
Acta Cybernetica 19 (2010) 661–672.

An Algorithmic Comparison of Three

Scientific Impact Indices∗

Gerhard J. Woeginger†

Abstract

We use tools from Theoretical Computer Science to analyze the compu-

tational complexity of determining the ℎ-index, the g-index, and the w-index

in various models of computation. Our results confirm the natural intuition

that the ℎ-index is an easier concept than the g-index, which in turn is an

easier concept than the w-index.

Keywords: scientific impact measure, efficient algorithm, computational

complexity

1 Introduction

Citation analysis as a method for ranking scientific journals, publications, and
researchers is an old idea that goes at least back to Gross and Gross ([7]). A
simple and natural approach for quantifying the scientific productivity and scientific
impact of a researcher with n ≥ 0 publications is based on the so-called citation
sequence ⟨x1, . . . , xn⟩ of the researcher; here the kth element xk states the total
number of citations to the kth publication. A scientific impact index assigns to
every such citation sequence a corresponding non-negative integer that concisely
expresses the productivity, quality, and visibility of this researcher.

In recent years, the ℎ-index of Jorge Hirsch ([8]) and the g-index of Leo Egghe
([5], [6]) have become particulary popular impact indices in this area. Woeginger
([11],[12]) performed an axiomatic analysis of the ℎ-index and the g-index, and as
a by-product these axiomatic investigations lead to the definition of the so-called
w-index.

The h-index: A scientist has index ℎ, if ℎ is the largest integer such that at least
ℎ of his articles have received at least ℎ citations each.

∗This work has been supported by the Netherlands Organisation for Scientific Research (NWO),
grant 639.033.403, and by BSIK grant 03018 (BRICKS: Basic Research in Informatics for Creating
the Knowledge Society)

†Department of Mathematics and Computer Science, TU Eindhoven, P.O. Box 513, 5600 MB
Eindhoven, The Netherlands., E-mail: gwoegi@win.tue.nl



662 Gerhard J. Woeginger

The g-index: A scientist has index g, if g is the largest integer such that his top
g articles have received together at least g2 citations.

The w-index: A scientist has index w, if w is the largest integer such that w of
his articles have received at least 1, 2, 3, 4, . . . , w citations, respectively.

In this paper, we will discuss the algorithmic complexity of computing the ℎ-
index, the g-index, and the w-index of a researcher, and we will thereby compare
the relative effort needed for determining these three indices. Let us start with an
example, and let us consider a researcher X whose 19 publications have attracted
the following numbers of citations:

10, 20, 20, 12, 55, 2, 2, 4, 0, 14, 15, 14, 0, 0, 9, 10, 2, 1, 3.

It is not difficult to see that the ℎ-index of Mr. X is 9 (hint: search for 9 citation
numbers that are all at least 9). The task becomes much easier for the human eye,
if one first brings the numbers into non-increasing order as follows:

55, 20, 20, 15, 14, 14, 12, 10, 10, 9, 4, 3, 2, 2, 2, 1, 0, 0, 0.

What about the g-index of Mr. X? Since the sum of the 13 highest numbers in this
sequence is 188 ≥ 132, and since the sum of the 14 highest numbers is 190 < 142,
we see that his g-index is 13. Finally the w-index of this researcher is 14, since the
top publication has 55 ≥ 14 citations, since the second-strongest publication has
20 ≥ 13 citations, the third-strongest 20 ≥ 12, the fourth-strongest 15 ≥ 11, and
so on down to the publication at rank 14 with 2 ≥ 1 citations.

After building up some more experience and after determining these three im-
pact indices for several dozens of researchers, one inevitably comes to the following
conclusion: The ℎ-index is the most primitive index among the three, and usu-
ally can be found quickly and easily. The g-index takes somewhat more effort to
compute, and in particular involves the summing of a lot of numbers. Finally the
w-index seems to be a pain in the neck, and one really has to compare a whole lot
of numbers one by one for finding the w-index.

Contributions of this paper. The goal of this paper is to confirm the fuzzy
observations that were claimed in the preceding paragraph without much justifica-
tion. We will reach this goal by applying machinery from algorithms theory, and by
analyzing the time complexity for computing the three impact indices under var-
ious models of computation: First, we will consider the model where the citation
sequence is stored in fast random access memory and has already been sorted into
non-increasing order. Secondly, we consider the situation where the citation se-
quence is in random access memory, but is unordered. Thirdly, we will consider the
model where the citation sequence is stored in sequential memory (as for instance
on a tape), and where accessing a data element cannot be done instantaneously,
but costs some data reading and data processing time.

