
Acta Cybernetica 19 (2010) 609–634.

Petri Net Controlled Grammars with a Bounded

Number of Additional Places
∗

Jürgen Dassow† and Sherzod Turaev‡

Abstract

A context-free grammar and its derivations can be described by a Petri
net, called a context-free Petri net, whose places and transitions correspond
to the nonterminals and the production rules of the grammar, respectively,
and tokens are separate instances of the nonterminals in a sentential form.
Therefore, the control of the derivations in a context-free grammar can be
implemented by adding some features to the associated cf Petri net. The
addition of new places and new arcs from/to these new places to/from tran-
sitions of the net leads grammars controlled by k-Petri nets, i.e., Petri nets
with additional k places. In the paper we investigate the generative power and
give closure properties of the families of languages generated by such Petri
net controlled grammars, in particular, we show that these families form an
infinite hierarchy with respect to the numbers of additional places.

Keywords: grammars, grammars with regulated rewriting, Petri nets, Petri
net controlled grammars

1 Introduction

It is well-known fact that context-free grammars are not able to cover all phenom-
ena of natural and programming languages, and also with respect to other applica-
tions of sequential grammars they cannot describe all aspects. On the other hand,
context-sensitive grammars are powerful enough but have bad features with respect
to decidability problems which are undecidable or at least very hard. Therefore it is
a natural idea to introduce grammars which use context-free rules and have a device
which controls the application of the rules. The monograph [2] gives a summary of
this approach.

∗This paper is an extended version of the paper presented at the Second International Confer-
ence on Language and Automata Theory and Applications, March 13-19, 2008, Tarragona, Spain
[3].

†Otto-von-Guericke-Universität Magdeburg, PSF 4120, D-39016 Magdeburg, Germany, E-mail:
dassow@iws.cs.uni-magdeburg.de

‡Faculty of Computer Science and Information Technology, UPM, 43400 Serdang, Selangor,
Malaysia, E-mail: sherzod@fsktm.upm.edu.my

610 Jürgen Dassow and Sherzod Turaev

A context-free grammar and its derivation process can be described by a Petri
net where places correspond to nonterminals, transitions are the counterpart of the
productions, the tokens reflect the occurrences of symbols in the sentential form,
and there is a one-to-one correspondence between the application of (sequences of)
rules and the firing of (sequence of) transitions (see, [1]). Therefore it is a natural
idea to control the derivations in a context-free grammar by adding some features
to the associated Petri net.

In [7] and [13] it has been shown that by adding some places and arcs which
satisfy some structural requirements one can generate well-known families of lan-
guages as random context languages, vector languages and matrix languages. Thus
the control by Petri nets can be considered as a unifying approach to different types
of control (note that random context is a control by occurrence/non-occurrence of
letters whereas matrices give a prescribed set of sequences in which the productions
have to be applied). In this paper we add new places, called counters, and new
arcs associated with the new places. Adding k places leads to a control by k-Petri
nets. The aim of this paper is the study of properties of the family of languages
which can be generated by context-free grammars with a control by k-Petri nets.
We present results on the generative power and we give some closure properties.

The paper is organized as follows. In Section 2 we give some notions and defi-
nitions from the theories of formal languages and Petri nets needed in the sequel.
Moreover we introduce the Petri net associated with a context-free grammar. In
Section 3 we construct the new Petri net control mechanism and define the corre-
sponding grammar. Furthermore, we give some examples. In Section 4 we show
that context-free grammars with the simple control by one additional place can
generate non-context-free languages. We also give relations to valence grammars
and vector grammars. Furthermore, we show that we get an infinite hierarchy with
respect to the numbers of additional places. In Section 5 we investigate the fun-
damental closure properties of the families of languages generated by k-Petri net
controlled grammars.

2 Preliminaries

The reader is assumed to be familiar with basic notions of formal language theory
and Petri net theory as, e.g. contained in [8, 2, 4, 5, 6, 9, 10, 11, 12].

2.1 Grammars

Let Σ be an alphabet which is a finite nonempty set of symbols. A string over the
alphabet Σ is a finite sequence of symbols from Σ. The empty string is denoted
by �. The set of all strings over the alphabet Σ is denoted by Σ∗. A subset of Σ∗

is called a language. The length of a string w, denoted by ∣w∣, is the number of
occurrences of symbols in w. The number of occurrences of a symbol a in a string
w is denoted by ∣w∣a. For a subset Δ of Σ, the number of occurrences of symbols
of Δ in a string w ∈ Σ∗ is denoted by ∣w∣Δ.

Petri Net Controlled Grammars 611

The operation shuffle for languages L1, L2 ⊆ Σ∗ is defined by

Shuf(L1, L2) = {u1v1u2v2 ⋅ ⋅ ⋅unvn ∣ u1u2 ⋅ ⋅ ⋅un ∈ L1, v1v2 ⋅ ⋅ ⋅ vn ∈ L2,

ui, vi ∈ Σ∗, 1 ≤ i ≤ n}

and for L ⊆ Σ∗,

Shuf1(L) = L,

Shufk(L) = Shuf(Shufk−1(L), L), k ≥ 2,

Shuf∗(L) =
∪

k≥1

Shufk(L).

A context-free grammar is a quadruple G = (V,Σ, S,R) where V and Σ are the
disjoint finite sets of nonterminal and terminal symbols, respectively, S ∈ V is the
start symbol and R ⊆ V × (V ∪ Σ)∗ is a finite set of (production) rules. Usually,
a rule (A, x) is written as A → x. A rule of the form A → � is called an erasing
rule. x ∈ (V ∪ Σ)+ directly derives y ∈ (V ∪ Σ)∗, written as x ⇒ y, iff there
is a rule r = A → � ∈ R such that x = x1Ax2 and y = x1�x2. The reflexive
and transitive closure of ⇒ is denoted by ⇒∗. A derivation using the sequence of
rules � = r1r2 ⋅ ⋅ ⋅ rn is denoted by

�
=⇒ or

r1r2⋅⋅⋅rn=====⇒. The language generated by G is
defined by L(G) = {w ∈ Σ∗ ∣ S ⇒∗ w}. The family of context-free languages is
denoted by CF.

A vector grammar is a quadruple G = (V,Σ, S,M) where V,Σ, S are defined as
for a context-free grammar, and M is a finite set of strings over a set of context-
free rules called matrices. The language generated by the grammar G is defined by
L(G) = {w ∈ Σ∗ ∣ S

�
=⇒ w and � ∈ Shuf∗(M)}.

An additive valence grammar is a quintuple G = (V,Σ, S,R, v) where V , Σ, S,
R are defined as for a context-free grammar and v is a mapping from R into the
set ℤ of integers. The language generated by G consists of all strings w ∈ Σ∗ such
that there is a derivation S

r1r2⋅⋅⋅rn=====⇒ w where
∑n

i=1 v(ri) = 0.

A positive valence grammar is a quintuple G = (V,Σ, S,R, v) whose components
are defined as for an additive valence grammar. The language generated by G
consists of all strings w ∈ Σ∗ such that there is a derivation S

r1r2⋅⋅⋅rn=====⇒ w where
∑n

i=1 v(ri) = 0 and for any 1 ≤ j < n,
∑j

i=1 v(ri) ≥ 0.

The families of languages generated by vector, additive valence and positive
valence grammars (with erasing rules) are denoted by V, aV and pV (V�, aV�

and pV�), respectively.

2.2 Petri Nets

A Petri net (PN) is a construct N = (P, T, F, �) where P and T are disjoint finite
sets of places and transitions, respectively, F ⊆ (P × T) ∪ (T × P) is the set of
directed arcs, � : (P × T) ∪ (T × P) → {0, 1, 2, ⋅ ⋅ ⋅ } is a weight function, where
�(x, y) = 0 for all (x, y) ∈ ((P ×T)∪ (T ×P))−F . A Petri net can be represented

612 Jürgen Dassow and Sherzod Turaev

by a bipartite directed graph with the node set P ∪ T where places are drawn as
circles, transitions as boxes and arcs as arrows. The arrow representing an arc
(x, y) ∈ F is labeled with �(x, y); if �(x, y) = 1, the label is omitted.

A mapping � : P → {0, 1, 2, . . .} is called a marking. For each place p ∈ P , �(p)
gives the number of tokens in p. Graphically, tokens are drawn as small solid dots
inside circles. ∙x = {y ∣ (y, x) ∈ F} and x∙ = {y ∣ (x, y) ∈ F} are called pre- and
post-sets of x ∈ P ∪ T , respectively. For X ⊆ P ∪ T , define ∙X =

∪

x∈X
∙x and

X∙ =
∪

x∈X x∙. For t ∈ T (p ∈ P), the elements of ∙t (∙p) are called input places
(transitions) and the elements of t∙ (p∙) are called output places (transitions) of the
transition t (the place p).

A transition t ∈ T is enabled by marking � if and only if �(p) ≥ �(p, t) for all
p ∈ P . In this case t can occur (fire). Its occurrence transforms the marking �
into the marking �′ defined for each place p ∈ P by �′(p) = �(p)−�(p, t) +�(t, p).

