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Abstract

It has already been shown that the choice of projection angles can sig-
nificantly influence the quality of reconstructions in discrete tomography. In
this contribution we summarize and extend the previous results by explaining
and demonstrating the effects of projection selection dependency, in a set of
experimental software tests. We perform reconstructions of software phan-
toms, by using different binary tomography reconstruction algorithms, from
different equiangular and non-equiangular projections sets, under various con-
ditions (i.e., when the objects to be reconstructed undergo slight topological
changes, or the projection data is affected by noise) and compare the results
with suitable approaches. Based on our observations, we reveal regularities
in the resulting data and discuss possible consequences of such projection
selection dependency in binary tomography.

Keywords: discrete tomography, reconstruction, adaptive projection acqui-
sition, GPU-accelerated computing, non-destructive testing

1 Introduction

The main goal of transmission tomography is to reconstruct the inner structure
of given objects from a set of their projections. This is usually done by exposing
the object of study to some electromagnetic or particle radiation at one side and
measuring the amount of received energy on the other end. After the projections
have been gathered, one can apply certain reconstruction algorithms for discovering
the linear attenuation coefficients of the object at its different points.

The reconstruction can be performed in many ways. In the ideal case (when we
have hundreds of projections available) one can use, e.g., the filtered backprojection
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method or other continuous techniques for finding the reconstruction of arbitrary
objects [7, 12]. Unfortunately, acquiring hundreds of projections is sometimes im-
possible, since taking too many of them can be expensive or can even damage the
object of study. In this case, one can try to improve the quality of the reconstruc-
tion basically in two ways. One approach is to take the projections having the
highest information content in order to get sufficient information from fewer pro-
jections [15]. Another common approach is to develop more accurate reconstruction
algorithms by using some prior information of the objects of interest.

In discrete tomography [8, 9] we assume that the object to be reconstructed
consists of only a few (usually 2 to 4) materials, having known attenuation coef-
ficients. With such a strong prior information, algorithms have been developed
capable of producing accurate reconstructions from a limited amount of (say, up
to 10) projections. However, the low number of projections gives a relatively high
freedom in choosing the directions to take projections with.

Our previous studies [14, 17, 18, 19] revealed that different projection sets of an
object can have entirely different information content, some holding more or less
information than others. Despite their good performance, discrete reconstruction
algorithms still require a certain amount of information to produce an accurate
result, otherwise there can be numerous possible solutions, and among them just
one is considered to be correct. This makes finding the proper angles essentially
important in the case of discrete tomography, since we can get entirely different
reconstructions from projection sets with even the same number of projections.

There are also theoretical results, giving upper bounds to the number of required
projections in case of reconstructing convex objects [6]. Also, one of our long–
term goals is to discover a more general description on how determined a binary
reconstruction can be by a given set of projections.

The main aim of our current study is to determine, whether the result of a
reconstruction can be improved by finding the correct directions to take projections
with. If the result can be improved in such a way, one can develop more accurate
reconstruction techniques, capable of providing better reconstructions exclusively
by finding the appropriate projection angles.

In this paper, we summarize and extend the previous results connected to the
angle selection dependency in binary tomography. We conduct experimental soft-
ware tests on phantom images by reconstructing them from different equiangular
and non-equiangular sets of their projections and compare the resulting recon-
structions. We do experiments by applying three different binary reconstruction
algorithms, and examine the effects of modifications of data, i.e., when the projec-
tions are corrupted by noise, or the object to be reconstructed is slightly altered
(for example it has fractures or unwanted holes in it). The novelty of our studies
lies in examining the case, when we allow the usage of non-equiangular projection
sets and in the same time assume presence of distortions of the data. Furthermore,
we will give a brief description of the nature of the problem, and describe some of
its possible consequences.