It turns out that in all three models the g-index can be computed within a
time complexity that is proportional to the length n of the citation sequence. The



An Algorithmic Comparison of Three Scientific Impact Indices 663

ℎ-index behaves similarly as the g-index, but in the first of the above models it
is (provably!) much easier to compute. The w-index can also be computed with
linear effort in the first and second model, but in the third model it is (provably!)
harder to compute than the ℎ-index and the g-index. Our results are summarized
in Table 1.

We stress that our main contribution does not consist of the algorithms derived
in this papers: These algorithms are purely theoretical constructions that have
been tailored to work under certain simplified models of computation and that
most probably have no practical relevance. In fact the calculation of all three
indices is relatively easy and could be done quickly even for millions of data records
on any modern PC by the most primitive and direct implementations. Our main
contribution is purely conceptual: We use these tools from Theoretical Computer
Science to provide mathematical evidence that the ℎ-index is a more primitive
concept than the g-index and that the g-index is a more primitive concept than the
w-index. And actually, we are not aware of any other scientific tools that would be
able to yield such a result.

The paper is organized as follows. Section 2 gives a soft introduction into the
analysis of algorithms, and also specifies the three considered models of computation
more precisely. Sections 3, 4, 5 respectively discuss how to compute the considered
impact indices in the three models of computation. Section 6 gives the conclusion.

Table 1: Asymptotic worst case time complexities for computing various impact
indices (of citation sequences with n elements) in various models of computation.
All nine results are asymptotically best possible.

ℎ-index g-index w-index

Sorted data in
random access memory log n n n

Unsorted data in
random access memory n n n

Unsorted data in
sequential memory n n n log n

2 Preliminaries on algorithms and computation

In this section we summarize some very basic facts on the analysis of algorithms
and on models of computation. For more information on these concepts, we refer
the reader to the books of Aho, Hopcroft, and Ullman ([1]), Cormen, Leiserson,
and Rivest ([4]), and Papadimitriou ([10]).



664 Gerhard J. Woeginger

Algorithms can be evaluated by a variety of criteria. The most common criterion
is the growth of the running time required to solve larger and larger instances of
a problem: Every instance of a problem has a certain size, which measures the
quantity of input data. For example the size of a citation sequence ⟨x1, . . . , xn⟩ is
the number n of elements in the sequence. The time complexity of an algorithm is a
worst case measure and denotes the maximum number of elementary steps needed
by the algorithm as a function of the input size; in other words if an algorithm
has time complexity T (n) then it can solve all instances of size n within T (n)
elementary steps. The asymptotic time complexity of an algorithm is the limiting
behavior of the worst case time complexity as size increases. If an algorithm can
process all inputs of size n in time T (n) ≤ cn2 for some constant c, then we say
that its time complexity is O(n2). More precisely, a time complexity function f(n)
is said to be in O(g(n)), if there exists a constant c such that f(n) ≤ cg(n) holds
for all positive n.

In the preceding paragraph we have specified the running time of an algorithm
as the number of elementary steps. The definition of an elementary step heav-
ily depends on the underlying model of computation. The most common model
of computation is the random access machine (RAM) model. Every storage cell
of a RAM can hold an integer. The integers in two storage cells can be added,
subtracted, multiplied, divided, or compared against each other in one elementary
step. The contents of every storage cell can be accessed instantaneously, and the
results of additions, subtractions, multiplications, and divisions can be stored in-
stantaneously into new storage cells. If a citation sequence ⟨x1, . . . , xn⟩ is stored
in the cells of a RAM, then each element xk can be accessed through its index
k within a single elementary step. The random access machine is the underlying
model of computation for Sections 3 and 4: In Section 3 we will additionally as-
sume that the input citation sequence has already been sorted into non-increasing
order x1 ≥ x2 ≥ ⋅ ⋅ ⋅ ≥ xn. In Section 4 we discuss the case of unordered citation
sequences.

