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Dynamic Communities and their Detection

András Bóta∗, Miklós Krész†, and András Pluhár‡

Abstract

Overlapping community detection has already become an interesting prob-
lem in data mining and also a useful technique in applications. This underlines
the importance of following the lifetime of communities in real graphs. Palla
et al. developed a promising method, and analyzed community evolution on
two large databases [23]. We have followed their footsteps in analyzing large
real-world databases and found, that the framework they use to describe the
dynamics of communities is insufficient for our data. The method used by
Palla et al. is also dependent on a very special community detection algo-
rithm, the clique percolation method, and on its monotonic nature. In this
paper we propose an extension of the basic community events described in
[23] and a method capable of handling communities found a non-monotonic
community detection algorithm. We also report on findings that came from
the tests on real social graphs.

Keywords: graph mining, network analysis, community, community detec-
tion, dynamic communities

1 Introduction

The analysis of adaptive networks is considered to be a traditional research field,
which in recent years, has received a new impulse, thanks to the variety of available
test databases [3, 20]. These graphs are so large in some cases, that only the fastest,
near linear time algorithms have a chance of tackling the given tasks. One of the
approaches to network analysis, community detection has received a lot of attention
both from the point of theory and applications [1, 6, 8, 9, 10, 12, 15, 19, 22, 24, 25].
The definition of communities centers around dense subgraphs of the network. In
traditional community detection, we are looking for disjoint subsets of vertices,
that are connected to each other more closely, that to the rest of the graph. 1 In
overlapping community detection, the subsets are not disjoint. Hereafter by the
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in the case of overlapping communities.
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notion of communities we will mean overlapping communities, otherwise we will
use either clusters or non-overlapping communities. We will also take several basic
definitions from graph theory [4].

However, communities are not static, they can change or even disappear in time;
this might have caused the split of a club in the famous experiment of Zachary [27].

The dynamics of these networks is usually represented as a series of graphs
{Gi}i∈T , where T = {1, . . . , `} represents a discrete time set. The number of
time instances usually depends on two things: the length of the period, in which
we observe the network, and the resolution, which governs, that in a given time
period, how many “snapshots” do we take from the network. Although one might
try to consider the whole history of the graph series in one step, for large graphs
this is not feasible. Both Asur et al. [2] and Palla et al. [23] have chosen the path
of following the entities from Gi to Gi+1, and reconstructing the whole process
out of these. Note that Asur et al. deals with clusters, while Palla et al. follows
the lifetime of (overlapping) communities. They both took a normative approach
to communities: they have decided upon the possible events that might happen
to a community. In other words, they have simply listed the basic events of a
hypothetical classification. We reproduce some of the relevant work of Palla et al.
as follows.

1.1 Basic events

The basic events described in [23] are the following:

• Birth, when a new community emerges without predecessor.

• Death, when a community disappears without successor.

• Merging, when several communities join together to form a new community.

• Splitting, when a community splits into several new communities.

• Growth, when a community gains new members.

• Contraction, when a community loses members.

Assuming the above described events, the problem is reduced to the following.
Given the graphs G1 and G2, describing the starting and destination graphs, com-
pute the set of communities in both, let those be K1 and K2. Then find a relation
R on K1×K2 in an “obvious way”; if a C1 ∈ K1 is in no relation, then it is a death.
If C1 ∈ K1 is in relation with C2

1 , . . . , C
2
` ∈ K2 and C2

i ⊂ C1 for i ∈ [1, . . . , `], then
C1 splits into C2

1 , . . . , C
2
` . Similarly, if C2 ∈ K2 is in no relation, then it is a birth.