We write �
t
−→ �′ to indicate that the firing of t in � leads to �′. A finite sequence

t1t2 ⋅ ⋅ ⋅ tk, ti ∈ T, 1 ≤ i ≤ k, is called an occurrence sequence enabled at a marking
� and finished at a marking �′ if there are markings �1, �2, . . . , �k−1 such that

�
t1−→ �1

t2−→ . . .
tk−1

−−−→ �k−1
tk−→ �′. In short this sequence can be written as

�
t1t2⋅⋅⋅tk−−−−−→ �′ or �

�
−→ �′ where � = t1t2 ⋅ ⋅ ⋅ tk.

A marked Petri net is a system N = (P, T, F, �, �) where (P, T, F, �) is a Petri
net, � is the initial marking. Let M be a set of markings, which will be called final
markings. An occurrence sequence � of transitions is called successful for M if it
is enabled at the initial marking � and finished at a final marking � of M . If M is
understood from the context, we say that � is a successful occurrence sequence.

2.3 Context-Free Petri Nets

The construction of the following type of Petri nets is based on the idea of using
similarity between the firing of a transition and the application of a production rule
in a derivation in which places are nonterminals and tokens are different occurrences
of nonterminals.

Definition 1. A context-free Petri net (in short, a cf Petri net) with respect to a
context-free grammar G = (V,Σ, S,R) is a tuple N = (P, T, F, �, �, , �) where

∙ (P, T, F, �) is a Petri net;

∙ labeling functions � : P → V and : T → R are bijections;

∙ there is an arc from place p to transition t if and only if (t) = A → � and
�(p) = A. The weight of the arc (p, t) is 1;

∙ there is an arc from transition t to place p if and only if (t) = A → � and
�(p) = x where ∣�∣x > 0. The weight of the arc (t, p) is ∣�∣x;

∙ the initial marking � is defined by �(�−1(S)) = 1 and �(p) = 0 for all p ∈
P − {�−1(S)}.

Petri Net Controlled Grammars 613

We also use the natural extension of the labeling function : T ∗ → R∗, which
is done in the usual manner.

Example 1. Let G1 be a context-free grammar with the rules:

r0 : S → AB, r1 : A → aAb, r2 : A → ab, r3 : B → cB, r4 : B → c

(the other components of the grammar can be seen from these rules). Figure 1
illustrates a cf Petri net N with respect to the grammar G1. Obviously,

L(G1) = {anbncm ∣ n,m ≥ 1}.

• S

A B
r0

r1

r2

r3

r4

Figure 1: A cf Petri net N

The following proposition shows the similarity between terminal derivations in a
context-free grammar and successful occurrences of transitions in the corresponding
cf Petri net.

Proposition 1. Let N = (P, T, F, �, �, �,) be the cf Petri net with respect to a

context-free grammar G = (V,Σ, S,R). Then S
r1r2⋅⋅⋅rn======⇒ w,w ∈ Σ∗, is a derivation

in G iff t1t2 ⋅ ⋅ ⋅ tn, �
t1t2⋅⋅⋅tn−−−−−−→ �n, is an occurrence sequence of transitions in N such

that (t1t2 ⋅ ⋅ ⋅ tn) = r1r2 ⋅ ⋅ ⋅ rn and �n(p) = 0 for all p ∈ P .

Proof. Let S
r1r2⋅⋅⋅rn======⇒ w,w ∈ Σ∗ be a derivation in the grammar G. By induc-

tion on the number 1 ≤ k ≤ n of derivation steps, we show that t1t2 ⋅ ⋅ ⋅ tn with
(t1t2 ⋅ ⋅ ⋅ tn) = r1r2 ⋅ ⋅ ⋅ rn is an occurrence sequence enabled at � and finished at
the marking �n where �n(p) = 0 for all p ∈ P .

Let k = 1. S ⇒r1 w1, i.e., the sentential form w1 is obtained from S by the
application of a rule r1 : S → w1 ∈ R. Then the transition t1 = −1(r1) also
occurs as its input place �−1(S) has a token, i.e., by definition, �(�−1(S)) = 1. Let

�
t1−→ �1. Then for each A ∈ V , we have �1(p) = ∣w1∣A where p = �−1(A).

614 Jürgen Dassow and Sherzod Turaev

Suppose S
r1r2⋅⋅⋅rm======⇒ wm, wm ∈ (V ∪Σ)∗, 1 ≤ m ≤ k− 1 < n, and t1t2 ⋅ ⋅ ⋅ tm be

an occurrence sequence of transitions of N such that (t1t2 ⋅ ⋅ ⋅ tm) = r1r2 ⋅ ⋅ ⋅ rm.
Consider case m = k. Then the transition tk = −1(rk), rk : A → � ∈ R, can fire
since ∙tk = {�−1(A)} and �k(�

−1(A)) = ∣wk∣A > 0. If k = n, then �n(p) = 0 for
all p ∈ P as wn ∈ Σ∗, i.e., ∣wk∣A = 0 for all A ∈ V .

Let � = t1t2 ⋅ ⋅ ⋅ tn be an occurrence sequence of transitions of N enabled at �
and finished at �n where �n(p) = 0 for all p ∈ P . By induction on the number

1 ≤ k ≤ n of occurrence steps we show that S
r1r2⋅⋅⋅rn======⇒ w,w ∈ Σ∗, is a derivation

in G where r1r2 ⋅ ⋅ ⋅ rn = (t1t2 ⋅ ⋅ ⋅ tn).

For k = 1 we have �
t1−→ �1. Then the rule r1 = −1(t1) : S → � ∈ R can also

be applied and S ⇒r1 w1 = �. By definition, for each A ∈ V , ∣w1∣A = �1(�
−1(A)).

We suppose that for 1 ≤ m ≤ k − 1 < n, S
r1r2⋅⋅⋅rm======⇒ wm ∈ (V ∪ Σ)∗ is

a derivation in G where r1r2 ⋅ ⋅ ⋅ rm = (t1t2 ⋅ ⋅ ⋅ tm). Then for each A ∈ V and
1 ≤ i ≤ m, ∣wi∣A = �i(p) where A = �(p). If m = k, the rule rk : A → � ∈ R,
rk = (tk), can be applied since ∣wk∣A > 0. For k = n, �n(p) = 0 for all p ∈ P and
consequently, ∣wn∣A = �n(�

−1(A)) = 0 for all A ∈ V , i.e., wn ∈ Σ∗.

3 Petri Net Controlled Grammars and Examples

Now we define a k-Petri net, i.e., a cf Petri net with additional k places and ad-
ditional arcs from/to these places to/from transitions of the net, the pre-sets and
post-sets of the additional places are disjoint.

Definition 2. Let G = (V,Σ, S,R) be a context-free grammar with its corre-
sponding cf Petri net N = (P, T, F, �, �, , �). Let k be a positive integer and let
Q = {q1, q2, . . . , qk} be a set of new places called counters. A k-Petri net is a
construct Nk = (P ∪Q,T, F ∪ E,', �, , �0, �) where

∙ E = {(t, qi) ∣ t ∈ T i
1, 1 ≤ i ≤ k} ∪ {(qi, t) ∣ t ∈ T i

2, 1 ≤ i ≤ k} such that
T i
1 ⊂ T and T i

2 ⊂ T , 1 ≤ i ≤ k where T i
l ∩ T j

l = ∅ for 1 ≤ l ≤ 2, T i
1 ∩ T j

2 = ∅
for 1 ≤ i < j ≤ k and T i

1 = ∅ if and only if T i
2 = ∅ for any 1 ≤ i ≤ k.

∙ the weight function '(x, y) is defined by '(x, y) = �(x, y) if (x, y) ∈ F and
'(x, y) = 1 if (x, y) ∈ E,

∙ the labeling function � : (P ∪Q) → V ∪{�} is defined by �(p) = �(p) if p ∈ P
and �(p) = � if p ∈ Q,

∙ the initial marking �0 is defined by �0(�
−1(S)) = 1 and �0(p) = 0 for all

p ∈ (P ∪Q)− {�−1(S)},

∙ � is the final marking where �(p) = 0 for all p ∈ (P ∪Q).

Definition 3. A k-Petri net controlled grammar (in short, a k-PN controlled
grammar) is a quintuple G = (V,Σ, S,R,Nk) where V,Σ, S,R are defined as for
a context-free grammar and Nk is a k-Petri net with respect to the context-free
grammar (V,Σ, S,R).

Petri Net Controlled Grammars 615

• S

A B

q

r0

r1

r2

r3

r4

Figure 2: A 1-Petri net N1

Definition 4. The language generated by a k-Petri net controlled grammar G
consists of all strings w ∈ Σ∗ such that there is a derivation

S
r1r2⋅⋅⋅rn======⇒ w where t1t2 ⋅ ⋅ ⋅ tn = −1(r1r2 ⋅ ⋅ ⋅ rn) ∈ T ∗

is an occurrence sequence of the transitions of Nk enabled at the initial marking �0

and finished at the final marking � .

We denote the family of languages generated by k-PN controlled grammars

(with erasing rules) by PNk (PN�
k), k ≥ 1. We also use bracket notation PN

[�]
k in

order to say that a statement holds in both cases: with and without erasing rules.
We give two examples which will be used in the sequel.

Example 2. Figure 2 illustrates a 1-Petri net N1 which is constructed from the cf
Petri net N in Figure 1 adding a single counter place q. Let G2 = (V,Σ, S,R,N1)
be the 1-PN controlled grammar where V,Σ, S,R are defined as for the grammar
G1 in Example 1. It is not difficult to see that L(G2) = {anbncn ∣ n ≥ 1}.

