Acta Cybernetica 20 (2011) 111-123.

Calculating Non-Equidistant Discretizations
Generated by Blaschke Products®

Levente Locsit

Abstract

The argument functions of Blaschke products provide a very elegant way of
handling non-uniformity of discretizations. In this paper we analyse the effi-
ciency of numerical methods as the bisection method and Newton’s method in
the case of calculating non-equidistant discretizations generated by Blaschke
products.

By taking advantage of the strictly increasing property of argument func-
tions we may calculate the discrete points in an enhanced order—to be in-
troduced here. The efficiency of the discrete points’ sequential calculation in
this order is significantly increased compared to the naive implementation.

In our research we are primarily motivated by ECG curves which usually
have alternating regions of high or low variability, and therefore different
degree of discretization is needed at different regions of the signals.

Keywords: non-equidistant discretization, Blaschke products

1 Introduction

In many cases non-equidistant discretizations (or non-uniform divisions) have been
proven very useful. Many examples can be found from the fields of computer
graphics (e.g. NURBS curves) to FFT analysis by engineering sciences.

In our research we are investigating a very elegant way of handling non-unifor-
mity in the case of signals (e.g. ECG signals) with regions of high variability and
therefore more detail, dense discretization needed, and with constant-like regions
where less detail, sparse discretization is enough. The Blaschke functions, Blaschke
products and their associated argument functions are used to describe a suitable
non-equidistant discretization. The inverse image of an equidistant discretization
according to an argument function is considered.

One can give an explicit form of the inverse of an argument function associated
to a Blaschke function: the inverse can be simply calculated. But in the case

*This work was supported by the European Union and co-financed by the European Social
Fund (grant agreement no. TAMOP 4.2.1./B-09/1/KMR-2010-0003).

TE6tvos Lorand University, Faculty of Informatics, Department of Numerical Analysis, H1117
Budapest, Pazmény Péter sétdny 1/C. E-mail: locsi@inf.elte.hu

DOI: 10.14232/actacyb.20.1.2011.9

112 Levente Locsi

of Blaschke products, the inverse of the argument function has no explicit form,
numerical methods are needed to solve the arising non-linear equations. We have
as many equations as the number of points in the discretization to generate.

In the work to be presented here we analyse the efficiency of methods like the
well-known bisection method and Newton’s method applied to this problem. By
taking advantage of non-uniformity and the strictly increasing property of argument
functions, we may solve the equations at hand in a clever order also to be explained.
The advantages and disadvantages of these methods and their combinations are to
be analysed.

In Section 2 we introduce the argument functions (associated to Blaschke func-
tions and products) as they serve as the starting point for the research presented
here. Then we show how we can define a non-equidistant discretization (NED)
according to an argument function.

Then in Section 3 we describe the methods that can be used to calculate a
NED, analyse their advantages and disadvantaged and introduce the idea of a
better order to calculate the discrete points. Finally in Section 4 we present our
results concerning calculation step count and time.

A section exhibiting possible further research areas, and the Summary concludes
this paper.

2 Non-equidistant discretizations

In this section we describe the Blaschke functions and products, define the argument
function of those and show how a NED can be defined. We are focusing mainly
on the properties of the argument function, therefore we do not provide a detailed
description of Blaschke functions. For a proper definition, further analysis and
detailed calculations see e.g. [1, 3].

Blaschke functions are a family of complex valued functions of a complex vari-
able with one additional complex parameter® inside the complex unit disk, i.e.:

By:C—=C, (a=r-¢% 0<r<l1, pcR),

and they are defined by the formula:

zZ—a

T zec\ {1/},

These functions have the following property which we will use later on: they are a
continuous bijection from the unit circle onto itself.
Blaschke products are essentially products of Blaschke functions.

B.(z) =

Note some basic properties of Blaschke functions. The function B, has a zero
inside the unit circle (B,(a) = 0), and it has a pole of order one outside the unit
circle in the point 1/a.

1A second parameter may also be introduced, but is of no importance in this context.