If C2 ∈ K2 is in relation with C1
1 , . . . , C

1
` ∈ K1 and C1

i ⊂ C2 for i ∈ [1, . . . , `], then
C1

1 , . . . , C
1
` merged into C2. Finally a related pair (C1, C2), Ci ∈ Ki for i ∈ {1, 2},

should mean a growth (contraction) if C1 ⊂ C2 (C1 ⊃ C2).
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1.2 Implementation

Computing the relation R, assuming that the basic events cover all possible cases,
is not hard theoretically. In practice this is different, since for large graphs a naive
approach of considering all pairs (C1, C2) ∈ K1 × K2 is too costly. The way out
of this quadratic complexity is an idea due to I. Derényi [23]. They assume that
the communities are always given by the Clique percolation method (CPM) [1, 22],
which is monotonic. More exactly, if H and G are graphs on the same vertex set,
E(H) ⊂ E(G) and C ∈ KH then there exists a C ′ ∈ KU , such that C ⊂ C ′, where
KH and KG are the sets of communities of H and G, respectively.

Then the union graph U is formed such that V (U) := V (G1)∪V (G2), E(U) :=
E(G1) ∪ E(G2) and KU is computed. Now instead of going through all (C1, C2)
pairs from K1×K2, one needs to check only those pairs for which there is a C ′ ∈ KU ,
such that (C1, C2) ⊂ C ′.

1.3 Results of Palla et al.

By applying this method, they get a convincing results on the dynamics of com-
munities. The most significant results are: the larger a community the older it is.
The expected lifetime of a community increases with its size. A small community
is more stable if it does not change its members, while it is the opposite for large
communities. Let us note that the methodology is crucial, for the definitions, time
scale and database the reader should consult the paper [23].

2 Problems

We have conducted a similar research on two large social networks described in
the results chapter, meaning we analyzed the changes in the community structure
of the corresponding networks. We tried to adapt the methodology of [23] with
little success. To find communities, we used CFinder2 for the CPM, resulting in
the computational issues described in subsection 2.2. Then we decided on using
the implementation of the N++ method3 developed in [9], which was finally able
to handle our networks. We have also found, that the framework they have used
is insufficient to describe the community dynamics in our database. One of the
reasons for this could be the difference between our database and the one they
have used. This will be discussed in the results section. Another reason might be
the difference between the community detection algorithms. This will be discussed
in section 2.3.

2.1 Basic events

In our experience, the description of basic events is not complete. The deviations
from the description have at least three main causes. (i) The time scale is too large,

2The software was downloaded from the page http://angel.elte.hu/cfinder/
3We would like to express our thanks for obtaining free access to the appropriate softwares.
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and G1 differs significantly from G2. This is unavoidable, since in several cases the
measurement intervals are given. (ii) A community might become extinct not by
splitting, but by leaving behind a number of overlapping communities on the same
vertex set4; we will discuss this in depth in subsection 3.1. (iii) In dense real graphs,
it happens frequently that a set of overlapping communities change into another
set of communities, and the relations cannot be easily mapped.

2.2 Computational issues

For large dense graphs the CPM is time inefficient. Deciding the proper value of the
parameter k is also problematic. The other problem is, that for some benchmark
graphs, e.g. the Zachary, the CPM performs poorly. It is natural to try out
other community detection methods, since those might give better predictions in
applications [8, 10, 19].

2.3 Implementation

The method relies on the monotonicity of CPM. In general, communities do not
behave this way, they might split when adding edges to a graph, or merge when
deleting edges. This phenomenon makes it harder to map the communities K1 and
K2.

3 Solutions

To motivate our solution, we analyze a small problem in depth. It shows that the
introduction of new classes for community events are unavoidable.

3.1 Motivation

The most obvious way to deal with the problem mentioned in subsection 2.1 (i)
is an artificial refinement of the time scale. That is, we fix the list of the changes
that happened between Gi and Gi+1, and insert new graphs into the series, such
that each new graph differs from the previous one in only one item. However, we
will see that changing this order changes both the number and types of appearing
community events, which implies, that the artificial refinement of the time scale
should be avoided in practice. More importantly, this example will show us, in
correspondence with problem (ii), that the seven basic events defined above are
inadequate when dealing with differences larger than one.

We illustrate the above mentioned problems with Zachary’s karate club network
[27]. Five edges were removed from the network one by one, in two different se-

4Let A,B,C and D be cliques. Add a few edges between among those, such that A ∩ B and
C ∪D are the two resulting communities. Deleting two and adding two edges, A ∩ C and B ∩D
will be the new communities, which does not fit in the scheme.
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Figure 1: Zachary’s karate club network. The boxes and naughts indicate the
vertices corresponding to the split that has appeared during the original experiment.

