Acta Cybernetica 19 (2010) 609-634.

Petri Net Controlled Grammars with a Bounded
Number of Additional Places®

Jiirgen Dassow' and Sherzod Turaev?

Abstract

A context-free grammar and its derivations can be described by a Petri
net, called a context-free Petri net, whose places and transitions correspond
to the nonterminals and the production rules of the grammar, respectively,
and tokens are separate instances of the nonterminals in a sentential form.
Therefore, the control of the derivations in a context-free grammar can be
implemented by adding some features to the associated cf Petri net. The
addition of new places and new arcs from/to these new places to/from tran-
sitions of the net leads grammars controlled by k-Petri nets, i.e., Petri nets
with additional k places. In the paper we investigate the generative power and
give closure properties of the families of languages generated by such Petri
net controlled grammars, in particular, we show that these families form an
infinite hierarchy with respect to the numbers of additional places.

Keywords: grammars, grammars with regulated rewriting, Petri nets, Petri
net controlled grammars

1 Introduction

It is well-known fact that context-free grammars are not able to cover all phenom-
ena of natural and programming languages, and also with respect to other applica-
tions of sequential grammars they cannot describe all aspects. On the other hand,
context-sensitive grammars are powerful enough but have bad features with respect
to decidability problems which are undecidable or at least very hard. Therefore it is
a natural idea to introduce grammars which use context-free rules and have a device
which controls the application of the rules. The monograph [2] gives a summary of
this approach.

*This paper is an extended version of the paper presented at the Second International Confer-
ence on Language and Automata Theory and Applications, March 13-19, 2008, Tarragona, Spain
[3].
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A context-free grammar and its derivation process can be described by a Petri
net where places correspond to nonterminals, transitions are the counterpart of the
productions, the tokens reflect the occurrences of symbols in the sentential form,
and there is a one-to-one correspondence between the application of (sequences of)
rules and the firing of (sequence of) transitions (see, [1]). Therefore it is a natural
idea to control the derivations in a context-free grammar by adding some features
to the associated Petri net.

In [7] and [13] it has been shown that by adding some places and arcs which
satisfy some structural requirements one can generate well-known families of lan-
guages as random context languages, vector languages and matrix languages. Thus
the control by Petri nets can be considered as a unifying approach to different types
of control (note that random context is a control by occurrence/non-occurrence of
letters whereas matrices give a prescribed set of sequences in which the productions
have to be applied). In this paper we add new places, called counters, and new
arcs associated with the new places. Adding k places leads to a control by k-Petri
nets. The aim of this paper is the study of properties of the family of languages
which can be generated by context-free grammars with a control by k-Petri nets.
We present results on the generative power and we give some closure properties.

The paper is organized as follows. In Section 2 we give some notions and defi-
nitions from the theories of formal languages and Petri nets needed in the sequel.
Moreover we introduce the Petri net associated with a context-free grammar. In
Section 3 we construct the new Petri net control mechanism and define the corre-
sponding grammar. Furthermore, we give some examples. In Section 4 we show
that context-free grammars with the simple control by one additional place can
generate non-context-free languages. We also give relations to valence grammars
and vector grammars. Furthermore, we show that we get an infinite hierarchy with
respect to the numbers of additional places. In Section 5 we investigate the fun-
damental closure properties of the families of languages generated by k-Petri net
controlled grammars.

2 Preliminaries

The reader is assumed to be familiar with basic notions of formal language theory
and Petri net theory as, e.g. contained in [8, 2, 4, 5, 6, 9, 10, 11, 12].

2.1 Grammars

Let ¥ be an alphabet which is a finite nonempty set of symbols. A string over the
alphabet X is a finite sequence of symbols from Y. The empty string is denoted
by A. The set of all strings over the alphabet ¥ is denoted by >%*. A subset of >*
is called a language. The length of a string w, denoted by |w], is the number of
occurrences of symbols in w. The number of occurrences of a symbol « in a string
w is denoted by |w|,. For a subset A of 3, the number of occurrences of symbols
of A in a string w € ¥£* is denoted by |w|a.
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The operation shuffle for languages L1, Ly C ¥* is defined by

Shuf(L1, Ly) = {ujviusvs - - - upvy, | ugus -+ uy € Ly, v109 -+ - v, € Lo,
ug,v; € 85,1 <i<n}

and for L C ¥*,

Shuf'(L) = L,
Shuf*(L) = Shuf(Shuf*~*(L), L), k > 2,

Shuf*(L) = | J Shuf*(L).
k>1

A context-free grammar is a quadruple G = (V, %, S, R) where V and ¥ are the
disjoint finite sets of nonterminal and terminal symbols, respectively, S € V is the
start symbol and R C V x (V UX)* is a finite set of (production) rules. Usually,
a rule (A, ) is written as A — x. A rule of the form A — X is called an erasing
rule. © € (VUX)T directly derives y € (V U X)*, written as z = vy, iff there
isaruler = A = o € R such that x = x1Ax2 and y = ziaxs. The reflexive
and transitive closure of = is denoted by =*. A derivation using the sequence of
rules m = 11y - - - 1y is denoted by = or —==%_ The language generated by G is
defined by L(G) = {w € ¥* | S =* w}. The family of context-free languages is
denoted by CF.

A wvector grammar is a quadruple G = (V, X, 5, M) where V, X, S are defined as
for a context-free grammar, and M is a finite set of strings over a set of context-
free rules called matrices. The language generated by the grammar G is defined by
L(G)={w e X" | S S wand 7 € Shuf*(M)}.

An additive valence grammar is a quintuple G = (V, X, S, R,v) where V, X, S,
R are defined as for a context-free grammar and v is a mapping from R into the
set Z of integers. The language generated by G consists of all strings w € ¥* such
that there is a derivation S =222 w where Y1 | v(r;) = 0.

A positive valence grammar is a quintuple G = (V, X, S, R, v) whose components
are defined as for an additive valence grammar. The language generated by G
consists of all strings w € X* such that there is a derivation S 220 4 where
S v(ri) =0and forany 1 < j <n, > 7_ v(r;) >0.

The families of languages generated by vector, additive valence and positive
valence grammars (with erasing rules) are denoted by V, aV and pV (V*, aV*

and pV?), respectively.

2.2 Petri Nets

A Petri net (PN) is a construct N = (P, T, F, ¢) where P and T are disjoint finite
sets of places and transitions, respectively, FF C (P x T) U (T x P) is the set of
directed arcs, ¢ : (P x T)U (T x P) — {0,1,2,---} is a weight function, where
¢(x,y) =0 for all (z,y) € (PxT)U(T x P))—F. A Petri net can be represented
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by a bipartite directed graph with the node set P U T where places are drawn as
circles, transitions as bozes and arcs as arrows. The arrow representing an arc
(z,y) € F is labeled with ¢(z,y); if ¢(x,y) = 1, the label is omitted.