Although, we do mention some angle selection strategies in this paper, we must
highlight that our goal is not to propose a new reconstruction algorithm, but only
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to evaluate the direction-dependency of three currently existing ones. We must also
note that – although our results contain an explicit evaluation of the performance
of the three selected reconstruction algorithms – we do not intend to compare them
and decide which one is the best.

The paper is structured as follows. In Section 2 we introduce a formulation of
the transmission tomography problem, and in Section 3 we present algorithms for
solving it in the binary case. In Section 4 we describe the test frameset used for our
experiments. In Section 5 we give some of our results, and provide an explanation
of them. Finally, in Section 6 we conclude our work, and suggest some possible
extensions of it.

2 Transmission Tomography

In this chapter we will provide a model of the continuous two-dimensional to-
mographic reconstruction problem, that will serve as the basis of describing the
formulation of the reconstruction problem in the discrete environment.

In a common representation of two-dimensional transmission tomography there
is an unknown f : R2 → R function we want to reconstruct (usually, because it
represents the two-dimensional cross-section of a real-world object). The only data
we can measure about this unknown function is a set of its line integrals given by
the Radon-transform as

[Rf ](α, t) =

∫ ∞

−∞

f(t cos(α)− q sin(α), t sin(α) + q cos(α)) dq , (1)

where the α and t value, respectively, describes the direction and the position
of a line in the two-dimensional space, with its points parameterized by q. In
transmission tomography the task is to reconstruct an f ′ function that has the
same projections as the original f(u, v) function, in a set of predefined directions.
Theoretically, this problem can be solved by exact mathematical methods when all
possible [Rf ](α, p) values are available [7, 12].

Unfortunately, in a practical application we usually can only deal with a finite
number of values therefore we have to discretize the model applied for both the
projection data and the function to be reconstructed. In the followings, we will
assume that the function to be reconstructed has constant values on each unit
square shaped region determined by the two-dimensional integer lattice, that is

f(u+ a, v + b) = f(u+ c, v + d); u, v ∈ Z; a, b, c, d ∈ [0, 1) . (2)

We will further assume that the function f has a bounded support, therefore
without the loss of generality we can say that in (2) u, v ∈

{[

−n
2 , n

2

)

∩ Z
}

with a
constant n value. This restriction does not affect the applicability of the model,
since in a real-world application we do not have infinitely large objects to deal with.
This way, the task can be regarded as the reconstruction of an n × n pixel-sized
image, from its projections.
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Figure 1: Representation of the ordering of the pixels and the parallel-beam geom-
etry used.

In our experiments a projection was defined as a set of [Rf ](α, t) values with
the same α angles and

t ∈
{

k + 0.5 | k ∈ N, |k + 0.5| ≤ n/
√
2
}

(3)

values, assuming that the origin of the coordinate system was placed into the center
of the image to be reconstructed. In the defined projection geometry, a projection
is composed of integrals taken along a set of equidistantly placed parallel lines.
The distance between the neighboring projection lines was set to be 1 unit in the
coordinate system and we used as many projection lines as needed to cover the
whole image. The rotation center used for controlling the relation of the image and
the projections was placed half-way between two projection lines, and in the center
of the image to be reconstructed.

Using the previous restrictions the reconstruction problem can be represented
by a system of equations

Ax = b; A = (ai,j)m×n2 ∈ R
m×n2

, x ∈ R
n2

, b ∈ R
m , (4)

where x denotes the ordered sequence of the pixels of the unknown image to be
reconstructed, b is the sequence of the measured projection values and A describes
the connection between x and b, where all ai,j elements give the length of the line
segment of the i-th projection line through the j-th pixel. An illustration can be
seen in Figure 1. Ideally, by solving equation system (4) we can get the pixel values
of an image that has exactly the same projections as the measured ones.

Although, there are several general methods for solving equation systems, a
direct method for finding the solutions of (4) is usually not the best approach. The
resulting equation system can be too large for exact equation system solvers and
might also be underdetermined, possibly yielding an infinite number of solutions.
On the other hand, we cannot even guarantee that there is a solution, since – due
to measurement errors and noise – the equation system can be inconsistent as well.

