kS.D) is maximal in W2 ⊔ (≥ kS.D)

Rule4
W1 ⊔ (≤ nR.C) W2 ⊔ (≥ kS.D)

W1 ⊔W2 ⊔ (≤ (n− k)R.dnf (C ⊓ ¬D)) ⊔ (≥ 1S.dnf (D ⊓ ¬C))

n ≥ k, S ⊑∗ R, (≤ nR.C) is maximal in W1 ⊔ (≤ nR.C)

and (≥ kS.D) is maximal in W2 ⊔ (≥ kS.D)

Figure 1: TBox inference rules of the DL calculus

S1
C ⊔ L ⊔ ⋅ ⋅ ⋅ ⊔ L

C ⊔ L

S2
C ⊔D ⊔ (D ⊓ E)

C ⊔D

S3
C ⊔D ⊔ (¬D ⊓ E)

C ⊔D ⊔ E

S4
C ⊔D ⊔ ¬D

⊤

S5
C ⊔ (D ⊓ E ⊓ ¬E)

C

S6
W ⊔ (≥ nR.⊥)

W

S7
W ⊔ (≤ nR.⊥)

⊤

Figure 2: TBox simplification rules of the DL calculus
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3.6 Saturation

We saturate the knowledge base, i.e., we apply the rules in Figure 1 to deduce new
concepts as long as possible. Before adding the consequent to the concept set, we
eagerly apply the simplification rules of Figure 2 to make the concept as simple as
possible. We claim that the consequent is always a SℋQ-concept.

Proposition 2. The set of SℋQ-concepts is closed under the inference rules in
Figure 1 and the simplification rules in Figure 2.

Proof. Consider Rule1. D1⊓A is maximal in C1⊔(D1⊓A) which is only possible if
C1 does not contain any ≥- or ≤-concepts. Hence it is a bool concept. Analogously,
the fact that D2 ⊓ ¬A is maximal in C2 ⊔ (D2 ⊓ ¬A) ensures that C2 is another
bool concept. Bool concepts are in DNF. The conclusion is the disjunction of two
bool concepts (C1 ⊔ C2) which is also in DNF and hence is a bool concept.

Rule2 resolves a bool concept with a ≥-max concept. We have just seen that
resolving C and D by Rule1 yields a bool concept. We take the conjunction of this
concept and another bool concept (D⊓E) which is not in DNF, but it yields a bool
concept once we apply the dnf operator. Hence the conclusion is a ≥-max concept.

In Rule3, the maximal disjunct of the first premise is (≤ nR.C), so it does
not contain any ≥-concept. The second premise is a ≥-max concept and contains
exactly one ≥-concept, namely (≥ kS.D). The conclusion contains one ≥-concept
and is a ≥-max concept. Again, the dnf operator is used to ensure that the bool
concept appearing in the ≥-disjunct of the conclusion is in DNF.

In Rule4, the maximal disjunct of the first premise is (≤ nR.C), so it is a ≤-max
concept and does not contain any ≥-concept. The second premise contains exactly
one ≥-concept, so W2 contains no ≥-concept. Consequently, the conclusion will
contain only one ≥-concept and all subconcepts inside ≥- and ≤-concepts are bool
concepts. We obtain a ≥-max concept.

Simplification rules S1-S5 eliminate some disjuncts or conjuncts from bool con-
cepts in DNF. The conclusion is always a simpler bool concept in DNF. S6 elimi-
nates an unsatisfiable branch from a disjunction, turning a ≥-max concept either
to a bool concept or to a ≤-max concept. In case of S7, the premise is a tautology
and can be safely eliminated.

4 Termination

The following proposition – along with Propostion 2 – ensures that the DL calculus
terminates.

Proposition 3. The set of all SℋQ-concepts that can be deduced from any finite
TBox is finite.