A mapping p: P — {0,1,2,...} is called a marking. For each place p € P, u(p)
gives the number of tokens in p. Graphically, tokens are drawn as small solid dots
inside circles. *x = {y | (y,x) € F} and 2* = {y | (x,y) € F} are called pre- and
post-sets of x € P UT, respectively. For X C PUT, define *X = J,.x *» and
X*® =yexx® Fort €T (p € P), the elements of *t (*p) are called input places
(transitions) and the elements of t* (p®) are called output places (transitions) of the
transition ¢ (the place p).

A transition ¢t € T' is enabled by marking p if and only if u(p) > ¢(p,t) for all
p € P. In this case t can occur (fire). Its occurrence transforms the marking p
into the marking ' defined for each place p € P by u/(p) = p(p) — ¢(p,t) + ¢(t,p).
We write u 5N 1’ to indicate that the firing of ¢ in u leads to p’. A finite sequence
tity - tg, t; € T,1 < i <k, is called an occurrence sequence enabled at a marking
u and finished at a marking g if there are markings p1, po, ..., ur_1 such that

t t th— th . .
T T S SNy LN /. In short this sequence can be written as
tito -t

=2 or S i where v = tity - -t

A marked Petri net is a system N = (P, T, F,¢,.) where (P,T,F, ) is a Petri
net, ¢ is the initial marking. Let M be a set of markings, which will be called final
markings. An occurrence sequence v of transitions is called successful for M if it
is enabled at the initial marking ¢ and finished at a final marking 7 of M. If M is
understood from the context, we say that v is a successful occurrence sequence.

2.3 Context-Free Petri Nets

The construction of the following type of Petri nets is based on the idea of using
similarity between the firing of a transition and the application of a production rule
in a derivation in which places are nonterminals and tokens are different occurrences
of nonterminals.

Definition 1. A context-free Petri net (in short, a cf Petri net) with respect to a
context-free grammar G = (V, X, S, R) is a tuple N = (P, T, F, ¢, 3,,t) where

o (P, T,F,¢) is a Petri net;
e labeling functions B: P —V and v :T — R are bijections;

e there is an arc from place p to transition t if and only if v(t) = A — «a and
B(p) = A. The weight of the arc (p,t) is 1;

e there is an arc from transition t to place p if and only if v(t) = A — « and
B(p) = x where |a|, > 0. The weight of the arc (t,p) is |a|s;

e the initial marking ¢ is defined by «(371(S)) = 1 and t(p) = 0 for all p €
P—{p71(9)}
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We also use the natural extension of the labeling function v : T* — R*, which
is done in the usual manner.

Example 1. Let Gy be a context-free grammar with the rules:
rg: S —>AB,r1: A—aAb,ro: A—ab,r3: B—cB,ry: B —c¢

(the other components of the grammar can be seen from these rules). Figure 1
illustrates a cf Petri net IV with respect to the grammar G;. Obviously,

L(Gy) = {a™b"c™ | n,m > 1}.

To

1 3
Figure 1: A cf Petri net N

The following proposition shows the similarity between terminal derivations in a
context-free grammar and successful occurrences of transitions in the corresponding
cf Petri net.

Proposition 1. Let N = (P,T,F,¢,t,8,7v) be the cf Petri net with respect to a
T1IT2 T

context-free grammar G = (V, 3, S, R). Then S =——= w,w € ¥*, is a derivation

. , trit---t , - .
in G ifftita - -tn, L —2""% u,, is an occurrence sequence of transitions in N such

that y(t1ta -« -tn) = 117210 and pp(p) =0 for all p € P.

T1IT2 T

Proof. Let § ——= w,w € X* be a derivation in the grammar G. By induc-
tion on the number 1 < k < n of derivation steps, we show that it ---t, with
v(tita -+ ty) = rire -+ -1y is an occurrence sequence enabled at ¢ and finished at
the marking p,, where p,(p) =0 for all p € P.

Let £k = 1. § =,, wi, i.e., the sentential form w; is obtained from S by the
application of a rule 71 : S — w; € R. Then the transition ¢; = y~*(r1) also
occurs as its input place 371(9) has a token, i.e., by definition, ¢«(371(S)) = 1. Let
2 jiy. Then for each A € V, we have p1(p) = |wi]|a where p = f71(A).
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rir2 - Tm

Suppose S =—— Wy, wy, € (VUE), 1 <m<k—-1<mn,and t1ty---t,, be
an occurrence sequence of transitions of N such that vy(t1ta - tm) = rire - rm.
Consider case m = k. Then the transition t; = vy~ *(r4), r : A — « € R, can fire
since *ty = {871(A)} and pr(B71(A)) = |wk|a > 0. If k = n, then u,(p) = 0 for
all pe P as w, € X* ie., |wgla=0forall AcV.

Let v = t1ty---t, be an occurrence sequence of transitions of IV enabled at ¢
and finished at p,, where p,(p) = 0 for all p € P. By induction on the number
1 < k < n of occurrence steps we show that § =222 o, w € $*, is a derivation
in G where ryro - 1, = y(t1ta - - ty).

For k = 1 we have ¢ *% p1. Then the rule r; = v~ 1(¢;) : S — a € R can also
be applied and S =,, w; = a. By definition, for each A € V, |w1|a = p1 (871 (A)).

We suppose that for 1 < m < k—-1<n, S N = (VUX)* is
a derivation in G where ri79 -7y, = Y(tit2 -+ ty,). Then for each A € V and
1 <i<m, |wia = pi(p) where A = B(p). If m =k, therule rp : A — a € R,
r = 7v(tx), can be applied since |wg|a > 0. For k = n, p,(p) =0 for all p € P and
consequently, |w,|a = p,(B871(A)) =0 for all A €V, ie., w, € B*. O

3 Petri Net Controlled Grammars and Examples

Now we define a k-Petri net, i.e., a cf Petri net with additional k£ places and ad-
ditional arcs from/to these places to/from transitions of the net, the pre-sets and
post-sets of the additional places are disjoint.

Definition 2. Let G = (V,X,S,R) be a context-free grammar with its corre-
sponding cf Petri net N = (P, T,F,$,8,7v,t). Let k be a positive integer and let
Q = {q1,92,---,qx} be a set of new places called counters. A k-Petri net is a
construct N, = (PUQ,T,FUE,p,(,7, o, T) where

e B ={(t,q;) |t € T{,1 <i < k}U{(qi,t) | t € T3,1 < i < k} such that
TicTand T CT,1<i<k where Ty NT} =0 for 1 <1<2, TiNT] =10
for1<i<j<kandT{=0if and only if Ts =0 for any 1 <i < k.

o the weight function o(z,y) is defined by p(z,y) = ¢(z,y) if (x,y) € F and
p(x,y) =1if (z,y) € E,

o the labeling function ¢ : (PUQ) — V U{\} is defined by ((p) = B(p) if p € P
and ((p) = A if p € Q,

e the initial marking po is defined by po(871(S)) = 1 and po(p) = 0 for all
pe(PUQ) {8719},

e 7 is the final marking where T(p) =0 for allp € (PUQ).

