Petri Net Controlled Grammars with a Bounded Number of Additional Places*

Jürgen Dassow ${ }^{\dagger}$ and Sherzod Turaev ${ }^{\ddagger}$

Abstract

A context-free grammar and its derivations can be described by a Petri net, called a context-free Petri net, whose places and transitions correspond to the nonterminals and the production rules of the grammar, respectively, and tokens are separate instances of the nonterminals in a sentential form. Therefore, the control of the derivations in a context-free grammar can be implemented by adding some features to the associated cf Petri net. The addition of new places and new arcs from/to these new places to/from transitions of the net leads grammars controlled by k-Petri nets, i.e., Petri nets with additional k places. In the paper we investigate the generative power and give closure properties of the families of languages generated by such Petri net controlled grammars, in particular, we show that these families form an infinite hierarchy with respect to the numbers of additional places.

Keywords: grammars, grammars with regulated rewriting, Petri nets, Petri net controlled grammars

1 Introduction

It is well-known fact that context-free grammars are not able to cover all phenomena of natural and programming languages, and also with respect to other applications of sequential grammars they cannot describe all aspects. On the other hand, context-sensitive grammars are powerful enough but have bad features with respect to decidability problems which are undecidable or at least very hard. Therefore it is a natural idea to introduce grammars which use context-free rules and have a device which controls the application of the rules. The monograph [2] gives a summary of this approach.

[^0]A context-free grammar and its derivation process can be described by a Petri net where places correspond to nonterminals, transitions are the counterpart of the productions, the tokens reflect the occurrences of symbols in the sentential form, and there is a one-to-one correspondence between the application of (sequences of) rules and the firing of (sequence of) transitions (see, [1]). Therefore it is a natural idea to control the derivations in a context-free grammar by adding some features to the associated Petri net.

In [7] and [13] it has been shown that by adding some places and arcs which satisfy some structural requirements one can generate well-known families of languages as random context languages, vector languages and matrix languages. Thus the control by Petri nets can be considered as a unifying approach to different types of control (note that random context is a control by occurrence/non-occurrence of letters whereas matrices give a prescribed set of sequences in which the productions have to be applied). In this paper we add new places, called counters, and new arcs associated with the new places. Adding k places leads to a control by k-Petri nets. The aim of this paper is the study of properties of the family of languages which can be generated by context-free grammars with a control by k-Petri nets. We present results on the generative power and we give some closure properties.

The paper is organized as follows. In Section 2 we give some notions and definitions from the theories of formal languages and Petri nets needed in the sequel. Moreover we introduce the Petri net associated with a context-free grammar. In Section 3 we construct the new Petri net control mechanism and define the corresponding grammar. Furthermore, we give some examples. In Section 4 we show that context-free grammars with the simple control by one additional place can generate non-context-free languages. We also give relations to valence grammars and vector grammars. Furthermore, we show that we get an infinite hierarchy with respect to the numbers of additional places. In Section 5 we investigate the fundamental closure properties of the families of languages generated by k-Petri net controlled grammars.

2 Preliminaries

The reader is assumed to be familiar with basic notions of formal language theory and Petri net theory as, e.g. contained in $[8,2,4,5,6,9,10,11,12]$.

2.1 Grammars

Let Σ be an alphabet which is a finite nonempty set of symbols. A string over the alphabet Σ is a finite sequence of symbols from Σ. The empty string is denoted by λ. The set of all strings over the alphabet Σ is denoted by Σ^{*}. A subset of Σ^{*} is called a language. The length of a string w, denoted by $|w|$, is the number of occurrences of symbols in w. The number of occurrences of a symbol a in a string w is denoted by $|w|_{a}$. For a subset Δ of Σ, the number of occurrences of symbols of Δ in a string $w \in \Sigma^{*}$ is denoted by $|w|_{\Delta}$.

The operation shuffle for languages $L_{1}, L_{2} \subseteq \Sigma^{*}$ is defined by

$$
\begin{aligned}
\operatorname{Shuf}\left(L_{1}, L_{2}\right)= & \left\{u_{1} v_{1} u_{2} v_{2} \cdots u_{n} v_{n} \mid u_{1} u_{2} \cdots u_{n} \in L_{1}, v_{1} v_{2} \cdots v_{n} \in L_{2},\right. \\
& \left.u_{i}, v_{i} \in \Sigma^{*}, 1 \leq i \leq n\right\}
\end{aligned}
$$

and for $L \subseteq \Sigma^{*}$,

$$
\begin{aligned}
& \operatorname{Shuf}^{1}(L)=L \\
& \operatorname{Shuf}^{k}(L)=\operatorname{Shuf}\left(\operatorname{Shuf}^{k-1}(L), L\right), k \geq 2 \\
& \operatorname{Shuf}^{*}(L)=\bigcup_{k \geq 1} \operatorname{Shuf}^{k}(L)
\end{aligned}
$$

A context-free grammar is a quadruple $G=(V, \Sigma, S, R)$ where V and Σ are the disjoint finite sets of nonterminal and terminal symbols, respectively, $S \in V$ is the start symbol and $R \subseteq V \times(V \cup \Sigma)^{*}$ is a finite set of (production) rules. Usually, a rule (A, x) is written as $A \rightarrow x$. A rule of the form $A \rightarrow \lambda$ is called an erasing rule. $x \in(V \cup \Sigma)^{+}$directly derives $y \in(V \cup \Sigma)^{*}$, written as $x \Rightarrow y$, iff there is a rule $r=A \rightarrow \alpha \in R$ such that $x=x_{1} A x_{2}$ and $y=x_{1} \alpha x_{2}$. The reflexive and transitive closure of \Rightarrow is denoted by \Rightarrow^{*}. A derivation using the sequence of rules $\pi=r_{1} r_{2} \cdots r_{n}$ is denoted by $\stackrel{\pi}{\Rightarrow}$ or $\xlongequal{r_{1} r_{2} \cdots r_{n}}$. The language generated by G is defined by $L(G)=\left\{w \in \Sigma^{*} \mid S \Rightarrow^{*} w\right\}$. The family of context-free languages is denoted by CF .

A vector grammar is a quadruple $G=(V, \Sigma, S, M)$ where V, Σ, S are defined as for a context-free grammar, and M is a finite set of strings over a set of contextfree rules called matrices. The language generated by the grammar G is defined by $L(G)=\left\{w \in \Sigma^{*} \mid S \stackrel{\pi}{\Rightarrow} w\right.$ and $\left.\pi \in \operatorname{Shuf}^{*}(M)\right\}$.

An additive valence grammar is a quintuple $G=(V, \Sigma, S, R, v)$ where V, Σ, S, R are defined as for a context-free grammar and v is a mapping from R into the set \mathbb{Z} of integers. The language generated by G consists of all strings $w \in \Sigma^{*}$ such that there is a derivation $S \xlongequal{r_{1} r_{2} \cdots r_{n}} w$ where $\sum_{i=1}^{n} v\left(r_{i}\right)=0$.

A positive valence grammar is a quintuple $G=(V, \Sigma, S, R, v)$ whose components are defined as for an additive valence grammar. The language generated by G consists of all strings $w \in \Sigma^{*}$ such that there is a derivation $S \xlongequal{r_{1} r_{2} \cdots r_{n}} w$ where $\sum_{i=1}^{n} v\left(r_{i}\right)=0$ and for any $1 \leq j<n, \sum_{i=1}^{j} v\left(r_{i}\right) \geq 0$.

The families of languages generated by vector, additive valence and positive valence grammars (with erasing rules) are denoted by $\mathbf{V}, \mathbf{a V}$ and $\mathbf{p V}\left(\mathbf{V}^{\lambda}, \mathbf{a V}^{\lambda}\right.$ and $\mathbf{p} \mathbf{V}^{\lambda}$), respectively.

2.2 Petri Nets

A Petri net (PN) is a construct $N=(P, T, F, \phi)$ where P and T are disjoint finite sets of places and transitions, respectively, $F \subseteq(P \times T) \cup(T \times P)$ is the set of directed arcs, $\phi:(P \times T) \cup(T \times P) \rightarrow\{0,1,2, \cdots\}$ is a weight function, where $\phi(x, y)=0$ for all $(x, y) \in((P \times T) \cup(T \times P))-F$. A Petri net can be represented
by a bipartite directed graph with the node set $P \cup T$ where places are drawn as circles, transitions as boxes and arcs as arrows. The arrow representing an arc $(x, y) \in F$ is labeled with $\phi(x, y)$; if $\phi(x, y)=1$, the label is omitted.

A mapping $\mu: P \rightarrow\{0,1,2, \ldots\}$ is called a marking. For each place $p \in P, \mu(p)$ gives the number of tokens in p. Graphically, tokens are drawn as small solid dots inside circles. ${ }^{\bullet} x=\{y \mid(y, x) \in F\}$ and $x^{\bullet}=\{y \mid(x, y) \in F\}$ are called pre- and post-sets of $x \in P \cup T$, respectively. For $X \subseteq P \cup T$, define ${ }^{\bullet} X=\bigcup_{x \in X} \cdot x$ and $X^{\bullet}=\bigcup_{x \in X} x^{\bullet}$. For $t \in T(p \in P)$, the elements of ${ }^{\bullet} t\left({ }^{\bullet} p\right)$ are called input places (transitions) and the elements of $t^{\bullet}\left(p^{\bullet}\right)$ are called output places (transitions) of the transition t (the place p).

A transition $t \in T$ is enabled by marking μ if and only if $\mu(p) \geq \phi(p, t)$ for all $p \in P$. In this case t can occur (fire). Its occurrence transforms the marking μ into the marking μ^{\prime} defined for each place $p \in P$ by $\mu^{\prime}(p)=\mu(p)-\phi(p, t)+\phi(t, p)$. We write $\mu \xrightarrow{t} \mu^{\prime}$ to indicate that the firing of t in μ leads to μ^{\prime}. A finite sequence $t_{1} t_{2} \cdots t_{k}, t_{i} \in T, 1 \leq i \leq k$, is called an occurrence sequence enabled at a marking μ and finished at a marking μ^{\prime} if there are markings $\mu_{1}, \mu_{2}, \ldots, \mu_{k-1}$ such that $\mu \xrightarrow{t_{1}} \mu_{1} \xrightarrow{t_{2}} \ldots \xrightarrow{t_{k-1}} \mu_{k-1} \xrightarrow{t_{k}} \mu^{\prime}$. In short this sequence can be written as $\mu \xrightarrow{t_{1} t_{2} \cdots t_{k}} \mu^{\prime}$ or $\mu \xrightarrow{\nu} \mu^{\prime}$ where $\nu=t_{1} t_{2} \cdots t_{k}$.

A marked Petri net is a system $N=(P, T, F, \phi, \iota)$ where (P, T, F, ϕ) is a Petri net, ι is the initial marking. Let M be a set of markings, which will be called final markings. An occurrence sequence ν of transitions is called successful for M if it is enabled at the initial marking ι and finished at a final marking τ of M. If M is understood from the context, we say that ν is a successful occurrence sequence.

2.3 Context-Free Petri Nets

The construction of the following type of Petri nets is based on the idea of using similarity between the firing of a transition and the application of a production rule in a derivation in which places are nonterminals and tokens are different occurrences of nonterminals.

Definition 1. A context-free Petri net (in short, a cf Petri net) with respect to a context-free grammar $G=(V, \Sigma, S, R)$ is a tuple $N=(P, T, F, \phi, \beta, \gamma, \iota)$ where

- (P, T, F, ϕ) is a Petri net;
- labeling functions $\beta: P \rightarrow V$ and $\gamma: T \rightarrow R$ are bijections;
- there is an arc from place p to transition t if and only if $\gamma(t)=A \rightarrow \alpha$ and $\beta(p)=A$. The weight of the arc (p, t) is 1 ;
- there is an arc from transition t to place p if and only if $\gamma(t)=A \rightarrow \alpha$ and $\beta(p)=x$ where $|\alpha|_{x}>0$. The weight of the arc (t, p) is $|\alpha|_{x}$;
- the initial marking ι is defined by $\iota\left(\beta^{-1}(S)\right)=1$ and $\iota(p)=0$ for all $p \in$ $P-\left\{\beta^{-1}(S)\right\}$.

We also use the natural extension of the labeling function $\gamma: T^{*} \rightarrow R^{*}$, which is done in the usual manner.

Example 1. Let G_{1} be a context-free grammar with the rules:

$$
r_{0}: S \rightarrow A B, r_{1}: A \rightarrow a A b, r_{2}: A \rightarrow a b, r_{3}: B \rightarrow c B, r_{4}: B \rightarrow c
$$

(the other components of the grammar can be seen from these rules). Figure 1 illustrates a cf Petri net N with respect to the grammar G_{1}. Obviously,

$$
L\left(G_{1}\right)=\left\{a^{n} b^{n} c^{m} \mid n, m \geq 1\right\} .
$$

Figure 1: A cf Petri net N

The following proposition shows the similarity between terminal derivations in a context-free grammar and successful occurrences of transitions in the corresponding cf Petri net.