Another fundamental model of computation stores the data in sequential mem-
ory. Also in this model every storage cell can hold an integer, but now accessing
the storage cells is more expensive: The data is stored and processed on a fixed
number of tapes (or lists), and the data on every tape is accessed through a read-
write head for this tape. In this model the contents of a storage cell can not be
accessed instantaneously: For instance, if we want to access the contents of stor-
age cell #1 and afterwards the contents of storage cell #1.000, then the read-write
head must inbetween move from cell #1 to cell #1.000, which takes 999 elementary
steps. Hence moving one cell along the tape, reading a cell, and writing into a cell
form elementary steps in the sequential memory model. The model also assumes
that there are a small fixed number of register cells (in fast memory) available that
can be used for temporarily storing data. Addition, subtraction, multiplication,
division, and comparison of the integers in the register cells are elementary steps.

In Section 5 we will discuss the computation of impact indices under the sequen-
tial memory model. As a main tool we will use a celebrated algorithm for selecting
the m-largest element among n numbers.



An Algorithmic Comparison of Three Scientific Impact Indices 665

Proposition 1. (Blum, Floyd, Pratt, Rivest, and Tarjan, [3])
Consider n numbers that are stored in random access memory or in sequential
memory. Then the m-largest element among these n numbers can be determined in
linear time O(n).

3 The case of sorted data in random access mem-

ory

Throughout this section we consider citation sequences ⟨x1, . . . , xn⟩ in which the
elements are in non-increasing order x1 ≥ x2 ≥ ⋅ ⋅ ⋅ ≥ xn. We assume that the data
is stored in fast random access memory, so that each element xk can be accessed
immediately through its index k.

We start our investigations with the ℎ-index. In this case our main tool is
the classical Binary Search procedure, as discussed for instance in the textbook of
Aho, Hopcroft, and Ullman ([1]). We will apply Binary Search to the following
auxiliary problem: Given a sorted sequence y1 ≥ y2 ≥ ⋅ ⋅ ⋅ ≥ yn of integers with
y1 ≥ 0, determine the largest index ℎ for which yℎ is non-negative. The main idea
of Binary Search is to narrow down the search space to smaller and smaller intervals
[ℓ, u]. In the beginning the search space is the entire interval [1, n] so that ℓ = 1
and u = n. Then Binary Search looks at the value of the middle element ym with
m := ⌊(ℓ+ u)/2⌋. If ym is negative, then the new search space becomes [1,m− 1].
If ym is non-negative, then the new search space becomes [m,n]. This is repeated
until the search space has been narrowed down to at most two elements, which are
then checked separately. Since every search step removes half of the search interval,
the time complexity T (n) satisfies

T (n) ≤ T (⌈n/2⌉) + c,

where c is the time needed for computing m and for querying the mth element.
Now an easy induction yields T (n) ≤ d⌈log2 n⌉ for some appropriate constant d.

Theorem 1. The ℎ-index of a sorted citation sequence x1 ≥ x2 ≥ ⋅ ⋅ ⋅ ≥ xn can be
determined in O(log2 n) time. No algorithm can have a worst case time complexity
that is asymptotically better than O(log2 n).

Proof. The ℎ-index of a sequence x1 ≥ x2 ≥ ⋅ ⋅ ⋅ ≥ xn is the largest integer ℎ for
which the value yℎ = xℎ − ℎ is non-negative. Hence the ℎ-index can be computed
by solving the auxiliary problem discussed above for the auxiliary sequence defined
by yi = xi − i for 1 ≤ i ≤ n. This yields the O(log2 n) time complexity claimed in
the positive part of the theorem.

For the negative part we use an information-theoretic argument. For 1 ≤ k ≤ n
consider the sorted citation sequence Sn,k that consists of k elements of value n
followed by n − k elements of value 0. Clearly the ℎ-index of Sn,k equals k. Now



666 Gerhard J. Woeginger

consider an arbitrary algorithm A for computing the ℎ-index. Whenever A queries
one element in such a sequence Sn,k, it only gains a single bit of information: The
queried element is either equal to n, or it is not (in which case it is 0). Since the
algorithm needs at least log2 n bits to distinguish between the n possible outcomes,
it must query log2 n elements in the worst case.

Theorem 2. The g-index of a sorted citation sequence x1 ≥ x2 ≥ ⋅ ⋅ ⋅ ≥ xn can be
determined in O(n) time. No algorithm can have a worst case time complexity that
is asymptotically better than O(n).

Proof. First we compute the sum s[k] =
∑k

i=1
xi for k = 1, . . . , n. This can be done

in overall linear time O(n), since s[1] = x1 and since s[k] = s[k − 1] + xk holds for
k = 2, . . . , n. The g-index is then the largest index k with s[k] ≥ k2. This yields
the O(n) time algorithm for the positive part of the theorem.