Definition 3. A k-Petri net controlled grammar (in short, a k-PN controlled
grammar) is a quintuple G = (V, X, S, R, Ny) where V,X, S, R are defined as for
a context-free grammar and Ny is a k-Petri net with respect to the context-free
grammar (V, 3,5, R).
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S
To
A B
T2 T4
T1 ‘U r3
q

Figure 2: A 1-Petri net Ny

Definition 4. The language generated by a k-Petri net controlled grammar G
consists of all strings w € X* such that there is a derivation

T172 Ty

S ——=> w where tity-- -, 2’7_1(7“17“2"'7"n) erT”

is an occurrence sequence of the transitions of Ny enabled at the initial marking po
and finished at the final marking 7.

We denote the family of languages generated by k-PN controlled grammars
(with erasing rules) by PN (PN7), k > 1. We also use bracket notation PNE;‘] in
order to say that a statement holds in both cases: with and without erasing rules.

We give two examples which will be used in the sequel.

Example 2. Figure 2 illustrates a 1-Petri net N; which is constructed from the cf
Petri net N in Figure 1 adding a single counter place ¢q. Let Go = (V, X, S, R, Ny)
be the 1-PN controlled grammar where V, X, S, R are defined as for the grammar
G1 in Example 1. Tt is not difficult to see that L(G3) = {a™b"c™ | n > 1}.

Example 3. Let G5 be a 2-PN controlled grammar with the production rules:

To : S — AlBlAQBQ, Ty A1 — alAlbl, To @ Al — albl,
r3 B1 — ClBl, T4 Bl — C1, Ts : Ag — agAQbQ,
Te : AQ — agbg, r7ol BQ — CQBQ, rg : Bg — C2

and the corresponding 2-Petri net N is given in Figure 3. Then it is easy to see
that G5 generates the language L(G3) = {albcFad b5 ey | n,m > 1}.

Lemma 1. The language L' = {ab} a5 ey | n,m > 1} cannot be generated
by a 1-PN controlled grammar.
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Figure 3: A 2-Petri net Ny

Proof. Suppose the contrary: there is a 1-Petri net controlled grammar G =
(V,%2,S, R, Ny) where ¥ = {a,b1,c1,a2,ba,¢c2} such that L(G) = L'. Let w =
albictayrby'cy'. Since the set V is finite, and if n and m are chosen sufficiently
large, every derivation S =* w in G contains a subderivation of the form D:
A =* xAy where A € V and z,y € ¥* with zy # A. As L' is infinite, there are
words with enough large length obtained by iterating such a derivation D arbitrarily
many times. Suppose

S =% uAv =" urAyv =" - =" ur" Ay"v =* w' € T* (1)

is also a derivation in G. Then z™ and y" are substrings of w’. By the structure
of the words of L', z and y can be only powers of two symbols from ¥ U {A}.
Therefore, in order to generate a word w = a}byctaj'by'ch* € L' for large n and
m, we need at least three subderivations of the form

Dy Ay =" z1 Ay, (2)
Dy : Ay =7 29 A2ys, (3)
D3 : A3 =™ x3A3y3 (4)

where 1, x3, 3, Y1, Y2, y3 are powers of the symbols from ¥, i.e.,
T, = af"’ and y; = Bﬁl where o, 5; € Y and k; +1; > 1,i =1,2,3.

First, we assume that (1) has exactly three subderivations of the form (2)-
(4). According to the production and consumption of tokens by the subderivations
(2)—(4) the following cases can occur:
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Case 1. One of the derivations (2)—(4) does not produce and consume any token.
Without loss of generality we can assume that this derivation is (2). If

S =*udv =" vwv € L'
then for any k > 1 we apply (2) k times and get a string which is not in L', i.e.
S =" udv =" uri Ayyiv =" uri Ayt =" urh AjyFo =" urwyfo ¢ T/

since (2) increases only the powers of at most two letters.

Case 2. One of the subderivations (2)—(4) produces tokens and another one con-
sumes tokens. Without loss of generality we assume that (2) produces p > 1 tokens
and (3) consumes ¢ > 1 tokens.
Suppose
S =" U1A1UQAQU3 =% U WL UW2UZ € L.

Then the derivation

S =* u1 Ajus Asus
=" wyry Ayyrug Agug =" uy ' Ayfug Agug
kg ok kg ko ol 1
=" way A1y uaa Asyous =" uix] A1yT usay Asysus

* k k l l
=" UIT{ WY U2ToW2Yo U3

where k,1 > 1, is also in G. It can be done by choosing the numbers k,[ in such a
way, that kp — lq = 0, thus we can choose k£ and [ as k = q and [ = p and still get
a string w’ € L'. Now

o if 1 < |{an,B1,a2,02} N{ai,bi,¢;i}| <2,i=1o0ri=2then w' ¢ L' as the
powers of at most two symbols are increased;

o if {a1,B1,2, B2} N{ai,bi,c;} # O for both ¢ = 1 and ¢ = 2 then 1 <
H{aa, b1, a2, B2} N{ai,bi,c;}| <2fori=1ori=2and again w’ ¢ L'.

From the above it follows that {«1, 81, a9, B2} = {a;, bi, ¢, A fori=1ori=2.
Without loss of generality we assume that ¢ = 1. But from the subderivation (4)
(which produces or consumes tokens) it follows that s, S5 & {a1,b1,c1} and at
least one of them belongs to {as,ba,c2}. Again we get the contradiction since (4)
can increase the powers of at most two symbols from {as, ba, ca}.

If the derivation has the form

S =" U1A1U4 =* U1U2A2U3U4 =* U1 UWUI U4,

then one gets that {x1,y1,x2,y2} contains only two elements from ¥ and a contra-
diction follows as above.
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Case 8. Two of the subderivations of (2)—(4) produce (consume) tokens and the
other consumes (produces). Without loss of generality we assume that (2) and (3)
produces p; and ps tokens, respectively and (4) consumes g tokens. If

S =* w1 Aqus Asusz Asuy =* ULW1ULW2UIWIU4 € L/,
then the derivation

S =* U1A1U2A2U3A3U4
=" u1x1 A1y1usa Asyausrz Asysuy
k k k k l !
=" wpayt A1yt usy? Agys 2 usrs Asys

w, Lk k k k 1, 1 /
=" w2 WY U2 Wa s ULy W Y5ty = W (5)

is also in GG. By the definition of the final marking, we have k1p; + kops — lg = 0.
For instance, if we choose k1, ko, 1 as k1 = paq, ko = p1q and | = 2p1po, this equality
holds. By structure of a derivation there are two possibilities:

{CM]_,,B],O[Q,BQ,O{?,,B?,} = {a17b17claa27b25025 )‘} (6)

or
{a1, b1, a9, B2, a3, B3} = {a;, bi,¢c;, A} where i =1 or i = 2. (7)

Consider (6), here we only have the case ay = a1, 1 = b1, as = ¢1, B2 = ag,
a3 = by and B3 = co. It follows that the powers of all symbols of w’ are the same.
But from (5), by continuing the derivation, we get a string which is not in L':

k k k k
S =" ulxllA1y11u2x22A2y22u3méA3yéu4

S k k k U g
=" wiry Wiy Uyt Wals UsT3 A3y

* k k k k 21 21
=" w7t w1y ey 2 Ways 2 usxs Asys g

* k k 2k 2k 31, 3l /
=" wpz Wiy uers P ways tusxs ways us & L

where the powers of four symbols are increased.
Now consider (7). Let ¢ = 1. From Case 2, we can conclude that one of the
following three cases is possible:

(a) A{or,Bi} ={a1, b1}, {ag, B2} = {A}, {as, B3} = {c1, A},
(b) {011,51} = {)‘}7 {O‘2752} = {a17b1}7 {a37ﬁ3} = {017/\}7
() {oa,p1} ={a1, A}, {az,Be} = {b1,A}, {as, B3} = {c1, A}

Cases (a) and (b) are similar to Case 2. If we choose k1 = 3pal, ko = 2p1l
and ¢ = bp1ps in case (¢), we again get different powers for symbols ay, b1, c1, i.e.,
w & L.

Next, we analyze the general case: let the derivation (1) have n > 4 subderiva-
tions of the form D; : A; — z;A;y; where A; € V| x; = a?’ and y; = ﬁf", ;, B € X,
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l; + lg > 1,1 < i < n. Without loss of generality we can assume that for some
1 < s <n-—1, the derivations D;, 1 < i < s, produce p; tokens and the derivations
Dj, s+1<j<n, consume g; tokens. If

S =% up Ajug Agug - Up Aptin 1 =" uwitgWwauz - UpWpUpr1 =w € L' (8)
then by assumption,

S = U1A1U2AQU3 s unAnun_,_l
*
=" w1 A1y1uaTa Agyous - - Un Ty ApYnlinti
* k k k k K k
=" uray! Ay uemy® Agys ug - un @y AnYy " Ung

k k k k:
=% up e wy usrhwoysiug - uptrw, Yt u, o = w' € L. (9)

According to the definition of the final marking, we have

Z kipi— Y kig; =0,
i=1

1=s+1

and
{a1, b1, a2, P2,. .., 0, Bn} = {a1,b1,c1,a2,b2,c2, A}

If for some 1 < i < n, a; = ¢; and B; = ag, then all symbols in w’ have the
same power. Then by continuing two subderivations one of which produces tokens
and the other consumes, one increases the powers of at most four symbols, and get
a string w” & L.

Let, for some 2 < ¢ <n—2,

{041,5130427[32,-“,041‘751'}:{alablach)‘} (10)

and
{it1, Biv1, iga, Biva, ... an, B} = {az, bz, c2, A} (11)

It follows that at least one of the subderivations which generate symbols in
(10) (symbols in (11)) produces and another subderivation consumes tokens, since
symbols a;,b;,¢;, © = 1,2, have the same power. Then the tokens produced by a
subderivation D;, for some 1 < j < 4, can be consumed by a subderivation Dy,
for some i + 1 < k < n as the both group of subderivations use the same counter,
which result that the powers of at most two symbols from a1, b1,c; and as, ba, co
are increased, i.e., a string w’ € L’ is generated. In all cases, we get contradiction
to our assumption L' = L(G). O

4 Hierarchy Results

We start with a simple fact.
Lemma 2. CF C PN;.
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Proof. Tt is clear that CF C PNy if we take T} = T5 = (). From Example 2 it
follows that CF C PNj. O

Now we present some relations to (positive) additive valence languages.
Lemma 3. PN[{\] c pviH,

Proof. Let G = (V,%,S, R, N1) be a 1-PN controlled grammar (with or without
erasing rules) where Ny = (PU{q}, T, FUE, ¢, (,, o, 7T) is a corresponding 1-Petri
net with the counter ¢ (with the notions of Definition 2). We define a positive va-
lence grammar G’ = (V, %, S, R,v) where V, X, S, R are defined as for the grammar
G and for each r € R, the mapping v is defined by

L ify7l(r) € *q,
o) =41 i) e g,
0 otherwise.

Let S = w,w € ¥, m = riry - - - 13, be a derivation in G. Then v = t1ty -t =
7’1(7'17“2 .-+ 7)) is an occurrence sequence of transitions of Ny enabled at the initial
marking o and finished at the final marking 7, i.e.,

t1 ta tr
Ho —Hp1—> - — pp =T

By definition, if |v|; > 0 for some ¢ € *q then there is a transition ¢’ € ¢® such that
|v]y > 0. Let

U ={tig,ti2,.. -, tik } € °qg where |v|;, ; > 0,1 <j <k

and
Uy = {t2,1,t272, . 7t2’k2} - q. where |l/‘t2,j >0,1 S] < ks.

Since p;(q) > 0 for each occurrence step 1 < i < k, we have |v|y, > |v|y,, conse-
quently, v(ri)+v(r2)+...4v(r;) > 0forany 1 < j < k and from po(q) = 7(¢q) =0,
T € M, it follows that

k

STl = D0 Il €S v =0

teU: teUsz i=1
Hence, L(G) C L(G).

Let D : § 22525 4y € ¥* be a derivation in G’ where v(ry)+v(r2)+. . .+v(ry) =
0 and v(r1) +v(r2) + ... +v(r;) > 0 for any 1 < j < k. By construction of G, D
is also a derivation in (V, %, S, R).

According to the bijection v : T — R, there is an occurrence sequence v =
tito -ty p b, 1 SCNLN Uk, in Ny such that v =~ (ryrg - 1p).

p = pg since D starts from S, i.e., uo(871(S)) = 1 and po(B8~1(z)) = 0 for all
x € (VUX)—{S} as well as uo(q) = 0.
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Since w € ¥*, we have u,(371(z)) = 0 for all x € V. From Zgzl v(r;) >0, it
follows that p,(g) > 0 for any 1 < j < k.

ZU(H) def Z v(r) + Z v(r) =0

i=1 ~—1(r)e *q y(r)eq®
shows that ux(q) = 0. Therefore puy, = 7. Consequently, L(G’) C L(G). O
Lemma 4. aV C PN[Q’\].

Proof. Let G = (V,X, S, R,v) be an additive valence grammar (with or without
erasing rules). Without loss of generality we can assume that v(r) € {1,0,—1} for
each r € R (Lemma 2.1.10 in [2]).