Example 3. Let G3 be a 2-PN controlled grammar with the production rules:

r0 : S → A1B1A2B2, r1 : A1 → a1A1b1, r2 : A1 → a1b1,
r3 : B1 → c1B1, r4 : B1 → c1, r5 : A2 → a2A2b2,
r6 : A2 → a2b2, r7 : B2 → c2B2, r8 : B2 → c2

and the corresponding 2-Petri net N2 is given in Figure 3. Then it is easy to see
that G3 generates the language L(G3) = {an1 b

n
1 c

n
1a

m
2 bm2 cm2 ∣ n,m ≥ 1}.

Lemma 1. The language L′ = {an1 b
n
1 c

n
1a

m
2 bm2 cm2 ∣ n,m ≥ 1} cannot be generated

by a 1-PN controlled grammar.

616 Jürgen Dassow and Sherzod Turaev

•

S

A1

B1

A2

B2

q1 q2r0

r1

r2

r3

r4

r5

r6

r7

r8

Figure 3: A 2-Petri net N2

Proof. Suppose the contrary: there is a 1-Petri net controlled grammar G =
(V,Σ, S,R,N1) where Σ = {a1, b1, c1, a2, b2, c2} such that L(G) = L′. Let w =
an1 b

n
1 c

n
1a

m
2 bm2 cm2 . Since the set V is finite, and if n and m are chosen sufficiently

large, every derivation S ⇒∗ w in G contains a subderivation of the form D:
A ⇒∗ xAy where A ∈ V and x, y ∈ Σ∗ with xy ∕= �. As L′ is infinite, there are
words with enough large length obtained by iterating such a derivationD arbitrarily
many times. Suppose

S ⇒∗ uAv ⇒∗ uxAyv ⇒∗ ⋅ ⋅ ⋅ ⇒∗ uxnAynv ⇒∗ w′ ∈ Σ∗ (1)

is also a derivation in G. Then xn and yn are substrings of w′. By the structure
of the words of L′, x and y can be only powers of two symbols from Σ ∪ {�}.
Therefore, in order to generate a word w = an1 b

n
1 c

n
1a

m
2 bm2 cm2 ∈ L′ for large n and

m, we need at least three subderivations of the form

D1 :A1 ⇒∗ x1A1y1, (2)

D2 :A2 ⇒∗ x2A2y2, (3)

D3 :A3 ⇒∗ x3A3y3 (4)

where x1, x2, x3, y1, y2, y3 are powers of the symbols from Σ, i.e.,

xi = �ki

i and yi = �li
i where �i, �i ∈ Σ and ki + li ≥ 1, i = 1, 2, 3.

First, we assume that (1) has exactly three subderivations of the form (2)–
(4). According to the production and consumption of tokens by the subderivations
(2)–(4) the following cases can occur:

Petri Net Controlled Grammars 617

Case 1. One of the derivations (2)–(4) does not produce and consume any token.
Without loss of generality we can assume that this derivation is (2). If

S ⇒∗ uA1v ⇒∗ uwv ∈ L′

then for any k > 1 we apply (2) k times and get a string which is not in L′, i.e.

S ⇒∗ uA1v ⇒∗ ux1A1y1v ⇒∗ ux2
1A1y

2
1v ⇒∗ uxk

1A1y
k
1v ⇒∗ uxk

1wy
k
1v ∕∈ L′

since (2) increases only the powers of at most two letters.

Case 2. One of the subderivations (2)–(4) produces tokens and another one con-
sumes tokens. Without loss of generality we assume that (2) produces p ≥ 1 tokens
and (3) consumes q ≥ 1 tokens.

Suppose

S ⇒∗ u1A1u2A2u3 ⇒∗ u1w1u2w2u3 ∈ L′.

Then the derivation

S ⇒∗ u1A1u2A2u3

⇒∗ u1x1A1y1u2A2u3 ⇒∗ u1x
k
1A1y

k
1u2A2u3

⇒∗ u1x
k
1A1y

k
1u2x2A2y2u3 ⇒∗ u1x

k
1A1y

k
1u2x

l
2A2y

l
2u3

⇒∗ u1x
k
1w1y

k
1u2x

l
2w2y

l
2u3

where k, l ≥ 1, is also in G. It can be done by choosing the numbers k, l in such a
way, that kp− lq = 0, thus we can choose k and l as k = q and l = p and still get
a string w′ ∈ L′. Now

∙ if 1 ≤ ∣{�1, �1, �2, �2} ∩ {ai, bi, ci}∣ ≤ 2, i = 1 or i = 2 then w′ ∕∈ L′ as the
powers of at most two symbols are increased;

∙ if {�1, �1, �2, �2} ∩ {ai, bi, ci} ∕= ∅ for both i = 1 and i = 2 then 1 ≤
∣{�1, �1, �2, �2} ∩ {ai, bi, ci}∣ ≤ 2 for i = 1 or i = 2 and again w′ ∕∈ L′.

From the above it follows that {�1, �1, �2, �2} = {ai, bi, ci, �} for i = 1 or i = 2.
Without loss of generality we assume that i = 1. But from the subderivation (4)
(which produces or consumes tokens) it follows that �3, �3 ∕∈ {a1, b1, c1} and at
least one of them belongs to {a2, b2, c2}. Again we get the contradiction since (4)
can increase the powers of at most two symbols from {a2, b2, c2}.

If the derivation has the form

S ⇒∗ u1A1u4 ⇒∗ u1u2A2u3u4 ⇒∗ u1u2wu3u4,

then one gets that {x1, y1, x2, y2} contains only two elements from Σ and a contra-
diction follows as above.

618 Jürgen Dassow and Sherzod Turaev

Case 3. Two of the subderivations of (2)–(4) produce (consume) tokens and the
other consumes (produces). Without loss of generality we assume that (2) and (3)
produces p1 and p2 tokens, respectively and (4) consumes q tokens. If

S ⇒∗ u1A1u2A2u3A3u4 ⇒∗ u1w1u2w2u3w3u4 ∈ L′,

then the derivation

S ⇒∗ u1A1u2A2u3A3u4

⇒∗ u1x1A1y1u2x2A2y2u3x3A3y3u4

⇒∗ u1x
k1

1 A1y
k1

1 u2x
k2

2 A2y
k2

2 u3x
l
3A3y

l
3u4

⇒∗ u1x
k1

1 w1y
k1

1 u2x
k2

2 w2y
k2

2 u3x
l
3w3y

l
3u4 = w′ (5)

is also in G. By the definition of the final marking, we have k1p1 + k2p2 − lq = 0.
For instance, if we choose k1, k2, l as k1 = p2q, k2 = p1q and l = 2p1p2, this equality
holds. By structure of a derivation there are two possibilities:

{�1, �1, �2, �2, �3, �3} = {a1, b1, c1, a2, b2, c2, �} (6)

or
{�1, �1, �2, �2, �3, �3} = {ai, bi, ci, �} where i = 1 or i = 2. (7)

Consider (6), here we only have the case �1 = a1, �1 = b1, �2 = c1, �2 = a2,
�3 = b2 and �3 = c2. It follows that the powers of all symbols of w′ are the same.
But from (5), by continuing the derivation, we get a string which is not in L′:

S ⇒∗ u1x
k1

1 A1y
k1

1 u2x
k2

2 A2y
k2

2 u3x
l
3A3y

l
3u4

⇒∗ u1x
k1

1 w1y
k1

1 u2x
k2

2 w2y
k2

2 u3x
l
3A3y

l
3u4

⇒∗ u1x
k1

1 w1y
k1

1 u2x
k2

2 w2y
k2

2 u3x
2l
3 A3y

2l
3 u4

⇒∗ u1x
k1

1 w1y
k1

1 u2x
2k2

2 w2y
2k2

2 u3x
3l
3 w3y

3l
3 u4 ∕∈ L′

where the powers of four symbols are increased.
Now consider (7). Let i = 1. From Case 2, we can conclude that one of the

following three cases is possible:

(a) {�1, �1} = {a1, b1}, {�2, �2} = {�}, {�3, �3} = {c1, �},
(b) {�1, �1} = {�}, {�2, �2} = {a1, b1}, {�3, �3} = {c1, �},
(c) {�1, �1} = {a1, �}, {�2, �2} = {b1, �}, {�3, �3} = {c1, �}.

Cases (a) and (b) are similar to Case 2. If we choose k1 = 3p2l, k2 = 2p1l
and q = 5p1p2 in case (c), we again get different powers for symbols a1, b1, c1, i.e.,
w′ ∕∈ L′.

Next, we analyze the general case: let the derivation (1) have n ≥ 4 subderiva-

tions of the form Di : Ai → xiAiyi where Ai ∈ V , xi = �li
i and yi = �

l′i
i , �i, �i ∈ Σ,

Petri Net Controlled Grammars 619

li + l′i ≥ 1, 1 ≤ i ≤ n. Without loss of generality we can assume that for some
1 ≤ s ≤ n− 1, the derivations Di, 1 ≤ i ≤ s, produce pi tokens and the derivations
Dj , s+ 1 ≤ j ≤ n, consume qj tokens. If

S ⇒∗ u1A1u2A2u3 ⋅ ⋅ ⋅unAnun+1 ⇒∗ u1w1u2w2u3 ⋅ ⋅ ⋅unwnun+1 = w ∈ L′, (8)

then by assumption,

S ⇒∗ u1A1u2A2u3 ⋅ ⋅ ⋅unAnun+1

⇒∗ u1x1A1y1u2x2A2y2u3 ⋅ ⋅ ⋅unxnAnynun+1

⇒∗ u1x
k1

1 A1y
k1

1 u2x
k2

2 A2y
k2

2 u3 ⋅ ⋅ ⋅unx
kn
n Any

kn
n un+1

⇒∗ u1x
k1

1 w1y
k1

1 u2x
k2

2 w2y
k2

2 u3 ⋅ ⋅ ⋅unx
kn
n wny

kn
n un+1 = w′ ∈ L′. (9)

According to the definition of the final marking, we have

s
∑

i=1

kipi −
n
∑

i=s+1

kiqi = 0.

and
{�1, �1, �2, �2, . . . , �n, �n} = {a1, b1, c1, a2, b2, c2, �}.