Calculating Non-Equidistant Discretizations 113

Blaschke functions and products have many interesting properties and wide
ranges of mathematical application. E.g. the isometric transformations on the
Poincaré disk model of hyperbolic geometry can be written in terms of Blaschke
functions; they can describe rational orthogonal systems?; UDMD systems can be
formed with them, which allows the application of FFT-like algorithms; they form
a group with respect to the composition of functions, so wavelet-like transforms
can be defined related to them; etc. See [4, 5, 6, 7].

From the bijection property of the function B, comes that to every ¢t € R we
can assign a unique u € [—7, 7| so that expiu = B,(expit). This leads us to the
definition of the argument function associated to a Blaschke function:

Ba: R—=R, Bu(t) = argBa(eit).

The B, argument function has the explicit form

Ba(t) = (6 + @) + 2arctan (1—1 tan tTSﬁ) ; (1)

where a = 7 - exp iy, and a further § value is introduced®, which should be chosen
so that 8, becomes a continuous bijection of [—7, 7) for our convenience. Note that
B4 is strictly increasing and invertible.

The argument function of a Blaschke product is defined as

I 1 &
Bas o (t) = —arg [[Ba, (2) = — 3 fa, (8), 2)
j=1 j=1

with the a; (j = 1,...,n) parameters all inside the complex unit disk. This def-
inition makes use of the fact that the argument of the product of two complex
numbers is the sum of the arguments of each. Also the 1/m factor is applied to
maintain the [—m, 7) bijection property.

A NED is defined as the inverse image of an equidistant discretization. Consider
the following set of N € N equidistant points:

2
Dévi{ﬁ+k'ﬁﬂ20§k§N1}C[7T,7T).

Then for given 1 < m € N, and ay, ..., a, parameters the set

DN ay = {ﬁ_l (t) : te D(])V} C [-m,m)

ALyeeey A1,..,Am

is a non-equidistant discretization (NED) of N points on the interval [—7, 7).

2The Malmquist-Takenaka systems can be written in explicit form using Blaschke products.
3This 6 value depends on the previously mentioned possible second parameter of the Blaschke

functions, when rigorously defined. One could consider B, 4 = d - f__gz and d = exp 4.

114 Levente Locsi

JE T T T T =
2F 4
1 .
0 .
_1- .
,2_ — .

-3 -2 -1 0 1 2 3

(a) a=12/3

JET T T T T T -
2_ .
1 -
0 4
AE] 4
2E i
3E | | L . 1 =

-3 -2 -1 0 1 2 3

() a1 =—-4/5-49, a2 =1/2-4

Figure 1: Argument functions and NEDs.

Figure 1 shows two example NEDs of N = 24 points. The first one is generated
by a Blaschke function and the second one is generated by a two-factor Blaschke
product with the indicated parameters. Observe that the location of the more
dense areas depend on the argument of the parameter, and the degree of density
corresponds to the absolute value of the parameters.*

Therefore we gain high control over the distribution of discrete points and so
our discretization can be flexibly adapted to different problems, signals.

Non-equidistant discretizations play an important role in mathematics and ap-
plications. E.g. when m = N, the Malmquist—Takenaka system corresponding to
the parameters aq,as,...,a,, forms a discrete orthogonal system with respect to
a scalar product defined on NED points; representation of signals and systems
(Nyquist and Bode diagrams) can be improved using NEDs; etc. See works of
authors of [1, 2, 3].

3 Calculating a NED

In this section we discuss the methods available for the numerical calculation of a
NED, and describe an enhancement of the bisection method for this problem.

4Now we can see, that § does not influence the density in any relevant way, it was really
introduced only for convenience. (In this context.)

Calculating Non-Equidistant Discretizations 115

3.1 General observations and notation

Given 1 < N € N, the number of discrete points and as,...,a;, (1 < m € N) set
of parameters, denote the discrete points of an equidistant discretization by

2
dp=—m+k —= (O0<k<N-1),
N
and the corresponding points of the NED by
er =0y o () (0<k<N-1). (3)

To calculate the NED of N points with these parameters, basically we must
find the ey values for all 0 < k < N — 1, as the calculation of the dj values is quite
straightforward. When we have only m = 1 parameter, then the inverse formula of
the argument function in (3) can be explicitly given, recall the definition in formula
(1). No further effort is needed. But having m > 1 parameters, the inverse has
no explicit form, numerical methods are needed to solve the N arising non-linear
equations.