For the negative part we consider the following sorted citation sequence S′

n:
The first element of sequence S′

n is 1

2
(n2 +n). The remaining n− 1 elements in S′

n

are the values 1, 2, 3, . . . , n − 1 in decreasing order. Since the sum of all elements
in sequence S′

n is n2, its g-index is n. Furthermore for 1 ≤ k ≤ n we define a
sequence S′

n,k that results from sequence S′

n by decreasing the kth element by 1.
The resulting sequence S′

n,k is still sorted, but its g-index has dropped down to
n− 1.

Now consider an arbitrary algorithm A for computing the g-index, and feed the
input sequence S′

n into algorithm A. We claim that A must inspect all n elements
of sequence S′

n: If the algorithm does not inspect the kth element, then it could
not distinguish sequence S′

n (with g-index n) from sequence S′

n,k (with g-index
n− 1).

Theorem 3. The w-index of a sorted citation sequence x1 ≥ x2 ≥ ⋅ ⋅ ⋅ ≥ xn can
be determined in O(n) time. No algorithm can have a worst case time complexity
that is asymptotically better than O(n).

Proof. The w-index of the sequence x1 ≥ x2 ≥ ⋅ ⋅ ⋅ ≥ xn is the largest integer k such
that xk ≥ 1 and xk−1 ≥ 2 and xk−2 ≥ 3 and so on down to x1 ≥ k. Equivalently,
we may write the w-index as

w = max{k : xm ≥ k −m+ 1 holds for m = 1, . . . , k}
= max{k : xm ≥ k −m+ 1 holds for m = 1, . . . , n}
= argmin{xm +m− 1 : 1 ≤ m ≤ n}.

The minimum value of xm +m− 1 over the domain 1 ≤ m ≤ n can be determined
by a single pass over the citation sequence. This yields the desired O(n) time
algorithm.

For the negative part we once again consider the sorted sequences S′

n and S′

n,k

that have been introduced in the proof of Theorem 2. We note that the w-index
of sequence S′

n is n, whereas the w-index of every sequence S′

n,k with 2 ≤ k ≤ n
is n − 1. Similarly as in the proof of Theorem 2 we argue that any algorithm



An Algorithmic Comparison of Three Scientific Impact Indices 667

for computing the w-index must inspect a linear number of elements in sequence
S′

n.

4 The case of unordered data in random access

memory

Throughout this section we consider unordered citation sequences ⟨x1, . . . , xn⟩ that
are stored in fast memory. As a first step we apply the following algorithm to this
unordered sequence. The algorithm essentially emulates sorting through counting;
see also Cormen, Leiserson, and Rivest ([4]).

Phase 1: Initialize a data array C[0, . . . , n] by setting C[k] := 0 for
k = 0, . . . , n.
Initialize a variable BigSum:= 0.

Phase 2: Work through the elements of the citation sequence for k =
1, . . . , n.
If 0 ≤ xk < n holds, then set C[xk] := C[xk] + 1.
If xk ≥ n holds, then set C[n] := C[n] + 1 and BigSum:=BigSum+xk.

Phase 3: Output the following sorted citation sequence:
If C[n] > 0 holds, then output an element of value BigSum−(C[n]−1)n,
followed by C[n]−1 elements of value n. Furthermore for k = n−1, n−
2, . . . , 0 output C[k] elements of value k.

What does this algorithm do to a sequence ⟨x1, . . . , xn⟩? Let us first explain
the meaning of the variables: The array element C[k] with 0 ≤ k ≤ n − 1 counts
the number of elements of value k in the sequence. The last array element C[n]
counts the number of elements of value at least n in the sequence; these elements
are called big elements. Finally, the variable BigSum contains the total size of all
big elements in the sequence.

The values of the counters and of BigSum are determined in Phase 1 and
Phase 2. In Phase 3 the citation sequence is output again, but this time in non-
increasing order and with some slight changes in the values of the big elements:
The total size BigSum of the big elements remains unchanged, but now only a
single big element can be strictly larger than n. The reader may want to verify
that for n = 5 the input sequence ⟨0, 10, 4, 2, 20⟩ will be transformed into the output
sequence ⟨25, 5, 4, 2, 0⟩.
Lemma 1. Let x = ⟨x1, . . . , xn⟩ be an input sequence for the above algorithm, and
let y = ⟨y1, . . . , yn⟩ be the corresponding sorted output sequence. Then sequences x
and y have the same ℎ-index, the same g-index, and the same w-index.