If for some 1 ≤ i ≤ n, �i = c1 and �i = a2, then all symbols in w′ have the
same power. Then by continuing two subderivations one of which produces tokens
and the other consumes, one increases the powers of at most four symbols, and get
a string w′′ ∕∈ L′.

Let, for some 2 ≤ i ≤ n− 2,

{�1, �1, �2, �2, . . . , �i, �i} = {a1, b1, c1, �} (10)

and
{�i+1, �i+1, �i+2, �i+2, . . . , �n, �n} = {a2, b2, c2, �}. (11)

It follows that at least one of the subderivations which generate symbols in
(10) (symbols in (11)) produces and another subderivation consumes tokens, since
symbols ai, bi, ci, i = 1, 2, have the same power. Then the tokens produced by a
subderivation Dj , for some 1 ≤ j ≤ i, can be consumed by a subderivation Dk,
for some i+ 1 ≤ k ≤ n as the both group of subderivations use the same counter,
which result that the powers of at most two symbols from a1, b1, c1 and a2, b2, c2
are increased, i.e., a string w′ ∕∈ L′ is generated. In all cases, we get contradiction
to our assumption L′ = L(G).

4 Hierarchy Results

We start with a simple fact.

Lemma 2. CF ⊊ PN1.

620 Jürgen Dassow and Sherzod Turaev

Proof. It is clear that CF ⊆ PN1 if we take T1 = T2 = ∅. From Example 2 it
follows that CF ⊊ PN1.

Now we present some relations to (positive) additive valence languages.

Lemma 3. PN
[�]
1 ⊆ pV[�].

Proof. Let G = (V,Σ, S,R,N1) be a 1-PN controlled grammar (with or without
erasing rules) where N1 = (P∪{q}, T, F∪E,', �, , �0, �) is a corresponding 1-Petri
net with the counter q (with the notions of Definition 2). We define a positive va-
lence grammar G′ = (V,Σ, S,R, v) where V,Σ, S,R are defined as for the grammar
G and for each r ∈ R, the mapping v is defined by

v(r) =

⎧

⎨

⎩

1 if −1(r) ∈ ∙q,

−1 if −1(r) ∈ q∙,

0 otherwise.

Let S
�
=⇒ w,w ∈ Σ∗, � = r1r2 ⋅ ⋅ ⋅ rk, be a derivation in G. Then � = t1t2 ⋅ ⋅ ⋅ tk =

−1(r1r2 ⋅ ⋅ ⋅ rk) is an occurrence sequence of transitions of N1 enabled at the initial
marking �0 and finished at the final marking � , i.e.,

�0
t1−→ �1

t2−→ ⋅ ⋅ ⋅
tk−→ �k = �

By definition, if ∣�∣t > 0 for some t ∈ ∙q then there is a transition t′ ∈ q∙ such that
∣�∣t′ > 0. Let

U1 = {t1,1, t1,2, . . . , t1,k1
} ⊆ ∙q where ∣�∣t1,j > 0, 1 ≤ j ≤ k1

and
U2 = {t2,1, t2,2, . . . , t2,k2

} ⊆ q∙ where ∣�∣t2,j > 0, 1 ≤ j ≤ k2.

Since �i(q) ≥ 0 for each occurrence step 1 ≤ i ≤ k, we have ∣�∣U1
≥ ∣�∣U2

, conse-
quently, v(r1)+v(r2)+ . . .+v(rj) ≥ 0 for any 1 ≤ j < k and from �0(q) = �(q) = 0,
� ∈ M , it follows that

∑

t∈U1

∣�∣t −
∑

t∈U2

∣�∣t
def
=

k
∑

i=1

v(ri) = 0.

Hence, L(G) ⊆ L(G′).

LetD : S
r1r2⋅⋅⋅rk=====⇒ w ∈ Σ∗ be a derivation inG′ where v(r1)+v(r2)+. . .+v(rk) =

0 and v(r1) + v(r2) + . . .+ v(rj) ≥ 0 for any 1 ≤ j < k. By construction of G′, D
is also a derivation in (V,Σ, S,R).

According to the bijection : T → R, there is an occurrence sequence � =

t1t2 ⋅ ⋅ ⋅ tk, �
t1−→ �1

t2−→ ⋅ ⋅ ⋅
tk−→ �k, in N1 such that � = −1(r1r2 ⋅ ⋅ ⋅ rk).

� = �0 since D starts from S, i.e., �0(�
−1(S)) = 1 and �0(�

−1(x)) = 0 for all
x ∈ (V ∪ Σ)− {S} as well as �0(q) = 0.

Petri Net Controlled Grammars 621

Since w ∈ Σ∗, we have �k(�
−1(x)) = 0 for all x ∈ V . From

∑j
i=1 v(ri) ≥ 0, it

follows that �j(q) ≥ 0 for any 1 ≤ j < k.

k
∑

i=1

v(ri)
def
=

∑

−1(r)∈ ∙q

v(r) +
∑

−1(r)∈q∙

v(r) = 0

shows that �k(q) = 0. Therefore �k = � . Consequently, L(G′) ⊆ L(G).

Lemma 4. aV[�] ⊊ PN
[�]
2 .

Proof. Let G = (V,Σ, S,R, v) be an additive valence grammar (with or without
erasing rules). Without loss of generality we can assume that v(r) ∈ {1, 0,−1} for
each r ∈ R (Lemma 2.1.10 in [2]).

For each rule r : A → � ∈ R, v(r) ∕= 0 we add a nonterminal symbol Ar and a
pair of rules r′ : A → Ar, r

′′ : Ar → � and we set

V ′ =V ∪ {Ar ∣ r : A → � ∈ R, v(r) ∕= 0},

R′ =R ∪ {r′ : A → Ar, r
′′ : Ar → � ∣ r : A → � ∈ R, v(r) ∕= 0}.

Let N = (P, T, F, �, �, , �) be a cf Petri net with respect to the context-
free grammar (V ′,Σ, S,R′). We construct a 2-Petri net N2 = (P ∪ Q,T, F ∪
E,', �, , �0, �) where Q = {q, q′} and E = F1 ∪ F2 with

F1 ={(t, q) ∣ t = −1(r), r ∈ R and v(r) = 1}

∪ {(t′, q′) ∣ t′ = −1(r′), r ∈ R and v(r) = −1},

F2 ={(q, t) ∣ t = −1(r), r ∈ R and v(r) = −1}

∪ {(q′, t′) ∣ t′ = −1(r′), r ∈ R and v(r) = 1}.

The rest components of N2 are defined the same as those in the definition.
Consider the 2-PN controlled grammar G′ = (V ′,Σ, S,R′, N2).

Let D : S
�
=⇒ w,w ∈ Σ∗, � = r1r2 ⋅ ⋅ ⋅ rn, be a derivation in G′. Then

� = t1t2 ⋅ ⋅ ⋅ tn = −1(r1r2 ⋅ ⋅ ⋅ rn) is an occurrence sequence enabled at the initial
marking �0 and finished at the final marking � . By construction,

n
∑

i=1

v(ri) =
∑

t∈ ∙q

∣�∣t +
∑

t∈q′∙

∣�∣t −
∑

t∈q∙

∣�∣t −
∑

t∈ ∙q′

∣�∣t = 0

since

∑

t∈ ∙q

∣�∣t =
∑

t∈q∙

∣�∣t =
n
∑

i=1

�i(q) and
∑

t∈ ∙q′

∣�∣t =
∑

t∈q′∙

∣�∣t =
n
∑

i=1

�i(q
′).

It follows that D is also a derivation in G.

Let D′ : S
r1r2⋅⋅⋅rn=====⇒ w,w ∈ Σ∗ be a derivation in G. For each 1 ≤ k ≤ n,

622 Jürgen Dassow and Sherzod Turaev

(1) if
∑k

i=1 v(ri) > 0, then for the rule rk with v(rk) ∈ {1, 0,−1} in G choose the
rule rk in G′;

(2) if
∑k

i=1 v(ri) < 0, then for the rule rk with v(rk) ∕= 0 in G choose the rules
r′k and r′′k in G′; if v(rk) = 0 then choose rk in G′.

(3) if
∑k

i=1 v(ri) = 0, then for the rule rk with v(rk) ∈ {−1, 0} in G choose the
rule rk in G′; if v(rk) = 1, then choose r′k, r

′′
k in G′.

Therefore D′ is also a derivation in G′. The strict inclusion follows from the
fact that

{an1 b
n
1 c

n
1a

m
2 bm2 cm2 ∣ n,m ≥ 1} ∈ PN2

cannot be generated by an additive valence grammar (Example 2.1.7 in [2]).