The most simple methods at hand are the well-known bisection method and
Newton’s method. Both have their own advantages and problems. The bisection
method surely converges because of the strictly increasing property of the argument
functions (the first derivative is greater than zero), but it requires a lot of calculation
and converges only in first order. Newton’s method would converge in order two
(the first derivative is non-zero), but it needs to be initialized close enough to the
solution, therefore we still need e.g. the bisection method to determine a suitable
initialization point.

The derivative of an argument function according to (1) and (2) has the form:

/ _ 1_T2 / L 1 /
Balt) = 1472 —2rcos(t —)’ and By, an (8) 3= Ezﬁaj(t)'

The positivity follows from the detailed calculation, see [1].

3.2 Applying the bisection method

When applying the bisection method to find all the e values with the prescribed
precision € > 0, we should solve N — 1 (for 1 < k < N — 1) non-linear equations
one-by-one, i.e. apply the bisection method N — 1 times. (Note that the solution
eop = dp = —m is trivial.) So the naive implementation would go as written in
Algorithm 1. Denote simply by £ the argument function at hand.

This algorithm needs (N — 1) - [log,(27/€)] steps to reach the prescribed pre-
cision. (The case in Line 11 is very unlikely to happen.)

3.3 Enhancing the order of calculation

We may find that the naive implementation does not take any advantage of previ-
ously calculated solutions. But when calculating e.g. e3, we might make use of ey

116 Levente Locsi

Algorithm 1 Naive implementation of calculating all e, values using the bisection
method.

1: eg < —m

2: fork=1,..., N—1do for the rest of the points
3: a+ —m b+

4: ¢+ (a+b)/2

5: whileb—a > ¢ do do standard bisection iteration
6: if ﬂ(c) < di then

T a < c

8: else if 3(c) > di then

9: b+ c
10: else
11: break
12: end if
13: c+ (a+0b)/2

14: end while
15: e < C
16: end for

and ey if these have been already found, and initialize the bisection iteration using
these two values. The strictly increasing property of the argument function ensures
that es lies between es; and ey.

Consider the example when 8 points should be calculated. Having found ey and
e4, the calculation of e; can be initialized using these values, therefore the bisection
method could save 1 step (in average), since we have started with an interval of
half the length of the original. Continuing similarly with e; and ez we may find
that 1 more step can be saved for each.

Generally with the order given by the preorder traversal of a balanced binary
search tree containing the values 1 trough N — 1, we may save considerable amount
of steps the bisection method to take.

Now we shall give the algorithm of calculating this order in an effective way (see
Algorithm 2) with an example of a filled table in the case N = 12 (see Table 1).

Table 1: The appropriate calculation order of points and its generation.

j |1 2 3 4 5 6 7 8 9 10 11 12 13
n(j) 0 12 6 3 9 1 4 7 10 2 5 8 11
pG) |- - 0 0 6 0 3 6 9 1 4 7 10
p(f) | - - 12 6 12 3 6 9 12 3 6 9 12

The table to be filled to generate this order of point contains the j indices, the
points in the appropriate n(j) order and p1(j), p2(j) 'parents’ of the points. In the
generating algorithm we are going along the columns of this table starting with

Calculating Non-Equidistant Discretizations 117

column 3, and put the ’children’ of the current column in the next free columns of
the table. The variable name w denotes the column currently watched and f the
next column to be filled.

Algorithm 2 The generation of the enhanced order of points.

1: n(l) « 0, n(2) < N

2 n(3) |N/2), p1(3) < 0, pa(3) « N

3w+ 3, f+4

4: while f < N+ 1 do while table is not filled
5. if n(w) — p1(w) > 1 then if there are points in between
6 pi(f) < pw) p2(f) < n(w)
= n(f) < [(f) +p2(f))/2]
8:
9

f<f+1
end if
10: if po(w) —n(w) >1and f < N +1 then the other side

11 p1(f) < n(w), pz(f)%m()
2 n(f) < [paf) +pa())/2)
13: f<f+1

14: end if

15: w+—w+1

16: end while

And finally we show the algorithm of the bisection method enhanced with this
order of calculation: see Algorithm 3. For convenience we define ey := 7. This
algorithm uses the table generated by Algorithm 2.