The different types of the algebraic reconstruction techniques [2, 7, 12] try to
overcome this problem by applying iterative algorithms to approximate a solution,
from a suitably chosen initial suggestion.
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Another group of reconstruction methods reformulate the task as an energy
minimization problem with a given

C(x) = ‖Ax− b‖22 + λ · g(x) (5)

energy function. In the above formulation A, b, and x are the same as defined in
(4) and g(x) is a function representing additional information about the image to
be reconstructed with a given λ weight. In the ideal case, we can find a vector x∗,
where (5) takes its minimal value, with an appropriate general optimizer [1, 14].
This x∗ vector will represent the desired reconstruction. The main advantage of
this approach is that it can easily incorporate some a priori information into the
model via a suitable g(x) function.

3 Binary Reconstruction Algorithms

We examined the projection selection dependency in binary tomography, i.e., in
the case when the results can contain only binary values (and x ∈ {0, 1}n2

in (4)).
In our experiments we applied three suitable binary tomographic reconstruction al-
gorithms from the corresponding literature. All three algorithms are deterministic,
therefore their results are unique for each input and can easily be evaluated. The
brief introduction of the algorithms can be given as follows.

3.1 Thresholded Simultaneous Iterative Reconstruction
Technique (TSIRT)

The first algorithm was basically a continuous reconstruction followed by a thresh-
olding. The continuous reconstruction was produced by the Simultaneous Iterative
Reconstruction Technique (SIRT) [7, 12], which is an iterative algorithm for finding
an approximate solution of (4). After obtaining the continuous result we applied a
thresholding of the pixel values with a 0.5 threshold.

3.2 Discrete Algebraic Reconstruction Technique (DART)

The second algorithm was the Discrete Algebraic Reconstruction Technique [2],
which is a combination of an algebraic based reconstruction method and a iterated
thresholding. The DART starts by producing a continuous reconstruction using a
suitable algorithm, and applies a thresholding of the result. Later, the values of
the boundary pixels are fine-tuned by an iterative process.

In our experiments, we applied 10 iterations of the SIRT algorithm to obtain
the continuous reconstructions, and used a threshold value of 0.5.

3.3 Energy Minimization Tomography with DC Program-
ming

The third algorithm – that was first introduced in [16] – is based on DC program-
ming (a numerical method for minimizing the difference of convex functions), and
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performs the reconstruction by minimizing an energy function given as

Jλ(x) := ‖Ax− b‖22 +
γ

2

n2

∑

j=1

∑

l∈N4(j)

(xj − xl)
2 − λ

1

2
〈x,x− e〉 , x ∈ [0, 1]n

2

. (6)

Here, γ is a fixed constant to control the weight of the smoothness term on the
result, N4(j) is the set of pixels 4-connected to the j-th pixel, and e denotes the
vector with all n2 coordinates equal to 1. This algorithm starts with approximating
an optimal continuous result by minimizing the energy function with a λ = 0 value.
After, an iterated process forces binary results, by proceeding with the minimization
while periodically increasing λ with a λ∆ value.

In the sequel, we will simply call this algorithm ”DC”. In the reconstructions
the parameter settings of the DC algorithm were determined as in [17].

4 Test Frameset

We conducted experimental tests on a set of software phantoms. We reconstructed
them from different sets of their projections and we evaluated the results from two
different viewpoints. First, we compared the reconstructions of the same phantoms,
under the same conditions but from different sets of their projections. With the
result of these experiments, we could determine how dependent the reconstruction
of a specific object – performed by a specific algorithm – can be on the choice of
projection angles. Secondly, we compared the reconstruction of the same objects,
performed by using the same projection directions, but under different conditions
(original and altered versions of the objects, addition of different levels of noise,
or in case when the reconstruction is performed by different algorithms), in order
to see if there are regularities of the projection selection dependency of an object
which can be possibly used in practical applications.