The following lemma shows that, for any n ≥ 1, an n-PN controlled grammar
generates a vector language.

Lemma 5. For n ≥ 1, PN[�]
n ⊆ V[�].

Proof. Let G = (V,Σ, S,R,Nn) be an n-PN controlled grammar (with or without
erasing rules) with the n-Petri net Nn = (P ∪ Q,T, F ∪ E,', �, , �0, �). Let
Q = {q1, q2, . . . , qn} and

∙qk = {tk,1,1, tk,1,2, . . . , tk,1,s(k)}

where tk,1,i = −1(rk,1,i), rk,1,i : Ak,1,i → wk,1,i, 1 ≤ k ≤ n, 1 ≤ i ≤ s(k), and

q∙k = {tk,2,1, tk,2,2, . . . , tk,2,l(k)}

where tk,2,j = −1(rk,2,j), rk,2,j : Ak,2,j → wk,2,j , 1 ≤ k ≤ n, 1 ≤ j ≤ l(k).
Let

�(pk,1,i) = Ak,1,i, 1 ≤ k ≤ n, 1 ≤ i ≤ s(k)

and
�(pk,2,j) = Ak,2,j , 1 ≤ k ≤ n, 1 ≤ j ≤ l(k).

First, we construct a PN controlled grammar G′ = (V ′,Σ, S,R′, N ′) in such a
way that each counter place of N ′ has a single input transition and a single output
transition, and we show that the grammars G and G′ generate the same language.
We set V ′ = V ∪ {Bk,i,j , Ck,j,i ∣ 1 ≤ k ≤ n, 1 ≤ i ≤ s(k), 1 ≤ j ≤ l(k)} where
Bk,i,j and Ck,j,i, 1 ≤ k ≤ n, 1 ≤ i ≤ s(k), 1 ≤ j ≤ l(k), are new nonterminals. R′

consists of the following rules

R′ = (R− {rk,1,i, rk,2,j ∣ 1 ≤ k ≤ n, 1 ≤ i ≤ s(k), 1 ≤ j ≤ l(k)})

∪ {r′k,1,i,j : Ak,1,i → Bk,i,j ∣ 1 ≤ k ≤ n, 1 ≤ i ≤ s(k), 1 ≤ j ≤ l(k)}

∪ {r′′k,1,i,j : Bk,i,j → wk,1,i ∣ 1 ≤ k ≤ n, 1 ≤ i ≤ s(k), 1 ≤ j ≤ l(k)}

∪ {r′k,2,j,i : Ak,2,j → Ck,j,i ∣ 1 ≤ k ≤ n, 1 ≤ i ≤ s(k), 1 ≤ j ≤ l(k)}

∪ {r′′k,2,j,i : Ck,j,i → wk,2,j ∣ 1 ≤ k ≤ n, 1 ≤ i ≤ s(k), 1 ≤ j ≤ l(k)}

Petri Net Controlled Grammars 623

and N ′ = (P ′ ∪Q′, T ′, F ′, '′, � ′, ′, �′
0, �

′) where the sets of places, transitions and
arcs

P ′ =P ∪ {pk,1,i,j ∣ 1 ≤ k ≤ n, 1 ≤ i ≤ s(k), 1 ≤ j ≤ l(k)}

∪ {pk,2,j,i ∣ 1 ≤ k ≤ n, 1 ≤ i ≤ s(k), 1 ≤ j ≤ l(k)},

Q′ ={qk,i,j ∣ 1 ≤ k ≤ n, 1 ≤ i ≤ s(k), 1 ≤ j ≤ l(k)},

T ′ =(T −
n
∪

k=1

(∙qk ∪ q∙k))

∪ {t′k,1,i,j , t
′′
k,1,i,j ∣ 1 ≤ k ≤ n, 1 ≤ i ≤ s(k), 1 ≤ j ≤ l(k)}

∪ {t′k,2,j,i, t
′′
k,2,j,i ∣ 1 ≤ k ≤ n, 1 ≤ i ≤ s(k), 1 ≤ j ≤ l(k)},

F ′ = (F ∪ E −
n
∪

k=1

({(pk,1,i, tk,1,i), (tk,1,i, qk) ∣ 1 ≤ i ≤ s(k)}

∪ {(tk,1,i, p) ∣ p = �−1(x), ∣wk,1,i∣x > 0, 1 ≤ i ≤ s(k)}

∪ {(qk, tk,2,j), (pk,2,j , tk,2,j) ∣ 1 ≤ j ≤ l(k)}

∪ {(tk,2,j , p) ∣ p = �−1(x), ∣wk,2,j ∣x > 0, 1 ≤ j ≤ l(k)}))

∪
n
∪

k=1

s(k)
∪

i=1

l(k)
∪

j=1

({(pk,1,i, t
′
k,1,i,j), (t

′
k,1,i,j , pk,1,i,j), (pk,1,i,j , t

′′
k,1,i,j),

(t′′k,1,i,j , qk,i,j)} ∪ {(t′′k,1,i,j , p) ∣ p = �−1(x), ∣wk,1,i∣x > 0})

∪
n
∪

k=1

l(k)
∪

j=1

s(k)
∪

i=1

({(pk,2,j , t
′
k,2,j,i), (t

′
k,1,j,i, pk,2,j,i), (pk,2,j,i, t

′′
k,2,j,i),

(t′′k,2,j,i, qk,i,j)} ∪ {(t′′k,2,j,i, p) ∣ p = �−1(x), ∣wk,2,j ∣x > 0}).

∙ The weight function is defined by

'′(x, y) =

⎧

⎨

⎩

'(x, y) if (x, y) ∈ F,

'(tk,1,i, p) if x = tk,1,i,j , y = p = �−1(x), ∣wk,1,i∣x > 0,

1 ≤ k ≤ n, 1 ≤ i ≤ s(k), 1 ≤ j ≤ l(k),

'(tk,2,j , p) if x = tk,2,j,i, y = p = �−1(x), ∣wk,2,j ∣x > 0,

1 ≤ k ≤ n, 1 ≤ i ≤ s(k), 1 ≤ j ≤ l(k),

1 otherwise.

∙ The labeling functions are defined by

� ′(p) =

⎧

⎨

⎩

�(p) if p ∈ P,

Bk,i,j if p = pk,1,i,j , 1 ≤ k ≤ n, 1 ≤ i ≤ s(k), 1 ≤ j ≤ l(k),

Ck,j,i if p = pk,2,j,i, 1 ≤ k ≤ n, 1 ≤ i ≤ s(k), 1 ≤ j ≤ l(k),

�, if p = qk,i,j , 1 ≤ k ≤ n, 1 ≤ i ≤ s(k), 1 ≤ j ≤ l(k)

624 Jürgen Dassow and Sherzod Turaev

and

′(t) =

⎧

⎨

⎩

(t) if t ∈ T,

r′k,1,i,j if t = t′k,1,i,j , 1 ≤ k ≤ n, 1 ≤ i ≤ s(k), 1 ≤ j ≤ l(k),

r′′k,1,i,j if t = t′′k,1,i,j , 1 ≤ k ≤ n, 1 ≤ i ≤ s(k), 1 ≤ j ≤ l(k),

r′k,2,j,i if t = t′k,2,j,i, 1 ≤ k ≤ n, 1 ≤ j ≤ l(k), 1 ≤ i ≤ s(k),

r′′k,2,j,i if t = t′′k,2,j,i, 1 ≤ k ≤ n, 1 ≤ j ≤ l(k), 1 ≤ i ≤ s(k).

∙ The initial marking is defined by �′
0(�

−1(S)) = 1 and �′
0(p) = 0 for all

p ∈ P ′ ∪Q′ − {�−1(S)}.

∙ The final marking is defined by � ′(p) = 0 for all p ∈ P ′ ∪Q′.

By the construction of N ′, an occurrence sequence of the form

�1

t′k,1,i,j

−−−−→ �2
�′

−→ �3

t′′k,1,i,j

−−−−→ �4
�′′

−−→ �5

t′′k,2,j,i

−−−−→ �6
�′′′

−−→ �7

t′k,2,j,i

−−−−→ �8 (12)

where �′, �′′, �′′′ ∈ T ′∗ can be replaced by

�1

t′k,1,i,j

−−−−→ �2

t′′k,1,i,j ⋅�
′

−−−−−−→ �4
�′′

−−→ �5

�′′′⋅t′′k,2,j,i

−−−−−−−→ �7

t′k,2,j,i

−−−−→ �8. (13)

Then, it is clear that (13) can be replaced in Nn by

�1
tk,1,i

−−−→ �′ �′⋅�′′⋅�′′′

−−−−−−→ �′′ tk,2,j

−−−→ �8.

Conversely, an occurrence sequence of the form

�1
tk,1,i

−−−→ �2
�
−→ �3

tk,2,j

−−−→ �4

in Nn can be replaced in N ′ by

�1

t′k,1,i,j

−−−−→ �′
t′′k,1,i,j

−−−−→ �2
�
−→ �3

t′k,2,j,i

−−−−→ �′′
t′′k,2,j,i

−−−−→ �4.

Correspondingly, without loss of generality we can change the order of the applica-
tion of rules of derivations in the grammars G and G′. Therefore, L(G) = L(G′).

Now we show that the grammar G′ generates a vector language. By the con-
struction of N ′, ∣∙q∣ = ∣q∙∣ = 1 for all q ∈ Q′.