Algorithm 3 Enhanced implementation of calculating all e; values using the bi-
section method and the order generated by Algorithm 2.
1: eg < —m, eN < T

2: for j=3,..., N+1do for the rest of the points
3: k TL(])

4 a ey, b ep)

5. c<+ (a+b)/2

6: whileb—a>¢do do standard bisection iteration
7 the same iteration step

8 end while

9: e < C

10: end for

3.4 Applying Newton’s method

We have already noted that Newton’s method should be initialized close enough
to the solution to ensure (quadratic) convergence. The starting points required
must be calculated with e.g. the bisection method. To make a proper statement

118 Levente Locsi

about what ’close enough’ precisely means requires more detailed analysis and goes
beyond the extent of this paper. So the application of Newton’s method can be
thought of as an improvement of the results (e values) calculated by the bisection
method.

The iteration goes as usual according to the formula

e(nea:t) — e — /B(ek) —dy, '

k = Ck B'(ex)
Note that the function values are given by 3(ex) — dy, since this is the expression
whose zero is to be found. The iteration terminates when e,(cnewt) — ey, | falls beneath

a prescribed € > 0 precision.

4 Results

In this section we describe and analyse our measurements and results concerning
step counts of the bisection method, execution time, and the application of New-
ton’s method. Both theoretical and measured values are to be displayed.

4.1 Step counts of the bisection method

Figure 2 shows for each ey, (0 < k < N = 32) point how many steps the bisection
method takes to reach the precision ¢ = 1073,

Light columns show that the calculation of every ey, value (except ep) needed 13
steps using the naive implementation. This corresponds to the theoretical number
[log,(27/1073)] = 13. Dark columns show the number of steps for each ey using
the enhanced order we defined earlier. By comparing the dark region with the
whole diagram, we find that globally we can save many steps. Our gain can be
visualized as the region that actually seams light gray.

Figure 2(a) shows the theoretical number of steps® as described in Section 3.3.
Figure 2(b) shows the case of 1 parameter. We may see that we do not exactly
save 1 step every time: sometimes none, but in some cases even 2 or more. We
did not actually needed numerical methods for the above, but did in the case of 2
parameters (shown on 2(c)). The step gain also varies with k. One may observe
the close relationship of these values to the parameters.

These images provide an elegant visualization of how many steps can be saved,
and suggest that the theoretical estimation of global step saving is close to the real.

4.2 Step count and execution time ratios

Our further inspections target the fact, that the number of points and the required
precision firmly affects the step count saving of the enhanced implementation of
the bisection method compared to the naive one.

5Note that this theoretical step count can be approximated in the case of 1 parameter while
this parameter tends to zero.

Calculating Non-Equidistant Discretizations 119

14

0 4 8 12 16 20 24 28

(a) Theoretical.

14

0 4 8 12 16 20 24 28

(b) 1 parameter (a1 = 3/4).

14

0 4 8 12 16 20 24 28

(c¢) 2 parameters (a1 = —1/2-4,a2 = 3/4-1).

Figure 2: Theoretical and real step counts.

120 Levente Locsi

When the precision becomes greater (i.e. € becomes smaller) the required step
counts grows, but the saving does not. And as the number of points grow, the saving
also increases. (Because—roughly speaking—the new points usually lie between
previously calculated ones, therefore require even less steps.)

Figure 3 shows the step count ratios of the enhanced and the naive imple-
mentation of the bisection algorithm corresponding to various number of points
(2!, 1 = 4,5,6,7,8) and precisions (1077, p = 3,4,5,6,7). Figure 3(a) show the
theoretic estimation of these ratios according using calculations similar to which re-
sulted in Figure 2(a). Figure 3(b) shows the measured step count ratios in the case
of 2 parameters randomly chosen inside the unit disk. Each value is the average of
10 independent measurements.

One can see that the theoretic estimations are very close to the real measure-
ments, and the enhanced method requires about 50-90% of the steps of the naive
implementation depending on the number of points and the precision to reach.
The least saving can be seen when there are few points and high precision required,
and the most saving can be observed when we have lots of points and require low
precision.