Original a b c d Final
7 7 7 7 7 13
9 9 9 9 9 13
10 10 10 10a 10a 10a

10b 10ba 13
10bb 13

Table 1: The changes in the community structure with the first edge removal
sequence. Communities 1 through 6, 8, 11 and 12 do not change, and are omitted.

quences5. The N++ algorithm was used for the purpose of detecting communities;
the important parts of the outputs are summarized in Tables 1 and 2.

In the first sequence, edges a, b, c, d and e are removed in this order. Af-
ter removing the first two edges, nothing changes. In the next step however,
community 10 containing the nodes {0, 1, 2, 3, 7, 13, 19} splits into communities
10a : {0, 1, 3, 7} and 10b : {0, 1, 2, 13, 19}. In the next step, 10b splits further into
10ba : {1, 2, 19} and 10bb : {0, 1, 2, 13}. After removing the fifth edge from the net-
work, several communities merge together, namely 7 : {0, 1, 17, 21}, 9 : {0, 2, 8, 32},
10ba : {1, 2, 19} and 10bb : {0, 1, 2, 13}. Out of these a new community, 13, is born:
{0, 1, 2, 8, 13, 17, 19, 21, 32}.

Thus far, the basic community events defined in [23] were sufficient for the
description. What happens however, if we compare the communities from the
original graph with the communities of the final graph? Ignoring those communities

5The edges a = (0, 13), b = (0, 19), c = (2, 3), d = (2, 7) and e = (3, 19).
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Original c a e d Final
7 7 7 7 7 13
9 9 9 9 9 13
10 10 10 10a 10c 13

10b 10d 10e

Table 2: Changes of the communities in the second sequence. Communities 1
through 6, 8, 11 and 12 do not change, and are omitted.

that did not change, we have number 7, 9 and 10 in the original graph, and 10a
and 13 in the modified graph. It would seem that community 10 is involved in
a contraction event resulting in 10a. Communities 7 and 9 merge into the new
community 13, but 13 also acquires some nodes from community 10, meaning it is
also a growth event. This gets further complicated considering the results of the
one by one edge removal : It seems that the first event, that took place was a split
event. One way to solve this problem is to extend the number of community events
used by the algorithm with more complex events that involve multiple basic ones.
Before deciding which combinations should be used, let us examine the second edge
removal sequence.

In the second sequence, edges c, a, e, d and b are removed in this order. Despite
the different sequence, the first few steps are the same until community 10 splits
apart. The resulting communities are different however, with 10a being {1, 2, 13}
and 10b : {0, 1, 2, 3, 7, 19}. In the next step, 10a is involved in a growth event, steal-
ing a node from 10b, which is in a contraction event, resulting in 10c : {1, 2, 13, 19}
and 10d : {0, 1, 2, 3, 7}. It is obvious that the two events are connected, but the
original framework does not allow such complex situations.

In the final step, community 10d loses another node resulting in 10e : {0, 1, 3, 7}
which corresponds to 10a from the previous example. A merge event occurs at the
same time, joining communities number 7, 9 and 10c. It is important to note, that
10c is not identical to any community in the previous example, not even 10b.

This example has two important consequences. First, if one tries to refine the
time scale by creating an artificial series of graphs by adding or removing edges
one by one, the result depends on the order of edges, rendering this approach
meaningless. In the rest of the paper, we will not use this naive idea for solving
the problem at hand.

The second consequence is closely tied to the first one. It appears from the
example above, that the basic events used to describe the changes of communities
are satisfactory only if we change the graph one edge at a time. In all the other
cases, more complex events, combinations of the basic events, are required.
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3.2 Extending the number of community events

Using all possible combinations of the basic events is not necessary, as it would
over-complicate the results of the algorithm. The first four events listed below are
straightforward, each one is a combination of two basic events. The obscure event
represents combinations of possibly more than two events, including merge-split,
merge-split-merge, grow-split-merge, and so on. This means, that this event could
be divided further into other events, but using the test data available we have found,
that these five additional events are sufficient for describing community dynamics.
With them, the changes in community structure can be identified reasonably well
without unnecessary complications of the algorithm.