We associate with each pair of rules r1, r2 ∈ R′ where r1 = ′(t1), t1 ∈ ∙q
and r2 = ′(t2), t2 ∈ q∙, q ∈ Q′, the matrix m = (r1, r2) and with each rule
r ∈ R′ − {r′ = ′(t′) ∣ t′ ∈ ∙Q′ ∪ Q′∙}, the matrix m = (r). We consider a vector
grammar G′′ = (V ′,Σ, S,M) where M is the set of all matrices constructed above.

Let S
�
=⇒ w,w ∈ Σ∗, � = r1r2 ⋅ ⋅ ⋅ rn, is a derivation in G′ where �

�
−→ � with

� = t1t2 ⋅ ⋅ ⋅ tn = ′−1(�).
Let ∙q = {t} and q∙ = {t′} for some q ∈ Q′. If t in �, i.e., ∣�∣t > 0 then

t′ is also in � and ∣t1t2 ⋅ ⋅ ⋅ tk∣t ≥ ∣t1t2 ⋅ ⋅ ⋅ tk∣t′ for each 1 ≤ k ≤ n, moreover, by

Petri Net Controlled Grammars 625

the definition of the final marking, ∣�∣t = ∣�∣t′ . By the bijection ′, m = (r, r′),
r = ′(t), r′ = ′(t′) is in � and ∣r1r2 ⋅ ⋅ ⋅ rk∣r ≥ ∣r1r2 ⋅ ⋅ ⋅ rk∣r′ for each 1 ≤ k ≤ n as
well as ∣�∣r = ∣�∣r′ . Hence, � ∈ Shuf∗(M).

Let S
�
=⇒ w,w ∈ Σ∗, � = r1r2 ⋅ ⋅ ⋅ rn ∈ Shuf∗(M), be a derivation in G′′ then

again by the bijection ′, � = t1t2 ⋅ ⋅ ⋅ tn = −1(r1r2 ⋅ ⋅ ⋅ rn) is an occurrence sequence

of transitions of N ′: �0
�
−→ �n. Since the derivation � starts from S (i.e., S is the

only symbol at the starting sentential form), �0(�
−1(S)) = 1 and �0(p) = 0 for all

p ∈ P − {�−1(S)}. It follows that �0 = �′
0. On the other hand, from w ∈ Σ∗, it

follows that �n(�
−1(x)) = 0 for all x ∈ V . From � ∈ Shuf∗(M), if the rules r, r′

of a matrix m = (r, r′) in � then ∣r1r2 ⋅ ⋅ ⋅ rk∣r ≥ ∣r1r2 ⋅ ⋅ ⋅ rk∣r′ for each 1 ≤ k ≤ n
and ∣�∣r = ∣�∣r′ . By the bijection , ∣t1t2 ⋅ ⋅ ⋅ tk∣t ≥ ∣t1t2 ⋅ ⋅ ⋅ tk∣t′ for each 1 ≤ k ≤ n
where t = −1(r), −1(r′) and ∣�∣t = ∣�∣t′ . It follows that �n(q) = 0 for all q ∈ Q′.
Hence, �n = � ′.

Theorem 1. For k ≥ 1, PN
[�]
k ⊊ PN

[�]
k+1.

Proof. We first prove that PN
[�]
1 ⊆ PN

[�]
2 .

Let G = (V,Σ, S,R,N1) be a 1-PN controlled grammar (with or without erasing
rules) where N1 = (P ∪ {q}, T, F ∪E,', �, , �0, �) 1-PN with the counter place q.
Let

∙q = {t1,1, t1,2, . . . , t1,k1
}, k1 ≥ 1 and q∙ = {t2,1, t2,2, . . . , t2,k2

}, k2 ≥ 1

where ti,j = −1(ri,j), ri,j : Ai,j → wi,j , 1 ≤ i ≤ 2, 1 ≤ j ≤ ki and by definition
∙q ∩ q∙ = ∅. Let pi,j = �−1(Ai,j), 1 ≤ i ≤ 2, 1 ≤ j ≤ ki.

We set

V ′ = V ∪ {Bi,j ∣ 1 ≤ i ≤ 2, 1 ≤ j ≤ ki}

where Bi,j , 1 ≤ i ≤ 2, 1 ≤ j ≤ ki, are new nonterminal symbols, introduced for
each transition ti,j .

For each rule ri,j : Ai,j → wi,j , 1 ≤ i ≤ 2, 1 ≤ j ≤ ki, we add the new rules
r′i,j : Ai,j → Bi,j , r

′′
i,j : Bi,j → wi,j . Let R

′ be the set of all rules of R and all rules
constructed above, i.e.,

R′ = R∪{r′1,j : A1,j → B1,j ∣
−1(A1,j → w1,j) ∈

∙q, 1 ≤ j ≤ k1}

∪{r′′1,j : B1,j → w1,j ∣
−1(A1,j → w1,j) ∈

∙q, 1 ≤ j ≤ k1}

∪{r′2,j : A2,j → B2,j ∣
−1(A2,j → w2,j) ∈ q∙, 1 ≤ j ≤ k2}

∪{r′′2,j : B2,j → w2,j ∣
−1(A2,j → w2,j) ∈ q∙, 1 ≤ j ≤ k2}.

We construct a 2-PN controlled grammar G′ = (V ′,Σ, S,R′, N2) where V ′ and
R′ are defined above and N2 = (P ′, T ′, F ′, '′, � ′, ′, �′

0, �
′) is constructed as follows:

626 Jürgen Dassow and Sherzod Turaev

P ′ = P∪{p′i,j ∣ 1 ≤ i ≤ 2, 1 ≤ j ≤ ki} ∪ {q, q′},

T ′ = T∪{t′i,j , t
′′
i,j ∣ 1 ≤ i ≤ 2, 1 ≤ j ≤ ki},

F ′ = F∪
2
∪

i=1

ki
∪

j=1

({(pi,j , t
′
i,j), (t

′
i,j , p

′
i,j), (p

′
i,j , t

′′
i,j)}

∪ {(t′′i,j , p) ∣ p = �−1(x), ∣wi,j ∣x > 0})

∪ {(t′′1,j , q
′) ∣ 1 ≤ j ≤ k1}

∪ {(q′, t′′2,j) ∣ 1 ≤ j ≤ k2}.

For the weight function we set

'′(x, y) =

⎧

⎨

⎩

'(x, y) if (x, y) ∈ F,

'(ti,j , p) if x = t′′i,j , y = p = �−1(x), ∣wi,j ∣x > 0,

1 ≤ i ≤ 2, 1 ≤ j ≤ ki,

1 otherwise.

The initial and final markings are defined by �′
0(�

′−1(S)) = 1, �′
0(p) = 0 for all

p ∈ P ′ − {� ′−1(S)} and � ′(p) = 0 for all p ∈ P ′.
The inclusion L(G) ⊆ L(G′) is obvious, which directly follows from the con-

struction of G′.

Let S
�
=⇒ w,w ∈ Σ∗, � = r1r2 ⋅ ⋅ ⋅ rn, be a derivation in G′ with the occurrence

sequence � = t1t2 ⋅ ⋅ ⋅ tn = � ′−1(�) of transitions of N2 enabled at the initial marking
�′
0 and finished at the final marking � ′. It is clear that for some 1 ≤ i ≤ 2,

1 ≤ j ≤ ki, if a rule r′i,j : Ai,j → Bi,j in �, i.e., ∣�∣r′
i,j

> 0, then the rule

r′′i,j : Bi,j → wi,j is also in �, i.e., ∣�∣r′′
i,j

> 0, moreover, ∣�∣r′
i,j

= ∣�∣r′′
i,j
. Without

loss of generality we can assume that a rule r′′i,j is the next to a rule r′i,j in � (as to
the nonterminal Bi,j only the rule r′′i,j is applicable and we can change the order
in which the derivation � is used). Then we can replace any derivation steps of the
form x1Ai,jx2 ⇒r′

i,j
x1Bi,jx2 ⇒r′′

i,j
x1wi,jx2 by x1Ai,jx2 ⇒ri,j x1wi,jx2.

Accordingly, the occurrence sequence t′i,jt
′′
i,j , �

t′i,j
−−→ �′

t′′i,j
−−→ �′′, is replaced

by ti,j , �
ti,j
−−→ �′′, where ti,j = ′−1(ri,j), t

′
i,j = ′−1(r′i,j) and t′′i,j = ′−1(r′′i,j),

1 ≤ i ≤ 2, 1 ≤ j ≤ ki. Clearly, L(G
′) ⊆ L(G).

Let us consider the general case k ≥ 1. Let G = (V,Σ, S,R,Nk) be a k-Petri
net controlled grammar where Nk = (P ∪Q,T, F ∪E,', �, , �0, �) is a k-Petri net
with Q = {q1, q2, . . . , qk}. We can repeat the arguments of the proof for k = 1
considering qk instead of q and adding the new counter place qk+1.

For k ≥ 1, let the language Lk be defined by

Lk = {
k
∏

i=1

ani

i bni

i cni

i ∣ ni ≥ 1, 1 ≤ i ≤ k}.

Petri Net Controlled Grammars 627

Then we can show analogously to Example 3 and Lemma 1 that, for k ≥ 1,

Lk+1 ∈ PNk+1 and Lk+1 ∕∈ PNk.

Thus the inclusions are strict.

5 Closure Properties

We define the following binary form for k-PN controlled grammars, which will be
used in some of the next proofs.