Theorem 4. If an unordered citation sequence ⟨x1, . . . , xn⟩ with n elements is
stored in random access memory, then

(a) its ℎ-index,



668 Gerhard J. Woeginger

(b) its g-index, and

(c) its w-index

can all be determined in linear time O(n). Under the random access model of com-
putation, no algorithm for these three indices can have a worst case time complexity
that is asymptotically better than O(n).

Proof. The above algorithm takes an arbitrary input sequence, and transforms it
in linear time into a sorted output sequence. By Lemma 1 the sorted sequence
has the same ℎ-index (respectively g-index and w-index) as the output sequence.
Hence we may apply the fast algorithms for sorted data from the preceding section
to the output sequence. This yields the positive part of the theorem.

For the negative part, we consider a citation sequence that consists of n − 1
elements of value 0 and a single element of value 1 (that is maliciously hidden
somewhere between the other n− 1 elements). Note that the ℎ-index, g-index, and
w-index of this sequence are 1. However if an algorithm fails to inspect the element
of value 1, then is cannot distinguish the sequence from the all-zero sequence whose
ℎ-index, g-index, and w-index are 0. Hence in the worst case the algorithm must
query all n elements.

5 The case of unordered data in sequential mem-

ory

Throughout this section we consider unordered citation sequences ⟨x1, . . . , xn⟩
whose elements are stored in sequential memory.

We start our discussion with the ℎ-index. We consider the following (purely
technically motivated) generalization of the ℎ-index that is built around an integer
parameter p ≥ 0: The ℎ(p)-index of a citation sequence ⟨x1, . . . , xn⟩ is the largest
integer ℎ such that the sequence contains at least ℎ elements that all have value at
least ℎ+ p.

Lemma 2. Let y = ⟨y1, . . . , yr⟩ and z = ⟨z1, . . . , zs⟩ be two citation sequences with
yi ≤ zj for all i and j, and let ymax denote the largest value in sequence y. Let
x = ⟨x1, . . . , xr+s⟩ denote the union of sequences y and z, and let p ≥ 0 be an
integer.

(a) If ymax ≤ s + p holds, then the ℎ(p)-index of sequence x coincides with the
ℎ(p)-index of sequence z.

(b) If ymax > s+ p holds, then the ℎ(p)-index of sequence x equals the ℎ(p+ s)-
index of sequence y incremented by value s.

Proof. Suppose ymax ≤ s + p. Since the s + 1 largest elements in sequence x are
the s elements z1, . . . , zs and ymax, in this case the ℎ(p)-index of sequence x is at
most s. Hence only the elements in sequence z are relevant. This yields (a).



An Algorithmic Comparison of Three Scientific Impact Indices 669

Next suppose ymax > s + p. In this case the s elements z1, . . . , zs and element
ymax all have value at least s+ p+ 1, and hence the ℎ(p)-index of sequence x is at
least s+ 1. Then the ℎ(p)-index of x is determined by all s elements in z together
with a subset of t elements in y that all have value at least s+ t+ p. Hence we are
looking for the largest t such that y contains t elements that all have value at least
s+ t+ p; this largest t is precisely the ℎ(p+ s)-index of y.

Lemma 2 suggests the following recursive approach for computing the ℎ(p)-index
of a given sequence x = ⟨x1, . . . , xn⟩.

Phase 1: If n ≤ 2 then determine the ℎ(p)-index directly and stop.
Otherwise set s := ⌊n/2⌋, and determine the value v of the s-largest
element in sequence x.
Split sequence x into a sequence z of length s that contains elements of
value ≥ v, and into a sequence y of length n− s that contains elements
of value ≤ v.

Phase 2: If v ≤ s + p holds, then throw away sequence y. Recursively
compute and then output the ℎ(p)-index of sequence z.
If v > s + p holds, then throw away sequence z. Recursively compute
the ℎ(p + s)-index of sequence y, increment it by s, and output the
resulting value.

In the beginning sequence x is stored in sequential memory. Proposition 1 allows
us to find the s-largest element in O(n) time. The sequences y and z are easily
determined and stored in sequential memory in O(n) time (we run through the tape
containing x, and split its contents appropriately into two other tapes; afterwards
we may reuse the tape that contained sequence x). In Phase 2 we recurse on a
sequence of length at most ⌈n/2⌉. Since every search step removes half of the
search interval, the time complexity T (n) of this procedure satisfies

T (n) ≤ T (⌈n/2⌉) +O(n).