Tables 3 and 4 list the number of different community events found. A more
detailed analysis of the results will be given in the results section. In the first
one, the number of newly introduced merge and split variants are more numerous
than their original counterparts. The number of obscure cases is somewhat higher,
but still has the same magnitude. In table 4 the newly introduced events are far
less numerous, but still relevant. This justifies the introduction of these events,
and also implies, that further dividing the obscure cases would result in categories
containing a very few number of events.

• Grow-merge, several communities join together, and also absorb some addi-
tional members.

• Contraction-merge, several communities join together, but loose some mem-
bers in the process.

• Grow-split, a community splits into several communities, but these commu-
nities absorb additional members.

• Contraction-split, a community splits into several communities, and these
communities also loose members.

• Obscure case. Multiple communities are involved from both K1 and K2, with
their members reordering.

With respect to the above framework, we redefine the concepts of the split and
merge events. Given the community sets K1 and K2, and a community C1 ∈ K1

which is in relation with communities C2
1 , . . . , C

2
` ∈ K2, we define the split event if

|C1| = |C2
1 ∪C2

2 ∪ · · · ∪C2
` |. If |C1| < |C2

1 ∪C2
2 ∪ · · · ∪C2

` |, then we define the grow-
split event, and finally if |C1| > |C2

1 ∪C2
2 ∪ · · · ∪C2

` |, we define the contraction-split
event.

The definition of the merge event is symmetrical: given the community sets K1

and K2, and communities C1
1 , . . . , C

1
` ∈ K1 which are in relation with a community

C2 ∈ K2, if |C1
1 ∪ C1

2 ∪ · · · ∪ C1
` | = |C2|, then we define the merge event. If

|C1
1 ∪ C1

2 ∪ · · · ∪ C1
` | < |C2|, then we define the grow-merge event, and finally if

|C1
1 ∪ C1

2 ∪ · · · ∪ C1
` | > |C2|, we define the contraction-merge event.
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The obscure case is less strictly defined. If there are multiple communities
from K1 and K2 connected by a relation, without further analysis, we classify this
relation as an obscure event.

4 Details of the algorithm

The method described in this section follows the idea of I. Derényi [23], with a
few important modifications. We will adopt the concept of the union graph U ,
and use it to solve the originally quadratic problem described in subsection 1.2 in
almost the same way as in [23]. Our additional work centers around two important
modifications of the original method.

The first one is abandoning the requirement of monotonicity. This means, that
we can no longer assign only one community from KU to any community from the
original graphs. The solution of this problem is described in the subsection 4.4.

The second modification incorporates the detection of the extended community
events. The solution to this is fairly straightforward, and will be discussed in
subsection 4.5.

We will also describe an optional modification of the original idea of [23]. Instead
of using U , we will use I, the intersection graph of G1 and G2. That is V (I) :=
V (G1)∩V (G2), E(I) := E(G1)∩E(G2), and KI represents the communities of the
intersection graph I. 6 We will describe this approach in 4.3.

4.1 Overview

The input of the algorithm consists of three community sets K1,K2 and KU , where
KU is the community set of U .

The output of the algorithm is a relation R on K1 × K2, corresponding to
community events described in [23] and subsection 3.2.

The algorithm can be divided into two phases. The first phase creates a relation
R1 on K1 ×KU and R2 on K2 ×KU . The second phase combines R1 and R2 into
R. Because of the non-monotonic nature of the community detection algorithm, a
preprocessing step is required before executing the second phase.

4.2 First phase

In the first phase we search for relations among C1
i ∈ K1 for all i and Cu

` ∈ KU for
all `. We are looking for two types of relations. The first type is the exact match:
C1

i = Cu
` . The second is a contain match: C1

i ⊂ Cu
` . Because of the non-monotonic

nature of the community detection algorithm Cu
` ⊂ C1

i might also occur. This case
also counts as a contain match.