Proposition 1. Let $N=(P, T, F, \phi, \iota, \beta, \gamma)$ be the cf Petri net with respect to a context-free grammar $G=(V, \Sigma, S, R)$. Then $S \xlongequal{r_{1} r_{2} \cdots r_{n}} w, w \in \Sigma^{*}$, is a derivation in G iff $t_{1} t_{2} \cdots t_{n}, \iota \xrightarrow{t_{1} t_{2} \cdots t_{n}} \mu_{n}$, is an occurrence sequence of transitions in N such that $\gamma\left(t_{1} t_{2} \cdots t_{n}\right)=r_{1} r_{2} \cdots r_{n}$ and $\mu_{n}(p)=0$ for all $p \in P$.

Proof. Let $S \xlongequal{r_{1} r_{2} \cdots r_{n}} w, w \in \Sigma^{*}$ be a derivation in the grammar G. By induction on the number $1 \leq k \leq n$ of derivation steps, we show that $t_{1} t_{2} \cdots t_{n}$ with $\gamma\left(t_{1} t_{2} \cdots t_{n}\right)=r_{1} r_{2} \cdots r_{n}$ is an occurrence sequence enabled at ι and finished at the marking μ_{n} where $\mu_{n}(p)=0$ for all $p \in P$.

Let $k=1 . S \Rightarrow_{r_{1}} w_{1}$, i.e., the sentential form w_{1} is obtained from S by the application of a rule $r_{1}: S \rightarrow w_{1} \in R$. Then the transition $t_{1}=\gamma^{-1}\left(r_{1}\right)$ also occurs as its input place $\beta^{-1}(S)$ has a token, i.e., by definition, $\iota\left(\beta^{-1}(S)\right)=1$. Let $\iota \xrightarrow{t_{1}} \mu_{1}$. Then for each $A \in V$, we have $\mu_{1}(p)=\left|w_{1}\right|_{A}$ where $p=\beta^{-1}(A)$.

Suppose $S \xlongequal{r_{1} r_{2} \cdots r_{m}} w_{m}, w_{m} \in(V \cup \Sigma)^{*}, 1 \leq m \leq k-1<n$, and $t_{1} t_{2} \cdots t_{m}$ be an occurrence sequence of transitions of N such that $\gamma\left(t_{1} t_{2} \cdots t_{m}\right)=r_{1} r_{2} \cdots r_{m}$. Consider case $m=k$. Then the transition $t_{k}=\gamma^{-1}\left(r_{k}\right), r_{k}: A \rightarrow \alpha \in R$, can fire since ${ }^{\bullet} t_{k}=\left\{\beta^{-1}(A)\right\}$ and $\mu_{k}\left(\beta^{-1}(A)\right)=\left|w_{k}\right|_{A}>0$. If $k=n$, then $\mu_{n}(p)=0$ for all $p \in P$ as $w_{n} \in \Sigma^{*}$, i.e., $\left|w_{k}\right|_{A}=0$ for all $A \in V$.

Let $\nu=t_{1} t_{2} \cdots t_{n}$ be an occurrence sequence of transitions of N enabled at ι and finished at μ_{n} where $\mu_{n}(p)=0$ for all $p \in P$. By induction on the number $1 \leq k \leq n$ of occurrence steps we show that $S \xlongequal{r_{1} r_{2} \cdots r_{n}} w, w \in \Sigma^{*}$, is a derivation in G where $r_{1} r_{2} \cdots r_{n}=\gamma\left(t_{1} t_{2} \cdots t_{n}\right)$.

For $k=1$ we have $\iota \xrightarrow{t_{1}} \mu_{1}$. Then the rule $r_{1}=\gamma^{-1}\left(t_{1}\right): S \rightarrow \alpha \in R$ can also be applied and $S \Rightarrow{ }_{r_{1}} w_{1}=\alpha$. By definition, for each $A \in V,\left|w_{1}\right|_{A}=\mu_{1}\left(\beta^{-1}(A)\right)$.

We suppose that for $1 \leq m \leq k-1<n, S \xlongequal{r_{1} r_{2} \cdots r_{m}} w_{m} \in(V \cup \Sigma)^{*}$ is a derivation in G where $r_{1} r_{2} \cdots r_{m}=\gamma\left(t_{1} t_{2} \cdots t_{m}\right)$. Then for each $A \in V$ and $1 \leq i \leq m,\left|w_{i}\right|_{A}=\mu_{i}(p)$ where $A=\beta(p)$. If $m=k$, the rule $r_{k}: A \rightarrow \alpha \in R$, $r_{k}=\gamma\left(t_{k}\right)$, can be applied since $\left|w_{k}\right|_{A}>0$. For $k=n, \mu_{n}(p)=0$ for all $p \in P$ and consequently, $\left|w_{n}\right|_{A}=\mu_{n}\left(\beta^{-1}(A)\right)=0$ for all $A \in V$, i.e., $w_{n} \in \Sigma^{*}$.

3 Petri Net Controlled Grammars and Examples

Now we define a k-Petri net, i.e., a cf Petri net with additional k places and additional arcs from/to these places to/from transitions of the net, the pre-sets and post-sets of the additional places are disjoint.
Definition 2. Let $G=(V, \Sigma, S, R)$ be a context-free grammar with its corresponding of Petri net $N=(P, T, F, \phi, \beta, \gamma, \iota)$. Let k be a positive integer and let $Q=\left\{q_{1}, q_{2}, \ldots, q_{k}\right\}$ be a set of new places called counters. A k-Petri net is a construct $N_{k}=\left(P \cup Q, T, F \cup E, \varphi, \zeta, \gamma, \mu_{0}, \tau\right)$ where

- $E=\left\{\left(t, q_{i}\right) \mid t \in T_{1}^{i}, 1 \leq i \leq k\right\} \cup\left\{\left(q_{i}, t\right) \mid t \in T_{2}^{i}, 1 \leq i \leq k\right\}$ such that $T_{1}^{i} \subset T$ and $T_{2}^{i} \subset T, 1 \leq i \leq k$ where $T_{l}^{i} \cap T_{l}^{j}=\emptyset$ for $1 \leq l \leq 2, T_{1}^{i} \cap T_{2}^{j}=\emptyset$ for $1 \leq i<j \leq k$ and $T_{1}^{i}=\emptyset$ if and only if $T_{2}^{i}=\emptyset$ for any $1 \leq i \leq k$.
- the weight function $\varphi(x, y)$ is defined by $\varphi(x, y)=\phi(x, y)$ if $(x, y) \in F$ and $\varphi(x, y)=1$ if $(x, y) \in E$,
- the labeling function $\zeta:(P \cup Q) \rightarrow V \cup\{\lambda\}$ is defined by $\zeta(p)=\beta(p)$ if $p \in P$ and $\zeta(p)=\lambda$ if $p \in Q$,
- the initial marking μ_{0} is defined by $\mu_{0}\left(\beta^{-1}(S)\right)=1$ and $\mu_{0}(p)=0$ for all $p \in(P \cup Q)-\left\{\beta^{-1}(S)\right\}$,
- τ is the final marking where $\tau(p)=0$ for all $p \in(P \cup Q)$.

Definition 3. A k-Petri net controlled grammar (in short, a $k-P N$ controlled grammar) is a quintuple $G=\left(V, \Sigma, S, R, N_{k}\right)$ where V, Σ, S, R are defined as for a context-free grammar and N_{k} is a k-Petri net with respect to the context-free grammar (V, Σ, S, R).

Figure 2: A 1-Petri net N_{1}

Definition 4. The language generated by a k-Petri net controlled grammar G consists of all strings $w \in \Sigma^{*}$ such that there is a derivation

$$
S \xlongequal{r_{1} r_{2} \cdots r_{n}} w \text { where } t_{1} t_{2} \cdots t_{n}=\gamma^{-1}\left(r_{1} r_{2} \cdots r_{n}\right) \in T^{*}
$$

is an occurrence sequence of the transitions of N_{k} enabled at the initial marking μ_{0} and finished at the final marking τ.

We denote the family of languages generated by k-PN controlled grammars (with erasing rules) by $\mathbf{P} \mathbf{N}_{k}\left(\mathbf{P} \mathbf{N}_{k}^{\lambda}\right), k \geq 1$. We also use bracket notation $\mathbf{P N}_{k}^{[\lambda]}$ in order to say that a statement holds in both cases: with and without erasing rules.

We give two examples which will be used in the sequel.
Example 2. Figure 2 illustrates a 1-Petri net N_{1} which is constructed from the cf Petri net N in Figure 1 adding a single counter place q. Let $G_{2}=\left(V, \Sigma, S, R, N_{1}\right)$ be the 1-PN controlled grammar where V, Σ, S, R are defined as for the grammar G_{1} in Example 1. It is not difficult to see that $L\left(G_{2}\right)=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$.

Example 3. Let G_{3} be a 2-PN controlled grammar with the production rules:

$$
\begin{array}{lll}
r_{0}: S \rightarrow A_{1} B_{1} A_{2} B_{2}, & r_{1}: A_{1} \rightarrow a_{1} A_{1} b_{1}, & r_{2}: A_{1} \rightarrow a_{1} b_{1}, \\
r_{3}: B_{1} \rightarrow c_{1} B_{1}, & r_{4}: B_{1} \rightarrow c_{1}, & r_{5}: A_{2} \rightarrow a_{2} A_{2} b_{2}, \\
r_{6}: A_{2} \rightarrow a_{2} b_{2}, & r_{7}: B_{2} \rightarrow c_{2} B_{2}, & r_{8}: B_{2} \rightarrow c_{2}
\end{array}
$$

and the corresponding 2-Petri net N_{2} is given in Figure 3. Then it is easy to see that G_{3} generates the language $L\left(G_{3}\right)=\left\{a_{1}^{n} b_{1}^{n} c_{1}^{n} a_{2}^{m} b_{2}^{m} c_{2}^{m} \mid n, m \geq 1\right\}$.

Lemma 1. The language $L^{\prime}=\left\{a_{1}^{n} b_{1}^{n} c_{1}^{n} a_{2}^{m} b_{2}^{m} c_{2}^{m} \mid n, m \geq 1\right\}$ cannot be generated by a 1-PN controlled grammar.

Figure 3: A 2-Petri net N_{2}

Proof. Suppose the contrary: there is a 1-Petri net controlled grammar $G=$ $\left(V, \Sigma, S, R, N_{1}\right)$ where $\Sigma=\left\{a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}\right\}$ such that $L(G)=L^{\prime}$. Let $w=$ $a_{1}^{n} b_{1}^{n} c_{1}^{n} a_{2}^{m} b_{2}^{m} c_{2}^{m}$. Since the set V is finite, and if n and m are chosen sufficiently large, every derivation $S \Rightarrow^{*} w$ in G contains a subderivation of the form D : $A \Rightarrow^{*} x A y$ where $A \in V$ and $x, y \in \Sigma^{*}$ with $x y \neq \lambda$. As L^{\prime} is infinite, there are words with enough large length obtained by iterating such a derivation D arbitrarily many times. Suppose

$$
\begin{equation*}
S \Rightarrow^{*} u A v \Rightarrow^{*} u x A y v \Rightarrow^{*} \cdots \Rightarrow^{*} u x^{n} A y^{n} v \Rightarrow^{*} w^{\prime} \in \Sigma^{*} \tag{1}
\end{equation*}
$$

is also a derivation in G. Then x^{n} and y^{n} are substrings of w^{\prime}. By the structure of the words of L^{\prime}, x and y can be only powers of two symbols from $\Sigma \cup\{\lambda\}$. Therefore, in order to generate a word $w=a_{1}^{n} b_{1}^{n} c_{1}^{n} a_{2}^{m} b_{2}^{m} c_{2}^{m} \in L^{\prime}$ for large n and m, we need at least three subderivations of the form

$$
\begin{align*}
& D_{1}: A_{1} \Rightarrow^{*} x_{1} A_{1} y_{1}, \tag{2}\\
& D_{2}: A_{2} \Rightarrow^{*} x_{2} A_{2} y_{2}, \tag{3}\\
& D_{3}: A_{3} \Rightarrow^{*} x_{3} A_{3} y_{3} \tag{4}
\end{align*}
$$

where $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}$ are powers of the symbols from Σ, i.e.,

$$
x_{i}=\alpha_{i}^{k_{i}} \text { and } y_{i}=\beta_{i}^{l_{i}} \text { where } \alpha_{i}, \beta_{i} \in \Sigma \text { and } k_{i}+l_{i} \geq 1, i=1,2,3
$$

First, we assume that (1) has exactly three subderivations of the form (2)(4). According to the production and consumption of tokens by the subderivations (2)-(4) the following cases can occur:

Case 1. One of the derivations (2)-(4) does not produce and consume any token. Without loss of generality we can assume that this derivation is (2). If

$$
S \Rightarrow^{*} u A_{1} v \Rightarrow^{*} u w v \in L^{\prime}
$$

then for any $k>1$ we apply (2) k times and get a string which is not in L^{\prime}, i.e.

$$
S \Rightarrow^{*} u A_{1} v \Rightarrow^{*} u x_{1} A_{1} y_{1} v \Rightarrow^{*} u x_{1}^{2} A_{1} y_{1}^{2} v \Rightarrow^{*} u x_{1}^{k} A_{1} y_{1}^{k} v \Rightarrow^{*} u x_{1}^{k} w y_{1}^{k} v \notin L^{\prime}
$$

since (2) increases only the powers of at most two letters.
Case 2. One of the subderivations (2)-(4) produces tokens and another one consumes tokens. Without loss of generality we assume that (2) produces $p \geq 1$ tokens and (3) consumes $q \geq 1$ tokens.