Definition 5. A k-Petri net controlled grammar G = (V,Σ, S,R,Nk) is said to be
in a binary form if for each rule A → � ∈ R, the length of � is not greater than 2,
i.e., ∣�∣ ≤ 2.

Lemma 6 (Binary Form). For each k-Petri net controlled grammar there exists
an equivalent k-Petri net controlled grammar in the binary form.

Proof. Let G = (V,Σ, S,R,Nk) be a k-Petri net controlled grammar with Nk =
(P ∪Q,T, F ∪ E,', �, , �0, �).

We denote by R>2 the set of all rules of the form A → � ∈ R where ∣�∣ > 2.
For each rule r = A → x1x2 ⋅ ⋅ ⋅xn ∈ R>2, x1, x2, . . . , xn ∈ V ∪ Σ we set

Vr = {B1, B2, . . . , Bn−2}

and
Rr = {A → x1B1, B1 → x2B2, . . . , Bn−2 → xn−1xn}

where Bi, 1 ≤ i ≤ n−2, are new nonterminal symbols, Vr∩Vr′ = ∅ for all r, r′ ∈ R,
r ∕= r′, and Vr ∩ V = ∅ for all r ∈ R. Let

V ′ = V ∪
∪

r∈R>2

Vr and R′ = (R ∪
∪

r∈R>2

Rr)−R>2.

We define the context-free grammar G′ = (V ′,Σ, S,R′) and construct a k-Petri
net N ′

k = (P ′, T ′, F ′, '′, � ′, ′, �′
0, �

′) with respect to G′ such that

(1) for A → � ∈ R, ∣�∣ ≤ 2,

−1(A → �) ∈ ∙q ∪ q∙ iff ′−1(A → �) ∈ ∙q′ ∪ q′∙,

(2) for A → � ∈ R, ∣�∣ > 2,

−1(A → �) ∈ ∙q iff ′−1(Bn−2 → xn−1xn) ∈
∙q′, (14)

−1(A → �) ∈ q∙ iff ′−1(A → x1B1) ∈ q′∙ (15)

where � = x1x2 ⋅ ⋅ ⋅xn, xi ∈ V ∪ Σ, 1 ≤ i ≤ n.

628 Jürgen Dassow and Sherzod Turaev

Let D : S
r1r2⋅⋅⋅rk=====⇒ w,w ∈ Σ∗ be a derivation in the grammar G. Then

t1t2 ⋅ ⋅ ⋅ tk = −1(r1r2 ⋅ ⋅ ⋅ rk) is a successful occurrence sequence of transitions in
Nk. We construct a derivation D′ in the grammar G′ from D as follows.

If for some 1 ≤ m ≤ k, rm : A → x1x2 ⋅ ⋅ ⋅xn ∈ R>2 then we replace the
derivation step

y1Ay2 ==⇒
rm

y1x1x2 ⋅ ⋅ ⋅xny2

by the derivation steps

y1Ay2 =⇒
r′
1

y1x1B1y2 =⇒
r′
2

y1x1x2B2y2 =⇒
r′
3

⋅ ⋅ ⋅ ===⇒
r′
n−2

y1x1x2 ⋅ ⋅ ⋅xny2

where r′i ∈ Rrm , 1 ≤ i ≤ n− 2. Correspondingly, �m
tm−−→ �m+1 is replaced by

�m

t′
1
t′
2
⋅⋅⋅t′n−2

−−−−−−−→ �m+1

where t′i = ′−1(r′i), 1 ≤ i ≤ n − 2. By (14)–(15), the number of tokens produced
and consumed by the transitions t′1, t

′
2, . . . , t

′
n−2 and the transition tm are the same.

Then D′ is a derivation in G′, which generates the same word as D does, i.e.,
L(G) ⊆ L(G′).

Inverse inclusion can also be shown using the similar arguments.

Lemma 7 (Union). The family of languages PN
[�]
k , k ≥ 1 is closed under union.

Proof. Let G1 = (V1,Σ1, S1, R1, Nk,1) and G2 = (V2,Σ2, S2, R2, Nk,2) be two k-PN
controlled grammars where Nk,i = (Pi ∪ Qi, Ti, Fi ∪ Ei, 'i, �i, i, �i, �i), i = 1, 2
(with the notions of Definition 2). We assume (without loss of generality) that
V1 ∩ V2 = ∅. We construct the k-PN controlled grammar

G = (V1 ∪ V2 ∪ {S},Σ1 ∪ Σ2, S,R1 ∪R2 ∪ {S → S1, S → S2}, Nk)

where Nk = (P, T, F, ', �, , �0, �) is defined by

∙ the set of places: P = P1 ∪ P2 ∪Q1 ∪ {q} where q is a new place;

∙ the set of transitions: T = T1 ∪ T2 ∪ {t01, t02} where t01 and t02 are new
transitions;

∙ the set of arcs:

F = F1 ∪ F2 ∪ E1 ∪ {(q, t0i), (t0i, p0i) ∣ i = 1, 2}

∪ {(t, q1i) ∣ (t, q2i) ∈ E2, 1 ≤ i ≤ k}

∪ {(q1i, t) ∣ (q2i, t) ∈ E2, 1 ≤ i ≤ k}

where p0i are the places labeled by Si, i.e., �i(p0i) = Si, i = 1, 2;

Petri Net Controlled Grammars 629

∙ the weight function:

'(x, y) =

{

'i(x, y) if (x, y) ∈ Fi, i = 1, 2,

1 otherwise;

∙ the labeling function � is defined by

�(p) =

⎧

⎨

⎩

�1(p) if p ∈ P1 ∪Q1,

�2(p) if p ∈ P2

S if p = q;

∙ the labeling function is defined by

(t) =

{

i(t) if t ∈ Ti, i = 1, 2,

S → Si if t = t0i, i = 1, 2;

∙ the initial marking:

�0(p) =

{

1 if p = q,

0 otherwise;

∙ the final marking: �(p) = 0 for all p ∈ P .

By the construction of Nk any occurrence of its transitions can start by firing
of t01 or t02 then transitions of T1 or transitions of T2 can occur, correspondingly
we start a derivation with the rule S → S1 or S → S2 then we can use rules of R1

or R2.
A string w is in L(G) if and only if there is a derivation S ⇒ Si ⇒

∗ w ∈ L(Gi),
i = 1, 2. On the other hand, we can initialize any derivation Si ⇒

∗ w ∈ L(Gi) with
the rule S → Si, i = 1, 2, i.e., w ∈ L(G).

Lemma 8 (Concatenation). The family of languages PNk, k ≥ 1 is not closed
under concatenation.

Proof. Let Lk and L′
k be two languages, with the same structure but disjoint al-

phabets, given at the end of the proof of Theorem 1. Then Lk, L
′
k ∈ PNk and

Lk ⋅ L′
k /∈ PNk.

The next lemma shows that the concatenation of two languages generated by
k- and m-PN controlled grammars, k,m ≥ 1, can be generated by a (k + m)-PN
controlled grammar.

Lemma 9. For L1 ∈ PN
[�]
k , k ≥ 1 and L2 ∈ PN[�]

m , m ≥ 1,

L1 ⋅ L2 ∈ PN
[�]
k+m.

630 Jürgen Dassow and Sherzod Turaev

Proof. Let G1 = (V1,Σ, S1, R1, Nk) where Nk = (P1, T1, F1, '1, �1, 1, �1, �1) and
G2 = (V2,Σ, S2, R2, Nm) where Nm = (P2, T2, F2, '2, �2, 2, �2, �2) be, respec-
tively, k-Petri net and m-Petri net controlled grammars such that L(G1) = L1

and L(G2) = L2. Without loss of generality we assume that V1 ∩ V2 = ∅. We set
V = V1 ∪ V2 ∪ {S} where S is a new nonterminal and

R = R1 ∪R2 ∪ {S → S1S2}.

We define a (k + m)-PN controlled grammar G = (V,Σ, S,R,Nk+m) with
Nk+m = (P, T, F, ', �, , �0, �) where

∙ P = P1 ∪ P2 ∪ {p0} where p0 is a new place;

∙ T = T1 ∪ T2 ∪ {t0} where t0 is a new transition;

∙ F = F1 ∪ F2 ∪ {(p0, t0), (t0, p1), (t0, p2)} where �i(pi) = Si, i = 1, 2;

∙ the weight function ' is defined by

'(x, y) =

{

'i(x, y) if (x, y) ∈ Fi, i = 1, 2,

1 otherwise;

∙ the labeling function � is defined by

�(p) =

{

�i(p) if p ∈ Pi, i = 1, 2,

S if p = p0;

∙ the labeling function is defined by

(t) =

{

i(t) if t ∈ Ti, i = 1, 2,

S → S1S2 if t = t0;

∙ the initial marking:

�0(p) =

{

1 if p = p0,

0 otherwise;

∙ the final marking: �(p) = 0 for all p ∈ P .

It is not difficult to see that L(G) = L(G1)L(G2).

Lemma 10 (Substitution). The family of languages PNk, k ≥ 1 is closed under
substitution by context-free languages.

Petri Net Controlled Grammars 631

Proof. Let G = (V,Σ, S,R,Nk) be a k-PN controlled grammar with k-Petri net
Nk = (P ∪Q,T, F ∪E,', �, , �0, �). We consider a substitution s : Σ∗ → 2Δ

∗

with
s(a) ∈ CF for each a ∈ Σ. Let Ga = (Va,Σa, Sa, Ra) be a context-free grammar
for s(a), a ∈ Σ. We can assume that V ∩ Va = ∅ for any a ∈ Σ and Va ∩ Vb = ∅ for
any a, b ∈ Σ, a ∕= b.