For each rule r : A — a € R, v(r) # 0 we add a nonterminal symbol A, and a
pair of rules v’ : A — A,., 7" : A, — « and we set

V' =VU{A, |r:A—aeR,v(r)#0},
R =RU{r':A— A.,7" A, > a|r:A— aeRu(r) #0}

Let N = (P,T,F,¢,83,7,t) be a cf Petri net with respect to the context-
free grammar (V',X, S, R’). We construct a 2-Petri net Ny = (PUQ,T,F U
E, 0, (v, po,7) where Q = {q,¢'} and E = Fy U F» with

Fy ={(t,q) |t =7""(r),r € R and v(r) = 1}
U{(tq") [t =77"(r"),r € Rand v(r) = -1},

Fy ={(¢q,t) |t =7 (r),r € R and v(r) = —1}
u{(¢,t") [t =~"1("),r € Rand v(r) = 1}.

The rest components of Ny are defined the same as those in the definition.
Consider the 2-PN controlled grammar G’ = (V', X, S, R', N3).

Let D : S & w,w € ¥, © = rry---rn, be a derivation in G’. Then
o= tity---t, = ’y_l(rlrg ---1y,) is an occurrence sequence enabled at the initial
marking o and finished at the final marking 7. By construction,

n

Sl = S ol + S Joli— S loli— 3 Jole =0

i=1 te ®q teq’® teq® te®q’

since

n

S ol =Y lole =Y wla) and Y Joli= 3 Joli = 3 wild):

teoq teq® i= teeq teq'® i=1
It follows that D is also a derivation in G.

Let D' : & 2222 w,w € X* be a derivation in G. For each 1 < k < n,
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(1) if Zle v(r;) > 0, then for the rule r;, with v(r;) € {1,0,—1} in G choose the
rule 7, in G’;

(2) if Zle v(r;) < 0, then for the rule ry with v(rg) # 0 in G choose the rules
ry, and 7} in G'; if v(ry) = 0 then choose rj, in G’.

(3) if Zf 1 v(r;) = 0, then for the rule rj with v(rk) € {-1,0} in G choose the
rule r in G'; if v(rk) =1, then choose r}, r in G'.

Therefore D’ is also a derivation in G’. The strict inclusion follows from the
fact that
{a?b}ctad b ey | nym > 1} € PNy

cannot be generated by an additive valence grammar (Example 2.1.7 in [2]). O

The following lemma shows that, for any n > 1, an n-PN controlled grammar
generates a vector language.

Lemma 5. Forn>1, PNE{\] C VIA
Proof. Let G = (V, X%, S, R, N,;) be an n-PN controlled grammar (with or without

erasing rules) with the n-Petri net N, = (P U Q,T,F U E,¢,(,7, po, 7). Let
Q = {qlaq27"'7qn} and

‘g = {tr1,1,te1,2s - b1 s(k)

where tg1; =7 (ki) e Akt — Wit 1 <k <n, 1 <i<s(k), and

G = {tk2,1, k22,5 te2i(k) }

where t0,; =7 (Tk2,5), Tk Ak — We2j, 1 <k <n, 1<j<I(k).
Let
Bpri:) =Ak14, 1 <k <n,1<i<s(k)

and
B(Pr2,5) = Ak2,j, 1 <k <n, 1<j<I(k).

First, we construct a PN controlled grammar G’ = (V';3, S, R, N’) in such a
way that each counter place of N’ has a single input transition and a single output
transition, and we show that the grammars G and G’ generate the same language.
We set V! = VU{By,;;,Crji | 1 <k <n1<i<s(k),l<yj<I(k)} where
By and Ci i, 1 <k <n,1<1i<s(k),1<j<I(k), are new nonterminals. R’
consists of the following rules

R =(R—{rp14,rk2; | 1<k<n 1<i<s(k),1<j<I(k)})
U{rh1iy: Akt = Brij | 1<k <n,1<i<s(k),1<j<I(k)}
U{ry 1y Brij = wri | 1<k <n1<i<s(k),1<j<Ik)}
U{rhoji: Ak = Cryi | 1<k <n,1<i<s(k),1<j<I(k)}
U{roji: COrji = wray | 1<k <n,1<i<s(k),1<5<I(k)}
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and N' = (P'UQ T, F',¢', (", uy, ') where the sets of places, transitions and
arcs

P =PU{pkr,i;| 1<k<n,1<i<s(k),1<j<l(k)}
U{prk2i ] 1<k<n, 1<i<sk),1<j<I(k)},
Q ={qr,ij | 1<k <n, 1<i<s(k),1<j<I(k)},
n
T =(T - U (*qrUar))
k=1

U {t;c,l,i,jat;cl,l,i,j [1<k<nl<i<s(k),1<j<I(k)}
U{thojithoji |l 1<k<n1<i<s(k),1<j<I(k)},

F'=(FUE — U {105 tr,1,i)s (teyinae) |1 <1< s(k)}

U{(tr1,i,p) |p= ¢ H(w), lwe,1,ile > 0,1 <i<s(k)}

U{(qk,tr2,5), Dr,2,5:te,2,;) | 1 <7 < 1(k)}

U{(tr2,5:p) | p =), lwkagle > 0,1 < j <I(k)}))
n s(k) (k)

U U U U ({(pk,l,iat;c,l,i,j)» (t;c,l,i,jvpk,l,i,j)v (Pk,l,i,jat;c/,l,i,j)a
k=1 i=1 j=1
(1 i)} ULt 10550) | P =M (@), lweile > 0})
n U(k) s(k)
U U U U ({(Pk,Z,ja t?c,Q,j,i)a (t;c,l,j,iapk,2.,j7i)a (Pk,Z,j,i’ tg,2,j,i)a
k=1j=1i=1
(t%,z,j,z‘vqhi,j)} U {(t%,Q,j,ivp) |p= C71($)a |wg,2,5|z > 0}).

e The weight function is defined by

o(z,y) if (z,y) € F,
traap) iz =triijy=p=C12), |wkiile >0,
S (any) = .1jk<n,1fi§(le<j<l(k)
O(tr2y,p) fx=traji,y=p=C" (), |wra;l: >0,
1<k<n1<i<s(k),1<j<I(k),
1 otherwise.

e The labeling functions are defined by

((p) ifpePp

Br,; p=pri1:;,1<k<n1<i<sk),l
Crji Up=pr2;i,1<k<n1<i<s(k),1
A, ifp:qk,i,j,lgkgn,lgigs(k),lg

¢'(p) =
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and

~(t) ifte,

r;€717i7j ift = t;%lﬂ.,j,l <k<n1<i<s(k),1<j<I(k),
V() =iy ft=t,,,1<k<n1<i<s(k),1<j<I(k),
Phoge t=th,  1<k<n1<j<I(k),1<i<s(k),
Mg Ht=10, . 1<k<n1<j<I(k),1<i<s(k)

e The initial marking is defined by p{(¢=*(S)) = 1 and uy(p) = 0 for all
pePUQ —{¢TH9)}

e The final marking is defined by 7/(p) =0 for all p € P’ U Q".