Suppose

$$
S \Rightarrow^{*} u_{1} A_{1} u_{2} A_{2} u_{3} \Rightarrow^{*} u_{1} w_{1} u_{2} w_{2} u_{3} \in L^{\prime}
$$

Then the derivation

$$
\begin{aligned}
S & \Rightarrow^{*} u_{1} A_{1} u_{2} A_{2} u_{3} \\
& \Rightarrow^{*} u_{1} x_{1} A_{1} y_{1} u_{2} A_{2} u_{3} \Rightarrow^{*} u_{1} x_{1}^{k} A_{1} y_{1}^{k} u_{2} A_{2} u_{3} \\
& \Rightarrow^{*} u_{1} x_{1}^{k} A_{1} y_{1}^{k} u_{2} x_{2} A_{2} y_{2} u_{3} \Rightarrow^{*} u_{1} x_{1}^{k} A_{1} y_{1}^{k} u_{2} x_{2}^{l} A_{2} y_{2}^{l} u_{3} \\
& \Rightarrow^{*} u_{1} x_{1}^{k} w_{1} y_{1}^{k} u_{2} x_{2}^{l} w_{2} y_{2}^{l} u_{3}
\end{aligned}
$$

where $k, l \geq 1$, is also in G. It can be done by choosing the numbers k, l in such a way, that $k p-l q=0$, thus we can choose k and l as $k=q$ and $l=p$ and still get a string $w^{\prime} \in L^{\prime}$. Now

- if $1 \leq\left|\left\{\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}\right\} \cap\left\{a_{i}, b_{i}, c_{i}\right\}\right| \leq 2, i=1$ or $i=2$ then $w^{\prime} \notin L^{\prime}$ as the powers of at most two symbols are increased;
- if $\left\{\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}\right\} \cap\left\{a_{i}, b_{i}, c_{i}\right\} \neq \emptyset$ for both $i=1$ and $i=2$ then $1 \leq$ $\left|\left\{\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}\right\} \cap\left\{a_{i}, b_{i}, c_{i}\right\}\right| \leq 2$ for $i=1$ or $i=2$ and again $w^{\prime} \notin L^{\prime}$.

From the above it follows that $\left\{\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}\right\}=\left\{a_{i}, b_{i}, c_{i}, \lambda\right\}$ for $i=1$ or $i=2$. Without loss of generality we assume that $i=1$. But from the subderivation (4) (which produces or consumes tokens) it follows that $\alpha_{3}, \beta_{3} \notin\left\{a_{1}, b_{1}, c_{1}\right\}$ and at least one of them belongs to $\left\{a_{2}, b_{2}, c_{2}\right\}$. Again we get the contradiction since (4) can increase the powers of at most two symbols from $\left\{a_{2}, b_{2}, c_{2}\right\}$.

If the derivation has the form

$$
S \Rightarrow^{*} u_{1} A_{1} u_{4} \Rightarrow^{*} u_{1} u_{2} A_{2} u_{3} u_{4} \Rightarrow^{*} u_{1} u_{2} w u_{3} u_{4}
$$

then one gets that $\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}$ contains only two elements from Σ and a contradiction follows as above.

Case 3. Two of the subderivations of (2)-(4) produce (consume) tokens and the other consumes (produces). Without loss of generality we assume that (2) and (3) produces p_{1} and p_{2} tokens, respectively and (4) consumes q tokens. If

$$
S \Rightarrow^{*} u_{1} A_{1} u_{2} A_{2} u_{3} A_{3} u_{4} \Rightarrow^{*} u_{1} w_{1} u_{2} w_{2} u_{3} w_{3} u_{4} \in L^{\prime}
$$

then the derivation

$$
\begin{align*}
S & \Rightarrow^{*} u_{1} A_{1} u_{2} A_{2} u_{3} A_{3} u_{4} \\
& \Rightarrow^{*} u_{1} x_{1} A_{1} y_{1} u_{2} x_{2} A_{2} y_{2} u_{3} x_{3} A_{3} y_{3} u_{4} \\
& \Rightarrow^{*} u_{1} x_{1}^{k_{1}} A_{1} y_{1}^{k_{1}} u_{2} x_{2}^{k_{2}} A_{2} y_{2}^{k_{2}} u_{3} x_{3}^{l} A_{3} y_{3}^{l} u_{4} \\
& \Rightarrow^{*} u_{1} x_{1}^{k_{1}} w_{1} y_{1}^{k_{1}} u_{2} x_{2}^{k_{2}} w_{2} y_{2}^{k_{2}} u_{3} x_{3}^{l} w_{3} y_{3}^{l} u_{4}=w^{\prime} \tag{5}
\end{align*}
$$

is also in G. By the definition of the final marking, we have $k_{1} p_{1}+k_{2} p_{2}-l q=0$. For instance, if we choose k_{1}, k_{2}, l as $k_{1}=p_{2} q, k_{2}=p_{1} q$ and $l=2 p_{1} p_{2}$, this equality holds. By structure of a derivation there are two possibilities:

$$
\begin{equation*}
\left\{\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, \alpha_{3}, \beta_{3}\right\}=\left\{a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}, \lambda\right\} \tag{6}
\end{equation*}
$$

or

$$
\begin{equation*}
\left\{\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, \alpha_{3}, \beta_{3}\right\}=\left\{a_{i}, b_{i}, c_{i}, \lambda\right\} \text { where } i=1 \text { or } i=2 \tag{7}
\end{equation*}
$$

Consider (6), here we only have the case $\alpha_{1}=a_{1}, \beta_{1}=b_{1}, \alpha_{2}=c_{1}, \beta_{2}=a_{2}$, $\alpha_{3}=b_{2}$ and $\beta_{3}=c_{2}$. It follows that the powers of all symbols of w^{\prime} are the same. But from (5), by continuing the derivation, we get a string which is not in L^{\prime} :

$$
\begin{aligned}
S & \Rightarrow^{*} u_{1} x_{1}^{k_{1}} A_{1} y_{1}^{k_{1}} u_{2} x_{2}^{k_{2}} A_{2} y_{2}^{k_{2}} u_{3} x_{3}^{l} A_{3} y_{3}^{l} u_{4} \\
& \Rightarrow^{*} u_{1} x_{1}^{k_{1}} w_{1} y_{1}^{k_{1}} u_{2} x_{2}^{k_{2}} w_{2} y_{2}^{k_{2}} u_{3} x_{3}^{l} A_{3} y_{3}^{l} u_{4} \\
& \Rightarrow^{*} u_{1} x_{1}^{k_{1}} w_{1} y_{1}^{k_{1}} u_{2} x_{2}^{k_{2}} w_{2} y_{2}^{k_{2}} u_{3} x_{3}^{2 l} A_{3} y_{3}^{2 l} u_{4} \\
& \Rightarrow^{*} u_{1} x_{1}^{k_{1}} w_{1} y_{1}^{k_{1}} u_{2} x_{2}^{2 k_{2}} w_{2} y_{2}^{2 k_{2}} u_{3} x_{3}^{3 l} w_{3} y_{3}^{3 l} u_{4} \notin L^{\prime}
\end{aligned}
$$

where the powers of four symbols are increased.
Now consider (7). Let $i=1$. From Case 2, we can conclude that one of the following three cases is possible:

(a)	$\left\{\alpha_{1}, \beta_{1}\right\}=\left\{a_{1}, b_{1}\right\}$,	$\left\{\alpha_{2}, \beta_{2}\right\}=\{\lambda\}$,	$\left\{\alpha_{3}, \beta_{3}\right\}=\left\{c_{1}, \lambda\right\}$,
(b)	$\left\{\alpha_{1}, \beta_{1}\right\}=\{\lambda\}$,	$\left\{\alpha_{2}, \beta_{2}\right\}=\left\{a_{1}, b_{1}\right\}$,	$\left\{\alpha_{3}, \beta_{3}\right\}=\left\{c_{1}, \lambda\right\}$,
(c) $\left\{\alpha_{1}, \beta_{1}\right\}=\left\{a_{1}, \lambda\right\}$,	$\left\{\alpha_{2}, \beta_{2}\right\}=\left\{b_{1}, \lambda\right\}$,	$\left\{\alpha_{3}, \beta_{3}\right\}=\left\{c_{1}, \lambda\right\}$.	

Cases (a) and (b) are similar to Case 2. If we choose $k_{1}=3 p_{2} l, k_{2}=2 p_{1} l$ and $q=5 p_{1} p_{2}$ in case (c), we again get different powers for symbols a_{1}, b_{1}, c_{1}, i.e., $w^{\prime} \notin L^{\prime}$.

Next, we analyze the general case: let the derivation (1) have $n \geq 4$ subderivations of the form $D_{i}: A_{i} \rightarrow x_{i} A_{i} y_{i}$ where $A_{i} \in V, x_{i}=\alpha_{i}^{l_{i}}$ and $y_{i}=\beta_{i}^{l_{i}^{\prime}}, \alpha_{i}, \beta_{i} \in \Sigma$,
$l_{i}+l_{i}^{\prime} \geq 1,1 \leq i \leq n$. Without loss of generality we can assume that for some $1 \leq s \leq n-1$, the derivations $D_{i}, 1 \leq i \leq s$, produce p_{i} tokens and the derivations $D_{j}, s+1 \leq j \leq n$, consume q_{j} tokens. If

$$
\begin{equation*}
S \Rightarrow^{*} u_{1} A_{1} u_{2} A_{2} u_{3} \cdots u_{n} A_{n} u_{n+1} \Rightarrow^{*} u_{1} w_{1} u_{2} w_{2} u_{3} \cdots u_{n} w_{n} u_{n+1}=w \in L^{\prime} \tag{8}
\end{equation*}
$$

then by assumption,

$$
\begin{align*}
S & \Rightarrow^{*} u_{1} A_{1} u_{2} A_{2} u_{3} \cdots u_{n} A_{n} u_{n+1} \\
& \Rightarrow^{*} u_{1} x_{1} A_{1} y_{1} u_{2} x_{2} A_{2} y_{2} u_{3} \cdots u_{n} x_{n} A_{n} y_{n} u_{n+1} \\
& \Rightarrow^{*} u_{1} x_{1}^{k_{1}} A_{1} y_{1}^{k_{1}} u_{2} x_{2}^{k_{2}} A_{2} y_{2}^{k_{2}} u_{3} \cdots u_{n} x_{n}^{k_{n}} A_{n} y_{n}^{k_{n}} u_{n+1} \\
& \Rightarrow^{*} u_{1} x_{1}^{k_{1}} w_{1} y_{1}^{k_{1}} u_{2} x_{2}^{k_{2}} w_{2} y_{2}^{k_{2}} u_{3} \cdots u_{n} x_{n}^{k_{n}} w_{n} y_{n}^{k_{n}} u_{n+1}=w^{\prime} \in L^{\prime} . \tag{9}
\end{align*}
$$

According to the definition of the final marking, we have

$$
\sum_{i=1}^{s} k_{i} p_{i}-\sum_{i=s+1}^{n} k_{i} q_{i}=0
$$

and

$$
\left\{\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, \ldots, \alpha_{n}, \beta_{n}\right\}=\left\{a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}, \lambda\right\}
$$

If for some $1 \leq i \leq n, \alpha_{i}=c_{1}$ and $\beta_{i}=a_{2}$, then all symbols in w^{\prime} have the same power. Then by continuing two subderivations one of which produces tokens and the other consumes, one increases the powers of at most four symbols, and get a string $w^{\prime \prime} \notin L^{\prime}$.

Let, for some $2 \leq i \leq n-2$,

$$
\begin{equation*}
\left\{\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, \ldots, \alpha_{i}, \beta_{i}\right\}=\left\{a_{1}, b_{1}, c_{1}, \lambda\right\} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{\alpha_{i+1}, \beta_{i+1}, \alpha_{i+2}, \beta_{i+2}, \ldots, \alpha_{n}, \beta_{n}\right\}=\left\{a_{2}, b_{2}, c_{2}, \lambda\right\} \tag{11}
\end{equation*}
$$

It follows that at least one of the subderivations which generate symbols in (10) (symbols in (11)) produces and another subderivation consumes tokens, since symbols $a_{i}, b_{i}, c_{i}, i=1,2$, have the same power. Then the tokens produced by a subderivation D_{j}, for some $1 \leq j \leq i$, can be consumed by a subderivation D_{k}, for some $i+1 \leq k \leq n$ as the both group of subderivations use the same counter, which result that the powers of at most two symbols from a_{1}, b_{1}, c_{1} and a_{2}, b_{2}, c_{2} are increased, i.e., a string $w^{\prime} \notin L^{\prime}$ is generated. In all cases, we get contradiction to our assumption $L^{\prime}=L(G)$.

4 Hierarchy Results

We start with a simple fact.
Lemma 2. $\mathbf{C F} \subsetneq \mathbf{P N}_{1}$.

Proof. It is clear that $\mathbf{C F} \subseteq \mathbf{P N}_{1}$ if we take $T_{1}=T_{2}=\emptyset$. From Example 2 it follows that $\mathbf{C F} \subsetneq \mathbf{P} \mathbf{N}_{1}$.