For the purpose of finding these relations, we iterate over the elements of K1

and compare each C1
i to every element of KU . If we find a contain match, we create

6The community sets can be created by any, possibly non-monotonic, community detection
algorithm.
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a relation r1(C1
i , C

u
` ). If we find an exact match, we also create r1(C1

i , C
u
` ), but we

ignore Cu
` in the subsequent computations. This step is repeated for K2 and KU .

4.3 Intersection approach

Since a community detection algorithm is not necessarily monotonic, there might
be elements of K1 or K2 that are not in relation with any element of KU , these were
counted as “deaths” before. The intersection approach tries to solve this problem
by replacing KU with KI . The only difference in the implementation is, that in the
first phase K1 (and K2 later) is replaced with KI , and KU is replaced with K1 (and
K2 later). After the first phase has finished, the algorithm continues after inverting
the relations r1 and r2.

The intersection method provides almost the same results as the union approach
with a few exceptions, that will be noted in the results chapter. The size of the
intersection graph I is smaller than or equal (in the special case when G1 = G2) to
the size of the union graph U . From the computational point of view, this implies
that the running time of the community detection algorithm should be lower on I.
Other than this, the use of the intersection approach is completely optional.

4.4 Preprocessing

As we noted before, there may be more than one element of KU , that is in relation
r1 with a given C1

i . The same holds for C2
j and the relation r2. To solve this, we

put a new, fictitious community Cu
a to Ku, set r1(C1

i , C
u
a ), and delete all former

relations containing C1
i . The same is done for C2

j . If C1
i and C2

j were in relation
with the same elements of Ku, then the same Cu

a is used.

4.5 Second phase

In this phase we run through the elements of Ku. For each element Cu
` ∈ KU , let

the elements C1 := {C1
1 , . . . , C

1
i } ⊂ K1 and C2 := {C2

1 , . . . , C
2
j } ⊂ K2 be in relation

with Cu
` according to r1 and r2 respectively. Let ∪H be the ∪H∈HH for any set H.

Depending on i and j, and the sizes of the communities involved, we create the
relation r(C1

i′ , C
2
j′) for every i′ and j′, and we assign community events to these

relations.

• If C1 = ∅ and |C2| > 0, then r(∅, C2
j′) is a birth event for every j′.

• If |C1| > 0 and C2 = ∅, then r(C1
i′ , ∅) is a death event for every i′.

• If |C1| = 1 and |C2| = 1, that is C1 = {C1
1} and C1 = {C2

1}, then

– If |C1
1 | = |C2

1 |, r(C1
1 , C

2
1 ) is an exact match.

– If |C1
1 | > |C2

1 |, r(C1
1 , C

2
1 ) is a contraction event.

– If |C1
1 | < |C2

1 |, r(C1
1 , C

2
1 ) is a growth event.
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• If |C1| = 1 and |C2| > 1, then

– If |C1
i | = | ∪ C2|, r(C1

i , C
2
j′) is a split event for every j′.

– If |C1
i | < | ∪ C2|, r(C1

i , C
2
j′) is a grow-split event for every j′.

– If |C1
i | > | ∪ C2|, r(C1

i , C
2
j′) is a contraction-split event for every j′.

• If |C1| > 1 and |C2| = 1, then

– If | ∪ C1| = |C2
j |, r(C1

i′ , C
2
j ) is a merge event for every i′.

– If | ∪ C1| < |C2
j |, r(C1

i′ , C
2
j ) is a grow-merge event for every i′.

– If | ∪ C1| > |C2
j |, r(C1

i′ , C
2
j ) is a contraction-merge event for every i′.

• If |C1| > 1 and |C2| > 1 then we introduce an obscure event r(C1
i′ , C

2
j′) for

every i′ and j′.

4.6 Time complexity

The time complexity of the algorithm will be addressed both from the theoretical
and empirical point of view. In the first phase, we compare each community from K1

to communities from KU . In the worst case, no exact matches are found resulting
in an O(n∗m) complexity, where n is the size of |K1| and m is the size of |KU |. An
exact match always reduces the number of further computations. Therefore when
we find an exact match r1(C1, Cu) (r2(C2, Cu)), we can ignore all other relations
involving C1, C2 and Cu.