A straightforward induction yields T (n) ≤ cn for some appropriate constant c.
Finally we note that the ℎ-index coincides with the ℎ(0)-index.

Theorem 5. The ℎ-index of an unordered citation sequence ⟨x1, . . . , xn⟩ in sequen-
tial memory can be determined in O(n) time. Under this model of computation, no
algorithm can have a worst case time complexity that is asymptotically better than
O(n).

Proof. The O(n) time algorithm in the positive part follows from the above dis-
cussion. The negative result follows along the lines of the negative result in Theo-
rem 4.

Now let us turn to the g-index. Similarly as for the ℎ-index, we introduce
a purely technical generalization that is defined around two non-negative integer



670 Gerhard J. Woeginger

parameters p, q ≥ 0: The g(p, q)-index of a citation sequence ⟨x1, . . . , xn⟩ is the
largest integer g such that the sequence contains g elements that have sum at least
(g + p)2 − q. Note that the classical g-index coincides with the g(0, 0)-index.

Lemma 3. Let y = ⟨y1, . . . , yr⟩ and z = ⟨z1, . . . , zs⟩ be two citation sequences with
yi ≤ zj for all i and j, and let Z denote the sum of all elements in sequence z.
Let x = ⟨x1, . . . , xr+s⟩ denote the union of sequences y and z, and let p and q be
non-negative integers.

(a) If Z ≤ (s + p)2 − q, then the g(p, q)-index of sequence x coincides with the
g(p, q)-index of sequence z.

(b) If Z > (s+p)2−q, then the g(p, q)-index of sequence x equals the g(p+s, q+Z)-
index of sequence y incremented by value s.

Proof. Suppose Z ≤ (s + p)2 − q. Then the g(p, q)-index of sequence x is at most
s, and only the elements in sequence z are relevant for it. This yields (a).

Next suppose Z > (s + p)2 − q, in which case the g(p, q)-index of x is at least
s. Then the g(p, q)-index of x is determined by all s elements in z, together with a
subset of t elements in y. Let Y ′ denote the sum of these t elements, and observe
that Z+Y ′ ≥ (s+ t+p)2−q must hold true. These t elements in sequence y whose
sum is at least (s+ t+ p)2− q−Z precisely yield the g(p+ s, q+Z)-index of y.

Lemma 2 leads to the following recursive approach for computing the g(p, q)-
index of a given sequence x = ⟨x1, . . . , xn⟩.

Phase 1: If n ≤ 2 then determine the g(p, q)-index directly and stop.
Otherwise set s := ⌊n/2⌋, and determine the value v of the s-largest
element in sequence x.
Split sequence x into a sequence z of length s that contains elements of
value ≥ v, and into a sequence y of length n− s that contains elements
of value ≤ v.
Determine the sum Z of all elements in sequence z.

Phase 2: If Z ≤ (s + p)2 − q holds, then throw away sequence y. Re-
cursively compute and then output the g(p, q)-index of sequence z.
If Z > (s + p)2 − q holds, then throw away sequence z. Recursively
compute the g(p+ s, q+Z)-index of sequence y, increment it by s, and
output the result.

Similarly as in the computation of the ℎ(p)-index, this algorithm for the g(p, q)-
index can be implemented to run in O(n) time if the sequence x is stored in se-
quential memory.

Theorem 6. The g-index of an unordered citation sequence ⟨x1, . . . , xn⟩ in sequen-
tial memory can be determined in O(n) time. Under this model of computation, no
algorithm can have a worst case time complexity that is asymptotically better than
O(n).



An Algorithmic Comparison of Three Scientific Impact Indices 671

Finally let us discuss the w-index. It is easy to determine the w-index of an
unordered citation sequence ⟨x1, . . . , xn⟩ in O(n log n) time: First sort the elements
in O(n log n) time (a classical sorting algorithm like MergeSort will do this also for
data in sequential memory). Then apply the O(n) algorithm from Theorem 3.
Interestingly this is already the best asymptotic time complexity one can reach in
sequential memory.

Theorem 7. The w-index of an unordered citation sequence ⟨x1, . . . , xn⟩ in se-
quential memory can be determined in O(n log n) time. Under this model of com-
putation, no algorithm can have a worst case time complexity that is asymptotically
better than O(n log n).