Proof. For any finite TBox, there can only be finitely many distinct role expressions
and bool concepts. Furthermore, note that each inference rule either leaves the arity
of a number restriction unaltered or reduces it. So in a (≤ nR.C) or (≥ nR.C)
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expression the number of possible values for n, R and C is finite for a fixed TBox.
As all SℋQ-concepts are disjunctions of bool, ≤, and ≥-concepts, we have an upper
limit for the set of deducible SℋQ-concepts.

DL calculus deduces only SℋQ concepts from SℋQ concepts. Since there
are finitely many SℋQ concepts, even if we have to deduce every possible SℋQ-
concept, it still requires finitely many steps, so the calculus is guaranteed to termi-
nate.

5 Soundness

It is straightforward to show that the simplification rules are sound, i.e., if all indi-
viduals of an interpretation satisfy the premise then they also satisfy the conclusion.
We leave this to the reader. The inference rules are slightly more complex.

Theorem 1. The inference rules of the DL calculus are sound.

Proof. Consider Rule1 and suppose that x satisfies both premises. Either A or ¬A
is true of x. If A(x) is true, then x must satisfy C2, due to the second premise.
Analogously, if ¬A(x) is true, then x must satisfy C1. In either case, the conclusion
holds for x.

We turn to Rule2. Let x be an individual. It satisfies the second premise, so
either W or (≥ nR.D) holds for x. In the first case the conclusion is satisfied by x,
in the second case x has at least n R-successors that satisfy D. These successors
also satisfy the first premise (C) and – given that Rule1 is sound – they satisfy E.
If these R-successors satisfy both D and E, then they satisfy D ⊓ E as well. So it
holds for x that it has at least n R-successors that satisfy D ⊓E, so the conclusion
is again satisfied.

For Rule3, let x be an arbitrary indidivual. If x satisfies either W1 or W2,
then it satisfies the conclusion. Otherwise, x satisfies (≤ nR.C) and (≥ kS.D),
where S ⊑ R. So, x has at least k distinct S-successors that satisfy D (that are
R-successors as well). Of these, at most n successors can satisfy C, so there are
at least k − n S-successors that satisfy ¬C. From this it follows directly that the
conclusion holds for x.

Finally, let us consider Rule4 and let again x denote an arbitrary individual. If
x satisfies either W1 or W2, then it satisfies the conclusion. Otherwise, x satisfies
(≤ nR.C) and (≥ kS.D), where S ⊑ R. So, x has at least k distinct S-successors
that satisfy D. If any of these successors satisfy ¬C then the last disjunct of the
conclusion holds. Otherwise, all the k S-successors satisfy C. Given that x can
have no more than n successors that satisfy C, there cannot be more than n − k

successors that are not among those satisfying D, but they satisfy C. Hence the
second to last disjunct of the conclusion holds for x.
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6 The Completeness of the DL Calculus

In this section we prove that the method presented in Section 3 is complete, i.e.,
whenever there is some inconsistency in a TBox T , the empty concept is deduced.
We prove completeness by showing that if a saturated set SatT does not contain ⊥
then the axiom ⊤ ⊑

d
SatT has a model. Instead of building the model itself, we

will prove that the AℒCℋQ tableau method can find one such model. In order for
the model to satisfy ⊤ ⊑

d
SatT , the concepts in SatT are added to the label of

every newly created node in the tableau.
Although the tableau rules are fairly standard, there might be small variations.

Hence, to avoid confusion, in Appendix 8 we provide the definition of the tableau
rules that we assume in the following.

6.1 Building the Tableau Tree

In the previous sections, we replaced ∀- and ∃-concepts with ≤- and ≥-concepts to
make the presentation of the inference rules simpler. As we turn to the tableau,
however, the reader might be more familiar with the corresponding ∀-rule and ∃-
rule. Hence, in the following, we will treat our (≤ 0R.C) and (≥ 1S.D) concepts
as (∀R.¬C) and (∃S.D), respectively.

Whenever we have several applicable tableau rules, we require the following
ordering precedence: ⊔-rules, ⊓-rule, ∃-rule, ≥-rule, ∀-rule, ⊳⊲-rule and ≤-rule.
When applying the ⊔-rule we proceed with the branch1 that adds the minimal
possible concept to the label of a node. Given that the tableau method is don’t care
non-deterministic with respect to these choices, the completeness of the algorithm
is preserved.