The obscure events are catchier. Note, that the sizes of K’s might be exponential
in |V (G1)|, while a complex event could involve any number of communities on both
sides, which would result in doubly-exponential running time. Fortunately, usually
we have less communities than vertices, and the number of obscure events are small,
consisting of only a few sets. So in practice the obscure events have only a negligible
effect on the (actual) running time.

In the second phase, if each element from K1 and K2 were connected with every
element from KU , we would obtain a worst case complexity of O(n∗m∗k), k = |K2|.
In practice, a community from KU corresponds to only a few communities from K1

and K2. This reduces the actual running time of this phase to O(c ∗m), where c is
a small constant.

5 Results

To test our algorithm, besides the small examples like Zachary’s graph, we have
used two large test databases. One came from an international bank [8], while
the other one is a large social network. The bank graph is based on a transaction
database, and consists of roughly 80000 nodes and 270000 edges, and we were
provided with three time instances taken in a six month period. The edges of the
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Events 12u 23u 13u
Deaths 6586 6481 9901
Births 6729 6477 9971
Unchanged 4888 5062 2529
Growths 2185 2084 1629
Contractions 1985 2123 1569
Splits 83 91 45
Grow-splits 154 133 172
Cont-splits 144 149 111
Merges 200 184 117
Grow-merges 356 315 256
Cont-merges 350 326 418
Obscure 531 595 594

Table 3: Results on the bank database. The columns show the community events
in the following order: first and the second time instances, the second and third
time instances, finally the first and the third instances.

social graph were also determined as the output of a data mining project, and the
graph contains roughly one million nodes and 1.5 million edges. Here four time
instances were taken in a four month period. Due to the size and structure of these
networks, the CFinder fails to provide communities, so the communities were listed
by the N++ method only.

5.1 Observations

Table 3 shows the results for the bank dataset for different time intervals. Notice,
that the number of death and birth events are very high, about 40% of the com-
munities die. A possible explanations for this is, that the time lapse between the
instances is relatively long (three months), and in the last case, where the first and
last instances are compared, this is extended to six months. During this long time
period, the community structure of a network changes significantly.

Another explanation might be based on problem (iii), referred in 2.1. If a dense
community changes significantly, it is hard to know what had really happened to
it, while the algorithm classifies it as a death event.

The number of unchanged, growing and contracting communities has the same
magnitude, which dominates the splitting and merging events.7

It indicates a certain dynamic equilibrium that the number of growth and con-
tract events, and the death and birth events are balanced. The number of pure
split/merge events are less than the newly introduced grow/contraction split/merge

7Since the first types of events involve the exact match events described in 4.2, this explains
the low running time.
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Events 12u 23u 34u 14u
Deaths 6847 7812 7931 23519
Births 6112 4119 3782 14934
Unchanged 59985 59247 56031 38272
Growths 2999 2161 1963 4343
Contractions 3468 3629 3458 6753
Splits 457 454 383 538
Grow-splits 83 55 37 32
Cont-splits 115 83 102 266
Merges 919 820 785 1030
Grow-merges 232 180 178 438
Cont-merges 142 137 93 79
Obscure 90 92 59 66

Table 4: Results for the social network database. The columns show the community
events in the following order: first and the second time instances, the second and
third time instances, the third and fourth time instances, and finally the first and
the fourth instances.

events. This justifies the introduction of these events, and underlines the compli-
cations in community dynamics.

The running time of our community matching algorithm was 8 seconds, while
the search for communities took 5 minutes. The used computer configuration was
a machine of two cores, with each processor running at 2.0 GHz and supplied with
2 gigabytes of memory.

Table 4 shows the matching results on the social network. In contrast to our
previous results, the number of deaths and births are significantly lower, and the
number of unchanged communities dominates all other events. The lapse between
the time instances is short (one month), but in the last case, the first and last
instances are compared resulting in a four months interval. Even in this case, the
number of unchanged communities is much larger than the number of deaths, so one
concludes that the social graph is more stable than the graph of the bank dataset.
It is important to note, that the number of birth events are significantly lower than
the number of death events, and the number of split-like events do not balance this
by generating more communities. This indicates that the number of communities
of the network is decreasing. Indeed, the network has lost around 12.5 percent of
its communities in the observed period.