We have obtained similar results concerning execution time.

4.3 Applying Newton’s method

As described in Section 3.4, Newton’s method can be considered mainly as an
improvement of the results calculated by the bisection method.

To analyse the efficiency of Newton’s method compared to the bisection method
(the enhanced version) we measured the execution time (in seconds) of the bisection
method to precision 10712 (dashed line), and of Newton’s method to the same
precision after initialized with precision 10~2 (thin solid line) and 10~2 (thick solid
line) in the case of 2! (I = 4,5,6,7,8) points. The results can be seen on Figure 4.

One may observe the quadratic convergence (it is much faster than the linear),
and that 1072 precision is close enough for the Newton’s method to start. Also a
near linear dependency can be seen between the number of points and the execution
time.

5 Further research

Related to the experiments described in the previous sections we can found many
aspects that may be further clarified or elaborated.

Parallel implementation is a very obvious intention since the discrete points
can be independently calculated. Experimenting with the emerging paradigm of
general purpose GPU computing may be valuable.

The deeper mathematical analysis of the Newton method’s initialization needs
seems very interesting. Which bounds could be deduced (from known theorems)
at each point, from where Newton’s method would surely converge? Could these
results be efficiently applied to further improve the speed of the calculation?

Calculating Non-Equidistant Discretizations 121

(a) Theoretical.

(b) Measured.

Figure 3: Step count ratios of the enhanced and the naive implementation of the
bisection algorithm.

122 Levente Locsi

0,9

0,8 7

0,7 7

0,6 ,

0,5 4

0,4 r

0,3 z
P
. . /
0.2 - /
0,1 =

16 32 64 128 256

- = Bis. 1E-12 Bis. 1E-2, Newton 1E-12 ~ ===Bijs. 1E-3, Newton 1E-12

Figure 4: Execution times using Newton’s method.

May the inverse of an argument function associated to a Blaschke product be
approximated (or found explicitly)?

Multidimensional generalizations of non-equidistant discretizations of this kind
could also be investigated. Possible application areas may be found e.g. at the fields
of image processing or sampling methods.

6 Summary

We have made several experiments concerning the calculation of non-equidistant
discretizations generated by Blaschke products and the associated argument func-
tions. To our knowledge, no effort has been made before in this area.

We have managed to reduce the time needed for the calculation (using the
bisection method) to about 50-70% of the original time by introducing a better
order of the discrete points to calculate.

Further improvements have been measured by applying Newton’s algorithm
combined with the above.

7 Acknowledgements

This work was supported by the European Union and co-financed by the European
Social Fund (grant agreement no. TAMOP 4.2.1./B-09/1/KMR-2010-0003).

The author also wishes to thank the organizers of the 7" Conference of PhD
Students in Computer Science (CSCS 2010) at the Institute of Informatics, Uni-
versity of Szeged.

Calculating Non-Equidistant Discretizations 123

References

[1]

2]

Bokor, Jézsef and Schipp, Ferenc. Approximate linear h> identification in
Laguerre and Kautz basis. IFAC Automatica J., 34:463—468, 1998.

Bokor, Jézsef, Schipp, Ferenc, and Soumelidis, Alexandros. Frequency domain
representation of signals in rational orthogonal bases. In Proceedings of the 10™
Mediterranean Conference on Control and Automation, Lisbon, Portugal, 2002.

Pap, Margit and Schipp, Ferenc. Malmquist—Takenaka systems and equilibrium
conditions. Mathematica Pannonica, 12:185-194, 2001.

Pap, Margit and Schipp, Ferenc. The voice transform on the Blaschke group I.
Pure Mathematics and Applications (Pu.M.A.), 17(3-4):387-395, 2006.

Pap, Margit and Schipp, Ferenc. The voice transform on the Blaschke group
II. Annales Universitatis Scientarium Budapestinensis Sectio Computatorica,
29:157-173, 2008.

Pap, Margit and Schipp, Ferenc. The voice transform on the Blaschke group
ITII. Publicationes Mathematicae Debrecen, 75(1-2):263-283, 2009.

Schipp, Ferenc. Fast Fourier transform for rational systems. Mathematica
Pannonica, 13(2):265-275, 2002.