By the construction of N’, an occurrence sequence of the form

t;c,l,i,j o’ t;c,,l,i,j o’ t;c,,2,j,i o' t;c,Z,j,i
1 = g T 3 — = g T iy —— g —— Jly —— > fig (12)
where o’,¢"”,0" € T"* can be replaced by
o1 j 1 j""/ o o'ty 24,0 th o G
p1 2 Ha — 5 K7 M- (13)
Then, it is clear that (13) can be replaced in N,, b
, P Y
tki 4 oad"" ) tk2
H1 H 12 Hs-
Conversely, an occurrence sequence of the form
Ys q
th,1,4 o tk,2,5
M1~ H2 —> 43— [4
in N,, can be replaced in N’ by
t;«,l,i,_y ’ t;«’,l,i,j o t;c,Q‘j,i 7 t;c/,Z,j,i
K1 v M2 — 13 2 Ha-

Correspondingly, without loss of generality we can change the order of the applica-
tion of rules of derivations in the grammars G and G’. Therefore, L(G) = L(G’).

Now we show that the grammar G’ generates a vector language. By the con-
struction of N'; |*q| = |¢®°| =1 for all ¢ € Q'.

We associate with each pair of rules r1,ro € R’ where 1y = 7/(t1), t1 € °q
and ro = /(t2), t2 € ¢*, ¢ € @', the matrix m = (r1,73) and with each rule
reR —{r'=+({t)|t € *Q U}, the matrix m = (r). We consider a vector
grammar G = (V' 5,5, M) where M is the set of all matrices constructed above.

Let S = w,w € ¥*, T = riry-- -7y, is a derivation in G’ where ¢ — 7 with
v=tity -ty =~""1(n7).

Let ®*q = {t} and ¢* = {t'} for some ¢ € Q'. If ¢t in v, ie., |v|; > 0 then
t' is also in v and [t1te - tx|s > |t1ta - - tx|p for each 1 < k < n, moreover, by
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the definition of the final marking, |v|; = |v|¢. By the bijection v/, m = (r,1'),
r=~'(t),r =+'(t')isin 7 and |riro---rgl, > |rire -1l for each 1 <k < n as
well as ||, = |m|». Hence, 7 € Shuf*(M).

Let S & w,w € ¥*, m = riry---r, € Shuf*(M), be a derivation in G’ then
again by the bijection v/, v = ttg -+ -t, = v~ (rire - - 7r,) is an occurrence sequence
of transitions of N”: pg < p,,. Since the derivation 7 starts from S (i.e., S is the
only symbol at the starting sentential form), uo(371(S)) = 1 and po(p) = 0 for all
p € P—{B7YS)}. It follows that pp = ufy. On the other hand, from w € ¥*, it
follows that ., (87 !(z)) = 0 for all z € V. From m € Shuf*(M), if the rules r,r’
of a matrix m = (r,7’) in 7 then |riro---rg|, > |rirg - 7| for each 1 <k <n
and ||, = |7|,». By the bijection ~, |t1tg - - tg|t > |t1te - tx|y for each 1 <k <n
where t =y~ 1(r), v~ 1(r') and |v|; = |v|y. It follows that wu,(q) = 0 for all ¢ € Q'.
Hence, pu, = 7'. O

Theorem 1. For k > 1, PNE;‘] - PNE:\-a-r

Proof. We first prove that PN[{\] - PN[Q’\].

Let G = (V, %, S, R, N7) be a 1-PN controlled grammar (with or without erasing
rules) where Ny = (P U {q},T,FUE,®,(,7, o, 7) 1-PN with the counter place q.
Let

*¢={t11,t12,. .., ti g }. k1 > 1 and ¢* = {ta1,t22,.. ., b2k, }, k2 > 1

where ti,j = 771(7"1',]')’ Tt Ai,j — W; 5, 1<:i<2,1<5< k; and by definition
*gNg® =0 Letp;j = (1 (Aiy), 1 <i<2, 1<) <k
We set

VI=VU{B,;; |1 <i<2,1<j<k}

where B; ;, 1 <1 < 2,1 < 5 <k, are new nonterminal symbols, introduced for
each transition t; ;.

For each rule r; j : A;; = w;;, 1 < <2,1 <5 <k, we add the new rules
i Aig = Bij, i Bij — w; ;. Let R be the set of all rules of R and all rules
constructed above, i.e.,

R'=RU{ri;: Ay = Bij |77 (

U{ry; : Biy —wij | v (A = wij) € *q,1 < j <k}
U{rh ;: Agj — Baj | v7( € ¢* 1< <k
(

U{ry; : Baj — waj | v~

We construct a 2-PN controlled grammar G’ = (V', X, S, R, No) where V' and
R’ are defined above and No = (P, T', F', &', (', ', ui, ') is constructed as follows:
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/ / . . ,
P =PU{p;; [1<i<2,1<5<k}U{qq},

T = Tu{t”, tii]1<i<2,1<5 <k},
FUUU pw, w tJ’p;,j) (phj’t;ld)}
i=1j=1

U{(t!;.p) | p=¢""(x), wijle > 0})
U{(tY ;,d) 11 <5 <k}
U{(d,ta,) 1< < ka}.

For the weight function we set

e(x,y) if (z,y) € F,
o(tij,p) ifx=t!;,y=p=C"(2),|wil. >0,
1<i<2,1<j <k,

1 otherwise.

¢ (x,y) =

The initial and final markings are defined by u{(¢'~*(S)) = 1, ui(p) = 0 for all
pe P —{¢YS)} and 7'(p) =0 for all p € P'.

The inclusion L(G) C L(G’) is obvious, which directly follows from the con-
struction of G'.

Let S = w,w € £*, © = r1ry-- -1y, be a derivation in G’ with the occurrence
sequence v =tyty---t, = ('71(m) of transitions of Ny enabled at the initial marking
ug and finished at the final marking 7/. It is clear that for some 1 < ¢ < 2,
1 < j <k if a rule 7 it Ay — Bijinom, ie, |7r|rJ > 0, then the rule

i+ Bij — w;; is also in T, ie., |7T|THJ_ > 0, moreover, |7r\r Wr;’,j- Without
loss of generality we can assume that a rule r}’; is the next to a rule r; ; in 7 (as to
the nonterminal B; ; only the rule r} i.; 1s applicable and we can change the order
in which the derivation 7 is used). Then we can replace any derivation steps of the
form LL’lAi,j.’)SQ :>7”::,_7~ LL’lBi’jLL'Q :>T1/;:j T1W;, ;T2 by ,’BlAi jLL'Q =, L T1W; X2,

t// .

Lo BEN w —% u”, is replaced

Accordlngly, the occurrence sequence t; ;t7';,
by t;;, p Lig, w’, where t; ; = v'"(r; ;). ti,j = 7’_1(ri7j) and t;{j = 7'_1(r§’7j),

1<i<2,1<j<k;. Clearly, L(G') C L(G).