Now we present some relations to (positive) additive valence languages.
Lemma 3. $\mathbf{P N}_{1}^{[\lambda]} \subseteq \mathbf{p} V^{[\lambda]}$.
Proof. Let $G=\left(V, \Sigma, S, R, N_{1}\right)$ be a 1-PN controlled grammar (with or without erasing rules) where $N_{1}=\left(P \cup\{q\}, T, F \cup E, \varphi, \zeta, \gamma, \mu_{0}, \tau\right)$ is a corresponding 1-Petri net with the counter q (with the notions of Definition 2). We define a positive valence grammar $G^{\prime}=(V, \Sigma, S, R, v)$ where V, Σ, S, R are defined as for the grammar G and for each $r \in R$, the mapping v is defined by

$$
v(r)= \begin{cases}1 & \text { if } \gamma^{-1}(r) \in \bullet \\ -1 & \text { if } \gamma^{-1}(r) \in q^{\bullet} \\ 0 & \text { otherwise }\end{cases}
$$

Let $S \stackrel{\pi}{\Rightarrow} w, w \in \Sigma^{*}, \pi=r_{1} r_{2} \cdots r_{k}$, be a derivation in G. Then $\nu=t_{1} t_{2} \cdots t_{k}=$ $\gamma^{-1}\left(r_{1} r_{2} \cdots r_{k}\right)$ is an occurrence sequence of transitions of N_{1} enabled at the initial marking μ_{0} and finished at the final marking τ, i.e.,

$$
\mu_{0} \xrightarrow{t_{1}} \mu_{1} \xrightarrow{t_{2}} \cdots \xrightarrow{t_{k}} \mu_{k}=\tau
$$

By definition, if $|\nu|_{t}>0$ for some $t \in{ }^{\bullet} q$ then there is a transition $t^{\prime} \in q^{\bullet}$ such that $|\nu|_{t^{\prime}}>0$. Let

$$
U_{1}=\left\{t_{1,1}, t_{1,2}, \ldots, t_{1, k_{1}}\right\} \subseteq \bullet q \text { where }|\nu|_{t_{1, j}}>0,1 \leq j \leq k_{1}
$$

and

$$
U_{2}=\left\{t_{2,1}, t_{2,2}, \ldots, t_{2, k_{2}}\right\} \subseteq q^{\bullet} \text { where }|\nu|_{t_{2, j}}>0,1 \leq j \leq k_{2}
$$

Since $\mu_{i}(q) \geq 0$ for each occurrence step $1 \leq i \leq k$, we have $|\nu|_{U_{1}} \geq|\nu|_{U_{2}}$, consequently, $v\left(r_{1}\right)+v\left(r_{2}\right)+\ldots+v\left(r_{j}\right) \geq 0$ for any $1 \leq j<k$ and from $\mu_{0}(q)=\tau(q)=0$, $\tau \in M$, it follows that

$$
\sum_{t \in U_{1}}|\nu|_{t}-\sum_{t \in U_{2}}|\nu|_{t} \stackrel{\text { def }}{=} \sum_{i=1}^{k} v\left(r_{i}\right)=0
$$

Hence, $L(G) \subseteq L\left(G^{\prime}\right)$.
Let $D: S \xlongequal{r_{1} r_{2} \cdots r_{k}} w \in \Sigma^{*}$ be a derivation in G^{\prime} where $v\left(r_{1}\right)+v\left(r_{2}\right)+\ldots+v\left(r_{k}\right)=$ 0 and $v\left(r_{1}\right)+v\left(r_{2}\right)+\ldots+v\left(r_{j}\right) \geq 0$ for any $1 \leq j<k$. By construction of G^{\prime}, D is also a derivation in (V, Σ, S, R).

According to the bijection $\gamma: T \rightarrow R$, there is an occurrence sequence $\nu=$ $t_{1} t_{2} \cdots t_{k}, \mu \xrightarrow{t_{1}} \mu_{1} \xrightarrow{t_{2}} \cdots \xrightarrow{t_{k}} \mu_{k}$, in N_{1} such that $\nu=\gamma^{-1}\left(r_{1} r_{2} \cdots r_{k}\right)$.
$\mu=\mu_{0}$ since D starts from S, i.e., $\mu_{0}\left(\beta^{-1}(S)\right)=1$ and $\mu_{0}\left(\beta^{-1}(x)\right)=0$ for all $x \in(V \cup \Sigma)-\{S\}$ as well as $\mu_{0}(q)=0$.

Since $w \in \Sigma^{*}$, we have $\mu_{k}\left(\beta^{-1}(x)\right)=0$ for all $x \in V$. From $\sum_{i=1}^{j} v\left(r_{i}\right) \geq 0$, it follows that $\mu_{j}(q) \geq 0$ for any $1 \leq j<k$.

$$
\sum_{i=1}^{k} v\left(r_{i}\right) \stackrel{\text { def }}{=} \sum_{\gamma^{-1}(r) \in \bullet_{q}} v(r)+\sum_{\gamma^{-1}(r) \in q^{\bullet}} v(r)=0
$$

shows that $\mu_{k}(q)=0$. Therefore $\mu_{k}=\tau$. Consequently, $L\left(G^{\prime}\right) \subseteq L(G)$.
Lemma 4. $\mathbf{a V}^{[\lambda]} \subsetneq \mathbf{P} \mathbf{N}_{2}^{[\lambda]}$.
Proof. Let $G=(V, \Sigma, S, R, v)$ be an additive valence grammar (with or without erasing rules). Without loss of generality we can assume that $v(r) \in\{1,0,-1\}$ for each $r \in R$ (Lemma 2.1.10 in [2]).

For each rule $r: A \rightarrow \alpha \in R, v(r) \neq 0$ we add a nonterminal symbol A_{r} and a pair of rules $r^{\prime}: A \rightarrow A_{r}, r^{\prime \prime}: A_{r} \rightarrow \alpha$ and we set

$$
\begin{aligned}
& V^{\prime}=V \cup\left\{A_{r} \mid r: A \rightarrow \alpha \in R, v(r) \neq 0\right\}, \\
& R^{\prime}=R \cup\left\{r^{\prime}: A \rightarrow A_{r}, r^{\prime \prime}: A_{r} \rightarrow \alpha \mid r: A \rightarrow \alpha \in R, v(r) \neq 0\right\} .
\end{aligned}
$$

Let $N=(P, T, F, \phi, \beta, \gamma, \iota)$ be a cf Petri net with respect to the contextfree grammar $\left(V^{\prime}, \Sigma, S, R^{\prime}\right)$. We construct a 2-Petri net $N_{2}=(P \cup Q, T, F \cup$ $\left.E, \varphi, \zeta, \gamma, \mu_{0}, \tau\right)$ where $Q=\left\{q, q^{\prime}\right\}$ and $E=F_{1} \cup F_{2}$ with

$$
\begin{aligned}
F_{1}= & \left\{(t, q) \mid t=\gamma^{-1}(r), r \in R \text { and } v(r)=1\right\} \\
& \cup\left\{\left(t^{\prime}, q^{\prime}\right) \mid t^{\prime}=\gamma^{-1}\left(r^{\prime}\right), r \in R \text { and } v(r)=-1\right\}, \\
F_{2}= & \left\{(q, t) \mid t=\gamma^{-1}(r), r \in R \text { and } v(r)=-1\right\} \\
& \cup\left\{\left(q^{\prime}, t^{\prime}\right) \mid t^{\prime}=\gamma^{-1}\left(r^{\prime}\right), r \in R \text { and } v(r)=1\right\} .
\end{aligned}
$$

The rest components of N_{2} are defined the same as those in the definition. Consider the 2-PN controlled grammar $G^{\prime}=\left(V^{\prime}, \Sigma, S, R^{\prime}, N_{2}\right)$.

Let $D: S \stackrel{\pi}{\Rightarrow} w, w \in \Sigma^{*}, \pi=r_{1} r_{2} \cdots r_{n}$, be a derivation in G^{\prime}. Then $\sigma=t_{1} t_{2} \cdots t_{n}=\gamma^{-1}\left(r_{1} r_{2} \cdots r_{n}\right)$ is an occurrence sequence enabled at the initial marking μ_{0} and finished at the final marking τ. By construction,

$$
\sum_{i=1}^{n} v\left(r_{i}\right)=\sum_{t \in \bullet}|\sigma|_{t}+\sum_{t \in q^{\prime} \bullet}|\sigma|_{t}-\sum_{t \in q^{\bullet}}|\sigma|_{t}-\sum_{t \in \bullet q^{\prime}}|\sigma|_{t}=0
$$

since

$$
\sum_{t \in \bullet}|\sigma|_{t}=\sum_{t \in q^{\bullet}}|\sigma|_{t}=\sum_{i=1}^{n} \mu_{i}(q) \text { and } \sum_{t \in \bullet q^{\prime}}|\sigma|_{t}=\sum_{t \in q^{\prime} \bullet}|\sigma|_{t}=\sum_{i=1}^{n} \mu_{i}\left(q^{\prime}\right) .
$$

It follows that D is also a derivation in G.
Let $D^{\prime}: S \xrightarrow{r_{1} r_{2} \cdots r_{n}} w, w \in \Sigma^{*}$ be a derivation in G. For each $1 \leq k \leq n$,
(1) if $\sum_{i=1}^{k} v\left(r_{i}\right)>0$, then for the rule r_{k} with $v\left(r_{k}\right) \in\{1,0,-1\}$ in G choose the rule r_{k} in G^{\prime};
(2) if $\sum_{i=1}^{k} v\left(r_{i}\right)<0$, then for the rule r_{k} with $v\left(r_{k}\right) \neq 0$ in G choose the rules r_{k}^{\prime} and $r_{k}^{\prime \prime}$ in G^{\prime}; if $v\left(r_{k}\right)=0$ then choose r_{k} in G^{\prime}.
(3) if $\sum_{i=1}^{k} v\left(r_{i}\right)=0$, then for the rule r_{k} with $v\left(r_{k}\right) \in\{-1,0\}$ in G choose the rule r_{k} in G^{\prime}; if $v\left(r_{k}\right)=1$, then choose $r_{k}^{\prime}, r_{k}^{\prime \prime}$ in G^{\prime}.

Therefore D^{\prime} is also a derivation in G^{\prime}. The strict inclusion follows from the fact that

$$
\left\{a_{1}^{n} b_{1}^{n} c_{1}^{n} a_{2}^{m} b_{2}^{m} c_{2}^{m} \mid n, m \geq 1\right\} \in \mathbf{P} \mathbf{N}_{2}
$$

cannot be generated by an additive valence grammar (Example 2.1.7 in [2]).
The following lemma shows that, for any $n \geq 1$, an n-PN controlled grammar generates a vector language.
Lemma 5. For $n \geq 1, \mathbf{P N}_{n}^{[\lambda]} \subseteq \mathbf{V}^{[\lambda]}$.
Proof. Let $G=\left(V, \Sigma, S, R, N_{n}\right)$ be an n-PN controlled grammar (with or without erasing rules) with the n-Petri net $N_{n}=\left(P \cup Q, T, F \cup E, \varphi, \zeta, \gamma, \mu_{0}, \tau\right)$. Let $Q=\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$ and

$$
\cdot q_{k}=\left\{t_{k, 1,1}, t_{k, 1,2}, \ldots, t_{k, 1, s(k)}\right\}
$$

where $t_{k, 1, i}=\gamma^{-1}\left(r_{k, 1, i}\right), r_{k, 1, i}: A_{k, 1, i} \rightarrow w_{k, 1, i}, 1 \leq k \leq n, 1 \leq i \leq s(k)$, and

$$
q_{k}^{\bullet}=\left\{t_{k, 2,1}, t_{k, 2,2}, \ldots, t_{k, 2, l(k)}\right\}
$$

where $t_{k, 2, j}=\gamma^{-1}\left(r_{k, 2, j}\right), r_{k, 2, j}: A_{k, 2, j} \rightarrow w_{k, 2, j}, 1 \leq k \leq n, 1 \leq j \leq l(k)$.
Let

$$
\beta\left(p_{k, 1, i}\right)=A_{k, 1, i}, 1 \leq k \leq n, 1 \leq i \leq s(k)
$$

and

$$
\beta\left(p_{k, 2, j}\right)=A_{k, 2, j}, 1 \leq k \leq n, 1 \leq j \leq l(k) .
$$