Whenever a node n contains a disjunctive concept W ⊔C, the branch where C

is added to the label of n is only examined after each disjunct in W that is smaller
than C has been proven unsatisfiable. A clash occurs in the tableau tree when an
atomic concept name and its negation both appear in the label of some node. In
this case we roll back and proceed with another branch. A final clash occurs when
there are no branches left, i.e., the tableau proves the inconsistency of SatT . We
show that no final clash can be reached if SatT does not contain ⊥.

6.2 Bool Concepts

In the following theorem we consider the case when SatT contains only bool con-
cepts.

Theorem 2. If SatT contains only bool concepts and does not contain ⊥, then no
final clash is possible.

Proof. To obtain contradiction, suppose that we reach a final clash. Hence, for
some atomic concept A, both A and ¬A appear in the label of some node. This is

1Throughout this paper, “branch” refers to a branch of the meta-tableau tree, i.e., one of the

tableaux resulting from the application of a non-deterministic rule.
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only possible if SatT contains concepts

W1 = C1 ⊔ (D1 ⊓A) W2 = C2 ⊔ (D2 ⊓ ¬A)

The clash is final, so there are no more branches, i.e., (D1 ⊓ A) and (D2 ⊓ ¬A)
are maximal in W1 and W2, respectively, and each disjunct in C1 and C2 leads to
clash. W1 and W2 are resolvable using Rule1, so SatT also contains

W = C1 ⊔ C2

W cannot be empty because we assumed that SatT does not contain ⊥. The
simplification rules, and in particular S1 was eagerly applied on W1 and W2, so
there are no other occurrences of (D1 ⊓ A) in C1 and (D2 ⊓ ¬A) in C2. So the
maximal disjuncts in W1 and W2 are strictly maximal. Let X denote the greater
concept of (D1 ⊓ A) and (D2 ⊓ ¬A). X is greater than any disjunct in either C1

or C2. This means that the branches corresponding to all disjuncts of W were
examined before examining the branch corresponding to X (due to the ordering
imposed on the application of the ⊔-rule described in Subsection 6.1). But we
know that all disjuncts in W lead to clash, so a final clash must have been obtained
on W , even before introducing X to the label of the node, which contradicts our
assumption that the final clash involved X.

Corollary 1. If SatT does not contain ⊥, then the set of bool concepts in T is
satisfiable.

Notice that only Rule1 is used to detect the inconsistency of bool concepts.
This observation will be useful for us later.

Corollary 2. If a set N of bool concepts is unsatisfiable then there is a sequence
of bool concepts p1, p2 . . . pn = ⊥ such that for each pi, there is an instance of
Rule1 with premises from N ∪ {p1, p2 . . . pi−1} whose conclusion is pi. We call this
sequence a deduction of ⊥.

6.3 ≥-max Concepts

Let us now assume that SatT contains only bool concepts and ≥-max concepts.

Proposition 4. Let W = C ⊔ (≥ nR.D) be a ≥-max concept in SatT . Then D is
satisfiable.

Proof. Suppose that D is unsatisfiable. Since it is in DNF, it is the disjunction
of conjunctions such that each conjunction contains some atom together with its
negation. However, the simplification rules are eagerly appled on all SℋQ-concepts
and due to S5 all disjuncts of D were eliminated. Hence D = ⊥ and W = C ⊔ (≥
nR.⊥). S6 is applicable on W yielding C, so W was removed from SatT and
replaced by C. This is a contradiction, so D must be satisfiable.
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Proposition 5. Let W = C ⊔ (≥ nR.D) be a ≥-max concept and B = {Bi} a set
of bool concepts. If {D} ∪ B is inconsistent, then there is a deduction of C using
Rule1 and Rule2 and the simplification rules.