Let us consider the general case k > 1. Let G = (V, X, S, R, Ni) be a k-Petri
net controlled grammar where Ny = (PUQ, T, FUE, p,(,, o, T) is a k-Petri net
with @ = {q1,¢2,...,qx}- We can repeat the arguments of the proof for & = 1

considering g instead of ¢ and adding the new counter place gj1-
For k > 1, let the language Ly be defined by

k

Ly = {H a;'b;"c;

i=1

ng >1,1<i <k}
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Then we can show analogously to Example 3 and Lemma 1 that, for k& > 1,
Lk+1 S PNk+1 and Lk+1 Q/ PNy.

Thus the inclusions are strict. O]

5 Closure Properties

We define the following binary form for k-PN controlled grammars, which will be
used in some of the next proofs.

Definition 5. A k-Petri net controlled grammar G = (V, %, S, R, Ny,) is said to be
in a binary form if for each rule A — o € R, the length of v is not greater than 2,
ie., o) <2.

Lemma 6 (Binary Form). For each k-Petri net controlled grammar there exists
an equivalent k-Petri net controlled grammar in the binary form.

Proof. Let G = (V,%,5, R, N;,) be a k-Petri net controlled grammar with Ny =

(PUQ,T,FUE,SD7C,’Y,,U/Q7T).
We denote by R>? the set of all rules of the form A — o € R where |a| > 2.
For each rule r = A — 129 - - -, € R72, 21,29, ...,2, € VU we set

Vr - {B17327 .. 'ﬂB’VL72}

and
R, = {A — (ElBl, B — 552327 PN B,,_2 — $n,1$n}

where B;, 1 < ¢ < n—2, are new nonterminal symbols, V,.NV,» = 0 for all r,7" € R,
r#7r' and V, NV =0 for all r € R. Let

V'=vu |J Viand R =(RU ] R,)-R™

reR>2 reR>2

We define the context-free grammar G’ = (V', X, S, R') and construct a k-Petri
net N, = (P, T',F',¢',{',~, wy, 7') with respect to G’ such that

(1) for A—» a € R, o] <2,
7 HA = a) € qug®iff Y THA = ) € *d U,
(2) for A— a €R,|a| > 2,

Y H A= a)e *qiff Y N (Bu_o = zp12n) € °¢, (14)
v HA = a)e ¢ iff YN A= 21 By) € ¢° (15)

where a = z129 -z, x; EVUX, 1 <1< n.



628 Jiirgen Dassow and Sherzod Turaev

Let D : § =22K 4, w € ¥* be a derivation in the grammar G. Then
tito -t = 7’1(7‘17“2 ---1y) is a successful occurrence sequence of transitions in
Nj.. We construct a derivation D’ in the grammar G’ from D as follows.

If for some 1 < m < k, rrp : A = 2129 2, € R>2 then we replace the
derivation step

Y1 Ay2 7 V112 T2
by the derivation steps

Y1 Ay = 121 Brys = yi1z122Boys = - == y121T2 " TpY2
™ T2 T3

Tho2
where r; € R, , 1 <1i<n— 2. Correspondingly, i, Loy m+1 18 replaced by

iyt o
Mo ————— Hm+1

where t, = +/71(rl), 1 <i < n —2. By (14)-(15), the number of tokens produced
and consumed by the transitions |, 5, ...,t, _5 and the transition ¢, are the same.
Then D’ is a derivation in G’, which generates the same word as D does, i.e.,
L(G) C L(G").

Inverse inclusion can also be shown using the similar arguments. O

(A]
k

Lemma 7 (Union). The family of languages PN, k > 1 is closed under union.

PTOOf. Let Gl = (‘/1, 21, Sl,Rl, Nk71) and GQ = (‘/2, 22, SQ, RQ, Nk72) be two k-PN
controlled grammars where Ny ; = (P, U Q;, T3, F; U E;, 04, CiyYas 4, Ti)s & = 1,2
(with the notions of Definition 2). We assume (without loss of generality) that
Vi NV, = 0. We construct the k-PN controlled grammar

G = (Vl U Vs U{S},Zl UXs, S, Ry URQU{S—) S1,8 — Sg},Nk)
where N, = (P, T, F, p,(,, to, 7) is defined by

e the set of places: P = P; U P, UQ; U{q} where ¢ is a new place;

e the set of transitions: T = Ty U Ty U {to1,t02} where tg1 and toe are new
transitions;

e the set of arcs:

F=FUF,UE; U{(qg,t0), (toi,poi) | i = 1,2}
U{(t,qus) | (t,q2i) € E2,1 <i <k}
U{(qui,t) | (q2ist) € Eo, 1 <0 < k}

where po; are the places labeled by S, i.e., (;(po;) = Siy i =1,2;
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the weight function:

wilT, Y if x,y EFivi:1a27
p(z,y) = (@9) I )
1 otherwise;

the labeling function ( is defined by

G(p) fpePLUQR,
C(p) = Ca(p) ifpe Py
S if p=g;

the labeling function ~y is defined by

Yilt ifteT;i=1,2,
V(t) = w o .
S — S; lftZtOi,Z:1,2;

e the initial marking:

(p) = 1 ifp=yq,
Hotp) = 0 otherwise;

e the final marking: 7(p) = 0 for all p € P.

By the construction of Ny any occurrence of its transitions can start by firing
of tg1 or tpe then transitions of T} or transitions of T can occur, correspondingly
we start a derivation with the rule S — S or S — S5 then we can use rules of R;
or Rs.

A string w is in L(G) if and only if there is a derivation S = S; =* w € L(G;),
t =1,2. On the other hand, we can initialize any derivation S; =* w € L(G;) with
the rule S — 5;, i =1,2, i.e,, w € L(G). O

Lemma 8 (Concatenation). The family of languages PNy, k > 1 is not closed
under concatenation.

Proof. Let Ly and Lj be two languages, with the same structure but disjoint al-
phabets, given at the end of the proof of Theorem 1. Then Ly, L) € PNy and
Ly - L) ¢ PNy. O

The next lemma shows that the concatenation of two languages generated by
k- and m-PN controlled grammars, k,m > 1, can be generated by a (k + m)-PN
controlled grammar.

Lemma 9. For L, € PNL/\], k>1and Ly € PN > 1,

m 7

(A]

Ly Ly e PN



630 Jiirgen Dassow and Sherzod Turaev

Proof. Let Gy = (V4,%, 51, R1, Ni,) where N, = (P, T1, F1,¢1,(1,71, (1, 71) and
Gy = (Vo,%, 52, Re, Nyy,) where N,,, = (Po, T, Fa, ¢2,(a,72, 12, T2) be, respec-
tively, k-Petri net and m-Petri net controlled grammars such that L(G1) = Ly
and L(Gy) = Ly. Without loss of generality we assume that V3 NVe = . We set
V =V1UV,U{S} where S is a new nonterminal and

R=R;UR;y U{S—> 5152}.