First, we construct a PN controlled grammar $G^{\prime}=\left(V^{\prime}, \Sigma, S, R^{\prime}, N^{\prime}\right)$ in such a way that each counter place of N^{\prime} has a single input transition and a single output transition, and we show that the grammars G and G^{\prime} generate the same language. We set $V^{\prime}=V \cup\left\{B_{k, i, j}, C_{k, j, i} \mid 1 \leq k \leq n, 1 \leq i \leq s(k), 1 \leq j \leq l(k)\right\}$ where $B_{k, i, j}$ and $C_{k, j, i}, 1 \leq k \leq n, 1 \leq i \leq s(k), 1 \leq j \leq l(k)$, are new nonterminals. R^{\prime} consists of the following rules

$$
\begin{aligned}
R^{\prime}=(R & \left.-\left\{r_{k, 1, i}, r_{k, 2, j} \mid 1 \leq k \leq n, 1 \leq i \leq s(k), 1 \leq j \leq l(k)\right\}\right) \\
& \cup\left\{r_{k, 1, i, j}^{\prime}: A_{k, 1, i} \rightarrow B_{k, i, j} \mid 1 \leq k \leq n, 1 \leq i \leq s(k), 1 \leq j \leq l(k)\right\} \\
& \cup\left\{r_{k, 1, i, j}^{\prime \prime}: B_{k, i, j} \rightarrow w_{k, 1, i} \mid 1 \leq k \leq n, 1 \leq i \leq s(k), 1 \leq j \leq l(k)\right\} \\
& \cup\left\{r_{k, 2, j, i}^{\prime}: A_{k, 2, j} \rightarrow C_{k, j, i} \mid 1 \leq k \leq n, 1 \leq i \leq s(k), 1 \leq j \leq l(k)\right\} \\
& \cup\left\{r_{k, 2, j, i}^{\prime \prime}: C_{k, j, i} \rightarrow w_{k, 2, j} \mid 1 \leq k \leq n, 1 \leq i \leq s(k), 1 \leq j \leq l(k)\right\}
\end{aligned}
$$

and $N^{\prime}=\left(P^{\prime} \cup Q^{\prime}, T^{\prime}, F^{\prime}, \varphi^{\prime}, \zeta^{\prime}, \gamma^{\prime}, \mu_{0}^{\prime}, \tau^{\prime}\right)$ where the sets of places, transitions and arcs

$$
\begin{aligned}
& P^{\prime}= P \cup\left\{p_{k, 1, i, j} \mid 1 \leq k \leq n, 1 \leq i \leq s(k), 1 \leq j \leq l(k)\right\} \\
& \cup\left\{p_{k, 2, j, i} \mid 1 \leq k \leq n, 1 \leq i \leq s(k), 1 \leq j \leq l(k)\right\} \\
& Q^{\prime}=\left\{q_{k, i, j} \mid 1 \leq k \leq n, 1 \leq i \leq s(k), 1 \leq j \leq l(k)\right\}, \\
& T^{\prime}=\left(T-\bigcup_{k=1}^{n}\left(\bullet q_{k} \cup q_{k}^{\bullet}\right)\right) \\
& \cup\left\{t_{k, 1, i, j}^{\prime}, t_{k, 1, i, j}^{\prime \prime} \mid 1 \leq k \leq n, 1 \leq i \leq s(k), 1 \leq j \leq l(k)\right\} \\
& \cup\left\{t_{k, 2, j, i}^{\prime}, t_{k, 2, j, i}^{\prime \prime} \mid 1 \leq k \leq n, 1 \leq i \leq s(k), 1 \leq j \leq l(k)\right\}, \\
& F^{\prime}=\left(F \cup E-\bigcup_{k=1}^{n}\left(\left\{\left(p_{k, 1, i}, t_{k, 1, i}\right),\left(t_{k, 1, i}, q_{k}\right) \mid 1 \leq i \leq s(k)\right\}\right.\right. \\
& \cup\left\{\left(t_{k, 1, i}, p\right)\left|p=\zeta^{-1}(x),\left|w_{k, 1, i}\right|_{x}>0,1 \leq i \leq s(k)\right\}\right. \\
& \cup\left\{\left(q_{k}, t_{k, 2, j}\right),\left(p_{k, 2, j}, t_{k, 2, j}\right) \mid 1 \leq j \leq l(k)\right\} \\
&\left.\cup\left\{\left(t_{k, 2, j}, p\right)\left|p=\zeta^{-1}(x),\left|w_{k, 2, j}\right|_{x}>0,1 \leq j \leq l(k)\right\}\right)\right) \\
& \cup \bigcup_{k=1}^{n} \bigcup_{i=1}^{s(k) l(k)} \bigcup_{j=1}^{l(}\left(\left\{\left(p_{k, 1, i}, t_{k, 1, i, j}^{\prime}\right),\left(t_{k, 1, i, j}^{\prime}, p_{k, 1, i, j}\right),\left(p_{k, 1, i, j}, t_{k, 1, i, j}^{\prime \prime}\right),\right.\right. \\
&\left.\left(t_{k, 1, i, j}^{\prime \prime}, q_{k, i, j}\right)\right\} \cup\left\{\left(t_{k, 1, i, j}^{\prime \prime}, p\right)\left|p=\zeta^{-1}(x),\left|w_{k, 1, i}\right|_{x}>0\right\}\right) \\
& \cup \bigcup_{k=1}^{n} l(k) s(k) \bigcup_{j=1}\left(\left\{\left(p_{k, 2, j}, t_{k, 2, j, i}^{\prime}\right),\left(t_{k, 1, j, i}^{\prime}, p_{k, 2, j, i}\right),\left(p_{k, 2, j, i}, t_{k, 2, j, i}^{\prime \prime}\right),\right.\right. \\
&\left.\left(t_{k, 2, j, i}^{\prime \prime}, q_{k, i, j}\right)\right\} \cup\left\{\left(t_{k, 2, j, i}^{\prime \prime}, p\right)\left|p=\zeta^{-1}(x),\left|w_{k, 2, j}\right|_{x}>0\right\}\right) .
\end{aligned}
$$

- The weight function is defined by

$$
\varphi^{\prime}(x, y)= \begin{cases}\varphi(x, y) & \text { if }(x, y) \in F \\ \varphi\left(t_{k, 1, i}, p\right) & \text { if } x=t_{k, 1, i, j}, y=p=\zeta^{-1}(x),\left|w_{k, 1, i}\right|_{x}>0 \\ & 1 \leq k \leq n, 1 \leq i \leq s(k), 1 \leq j \leq l(k) \\ \varphi\left(t_{k, 2, j}, p\right) & \text { if } x=t_{k, 2, j, i}, y=p=\zeta^{-1}(x),\left|w_{k, 2, j}\right|_{x}>0 \\ & 1 \leq k \leq n, 1 \leq i \leq s(k), 1 \leq j \leq l(k) \\ 1 & \text { otherwise }\end{cases}
$$

- The labeling functions are defined by

$$
\zeta^{\prime}(p)= \begin{cases}\zeta(p) & \text { if } p \in P \\ B_{k, i, j} & \text { if } p=p_{k, 1, i, j}, 1 \leq k \leq n, 1 \leq i \leq s(k), 1 \leq j \leq l(k) \\ C_{k, j, i} & \text { if } p=p_{k, 2, j, i}, 1 \leq k \leq n, 1 \leq i \leq s(k), 1 \leq j \leq l(k) \\ \lambda, & \text { if } p=q_{k, i, j}, 1 \leq k \leq n, 1 \leq i \leq s(k), 1 \leq j \leq l(k)\end{cases}
$$

and

$$
\gamma^{\prime}(t)= \begin{cases}\gamma(t) & \text { if } t \in T \\ r_{k, 1, i, j}^{\prime} & \text { if } t=t_{k, 1, i, j}^{\prime}, 1 \leq k \leq n, 1 \leq i \leq s(k), 1 \leq j \leq l(k) \\ r_{k, 1, i, j}^{\prime \prime} & \text { if } t=t_{k, 1, i, j}^{\prime \prime}, 1 \leq k \leq n, 1 \leq i \leq s(k), 1 \leq j \leq l(k) \\ r_{k, 2, j, i}^{\prime} & \text { if } t=t_{k, 2, j, i}^{\prime}, 1 \leq k \leq n, 1 \leq j \leq l(k), 1 \leq i \leq s(k) \\ r_{k, 2, j, i}^{\prime \prime} & \text { if } t=t_{k, 2, j, i}^{\prime \prime}, 1 \leq k \leq n, 1 \leq j \leq l(k), 1 \leq i \leq s(k)\end{cases}
$$

- The initial marking is defined by $\mu_{0}^{\prime}\left(\zeta^{-1}(S)\right)=1$ and $\mu_{0}^{\prime}(p)=0$ for all $p \in P^{\prime} \cup Q^{\prime}-\left\{\zeta^{-1}(S)\right\}$.
- The final marking is defined by $\tau^{\prime}(p)=0$ for all $p \in P^{\prime} \cup Q^{\prime}$.

By the construction of N^{\prime}, an occurrence sequence of the form

$$
\begin{equation*}
\mu_{1} \xrightarrow{t_{k, 1, i, j}^{\prime}} \mu_{2} \xrightarrow{\sigma^{\prime}} \mu_{3} \xrightarrow{t_{k, 1, i, j}^{\prime \prime}} \mu_{4} \xrightarrow{\sigma^{\prime \prime}} \mu_{5} \xrightarrow{t_{k, 2, j, i}^{\prime \prime}} \mu_{6} \xrightarrow{\sigma^{\prime \prime \prime}} \mu_{7} \xrightarrow{t_{k, 2, j, i}^{\prime}} \mu_{8} \tag{12}
\end{equation*}
$$

where $\sigma^{\prime}, \sigma^{\prime \prime}, \sigma^{\prime \prime \prime} \in T^{\prime *}$ can be replaced by

$$
\begin{equation*}
\mu_{1} \xrightarrow{t_{k, 1, i, j}^{\prime}} \mu_{2} \xrightarrow{t_{k, 1, i, j}^{\prime \prime} \cdot \sigma^{\prime}} \mu_{4} \xrightarrow{\sigma^{\prime \prime}} \mu_{5} \xrightarrow{\sigma^{\prime \prime \prime} \cdot t_{k, 2, j, i}^{\prime \prime}} \mu_{7} \xrightarrow{t_{k, 2, j, i}^{\prime}} \mu_{8} \tag{13}
\end{equation*}
$$

Then, it is clear that (13) can be replaced in N_{n} by

$$
\mu_{1} \xrightarrow{t_{k, 1, i}} \mu^{\prime} \xrightarrow{\sigma^{\prime} \cdot \sigma^{\prime \prime} \cdot \sigma^{\prime \prime \prime}} \mu^{\prime \prime} \xrightarrow{t_{k, 2, j}} \mu_{8}
$$

Conversely, an occurrence sequence of the form

$$
\mu_{1} \xrightarrow{t_{k, 1, i}} \mu_{2} \xrightarrow{\sigma} \mu_{3} \xrightarrow{t_{k, 2, j}} \mu_{4}
$$

in N_{n} can be replaced in N^{\prime} by

$$
\mu_{1} \xrightarrow{t_{k, 1, i, j}^{\prime}} \mu^{\prime} \xrightarrow{t_{k, 1, i, j}^{\prime \prime}} \mu_{2} \xrightarrow{\sigma} \mu_{3} \xrightarrow{t_{k, 2, j, i}^{\prime}} \mu^{\prime \prime} \xrightarrow{t_{k, 2, j, i}^{\prime \prime}} \mu_{4} .
$$

Correspondingly, without loss of generality we can change the order of the application of rules of derivations in the grammars G and G^{\prime}. Therefore, $L(G)=L\left(G^{\prime}\right)$.

Now we show that the grammar G^{\prime} generates a vector language. By the construction of $N^{\prime},|\bullet q|=\left|q^{\bullet}\right|=1$ for all $q \in Q^{\prime}$.

We associate with each pair of rules $r_{1}, r_{2} \in R^{\prime}$ where $r_{1}=\gamma^{\prime}\left(t_{1}\right), t_{1} \in{ }^{\bullet} q$ and $r_{2}=\gamma^{\prime}\left(t_{2}\right), t_{2} \in q^{\bullet}, q \in Q^{\prime}$, the matrix $m=\left(r_{1}, r_{2}\right)$ and with each rule $r \in R^{\prime}-\left\{r^{\prime}=\gamma^{\prime}\left(t^{\prime}\right) \mid t^{\prime} \in{ }^{\bullet} Q^{\prime} \cup Q^{\prime \bullet}\right\}$, the matrix $m=(r)$. We consider a vector grammar $G^{\prime \prime}=\left(V^{\prime}, \Sigma, S, M\right)$ where M is the set of all matrices constructed above.

Let $S \stackrel{\pi}{\Rightarrow} w, w \in \Sigma^{*}, \pi=r_{1} r_{2} \cdots r_{n}$, is a derivation in G^{\prime} where $\iota \xrightarrow{\nu} \tau$ with $\nu=t_{1} t_{2} \cdots t_{n}=\gamma^{\prime-1}(\pi)$.

Let ${ }^{\bullet} q=\{t\}$ and $q \bullet=\left\{t^{\prime}\right\}$ for some $q \in Q^{\prime}$. If t in ν, i.e., $|\nu|_{t}>0$ then t^{\prime} is also in ν and $\left|t_{1} t_{2} \cdots t_{k}\right|_{t} \geq\left|t_{1} t_{2} \cdots t_{k}\right|_{t^{\prime}}$ for each $1 \leq k \leq n$, moreover, by
the definition of the final marking, $|\nu|_{t}=|\nu|_{t^{\prime}}$. By the bijection $\gamma^{\prime}, m=\left(r, r^{\prime}\right)$, $r=\gamma^{\prime}(t), r^{\prime}=\gamma^{\prime}\left(t^{\prime}\right)$ is in π and $\left|r_{1} r_{2} \cdots r_{k}\right|_{r} \geq\left|r_{1} r_{2} \cdots r_{k}\right|_{r^{\prime}}$ for each $1 \leq k \leq n$ as well as $|\pi|_{r}=|\pi|_{r^{\prime}}$. Hence, $\pi \in \operatorname{Shuf}^{*}(M)$.