Proof. The proof of the negative statement is based on an auxiliary problem called
Permutation-Recognition: Given n integers u1, . . . , un, decide whether these
integers form a permutation of the numbers 1, 2, . . . , n. It is known that this prob-
lem cannot be solved with a worst case time complexity better than O(n log n), if
the data is stored in sequential memory; see for instance Ben-Or ([2]).

Consider an arbitrary instance u1, . . . , un of Permutation-Recognition. In
a first step compute the sum U of all elements in this instance in linear time O(n).
If U ∕= 1

2
n(n+ 1), we stop right away with the answer NO. Otherwise we move on,

and feed the sequence u1, . . . , un into an algorithm A for computing the w-index.
If algorithm A finds that the w-index is at most n− 1, we stop with answer NO. If
algorithm A finds that the w-index is n, we stop with the answer YES.

If there was an algorithm A for the w-index with worst case time complexity
better than O(n log n), this approach would yield an algorithm for Permutation-
Recognition with worst case time complexity better than O(n log n).

6 Conclusion

In this paper we have discussed the algorithmic complexity of computing the ℎ-
index, the g-index, and the w-index in various (standard) models of computation.
Our results suggest that the ℎ-index is computationally the easiest index to com-
pute, that the g-index needs some more effort, and that the w-index is the hardest.

We note that our techniques can easily be adapted to yield similar results for
other scientific impact indices. Consider for instance the so-called Kosmulski-index
of a citation sequence (see Kosmulski, [9]): A scientist has Kosmulski-index k, if
k is the largest integer such that at least k of his articles have received at least
k2 citations each. An equivalent definition of the Kosmulski-index of a citation
sequence x = ⟨x1, . . . , xn⟩ is as follows: Define an auxiliary citation sequence y =
⟨y1, . . . , yn⟩ by setting yi =

⌊√
xi

⌋

for 1 ≤ i ≤ n. Then the Kosmulski-index
of sequence x coincides with the ℎ-index of sequence y. Now our results on the
ℎ-index imply that

∙ the Kosmulski-index of a sorted citation sequence x1 ≥ x2 ≥ ⋅ ⋅ ⋅ ≥ xn can be
determined in O(log2 n) time,



672 Gerhard J. Woeginger

∙ the Kosmulski-index of an unordered citation sequence in random access
memory can be determined in O(n) time,

∙ the Kosmulski-index of an unordered citation sequence in sequential memory
can be determined in O(n) time.

Furthermore, these time complexities are best possible in the respective models of
computation. This once again confirms our intuition that the Kosmulski-index is
very closely related to the ℎ-index, and that these two indices behave in more or
less the same way.

References

[1] Aho, A. V., Hopcroft, J. E. and Ullman J. D. The Design and Analysis of
Computer Algorithms. Addison-Wesley, 1974.

[2] Ben-Or M., Lower bounds for algebraic computation trees. In Proceedings of
the 15th Annual ACM Symposium on the Theory of Computing (STOC’1983),
pages 80–86, 1983 .

[3] Blum, M., Floyd, R. V., Pratt, V. R., Rivest, R. L. and Tarjan, R. E. Time
bounds for selection. Journal of Computer and System Sciences 7:448–461,
1973.

[4] Cormen, T. H., Leiserson, C. E. and Rivest R. L. Introduction to Algorithms.
MIT Press, 1990.

[5] Egghe, L. An improvement of the ℎ-index: The g-index. ISSI Newsletter 2:8–9,
2006.

[6] Egghe, L. Theory and practice of the g-index. Scientometrics 69:131–152,
2006.

[7] Gross, P. L. K. and Gross, E. M. College libraries and chemical education.
Science 66(1713):385–389, 1927.

[8] Hirsch, J. E. An index to quantify an individual’s scientific research output.
Proceedings of the National Academy of Sciences 102(46):16569–16572, 2005.

[9] Kosmulski M. A new Hirsch-type index saves time and works equally well as
the original ℎ-index. ISSI Newsletter 2:4–6, 2006.

[10] Papadimitriou C. H. Computational Complexity. Addison-Wesley, 1994.

[11] Woeginger G. J. An axiomatic characterization of the Hirsch-index. Mathe-
matical Social Sciences 56:224–232, 2008.

[12] Woeginger G. J. (2008b). An axiomatic analysis of Egghe’s g-index. Journal
of Informetrics 2:364–368, 2008.

Received 6th November 2009