We define a (k + m)-PN controlled grammar G = (V,X,S, R, Nj+p,) with
Nk+m = (Pa T» Fv ®, C7 Y5 Ko, T) where

e P =P, UP,U{pg} where pg is a new place;

T =T,UTyU{to} where ty is a new transition;

F = F UF, U{(po,to), (to,p1), (to,p2)} where (i(p;) = Si, i = 1,2;

the weight function ¢ is defined by

wilx, Y if z,y GFi,i:1327
p(r,y) = (2.9) i )
1 otherwise;

the labeling function ( is defined by

(p) ifpePi=12,
(=G el
S 1fp—p07

the labeling function -y is defined by

(t ifteT;,i=1,2
() = 7i(t) ifteT,i=12
S — S1SQ ift = to;

the initial marking:

(p) = 1 if p = po,
potp) = 0 otherwise;

e the final marking: 7(p) = 0 for all p € P.

It is not difficult to see that L(G) = L(G1)L(G3). O

Lemma 10 (Substitution). The family of languages PNy, k > 1 is closed under
substitution by context-free languages.
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Proof. Let G = (V,%,S, R, N;) be a k-PN controlled grammar with k-Petri net
N, = (PUQ,T,FUE,¢,(,v, o, 7). We consider a substitution s : ¥* — 287 with
s(a) € CF for each a € X. Let G, = (Vg, X4, Sq, Ra) be a context-free grammar
for s(a), a € . We can assume that VNV, = for any a € 3 and V, NV}, = ( for
any a,b € 3, a # b.

Let Ny = (Pa, Tw, Fu, @a, Ba, Va, La) be a cf Petri net with respect to the grammar
Gg,a € ¥. We define the k-PN controlled grammar

G'=(WVUusu|JVaA S RUJ RN

a€x a€X

where R’ is the set of rules obtained by replacing each occurrence of a € ¥ by S,
in R and N}, is defined by

N, =@PuQUPsUJ P, TU|J T, FUFs U | Far ', ¢ 7 16y, )
aex acX a€ey

where
e Py ={p, | a € X} is the set of new places;
o Iy ={(t,pa) | 7(t) = A = a,|als > 0,a € X} is the set of new arcs;
e the weight function ¢’ is defined by
ple,y) if (z,y) € F,

O'(x,y) =X ¢alx,y) if (v,y) € Fy,a €Y,
loq, if v =ty =pa, (t,pa) € Fx,a €%

e the labeling function ¢’ is defined by

C(p) ifpe(PUQ),
¢'"(p) = { Balp) ifp€Pyacy,
Sa if p=p, € Ps,a € %;

e the labeling function 7' is defined by

() = {’y(t) ift e,

Ya(t) ifteT,ael;

e the initial marking:

1o(p) = {1 tp=c s,

0 otherwise;

e the final marking: 7/(p) = 0 for all p € P;
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Obviously, L(G') € PNy,. O

Lemma 11 (Mirror Image). The family of languages PNy, k > 1 is closed under
marror image.

Proof. Let G = (V, X, S, R, Ni;) be a k-PN controlled grammar. Let
R ={A—>z,  x2x1 | A— 1129 Ty, € R}.

The context-free grammar (V, 3, S, R) and its reversal (V, 3,5, R™) have the same
corresponding cf Petri net N = (P, T, F, ¢, 3,7,t) as N does not preserve the order
of the positions of the output places for each transition. Thus we can also use the
k-Petri net Ny as a control mechanism for the grammar (V, X, S, R™), i.e. we define
G~ =(V,%,S,R™,Ny). Clearly, L(G™) € PN. O

Lemma 12 (Intersection with Regular Languages). The family of languages PN,

k > 1 s closed under intersection with reqular languages.

Proof. We use the arguments and notions of the proof of Lemma 1.3.5 in [2]. Let
G = (V,X,S, R, N;) be a k-Petri net controlled grammar with a k-Petri net N, =
(PUQ,T,FUE,p,(,7, o, T) (with the notions of Definition 2). Without loss of
generality we can assume that G is in a binary form.

Let A= (K,3, 50,0, H) be a deterministic finite automaton. We set

V' ={[s,x,s]|s,s €e K,z e VUX}.
For each rule r € R we construct the set R(r) in the following way
1. If r=A — x129, 21,22 € VUX then
R(r) ={[s, A, s'] = [s,21,5][s,22,5"] | 5,5,8" € K}.
2. fr=A—x, € VU then
R(r)={[s,A,s'] = [s,z,5] | s, € K}.
Further we define the set of rules
Ry ={[s,a,s'] = a|s' =d(s,a),s,s € K,a € T}.
Let
R/ = U R(T') U RE.
reR
We define the context-free grammar G5 = (V' %, [s0, 5, s], R') for each s € H. Let
Ny = (Ps, T, Fs, ¢s, Bs, Vs, Ls) be a cf Petri net with respect to the grammar G,
where
P, ={[s,p,s'] | s,s' € K,p € P},
Ts = {[s,t,5'] | s,s' € K,p € P},
FS = {([8171',82]7 [8117y18,2]) ‘ 8178275/178/2 S K7 (xvy) € F}
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The weight function ¢ is defined by ¢([s1,x, s2], [$], v, $5]) = ¢(z,y) where
s1,82,81,85 € K, (x,y) € F.
The functions B, : P; — V' and ~, : Ts — R’ are bijections, and

ts(B51([50,5,5])) = 1 and ¢s(p) = 0 for all P, — {B;*([s0, S, 5])}.

We set
Fo ={((s,t,5"),9) | s,s € K,ge QAt € *q}

and
Fy ={(g,(s,t,8) | 5,8 € K,qe QAL €}

We construct the k-Petri net
Nk,s = (Ps UQaTsan UF& UF5a<p57Csv’Ysaussz)
from N, where

e the weight function ¢y is defined by
4%73([51’ €, 52]3 [5/15 Y, 5/2]) = QO(.I, y)7 51, Sl17 52, 512 € K and (CC, y) EFU E7
e the labeling function (s is defined by

_ Bs([slapasﬂ) lf [Sl7pa 32] S Psa
<S<[Sl7p’ 82]) B {)‘ lf [Slapv 52] € Q7

e the initial marking p, is defined by pus(85([s0, S, s])) = 1 and ps(p) = 0 for
all (P, UQ) — {87 ([s0, 9, s])},
e the final marking 75 is defined by 75(p) = 0 for all p € P, U Q,

and define the k-PN controlled grammar G, = (V', X, (s0,S5,s), R', Ni,s). Then
one can see that L(G) N L(A) = U,cy L(GY). O

The results of the previous lemmas are summarized in the following theorem:

Theorem 2. The family of languages PNy, k > 1, is closed under union, substi-
tution, mirror image, intersection with reqular languages and it is not closed under
concatenation.
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