Let $S \stackrel{\pi}{\Rightarrow} w, w \in \Sigma^{*}, \pi=r_{1} r_{2} \cdots r_{n} \in \operatorname{Shuf}^{*}(M)$, be a derivation in $G^{\prime \prime}$ then again by the bijection $\gamma^{\prime}, \nu=t_{1} t_{2} \cdots t_{n}=\gamma^{-1}\left(r_{1} r_{2} \cdots r_{n}\right)$ is an occurrence sequence of transitions of $N^{\prime}: \mu_{0} \xrightarrow{\nu} \mu_{n}$. Since the derivation π starts from S (i.e., S is the only symbol at the starting sentential form), $\mu_{0}\left(\beta^{-1}(S)\right)=1$ and $\mu_{0}(p)=0$ for all $p \in P-\left\{\beta^{-1}(S)\right\}$. It follows that $\mu_{0}=\mu_{0}^{\prime}$. On the other hand, from $w \in \Sigma^{*}$, it follows that $\mu_{n}\left(\beta^{-1}(x)\right)=0$ for all $x \in V$. From $\pi \in \operatorname{Shuf}^{*}(M)$, if the rules r, r^{\prime} of a matrix $m=\left(r, r^{\prime}\right)$ in π then $\left|r_{1} r_{2} \cdots r_{k}\right|_{r} \geq\left|r_{1} r_{2} \cdots r_{k}\right|_{r^{\prime}}$ for each $1 \leq k \leq n$ and $|\pi|_{r}=|\pi|_{r^{\prime}}$. By the bijection $\gamma,\left|t_{1} t_{2} \cdots t_{k}\right|_{t} \geq\left|t_{1} t_{2} \cdots t_{k}\right|_{t^{\prime}}$ for each $1 \leq k \leq n$ where $t=\gamma^{-1}(r), \gamma^{-1}\left(r^{\prime}\right)$ and $|\nu|_{t}=|\nu|_{t^{\prime}}$. It follows that $\mu_{n}(q)=0$ for all $q \in Q^{\prime}$. Hence, $\mu_{n}=\tau^{\prime}$.

Theorem 1. For $k \geq 1, \mathbf{P N}_{k}^{[\lambda]} \subsetneq \mathbf{P N}_{k+1}^{[\lambda]}$.
Proof. We first prove that $\mathbf{P} \mathbf{N}_{1}^{[\lambda]} \subseteq \mathbf{P N}_{2}^{[\lambda]}$.
Let $G=\left(V, \Sigma, S, R, N_{1}\right)$ be a 1-PN controlled grammar (with or without erasing rules) where $N_{1}=\left(P \cup\{q\}, T, F \cup E, \varphi, \zeta, \gamma, \mu_{0}, \tau\right)$ 1-PN with the counter place q. Let

$$
\bullet q=\left\{t_{1,1}, t_{1,2}, \ldots, t_{1, k_{1}}\right\}, k_{1} \geq 1 \text { and } q \cdot=\left\{t_{2,1}, t_{2,2}, \ldots, t_{2, k_{2}}\right\}, k_{2} \geq 1
$$

where $t_{i, j}=\gamma^{-1}\left(r_{i, j}\right), r_{i, j}: A_{i, j} \rightarrow w_{i, j}, 1 \leq i \leq 2,1 \leq j \leq k_{i}$ and by definition ${ }^{\bullet} q \cap q^{\bullet}=\emptyset$. Let $p_{i, j}=\zeta^{-1}\left(A_{i, j}\right), 1 \leq i \leq 2,1 \leq j \leq k_{i}$.

We set

$$
V^{\prime}=V \cup\left\{B_{i, j} \mid 1 \leq i \leq 2,1 \leq j \leq k_{i}\right\}
$$

where $B_{i, j}, 1 \leq i \leq 2,1 \leq j \leq k_{i}$, are new nonterminal symbols, introduced for each transition $t_{i, j}$.

For each rule $r_{i, j}: A_{i, j} \rightarrow w_{i, j}, 1 \leq i \leq 2,1 \leq j \leq k_{i}$, we add the new rules $r_{i, j}^{\prime}: A_{i, j} \rightarrow B_{i, j}, r_{i, j}^{\prime \prime}: B_{i, j} \rightarrow w_{i, j}$. Let R^{\prime} be the set of all rules of R and all rules constructed above, i.e.,

$$
\begin{aligned}
& R^{\prime}= R \cup\left\{r_{1, j}^{\prime}: A_{1, j} \rightarrow B_{1, j} \mid \gamma^{-1}\left(A_{1, j} \rightarrow w_{1, j}\right) \in \bullet\right. \\
& \cup\left\{, 1 \leq j \leq k_{1}\right\} \\
& r_{1, j}^{\prime \prime}: B_{1, j} \rightarrow w_{1, j} \mid \gamma^{-1}\left(A_{1, j} \rightarrow w_{1, j}\right) \in \bullet \\
& \bullet \\
&\left.\cup 1 \leq j \leq k_{1}\right\} \\
& \cup\left\{r_{2, j}^{\prime}: A_{2, j} \rightarrow B_{2, j} \mid \gamma^{-1}\left(A_{2, j} \rightarrow w_{2, j}\right) \in q^{\bullet}, 1 \leq j \leq k_{2}\right\} \\
& \cup\left\{r_{2, j}^{\prime \prime}: B_{2, j} \rightarrow w_{2, j} \mid \gamma^{-1}\left(A_{2, j} \rightarrow w_{2, j}\right) \in q^{\bullet}, 1 \leq j \leq k_{2}\right\} .
\end{aligned}
$$

We construct a 2-PN controlled grammar $G^{\prime}=\left(V^{\prime}, \Sigma, S, R^{\prime}, N_{2}\right)$ where V^{\prime} and R^{\prime} are defined above and $N_{2}=\left(P^{\prime}, T^{\prime}, F^{\prime}, \varphi^{\prime}, \zeta^{\prime}, \gamma^{\prime}, \mu_{0}^{\prime}, \tau^{\prime}\right)$ is constructed as follows:

$$
\begin{aligned}
P^{\prime} & =P \cup\left\{p_{i, j}^{\prime} \mid 1 \leq i \leq 2,1 \leq j \leq k_{i}\right\} \cup\left\{q, q^{\prime}\right\}, \\
T^{\prime} & =T \cup\left\{t_{i, j}^{\prime}, t_{i, j}^{\prime \prime} \mid 1 \leq i \leq 2,1 \leq j \leq k_{i}\right\}, \\
F^{\prime} & =F \cup \bigcup_{i=1}^{2} \bigcup_{j=1}^{k_{i}}\left(\left\{\left(p_{i, j}, t_{i, j}^{\prime}\right),\left(t_{i, j}^{\prime}, p_{i, j}^{\prime}\right),\left(p_{i, j}^{\prime}, t_{i, j}^{\prime \prime}\right)\right\}\right. \\
& \cup\left\{\left(t_{i, j}^{\prime \prime}, p\right)\left|p=\zeta^{-1}(x),\left|w_{i, j}\right|_{x}>0\right\}\right) \\
& \cup\left\{\left(t_{1, j}^{\prime \prime}, q^{\prime}\right) \mid 1 \leq j \leq k_{1}\right\} \\
& \cup\left\{\left(q^{\prime}, t_{2, j}^{\prime \prime}\right) \mid 1 \leq j \leq k_{2}\right\} .
\end{aligned}
$$

For the weight function we set

$$
\varphi^{\prime}(x, y)= \begin{cases}\varphi(x, y) & \text { if }(x, y) \in F \\ \varphi\left(t_{i, j}, p\right) & \text { if } x=t_{i, j}^{\prime \prime}, y=p=\zeta^{-1}(x),\left|w_{i, j}\right|_{x}>0 \\ & 1 \leq i \leq 2,1 \leq j \leq k_{i} \\ 1 & \text { otherwise }\end{cases}
$$

The initial and final markings are defined by $\mu_{0}^{\prime}\left(\zeta^{\prime-1}(S)\right)=1, \mu_{0}^{\prime}(p)=0$ for all $p \in P^{\prime}-\left\{\zeta^{\prime-1}(S)\right\}$ and $\tau^{\prime}(p)=0$ for all $p \in P^{\prime}$.

The inclusion $L(G) \subseteq L\left(G^{\prime}\right)$ is obvious, which directly follows from the construction of G^{\prime}.

Let $S \stackrel{\pi}{\Rightarrow} w, w \in \Sigma^{*}, \pi=r_{1} r_{2} \cdots r_{n}$, be a derivation in G^{\prime} with the occurrence sequence $\nu=t_{1} t_{2} \cdots t_{n}=\zeta^{\prime-1}(\pi)$ of transitions of N_{2} enabled at the initial marking μ_{0}^{\prime} and finished at the final marking τ^{\prime}. It is clear that for some $1 \leq i \leq 2$, $1 \leq j \leq k_{i}$, if a rule $r_{i, j}^{\prime}: A_{i, j} \rightarrow B_{i, j}$ in π, i.e., $|\pi|_{r_{i, j}^{\prime}}>0$, then the rule $r_{i, j}^{\prime \prime}: B_{i, j} \rightarrow w_{i, j}$ is also in π, i.e., $|\pi|_{r_{i, j}^{\prime \prime}}>0$, moreover, $|\pi|_{r_{i, j}^{\prime}}=|\pi|_{r_{i, j}^{\prime \prime}}$. Without loss of generality we can assume that a rule $r_{i, j}^{\prime \prime}$ is the next to a rule $r_{i, j}^{\prime}$ in π (as to the nonterminal $B_{i, j}$ only the rule $r_{i, j}^{\prime \prime}$ is applicable and we can change the order in which the derivation π is used). Then we can replace any derivation steps of the form $x_{1} A_{i, j} x_{2} \Rightarrow_{r_{i, j}^{\prime}} x_{1} B_{i, j} x_{2} \Rightarrow_{r_{i, j}^{\prime \prime}} x_{1} w_{i, j} x_{2}$ by $x_{1} A_{i, j} x_{2} \Rightarrow_{r_{i, j}} x_{1} w_{i, j} x_{2}$.

Accordingly, the occurrence sequence $t_{i, j}^{\prime} t_{i, j}^{\prime \prime}, \mu \xrightarrow{t_{i, j}^{\prime}} \mu^{\prime} \xrightarrow{t_{i, j}^{\prime \prime}} \mu^{\prime \prime}$, is replaced by $t_{i, j}, \mu \xrightarrow{t_{i, j}} \mu^{\prime \prime}$, where $t_{i, j}=\gamma^{\prime-1}\left(r_{i, j}\right), t_{i, j}^{\prime}=\gamma^{\prime-1}\left(r_{i, j}^{\prime}\right)$ and $t_{i, j}^{\prime \prime}=\gamma^{\prime-1}\left(r_{i, j}^{\prime \prime}\right)$, $1 \leq i \leq 2,1 \leq j \leq k_{i}$. Clearly, $L\left(G^{\prime}\right) \subseteq L(G)$.

Let us consider the general case $k \geq 1$. Let $G=\left(V, \Sigma, S, R, N_{k}\right)$ be a k-Petri net controlled grammar where $N_{k}=\left(P \cup Q, T, F \cup E, \varphi, \zeta, \gamma, \mu_{0}, \tau\right)$ is a k-Petri net with $Q=\left\{q_{1}, q_{2}, \ldots, q_{k}\right\}$. We can repeat the arguments of the proof for $k=1$ considering q_{k} instead of q and adding the new counter place q_{k+1}.

For $k \geq 1$, let the language L_{k} be defined by

$$
L_{k}=\left\{\prod_{i=1}^{k} a_{i}^{n_{i}} b_{i}^{n_{i}} c_{i}^{n_{i}} \mid n_{i} \geq 1,1 \leq i \leq k\right\} .
$$

Then we can show analogously to Example 3 and Lemma 1 that, for $k \geq 1$,

$$
L_{k+1} \in \mathbf{P N}_{k+1} \text { and } L_{k+1} \notin \mathbf{P} \mathbf{N}_{k}
$$

Thus the inclusions are strict.

5 Closure Properties

We define the following binary form for k-PN controlled grammars, which will be used in some of the next proofs.

Definition 5. A k-Petri net controlled grammar $G=\left(V, \Sigma, S, R, N_{k}\right)$ is said to be in a binary form if for each rule $A \rightarrow \alpha \in R$, the length of α is not greater than 2, i.e., $|\alpha| \leq 2$.

Lemma 6 (Binary Form). For each k-Petri net controlled grammar there exists an equivalent k-Petri net controlled grammar in the binary form.

Proof. Let $G=\left(V, \Sigma, S, R, N_{k}\right)$ be a k-Petri net controlled grammar with $N_{k}=$ $\left(P \cup Q, T, F \cup E, \varphi, \zeta, \gamma, \mu_{0}, \tau\right)$.