Proof. We know from Corollary 2 that there is a deduction p1, p2 . . . pn = ⊥ from
{D} ∪ B using Rule1. In this sequence each concept has a set of premises, either
from the original concept set or from concepts that were deduced earlier. Let us
define the ancestor relation as the transitive closure of the premise relation and let
descendant be its inverse relation. For each pi, let Ai denote the set of its ancestors
that are either identical to D or are descendants of D. For each pi such that Ai is
not the empty set, replace pi with C⊔(≥ nR.(pi⊓

d
Ai)). We obtain a deduction in

which each time the conclusion is a ≥-max concept, Rule2 is used instead of Rule1.
In particular, pn = ⊥ is replaced with C⊔(≥ nR.(⊥⊓

d
An)), where the ≥-concept

is unsatisfiable, so we can deduce C from this concept using the simplification rules
(see Proposition 4).

Corollary 3. Let W = C⊔(≥ nR.D) be a ≥-max concept in SatT and let B = {Bi}
be the set of bool concepts in SatT . Then {D} ∪B is consistent.

Proof. Suppose {D} ∪ B is inconsistent. Then, from Proposition 5, SatT contains
C. However, C makes W redundant, so W was eliminated from SatT when C was
added to it. This contradicts our assumption that W ∈ SatT .

Theorem 3. If SatT contains only bool concepts and ≥-max concepts and does not
contain ⊥, then it is consistent.

Proof. We know from Corollary 1 that the bool concepts are satisfiable. As of
the ≥-max concepts, at least one of their disjuncts, namely the ≥-disjunct can
be satisfied: we can create separate successors for each ≥-concept, independent of
each other (without ≤-concepts, these successors never need to be identified). The
label of each successor is satisfiable (see Proposition 4 and Proposition 3), so the
≥-concept in the parent is satisfiable as well.

6.4 ≤-max Concepts

We now consider a fully general saturated set SatT , that might contain bool con-
cepts, ≥-max concepts and ≤-max concepts. When we build the tableau tree, if a
≤-concept appears in the label of a node, we possibly have to add a new concept
to the label of a node (∀-rule) or identify two nodes (≤-rule). We show that none
of these rules will lead to final clash.

Each successor node is created with an intial concept in its label: for instance,
if a new node is created due to concept ≥ 1R.A, then we call A the creator concept
of the node. Whatever other concept appears in its label (before performing any
identification step), it follows from A ⊓

d
Bi, where {Bi} is the set of bool con-

cepts. If a node with creator concept A has to be identified with another such that
the second node contains A in its label, then identification cannot introduce new
inconsistency and it can be seen as simply deleting the first node.
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As previously, we are only interested in potential clashes that are final. This
means that the (non-disjunctive) concepts that are involved in the clash can be
assumed to be the maximal disjuncts of SℋQ-concepts from SatT .

Proposition 6. Let SatT be a saturated set of SℋQ-concepts that does not contain
the empty concept ⊥. Let us try to build a model for ⊤ ⊑

d
SatT using the tableau

method, observing the restrictions on the order of rules presented in Subsection 6.1.
Then we never obtain a final clash.

Proof. We know from Theorem 3 that the set of bool concepts and ≥-max concepts
is consistent. Hence, a final clash must involve a (≤ nR.D) concept. We use
induction on n, the arity of the ≤-concept to show that no final clash is possible.

The base case is when n = 0, that is, when we have a ∀-concept in the label of a
node. The ∀-rule fires and a new concept is added to the label of some successors.
To obtain contradiction, we assume that this leads to a final clash. Given a node x
that has an S-successor y with creator concept A. This means that the label of x
contains a concept ≥ kS.A. Furthermore, the label of x also contains a ∀-concept,
which is a (≤ 0R.D) concept in our teminology. S ⊑ R, so the ∀-rule is applicable
and puts ¬D in the label of y. We assumed that a clash is obtained, so A ⊓ ¬D
is not satisfiable. The ≥-concept and ≤-concept in the label of x originate from a
≥-max and a ≤-max concept, respectively, in SatT , that is, SatT contains concepts

W = E ⊔ (≤ 0R.D) V = F ⊔ (≥ kS.A)

where (≤ 0R.D) is maximal in W , (≥ kS.A) is maximal in V and each disjunct in
E and F leads to clash. W and V are resolvable using Rule3 and the conclusion is

E ⊔ F ⊔ (≥ kS.dnf(A ⊓ ¬D))

A⊓¬D is not satisfiable, so the DL calculus deduces E⊔F as well (Proposition 5).
However, we know that all disjuncts in E and F lead to clash, so we obtain a final
clash without the ≤-concept in W . Contradiction.