LetNa = (Pa, Ta, Fa, �a, �a, a, �a) be a cf Petri net with respect to the grammar
Ga, a ∈ Σ. We define the k-PN controlled grammar

G′ = (V ∪ Σ ∪
∪

a∈Σ

Va,Δ, S,R′ ∪
∪

a∈Σ

Ra, N
′
k)

where R′ is the set of rules obtained by replacing each occurrence of a ∈ Σ by Sa

in R and N ′
k is defined by

N ′
k = (P ∪Q ∪ PΣ ∪

∪

a∈Σ

Pa, T ∪
∪

a∈Σ

Ta, F ∪ FΣ ∪
∪

a∈Σ

Fa, '
′, � ′, ′, �′

0, �
′)

where

∙ PΣ = {pa ∣ a ∈ Σ} is the set of new places;

∙ FΣ = {(t, pa) ∣ (t) = A → �, ∣�∣a > 0, a ∈ Σ} is the set of new arcs;

∙ the weight function '′ is defined by

'′(x, y) =

⎧

⎨

⎩

'(x, y) if (x, y) ∈ F,

�a(x, y) if (x, y) ∈ Fa, a ∈ Σ,

∣�∣a, if x = t, y = pa, (t, pa) ∈ FΣ, a ∈ Σ;

∙ the labeling function � ′ is defined by

� ′(p) =

⎧

⎨

⎩

�(p) if p ∈ (P ∪Q),

�a(p) if p ∈ Pa, a ∈ Σ,

Sa if p = pa ∈ PΣ, a ∈ Σ;

∙ the labeling function ′ is defined by

′(t) =

{

(t) if t ∈ T,

a(t) if t ∈ Ta, a ∈ Σ;

∙ the initial marking:

�′
0(p) =

{

1 if p = � ′−1(S),

0 otherwise;

∙ the final marking: � ′(p) = 0 for all p ∈ P ′;

632 Jürgen Dassow and Sherzod Turaev

Obviously, L(G′) ∈ PNk.

Lemma 11 (Mirror Image). The family of languages PNk, k ≥ 1 is closed under
mirror image.

Proof. Let G = (V,Σ, S,R,Nk) be a k-PN controlled grammar. Let

R− = {A → xn ⋅ ⋅ ⋅x2x1 ∣ A → x1x2 ⋅ ⋅ ⋅xn ∈ R}.

The context-free grammar (V,Σ, S,R) and its reversal (V,Σ, S,R−) have the same
corresponding cf Petri net N = (P, T, F, �, �, , �) as N does not preserve the order
of the positions of the output places for each transition. Thus we can also use the
k-Petri net Nk as a control mechanism for the grammar (V,Σ, S,R−), i.e. we define
G− = (V,Σ, S,R−, Nk). Clearly, L(G

−) ∈ PNk.

Lemma 12 (Intersection with Regular Languages). The family of languages PNk,
k ≥ 1 is closed under intersection with regular languages.

Proof. We use the arguments and notions of the proof of Lemma 1.3.5 in [2]. Let
G = (V,Σ, S,R,Nk) be a k-Petri net controlled grammar with a k-Petri net Nk =
(P ∪ Q,T, F ∪ E,', �, , �0, �) (with the notions of Definition 2). Without loss of
generality we can assume that G is in a binary form.

Let A = (K,Σ, s0, �,H) be a deterministic finite automaton. We set

V ′ = {[s, x, s′] ∣ s, s′ ∈ K, x ∈ V ∪ Σ}.

For each rule r ∈ R we construct the set R(r) in the following way

1. If r = A → x1x2, x1, x2 ∈ V ∪ Σ then

R(r) = {[s,A, s′] → [s, x1, s
′][s′, x2, s

′′] ∣ s, s′, s′′ ∈ K}.

2. If r = A → x, x ∈ V ∪ Σ then

R(r) = {[s,A, s′] → [s, x, s′] ∣ s, s′ ∈ K}.

Further we define the set of rules

RΣ = {[s, a, s′] → a ∣ s′ = �(s, a), s, s′ ∈ K, a ∈ Σ}.

Let
R′ =

∪

r∈R

R(r) ∪RΣ.

We define the context-free grammar Gs = (V ′,Σ, [s0, S, s], R
′) for each s ∈ H. Let

Ns = (Ps, Ts, Fs, �s, �s, s, �s) be a cf Petri net with respect to the grammar Gs

where

Ps = {[s, p, s′] ∣ s, s′ ∈ K, p ∈ P},

Ts = {[s, t, s′] ∣ s, s′ ∈ K, p ∈ P},

Fs = {([s1, x, s2], [s
′
1, y, s

′
2]) ∣ s1, s2, s

′
1, s

′
2 ∈ K, (x, y) ∈ F}.

Petri Net Controlled Grammars 633

The weight function �s is defined by �([s1, x, s2], [s
′
1, y, s

′
2]) = �(x, y) where

s1, s2, s
′
1, s

′
2 ∈ K, (x, y) ∈ F .

The functions �s : Ps → V ′ and s : Ts → R′ are bijections, and

�s(�
−1
s ([s0, S, s])) = 1 and �s(p) = 0 for all Ps − {�−1

s ([s0, S, s])}.

We set
F−
Q = {((s, t, s′), q) ∣ s, s′ ∈ K, q ∈ Q ∧ t ∈ ∙q}

and
F+
Q = {(q, (s, t, s′)) ∣ s, s′ ∈ K, q ∈ Q ∧ t ∈ q∙}.

We construct the k-Petri net

Nk,s = (Ps ∪Q,Ts, Fs ∪ F−
Q ∪ F+

Q , 's, �s, s, �s, �s)

from Ns where

∙ the weight function 's is defined by

's([s1, x, s2], [s
′
1, y, s

′
2]) = '(x, y), s1, s

′
1, s2, s

′
2 ∈ K and (x, y) ∈ F ∪ E,

∙ the labeling function �s is defined by

�s([s1, p, s2]) =

{

�s([s1, p, s2]) if [s1, p, s2] ∈ Ps,

� if [s1, p, s2] ∈ Q,

∙ the initial marking �s is defined by �s(�
−1
s ([s0, S, s])) = 1 and �s(p) = 0 for

all (Ps ∪Q)− {�−1
s ([s0, S, s])},

∙ the final marking �s is defined by �s(p) = 0 for all p ∈ Ps ∪Q,

and define the k-PN controlled grammar G′
s = (V ′,Σ, (s0, S, s), R

′, Nk,s). Then
one can see that L(G) ∩ L(A) =

∪

s∈H L(G′
s).

The results of the previous lemmas are summarized in the following theorem:

Theorem 2. The family of languages PNk, k ≥ 1, is closed under union, substi-
tution, mirror image, intersection with regular languages and it is not closed under
concatenation.

References

[1] Crespi-Reghizzi, S. and Mandrioli, D. Petri nets and commutative grammars.
Internal Report 74-5, Laboraterio di Calcolatori, Instituto di Elettrotecnica ed
Elettromca del Politecnico di Milano, Italy, 1974.

[2] Dassow, J. and Pǎun, Gh. Regulated rewriting in formal language theory.
Springer-Verlag, Berlin, 1989.

634 Jürgen Dassow and Sherzod Turaev

[3] Dassow, J. and Turaev, S. k -Petri net controlled grammars. In Mart́ın-Vide,
C., Otto, F., and Fernau, H., editors, Language and Automata Theory and
Applications. Second International Conference, LATA 2008. Revised Papers,
volume 5196 of LNCS, pages 209–220. Springer, 2008.

[4] Esparza, J. Petri nets, commutative context-free grammars, and basic parallel
processes. Fundam. Inf., 31(1):13–25, 1997.

[5] Hack, M. Decidablity questions for Petri nets. PhD thesis, Dept. of Electrical
Engineering, MIT, 1975.

[6] Hopcroft, J.E. and Ullman, J.D. Introduction to automata theory, languages,
and computation. Addison-Wesley Longman Publishing Co., Inc., 1990.

[7] Marek, V. and Češka, M. Petri nets and random-context grammars. In Proc.
of the 35th Spring Conference: Modelling and Simulation of Systems, pages
145–152, MARQ Ostrava, Hardec nad Moravićı, 2001.

[8] Mart́ın-Vide, C., Mitrana, V., and Pǎun, Gh., editors. Formal languages and
applications. Springer-Verlag, Berlin, 2004.

[9] Murata, T. Petri nets: Properties, analysis and applications. Proceedings of
the IEEE, 77(4):541–580, 1989.

[10] Petri, C.A. Kommunication mit Automaten. PhD thesis, University of Bonn,
1962.

[11] Reisig, W. and Rozenberg, G., editors. Lectures on Petri Nets I: Basic Models,
volume 1491 of LNCS, Berlin, 1998. Springer.

[12] Starke, P.H. Petri-Netze. Deutscher Verlag der Wissenschaften, 1980.

[13] Turaev, S. Petri net controlled grammars. In Third Doctoral Workshop on
Mathematical and Engineering Methods in Computer Science, MEMICS 2007,
pages 233–240, Znojmo, Czechia, 2007.

Received 26th January 2009