We denote by $R^{>2}$ the set of all rules of the form $A \rightarrow \alpha \in R$ where $|\alpha|>2$.
For each rule $r=A \rightarrow x_{1} x_{2} \cdots x_{n} \in R^{>2}, x_{1}, x_{2}, \ldots, x_{n} \in V \cup \Sigma$ we set

$$
V_{r}=\left\{B_{1}, B_{2}, \ldots, B_{n-2}\right\}
$$

and

$$
R_{r}=\left\{A \rightarrow x_{1} B_{1}, B_{1} \rightarrow x_{2} B_{2}, \ldots, B_{n-2} \rightarrow x_{n-1} x_{n}\right\}
$$

where $B_{i}, 1 \leq i \leq n-2$, are new nonterminal symbols, $V_{r} \cap V_{r^{\prime}}=\emptyset$ for all $r, r^{\prime} \in R$, $r \neq r^{\prime}$, and $V_{r} \cap V=\emptyset$ for all $r \in R$. Let

$$
V^{\prime}=V \cup \bigcup_{r \in R^{>2}} V_{r} \text { and } R^{\prime}=\left(R \cup \bigcup_{r \in R^{>2}} R_{r}\right)-R^{>2}
$$

We define the context-free grammar $G^{\prime}=\left(V^{\prime}, \Sigma, S, R^{\prime}\right)$ and construct a k-Petri net $N_{k}^{\prime}=\left(P^{\prime}, T^{\prime}, F^{\prime}, \varphi^{\prime}, \zeta^{\prime}, \gamma^{\prime}, \mu_{0}^{\prime}, \tau^{\prime}\right)$ with respect to G^{\prime} such that
(1) for $A \rightarrow \alpha \in R,|\alpha| \leq 2$,

$$
\gamma^{-1}(A \rightarrow \alpha) \in \bullet q \cup q^{\bullet} \operatorname{iff} \gamma^{\prime-1}(A \rightarrow \alpha) \in \bullet q^{\prime} \cup q^{\prime \bullet},
$$

(2) for $A \rightarrow \alpha \in R,|\alpha|>2$,

$$
\begin{align*}
& \gamma^{-1}(A \rightarrow \alpha) \in \bullet q \text { iff } \gamma^{\prime-1}\left(B_{n-2} \rightarrow x_{n-1} x_{n}\right) \in \bullet q^{\prime} \tag{14}\\
& \gamma^{-1}(A \rightarrow \alpha) \in q^{\bullet} \text { iff } \gamma^{\prime-1}\left(A \rightarrow x_{1} B_{1}\right) \in q^{\bullet} \tag{15}
\end{align*}
$$

where $\alpha=x_{1} x_{2} \cdots x_{n}, x_{i} \in V \cup \Sigma, 1 \leq i \leq n$.

Let $D: S \xlongequal{r_{1} r_{2} \cdots r_{k}} w, w \in \Sigma^{*}$ be a derivation in the grammar G. Then $t_{1} t_{2} \cdots t_{k}=\gamma^{-1}\left(r_{1} r_{2} \cdots r_{k}\right)$ is a successful occurrence sequence of transitions in N_{k}. We construct a derivation D^{\prime} in the grammar G^{\prime} from D as follows.

If for some $1 \leq m \leq k, r_{m}: A \rightarrow x_{1} x_{2} \cdots x_{n} \in R^{>2}$ then we replace the derivation step

$$
y_{1} A y_{2} \underset{r_{m}}{\Longrightarrow} y_{1} x_{1} x_{2} \cdots x_{n} y_{2}
$$

by the derivation steps

$$
y_{1} A y_{2} \underset{r_{1}^{\prime}}{\Longrightarrow} y_{1} x_{1} B_{1} y_{2} \underset{r_{2}^{\prime}}{\Longrightarrow} y_{1} x_{1} x_{2} B_{2} y_{2} \underset{r_{3}^{\prime}}{\Longrightarrow} \cdots \underset{r_{n-2}^{\prime}}{\Longrightarrow} y_{1} x_{1} x_{2} \cdots x_{n} y_{2}
$$

where $r_{i}^{\prime} \in R_{r_{m}}, 1 \leq i \leq n-2$. Correspondingly, $\mu_{m} \xrightarrow{t_{m}} \mu_{m+1}$ is replaced by

$$
\mu_{m} \xrightarrow{t_{1}^{\prime} t_{2}^{\prime} \cdots t_{n-2}^{\prime}} \mu_{m+1}
$$

where $t_{i}^{\prime}=\gamma^{\prime-1}\left(r_{i}^{\prime}\right), 1 \leq i \leq n-2$. By (14)-(15), the number of tokens produced and consumed by the transitions $t_{1}^{\prime}, t_{2}^{\prime}, \ldots, t_{n-2}^{\prime}$ and the transition t_{m} are the same. Then D^{\prime} is a derivation in G^{\prime}, which generates the same word as D does, i.e., $L(G) \subseteq L\left(G^{\prime}\right)$.

Inverse inclusion can also be shown using the similar arguments.
Lemma 7 (Union). The family of languages $\mathbf{P} \mathbf{N}_{k}^{[\lambda]}, k \geq 1$ is closed under union.
Proof. Let $G_{1}=\left(V_{1}, \Sigma_{1}, S_{1}, R_{1}, N_{k, 1}\right)$ and $G_{2}=\left(V_{2}, \Sigma_{2}, S_{2}, R_{2}, N_{k, 2}\right)$ be two k-PN controlled grammars where $N_{k, i}=\left(P_{i} \cup Q_{i}, T_{i}, F_{i} \cup E_{i}, \varphi_{i}, \zeta_{i}, \gamma_{i}, \mu_{i}, \tau_{i}\right), i=1,2$ (with the notions of Definition 2). We assume (without loss of generality) that $V_{1} \cap V_{2}=\emptyset$. We construct the k-PN controlled grammar

$$
G=\left(V_{1} \cup V_{2} \cup\{S\}, \Sigma_{1} \cup \Sigma_{2}, S, R_{1} \cup R_{2} \cup\left\{S \rightarrow S_{1}, S \rightarrow S_{2}\right\}, N_{k}\right)
$$

where $N_{k}=\left(P, T, F, \varphi, \zeta, \gamma, \mu_{0}, \tau\right)$ is defined by

- the set of places: $P=P_{1} \cup P_{2} \cup Q_{1} \cup\{q\}$ where q is a new place;
- the set of transitions: $T=T_{1} \cup T_{2} \cup\left\{t_{01}, t_{02}\right\}$ where t_{01} and t_{02} are new transitions;
- the set of arcs:

$$
\begin{aligned}
F=F_{1} \cup F_{2} \cup E_{1} & \cup\left\{\left(q, t_{0 i}\right),\left(t_{0 i}, p_{0 i}\right) \mid i=1,2\right\} \\
& \cup\left\{\left(t, q_{1 i}\right) \mid\left(t, q_{2 i}\right) \in E_{2}, 1 \leq i \leq k\right\} \\
& \cup\left\{\left(q_{1 i}, t\right) \mid\left(q_{2 i}, t\right) \in E_{2}, 1 \leq i \leq k\right\}
\end{aligned}
$$

where $p_{0 i}$ are the places labeled by S_{i}, i.e., $\zeta_{i}\left(p_{0 i}\right)=S_{i}, i=1,2$;

- the weight function:

$$
\varphi(x, y)= \begin{cases}\varphi_{i}(x, y) & \text { if }(x, y) \in F_{i}, i=1,2 \\ 1 & \text { otherwise }\end{cases}
$$

- the labeling function ζ is defined by

$$
\zeta(p)= \begin{cases}\zeta_{1}(p) & \text { if } p \in P_{1} \cup Q_{1} \\ \zeta_{2}(p) & \text { if } p \in P_{2} \\ S & \text { if } p=q\end{cases}
$$

- the labeling function γ is defined by

$$
\gamma(t)= \begin{cases}\gamma_{i}(t) & \text { if } t \in T_{i}, i=1,2 \\ S \rightarrow S_{i} & \text { if } t=t_{0 i}, i=1,2\end{cases}
$$

- the initial marking:

$$
\mu_{0}(p)= \begin{cases}1 & \text { if } p=q \\ 0 & \text { otherwise }\end{cases}
$$

- the final marking: $\tau(p)=0$ for all $p \in P$.

By the construction of N_{k} any occurrence of its transitions can start by firing of t_{01} or t_{02} then transitions of T_{1} or transitions of T_{2} can occur, correspondingly we start a derivation with the rule $S \rightarrow S_{1}$ or $S \rightarrow S_{2}$ then we can use rules of R_{1} or R_{2}.

A string w is in $L(G)$ if and only if there is a derivation $S \Rightarrow S_{i} \Rightarrow^{*} w \in L\left(G_{i}\right)$, $i=1,2$. On the other hand, we can initialize any derivation $S_{i} \Rightarrow^{*} w \in L\left(G_{i}\right)$ with the rule $S \rightarrow S_{i}, i=1,2$, i.e., $w \in L(G)$.

Lemma 8 (Concatenation). The family of languages $\mathbf{P N}_{k}, k \geq 1$ is not closed under concatenation.

Proof. Let L_{k} and L_{k}^{\prime} be two languages, with the same structure but disjoint alphabets, given at the end of the proof of Theorem 1. Then $L_{k}, L_{k}^{\prime} \in \mathbf{P N}_{k}$ and $L_{k} \cdot L_{k}^{\prime} \notin \mathbf{P N}_{k}$.

The next lemma shows that the concatenation of two languages generated by k - and m-PN controlled grammars, $k, m \geq 1$, can be generated by a $(k+m)$-PN controlled grammar.

Lemma 9. For $L_{1} \in \mathbf{P} \mathbf{N}_{k}^{[\lambda]}, k \geq 1$ and $L_{2} \in \mathbf{P} \mathbf{N}_{m}^{[\lambda]}, m \geq 1$,

$$
L_{1} \cdot L_{2} \in \mathbf{P N}_{k+m}^{[\lambda]}
$$

Proof. Let $G_{1}=\left(V_{1}, \Sigma, S_{1}, R_{1}, N_{k}\right)$ where $N_{k}=\left(P_{1}, T_{1}, F_{1}, \varphi_{1}, \zeta_{1}, \gamma_{1}, \mu_{1}, \tau_{1}\right)$ and $G_{2}=\left(V_{2}, \Sigma, S_{2}, R_{2}, N_{m}\right)$ where $N_{m}=\left(P_{2}, T_{2}, F_{2}, \varphi_{2}, \zeta_{2}, \gamma_{2}, \mu_{2}, \tau_{2}\right)$ be, respectively, k-Petri net and m-Petri net controlled grammars such that $L\left(G_{1}\right)=L_{1}$ and $L\left(G_{2}\right)=L_{2}$. Without loss of generality we assume that $V_{1} \cap V_{2}=\emptyset$. We set $V=V_{1} \cup V_{2} \cup\{S\}$ where S is a new nonterminal and

$$
R=R_{1} \cup R_{2} \cup\left\{S \rightarrow S_{1} S_{2}\right\}
$$

We define a $(k+m)$-PN controlled grammar $G=\left(V, \Sigma, S, R, N_{k+m}\right)$ with $N_{k+m}=\left(P, T, F, \varphi, \zeta, \gamma, \mu_{0}, \tau\right)$ where

- $P=P_{1} \cup P_{2} \cup\left\{p_{0}\right\}$ where p_{0} is a new place;
- $T=T_{1} \cup T_{2} \cup\left\{t_{0}\right\}$ where t_{0} is a new transition;
- $F=F_{1} \cup F_{2} \cup\left\{\left(p_{0}, t_{0}\right),\left(t_{0}, p_{1}\right),\left(t_{0}, p_{2}\right)\right\}$ where $\zeta_{i}\left(p_{i}\right)=S_{i}, i=1,2$;
- the weight function φ is defined by

$$
\varphi(x, y)= \begin{cases}\varphi_{i}(x, y) & \text { if }(x, y) \in F_{i}, i=1,2 \\ 1 & \text { otherwise }\end{cases}
$$

- the labeling function ζ is defined by

$$
\zeta(p)= \begin{cases}\zeta_{i}(p) & \text { if } p \in P_{i}, i=1,2 \\ S & \text { if } p=p_{0}\end{cases}
$$

- the labeling function γ is defined by

$$
\gamma(t)= \begin{cases}\gamma_{i}(t) & \text { if } t \in T_{i}, i=1,2 \\ S \rightarrow S_{1} S_{2} & \text { if } t=t_{0}\end{cases}
$$

- the initial marking:

$$
\mu_{0}(p)= \begin{cases}1 & \text { if } p=p_{0} \\ 0 & \text { otherwise }\end{cases}
$$

- the final marking: $\tau(p)=0$ for all $p \in P$.

It is not difficult to see that $L(G)=L\left(G_{1}\right) L\left(G_{2}\right)$.
Lemma 10 (Substitution). The family of languages $\mathbf{P N}_{k}, k \geq 1$ is closed under substitution by context-free languages.

Proof. Let $G=\left(V, \Sigma, S, R, N_{k}\right)$ be a k-PN controlled grammar with k-Petri net $N_{k}=\left(P \cup Q, T, F \cup E, \varphi, \zeta, \gamma, \mu_{0}, \tau\right)$. We consider a substitution $s: \Sigma^{*} \rightarrow 2^{\Delta^{*}}$ with $s(a) \in \mathbf{C F}$ for each $a \in \Sigma$. Let $G_{a}=\left(V_{a}, \Sigma_{a}, S_{a}, R_{a}\right)$ be a context-free grammar for $s(a), a \in \Sigma$. We can assume that $V \cap V_{a}=\emptyset$ for any $a \in \Sigma$ and $V_{a} \cap V_{b}=\emptyset$ for any $a, b \in \Sigma, a \neq b$.