We now turn to the inductive step. The inductive hypothesis is that a ≤-concept
can never lead to final clash, i.e., a (≤ n′R.D) concept in the label of a node that
is derived from the maximal disjunct of a ≤-max concept ofSatT can be satisfied
for all n′ < n. We show that this also holds for n.

Let some node x in the tableau tree contain concepts (≤ nR.D) and (≥ niSi.Ai),
where 1 ≤ i ≤ l and Si ⊑

∗ R. Due to the (≥ niSi.Ai) concepts, we have already
created Σl

i=1ni successors with creator concepts A1 . . . Al, respectively. D appears
in the label of each Si-successor, so Ai, together with the bool concepts implies
D. This means that Ai ⊓ ¬D is unsatisfiable. Suppose that we have to perform
identification which leads to final clash. SatT contains concepts

W = E ⊔ (≤ nR.D) Wi = Fi ⊔ (≥ niSi.Ai) 1 ≤ i ≤ l

where (≤ nR.D) is maximal in W , (≥ niSi.Ai) is maximal in Wi and each disjunct
of E and Fi leads to clash in x. By the time a ≤-rule is applied, we have already
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performed all possible ⊳⊲-rules, due to which the label of each Si-successor contains
either Aj or ¬Aj for all j ∈ {1 . . . l}. According to Corollary 3, each creator concept
is satisfiable and hence will remain satisfiable by taking its conjunction with either
Ai or ¬Ai.

We use induction on l, the number of ≥-concepts to show that the assumption
that the ≤-concept gives rise to final clash leads to contradiction.

The base case (of the second, inner induction) is when l = 0. There are no
≥-concepts in the label of x, so there are no involved successors to be identified.

We now turn to the inductive step (of the inner induction). We assume that if
the label of x contains only l′ < l different ≥-concepts then the resulting successors
can be identified into n nodes without clash.

1. In case nl > n then Rule3 is applicable on W and Wl, resulting in:

E ⊔ Fl ⊔ (≥ (nl − n)Sl.dnf(Al ⊓ ¬D))

We know that Al ⊓ ¬D is unsatisfiable, so the DL calculus deduces E ⊔ Fi

(from Proposition 5). However, all disjuncts of E and Fi lead to clash in
x, so we obtain a final clash even before introducing any ≤- and ≥-concept,
contrary to our assumption.

2. If n ≥ nl, then concepts W and Wl are resolvable using Rule4, resulting in

E ⊔ Fl ⊔ (≤ (n− nl)R.dnf(D ⊓ ¬Al)) ⊔ (≥ 1Sl.dnf(Al ⊓ ¬D))

Again, we know that D⊓¬Al is unsatisfiable, so (from Proposition 5) the DL
calculus deduces

E ⊔ Fl ⊔ (≤ (n− nl)R.dnf(D ⊓ ¬Al)) (1)

Due to the ⊳⊲-rule, the label of every successor contains either Al or ¬Al.
n − nl < n, so the inductive hypothesis holds for (1), i.e., all the successors
whose label contains both D and ¬Al can be identified into n− nl nodes by
deleting some successors that are not necessary. Further to this, there are nl

successors with creator concept Al, plus some k other successors such that
the ⊳⊲-rule put Al into their labels.

a) If k ≤ nl then we can eliminate nl − k nodes from those having Al as
their creator concept, leaving exactly nl successors whose label contains
Al. Contrary to our assumption, we obtain no final clash.

b) If k > nl then each of the nodes whose creator concept is Al can be elimi-
nated since there are more then nl other nodes satisfying Al. All remain-
ing successors originate from the ≥-concepts in W1 . . .Wl−1. However,
according to the inductive hypothesis (of the inner induction), these
successors can be identified into n successors without clash.