Our test database consisted of 10 phantom images, all having the same size of
128× 128 pixels. The database could be divided into two parts, 5 basic phantoms
with different properties (those can be seen in Figure 2) and a slightly altered
version of each basic phantom (the ones shown in Figure 3), which simulate small
distortions of the object of study (i.e., fractures or bubbles).

The elements of the test database were chosen based on previous studies [2,
14, 16, 17, 18, 19]. Phantoms like the ones of Figure 2a and Figure 2b, containing
circles in a ring, are commonly used test images in discrete tomography, since they
are easy to generate but relatively hard to reconstruct. The ones in Figure 2c and
Figure 2d are phantoms similar to complex real world objects. Finally, Figure 2e
shows a highly direction dependent image, that is useful for illustrating our results.

For simulating measurement errors during the projection acquisition phase of
a real-world application, some of the experiments were performed using projection
data corrupted by noise. In a real application the gathered projection data can be
degraded by different artifacts – e.g.: beam hardening, photon scattering, imper-
fections of the detectors, background noise, etc. – most of which can be handled
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a) b) c)

d) e)

Figure 2: Basic images in the test database.

a) b) c)

d) e)

Figure 3: Altered images in the test database.
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by preprocessing steps [3, 5, 10, 13]. Unfortunately, it was impossible to simulate
all these effects in our experiments. Therefore, we decided to apply an additive
Gaussian noise, which is a common technique for modeling noise is transmission
tomography [4, 5, 13, 20].

In each case the mean value of the noise was set to µ = 0, and the standard
deviation was chosen from the set σ ∈ {0.5; 1.5; 5.0}. Taken, that the mean of the
projection values was approximately 40, we can say that the amount of noise in the
projection was respectively 0%, 1.25%, 3.75% and 12.5%, compared to the amount
of useful data. Together with the noiseless case, this gave four different versions
of the projection data. We generated and stored the noise in advance, before the
reconstructions, in order to ensure the same conditions in all experiments.

The reconstruction algorithms were implemented with GPU acceleration using
the NVIDIA CUDA programming toolkit [21]. For the computation we used a 2.66
GHz Core 2 Quad CPU, and an NVIDIA GeForce GTS250 GPU. With this highly
parallel implementation the time required to perform all 1145224 reconstruction
tasks was about 500 hours.

For the evaluation of the results we used a numerical error measurement called
Relative Mean Error (RME) that was defined in [11]. The RME value of a recon-
struction is computed as

RME(x∗,y) =

∑n

i=1 |x∗
i − yi|

∑n

i=1 x
∗
i

. (7)

Here x∗ denotes the vector of pixel values of an expected reconstruction (in our case
the pixel values of the phantom processed) and y is the reconstruction provided
by one of the reconstruction algorithms described in Section 3, performed under a
specific set of conditions (we will refer to the phantom and its reconstruction given
by x∗ and y, in the text). Informally, the RME value gives the ratio of missed
pixels in a binary reconstruction, normalized by the number of object pixels on the
expected image. The main advantage of the RME measurement is that it gives the
amount of error compared to the size of the object of study, and not the image itself
(thus the error measurement is not affected by the zero padding of the image to be
reconstructed). As a consequence the RME measurement can take values higher
than 1, but fortunately this does not affect our evaluations, since we are interested
in comparing the reconstructions to each other (and not determining their quality).

We generated the projection sets used in our experiments with two angle set
selection techniques described in [18]. In the followings we shortly describe them.

4.1 Equiangular Angle Sets

The first type of angle sets were generated equiangularly along the half circle. Such
projection angle sets are uniquely determined by their number of p projections and
a starting angle α as

S(α, p) = {α+ i
180◦

p
| i = 0, . . . , p− 1} . (8)
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Figure 4: Example of the equiangular projection angle sets (angle set S(α, 4)).