As in the previous case, the number of growth and death events are balanced.
Here the number of pure split and merge events outnumber the newly introduced
grow/contraction and split/merge events. This also points to the fact, that this
network is more stable than the previous.

Even though this network is larger than the first, the running time of the match-
ing algorithm is about the same due to the very high number of unchanged commu-
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Figure 2: The percentage of community events compared to the community sizes
for the bank dataset. The results were generated with the union graph approach.

nities. Note that the N++ needed about 60 seconds for finding the communities, our
community matching algorithm took 14 seconds. We have used the same machine
as before.

Figure 3: The percentage of community events compared to the community sizes for
the bank dataset. The results were generated with the intersection graph approach.
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5.2 Community evolution

Following the footsteps of Palla et al. [23], we compared the sizes and lifetimes
of communities. Figure 2 displays our findings on the bank dataset. As we have
concluded in the previous section, the community structure of this dataset changes
very rapidly. For almost all sizes of communities the number of deaths outweigh
all other community events. The only exceptions are very small communities of
sizes three and four. It should also be noted, that there is a small spike of the
obscure cases for the large communities. Aside from these, it can be said, that
the size of a community does not relate to the community event it is involved in.
Most importantly, the findings do not confirm the results of [23] that the expected
lifetime of a community is a monotone function of its size. For a decisive result,
further studies are needed.

If we take the intersection graph approach displayed on Figure 3, the results are
almost the same, except for the largest communities. These cases are classified as
obscure cases in contrast to declaring them dead as before.

Figure 4: The percentage of community events compared to the community sizes
for the social graph dataset with one month difference. The results were generated
with the union graph approach.

The social network shows very different behavior. Figure 4 shows results for a
one month time lapse. The percentage of death events is very small and constant
compared to the community sizes, which is in contrast to the previous dataset.
The number of unchanged communities is very high for small sizes, and decreases
monotonically. This behavior was also reported in [23].

For large communities the contraction and split events dominate. The number
of these events increases monotonically. The number of growth and merge events is
small and independent of the sizes, which is somewhat surprising considering their
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symmetrical counterparts. The number of all other events is small and independent
of the community sizes. These results also indicate a more stable nature for this
dataset.

Figure 5 shows the results for the four month interval. It is clear that in a four
month interval, the community structure of a network can change dramatically, yet
the difference between the results for the bank dataset and this one is clear. The
number of deaths is significantly lower, but still relevant, and except for the smallest
communities, independent of size. The number of birth events is lower than the
number of death events, this matches with our observations in the previous chapter.
The number of unchanged events is high for small communities, and it decreases
somewhat faster, than in the previous network. The number of split events is
increasing much faster than before, and contraction events are dominant even for
medium sized communities. It should also be noted that small communities aside,
the number of contraction events is independent from the community sizes. The
number of all the other cases is small and constant.

The findings above reveal a strange behavior: while this network is more stable
than the banking network, in some sense it is steadily loosing communities. The
banking network on the other hand changes more dynamically, but it is in a state
of equilibrium.

For the social network, the intersection method provides almost the same results,
with the percentage of death events being slightly lower.

Figure 5: The percentage of community events compared to the community sizes
for the social graph dataset with four months difference. The results were generated
with the union graph approach.
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6 Conclusion

Based on the earlier results of [23, 2] we have developed a new algorithm and
methodology for following the life cycle of communities in dynamic graphs. The
methodology successfully extends the incomplete notions used in [23], and results
in an algorithm that works based on general community detection methods. The
algorithm is very fast, it solves large community matching problems in seconds.

We have worked with two large datasets with fixed observation periods. Our
findings indicate, that there is a significant difference between the behavior of the
community structures and dynamics of these datasets. One of the networks is
more stable, but looses communities steadily, the other network is more dynamical,
but maintains its community number. We have also examined the changes in
community structure in relation with the sizes of the involved communities. Our
findings confirm some of the claims of [23], however not all of them.
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