This concludes the second inductive proof and the first one as well. We have showed
that the assumption that a ≤-concept introduces inconsistency into the label of a
node leads to contradiction.
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6.5 Conclusion

Let T be a SℋQ TBox. Let SatT be the set of concepts obtained after performing
preprocessing on T and then saturating it with the DL calculus. In the preceding
subsections we have showed that if SatT does not contain ⊥ then it is possible
to build a model for T using the tableau algorithm. This concludes the proof of
completeness for the DL calculus.

7 Towards a DL Calculus for ABox Reasoning

In this section we sketch an extension to the DL calculus that performs ABox rea-
soning. Although the answers that we obtained in our test queries are identical to
those of other reasoners, we do not yet have a formal proof of completeness. Ac-
cordingly, this section should be seen as an indication of our future work. Currently,
the DLog data reasoner uses the calculus described in [12] and the DL calculus is
only in test phase.

We restrict our attention to extensionally reduced ABoxes, i.e., we assume that
the concept assertions only contain literal concepts. An arbitrary knowledge base
can be easily transformed to satisfy this constraint. Furthermore, we use the Unique
Name Assumption (UNA): we assume that different names refer to different indi-
viduals. The rules in Figure 3 are added to the inference rules presented in Figure 1.
As before, the resolved literals have to be maximal in their respective concepts.

5
C ⊔ (L1 ⊓ L2 ⋅ ⋅ ⋅ ⊓ L) ¬L(a)

C(a)
6

C ⊔ (L1 ⊓ L2 ⋅ ⋅ ⋅ ⊓ L(a)) ¬L(a)

C

7
W ⊔ (≤ nR.C) {R(a, bi)}

n+1

i=1

W (a) ⊔
⊔n+1

i=1
¬C(bi)

8
W ⊔ (≤ nR.C)(a) {R(a, bi)}

n+1

i=1

W ⊔
⊔n+1

i=1
¬C(bi)

Figure 3: ABox inference rules

An important property of the ABox DL calculus is that the rules for data axioms
do not involve ≥-max concepts. This suggests that all inference steps involving ≥-
max concepts can be performed before accessing the ABox, allowing us to break
the ABox reasoning into two parts: (1) an ABox independent DL calculus is first
applied to the TBox until all the consequences of ≥-max concepts are inferred;
(2) next we perform the actual data reasoning using a much simpler TBox (as all
≥-max concepts can be eliminated). The output of the first phase is translated
to first-order clauses during data reasoning and ≥-concepts give rise to skolem
functions. Without ≥-max concepts, we can work with function-free clauses, which
makes the reasoning task much easier [8].
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8 Conclusion and Future Work

We have presented the DL calculus, a resolution based algorithm for deciding the
consistency of a SℋQ TBox. The novelty of this calculus is that it is defined
directly on DL axioms. We showed that the algorithm is sound, complete and
terminates. More work needs to be done to explore the real time complexity of
the reasoning, as well as potential optimization techniques. We hope that further
research will reveal that the DL calculus provides a reasonable alternative to the
Tableau Method for certain reasoning tasks.

We have extended the DL calculus to consider ABox axioms as well, providing
the basis of a two-phase ABox reasoning framework. The DL calculus is used to
perform the first phase involving the TBox only. Given that the TBox is relatively
stable over time, the speed of this phase is not crucial as it has to be performed only
once. What really matters is that by the end of this phase we can eliminate many
axioms that make the knowledge base much simpler. Thanks to the eliminations,
we can translate the initial knowledge base into a set of first-order clauses that are
function-free. The absence of function symbols enables us to use the query driven,
highly efficient data reasoning techniques implemented in the DLog ABox reasoner.
It has to be noted, however, that the ABox extension of the DL calculus requires
further work.
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Appendix: ALCHQ tableau rules