Let $N_{a}=\left(P_{a}, T_{a}, F_{a}, \phi_{a}, \beta_{a}, \gamma_{a}, \iota_{a}\right)$ be a cf Petri net with respect to the grammar $G_{a}, a \in \Sigma$. We define the k-PN controlled grammar

$$
G^{\prime}=\left(V \cup \Sigma \cup \bigcup_{a \in \Sigma} V_{a}, \Delta, S, R^{\prime} \cup \bigcup_{a \in \Sigma} R_{a}, N_{k}^{\prime}\right)
$$

where R^{\prime} is the set of rules obtained by replacing each occurrence of $a \in \Sigma$ by S_{a} in R and N_{k}^{\prime} is defined by

$$
N_{k}^{\prime}=\left(P \cup Q \cup P_{\Sigma} \cup \bigcup_{a \in \Sigma} P_{a}, T \cup \bigcup_{a \in \Sigma} T_{a}, F \cup F_{\Sigma} \cup \bigcup_{a \in \Sigma} F_{a}, \varphi^{\prime}, \zeta^{\prime}, \gamma^{\prime}, \mu_{0}^{\prime}, \tau^{\prime}\right)
$$

where

- $P_{\Sigma}=\left\{p_{a} \mid a \in \Sigma\right\}$ is the set of new places;
- $F_{\Sigma}=\left\{\left(t, p_{a}\right)\left|\gamma(t)=A \rightarrow \alpha,|\alpha|_{a}>0, a \in \Sigma\right\}\right.$ is the set of new arcs;
- the weight function φ^{\prime} is defined by

$$
\varphi^{\prime}(x, y)= \begin{cases}\varphi(x, y) & \text { if }(x, y) \in F \\ \phi_{a}(x, y) & \text { if }(x, y) \in F_{a}, a \in \Sigma \\ |\alpha|_{a}, & \text { if } x=t, y=p_{a},\left(t, p_{a}\right) \in F_{\Sigma}, a \in \Sigma\end{cases}
$$

- the labeling function ζ^{\prime} is defined by

$$
\zeta^{\prime}(p)= \begin{cases}\zeta(p) & \text { if } p \in(P \cup Q) \\ \beta_{a}(p) & \text { if } p \in P_{a}, a \in \Sigma \\ S_{a} & \text { if } p=p_{a} \in P_{\Sigma}, a \in \Sigma\end{cases}
$$

- the labeling function γ^{\prime} is defined by

$$
\gamma^{\prime}(t)= \begin{cases}\gamma(t) & \text { if } t \in T \\ \gamma_{a}(t) & \text { if } t \in T_{a}, a \in \Sigma\end{cases}
$$

- the initial marking:

$$
\mu_{0}^{\prime}(p)= \begin{cases}1 & \text { if } p=\zeta^{\prime-1}(S) \\ 0 & \text { otherwise }\end{cases}
$$

- the final marking: $\tau^{\prime}(p)=0$ for all $p \in P^{\prime}$;

Obviously, $L\left(G^{\prime}\right) \in \mathbf{P N}_{k}$.
Lemma 11 (Mirror Image). The family of languages $\mathbf{P N}_{k}, k \geq 1$ is closed under mirror image.

Proof. Let $G=\left(V, \Sigma, S, R, N_{k}\right)$ be a k-PN controlled grammar. Let

$$
R^{-}=\left\{A \rightarrow x_{n} \cdots x_{2} x_{1} \mid A \rightarrow x_{1} x_{2} \cdots x_{n} \in R\right\}
$$

The context-free grammar (V, Σ, S, R) and its reversal $\left(V, \Sigma, S, R^{-}\right)$have the same corresponding of Petri net $N=(P, T, F, \phi, \beta, \gamma, \iota)$ as N does not preserve the order of the positions of the output places for each transition. Thus we can also use the k-Petri net N_{k} as a control mechanism for the $\operatorname{grammar}\left(V, \Sigma, S, R^{-}\right)$, i.e. we define $G^{-}=\left(V, \Sigma, S, R^{-}, N_{k}\right)$. Clearly, $L\left(G^{-}\right) \in \mathbf{P N}_{k}$.

Lemma 12 (Intersection with Regular Languages). The family of languages $\mathbf{P N}_{k}$, $k \geq 1$ is closed under intersection with regular languages.
Proof. We use the arguments and notions of the proof of Lemma 1.3.5 in [2]. Let $G=\left(V, \Sigma, S, R, N_{k}\right)$ be a k-Petri net controlled grammar with a k-Petri net $N_{k}=$ $\left(P \cup Q, T, F \cup E, \varphi, \zeta, \gamma, \mu_{0}, \tau\right)$ (with the notions of Definition 2). Without loss of generality we can assume that G is in a binary form.

Let $\mathcal{A}=\left(K, \Sigma, s_{0}, \delta, H\right)$ be a deterministic finite automaton. We set

$$
V^{\prime}=\left\{\left[s, x, s^{\prime}\right] \mid s, s^{\prime} \in K, x \in V \cup \Sigma\right\}
$$

For each rule $r \in R$ we construct the set $R(r)$ in the following way

1. If $r=A \rightarrow x_{1} x_{2}, x_{1}, x_{2} \in V \cup \Sigma$ then

$$
R(r)=\left\{\left[s, A, s^{\prime}\right] \rightarrow\left[s, x_{1}, s^{\prime}\right]\left[s^{\prime}, x_{2}, s^{\prime \prime}\right] \mid s, s^{\prime}, s^{\prime \prime} \in K\right\}
$$

2. If $r=A \rightarrow x, x \in V \cup \Sigma$ then

$$
R(r)=\left\{\left[s, A, s^{\prime}\right] \rightarrow\left[s, x, s^{\prime}\right] \mid s, s^{\prime} \in K\right\}
$$

Further we define the set of rules

$$
R_{\Sigma}=\left\{\left[s, a, s^{\prime}\right] \rightarrow a \mid s^{\prime}=\delta(s, a), s, s^{\prime} \in K, a \in \Sigma\right\}
$$

Let

$$
R^{\prime}=\bigcup_{r \in R} R(r) \cup R_{\Sigma}
$$

We define the context-free grammar $G_{s}=\left(V^{\prime}, \Sigma,\left[s_{0}, S, s\right], R^{\prime}\right)$ for each $s \in H$. Let $N_{s}=\left(P_{s}, T_{s}, F_{s}, \phi_{s}, \beta_{s}, \gamma_{s}, \iota_{s}\right)$ be a cf Petri net with respect to the grammar G_{s} where

$$
\begin{aligned}
P_{s} & =\left\{\left[s, p, s^{\prime}\right] \mid s, s^{\prime} \in K, p \in P\right\} \\
T_{s} & =\left\{\left[s, t, s^{\prime}\right] \mid s, s^{\prime} \in K, p \in P\right\} \\
F_{s} & =\left\{\left(\left[s_{1}, x, s_{2}\right],\left[s_{1}^{\prime}, y, s_{2}^{\prime}\right]\right) \mid s_{1}, s_{2}, s_{1}^{\prime}, s_{2}^{\prime} \in K,(x, y) \in F\right\}
\end{aligned}
$$

The weight function ϕ_{s} is defined by $\phi\left(\left[s_{1}, x, s_{2}\right],\left[s_{1}^{\prime}, y, s_{2}^{\prime}\right]\right)=\phi(x, y)$ where $s_{1}, s_{2}, s_{1}^{\prime}, s_{2}^{\prime} \in K,(x, y) \in F$.

The functions $\beta_{s}: P_{s} \rightarrow V^{\prime}$ and $\gamma_{s}: T_{s} \rightarrow R^{\prime}$ are bijections, and

$$
\iota_{s}\left(\beta_{s}^{-1}\left(\left[s_{0}, S, s\right]\right)\right)=1 \text { and } \iota_{s}(p)=0 \text { for all } P_{s}-\left\{\beta_{s}^{-1}\left(\left[s_{0}, S, s\right]\right)\right\} .
$$

We set

$$
F_{Q}^{-}=\left\{\left(\left(s, t, s^{\prime}\right), q\right) \mid s, s^{\prime} \in K, q \in Q \wedge t \in \bullet q\right\}
$$

and

$$
F_{Q}^{+}=\left\{\left(q,\left(s, t, s^{\prime}\right)\right) \mid s, s^{\prime} \in K, q \in Q \wedge t \in q^{\bullet}\right\}
$$

We construct the k-Petri net

$$
N_{k, s}=\left(P_{s} \cup Q, T_{s}, F_{s} \cup F_{Q}^{-} \cup F_{Q}^{+}, \varphi_{s}, \zeta_{s}, \gamma_{s}, \mu_{s}, \tau_{s}\right)
$$

from N_{s} where

- the weight function φ_{s} is defined by

$$
\varphi_{s}\left(\left[s_{1}, x, s_{2}\right],\left[s_{1}^{\prime}, y, s_{2}^{\prime}\right]\right)=\varphi(x, y), s_{1}, s_{1}^{\prime}, s_{2}, s_{2}^{\prime} \in K \text { and }(x, y) \in F \cup E
$$

- the labeling function ζ_{s} is defined by

$$
\zeta_{s}\left(\left[s_{1}, p, s_{2}\right]\right)= \begin{cases}\beta_{s}\left(\left[s_{1}, p, s_{2}\right]\right) & \text { if }\left[s_{1}, p, s_{2}\right] \in P_{s} \\ \lambda & \text { if }\left[s_{1}, p, s_{2}\right] \in Q\end{cases}
$$

- the initial marking μ_{s} is defined by $\mu_{s}\left(\beta_{s}^{-1}\left(\left[s_{0}, S, s\right]\right)\right)=1$ and $\mu_{s}(p)=0$ for all $\left(P_{s} \cup Q\right)-\left\{\beta_{s}^{-1}\left(\left[s_{0}, S, s\right]\right)\right\}$,
- the final marking τ_{s} is defined by $\tau_{s}(p)=0$ for all $p \in P_{s} \cup Q$,
and define the k-PN controlled grammar $G_{s}^{\prime}=\left(V^{\prime}, \Sigma,\left(s_{0}, S, s\right), R^{\prime}, N_{k, s}\right)$. Then one can see that $L(G) \cap L(A)=\bigcup_{s \in H} L\left(G_{s}^{\prime}\right)$.

The results of the previous lemmas are summarized in the following theorem:
Theorem 2. The family of languages $\mathbf{P N}_{k}, k \geq 1$, is closed under union, substitution, mirror image, intersection with regular languages and it is not closed under concatenation.

References

[1] Crespi-Reghizzi, S. and Mandrioli, D. Petri nets and commutative grammars. Internal Report 74-5, Laboraterio di Calcolatori, Instituto di Elettrotecnica ed Elettromca del Politecnico di Milano, Italy, 1974.
[2] Dassow, J. and Pǎun, Gh. Regulated rewriting in formal language theory. Springer-Verlag, Berlin, 1989.
[3] Dassow, J. and Turaev, S. k-Petri net controlled grammars. In Martín-Vide, C., Otto, F., and Fernau, H., editors, Language and Automata Theory and Applications. Second International Conference, LATA 2008. Revised Papers, volume 5196 of $L N C S$, pages 209-220. Springer, 2008.
[4] Esparza, J. Petri nets, commutative context-free grammars, and basic parallel processes. Fundam. Inf., 31(1):13-25, 1997.
[5] Hack, M. Decidablity questions for Petri nets. PhD thesis, Dept. of Electrical Engineering, MIT, 1975.
[6] Hopcroft, J.E. and Ullman, J.D. Introduction to automata theory, languages, and computation. Addison-Wesley Longman Publishing Co., Inc., 1990.
[7] Marek, V. and Češka, M. Petri nets and random-context grammars. In Proc. of the 35th Spring Conference: Modelling and Simulation of Systems, pages 145-152, MARQ Ostrava, Hardec nad Moravicí, 2001.
[8] Martín-Vide, C., Mitrana, V., and Pǎun, Gh., editors. Formal languages and applications. Springer-Verlag, Berlin, 2004.
[9] Murata, T. Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77(4):541-580, 1989.
[10] Petri, C.A. Kommunication mit Automaten. PhD thesis, University of Bonn, 1962.
[11] Reisig, W. and Rozenberg, G., editors. Lectures on Petri Nets I: Basic Models, volume 1491 of LNCS, Berlin, 1998. Springer.
[12] Starke, P.H. Petri-Netze. Deutscher Verlag der Wissenschaften, 1980.
[13] Turaev, S. Petri net controlled grammars. In Third Doctoral Workshop on Mathematical and Engineering Methods in Computer Science, MEMICS 2007, pages 233-240, Znojmo, Czechia, 2007.

[^0]: *This paper is an extended version of the paper presented at the Second International Conference on Language and Automata Theory and Applications, March 13-19, 2008, Tarragona, Spain [3].
 ${ }^{\dagger}$ Otto-von-Guericke-Universität Magdeburg, PSF 4120, D-39016 Magdeburg, Germany, E-mail: dassow@iws.cs.uni-magdeburg.de
 ${ }^{\ddagger}$ Faculty of Computer Science and Information Technology, UPM, 43400 Serdang, Selangor, Malaysia, E-mail: sherzod@fsktm.upm.edu.my