In this appendix we provide the rules of the tableau method. Even though the TBox
reasoning starts out from an SℋQ knowledge base, we quickly eliminate transitivity
axioms during preprocessing and obtain an AℒCℋQ knowledge base. Accordingly,
the rules provided in Figures 4 and 5 are those for the AℒCℋQ language. This
appendix is not meant to explain how the tableau works. Instead, we provide
it to make explicit what sorts of tableau rules we assume. For a comprehensive
treatment of SℋℐQ-tableau, we refer the reader to [6].
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⊓-rule

Condition: (C1 ⊓ C2) ∈ ℒ(x), x is not indirectly blocked and {C1, C2} ∕⊆
ℒ(x).

New state T′
: ℒ′(x) = ℒ(x) ∪ {C1, C2}.

⊔-rule

Condition: (C1 ⊔ C2) ∈ ℒ(x), x is not indirectly blocked and {C1, C2} ∩
ℒ(x) = ∅.

New state T1: ℒ′(x) = ℒ(x) ∪ {C1}.

New state T2: ℒ′(x) = ℒ(x) ∪ {C2}.

∃-rule

Condition: (∃R.C) ∈ ℒ(x), x is not blocked and

x has no R-neighbour y for which C ∈ ℒ(y).

New state T′
: V ′ = V ∪ {y} (y ∕∈ V is a new node),

E′ = E ∪ {(x, y, }), ℒ′((x, y, )) = {R}, ℒ′(y) = {C}.

∀-rule

Condition: (∀R.C) ∈ ℒ(x), x is not indirectly blocked, and
x has an R-neighbour y for which C ∕∈ ℒ(y).

New state T′
: ℒ′(y) = ℒ(y) ∪ {C}.

Figure 4: The transformation rules of the AℒCℋQ tableau algorithm, part 1.
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⊳⊲- rule

Condition: (⊳⊲ nR.C) ∈ ℒ(x), where ⊳⊲ is one of the symbols ≥ or ≤, x is
not indirectly blocked, and x has an R-neighbour y for which
{C,∼ C} ∩ ℒ(y) = ∅.

New state T1: ℒ′(y) = ℒ(y) ∪ {C}.

New state T2: ℒ′(y) = ℒ(y) ∪ {∼ C}.

≥-rule

Condition: (≥ nR.C) ∈ ℒ(x), x is not blocked, and it is not the case that
there exist nodes y1, . . . , yn such that no two of them are iden-
tifiable, and
for every i, yi is an R-neighbour of x, and C ∈ ℒ(yi) holds.

New state T′
: V ′ = V ∪ {y1, . . . , yn} (yi ∕∈ V new nodes),

E′ = E ∪ {(x, y1, , ) . . . , (x, yn, }),

ℒ′((x, yi, )) = {R}, ℒ′(yi) = {C}, for every i = 1 ≤ i ≤ n,

I ′ = I ∪ {yi ∕
.
= yj ∣ 1 ≤ i < j ≤ n}.

≤-rule

Condition: (≤ nR.C) ∈ ℒ(x), x is not indirectly blocked,
x has n+1 R-neighbours y0, . . . , yn such that C ∈ ℒ(yi) holds
for every i,
and there exist yi and yj that are identifiable.

For every (0 ≤ i < j ≤ n), where yi and yj are identifiable, let {y, z} =
{yi, yj} so that x is not a successor of y:

New state Tij: ℒ′(z) = ℒ(z) ∪ ℒ(y),

ℒ′((x, y, )) = ∅,

ℒ′((z, x, )) = ℒ((z, x, )) ∪ Inv(ℒ((x, y, ))) if x is a successor of
z,

ℒ′((x, z, )) = ℒ((x, z, ))∪ℒ((x, y, )) if x is not a successor of z,

I ′ = I[y → z] (each occurrence of y is replaced by z).

Figure 5: The transformation rules of the AℒCℋQ tableau algorithm, part 2.