An example of the equiangular angle sets is given in Figure 4. With our notation
0◦ stands for vertical projection beams, aimed from the bottom to the top of the
image.

With each image, reconstruction algorithm and specified noise, we performed
reconstructions from projection sets S(α, p), with p ∈ {2, . . . 18} projection numbers
and all integer α starting angles ranging between 0◦ to ⌊ 180◦

p
⌋.

4.2 Angle Set Selection with Greedy Angle Testing

We also conducted experiments on several non-equiangular projection sets. Un-
fortunately, the extremely high number of such sets (even assuming only integer
angles between 0◦ and 179◦ with 2 projections would produce

(

180
2

)

= 16110 possi-
ble angle sets) made it impossible to perform such a thorough testing that we did
in the equiangular case. Therefore, we had to choose a smaller subset of all the
possibilities.

In accordance to practical applications we restricted our studies to projection
sets producing highly accurate results. We must note that the performance of pro-
jection sets strongly depends on the image to be reconstructed, and other conditions
– like the applied reconstruction algorithm or noise – can also have influence on the
information content of the projections. Therefore, we generated non-equiangular
angle sets for each image, algorithm and noise level, trying to find highly accurate
projections sets.

For the purpose of generating the desired angle sets we used the greedy angle
selection algorithm of [18], that produces an L = 〈α1, α2, . . . , αp〉 ordered list of
angles as follows.

Greedy: Greedy angle selection algorithm.
Input: x∗ vector of image pixel values, p ≥ 2 maximal number of angles, and

1 ≤ α1 ≤ 179 predetermined integer angle.
Output: L = 〈α1, α2, . . . , αl〉 angle list so that l ≤ p.

Step 1 Set L1 = 〈α1〉, i = 1;
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Best angle to add

Possible angles to check

α1 α1 α1

α2 α2
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Figure 5: Steps of the Greedy algorithm.

Step 2 Let i← i+ 1;
Step 3 Let 0◦ ≤ α∗ ≤ 179◦ be an integer angle for which RME(x∗,x〈Li−1,α∗〉)

is minimal;
Step 4 Let the next list of angles be Li = 〈Li−1, α

∗〉;
Step 5 If i = p or RME(x∗,xLi

) = 0 return with Li otherwise go to Step 2

Here, xL stands for the reconstruction of the x∗ image from the projection set
specified by the angles of L.

The Greedy algorithm is an iterative process that takes an image, and in each
iteration it tries to determine the best projection to be added to the current ones.
The result of this algorithm is a list of angles ordered by decreasing significance. A
demonstration of the algorithm’s proceeding is plotted in Figure 5.

In each iteration, when there are i projections already chosen, the algorithm
has to test 180 − i possible projection sets to find the best one to proceed with.
This determines a total number of

∑p−1
i=1 (180− i) projection angle sets, assuming

that the maximal number of projections is p. We used these angle sets for building
up our test frameset. This provided reconstructions from a significant number of
non-equiangular projection sets, that gave a proper base for comparing the results
of the different reconstruction algorithms.

Although, in [18] other methods for non-equiangular angle set selection are also
described – which could have been used for generating the desired angle sets in our
studies – we decided to use the Greedy algorithm, due to its deterministic nature
and relatively fast performance.

The parameters of the Greedy algorithm were set as described in [18]: we
allowed to choose integer angles between 0◦ and 179◦, and used the SIRT algorithm
for producing the first α1 projection angle. Furthermore, we set the maximal
number of projections to 18.
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5 Experimental Results

After performing the tests we started comparing the RME values of the reconstruc-
tions. As it was mentioned in Section 4 we evaluated the data from two viewpoints.
First, we compared the reconstructions of the same objects, performed under the
same conditions (i.e., using the same reconstruction algorithms and same noise),
but from different projection sets to see how much improvement can be reached in
the reconstruction, solely by finding better projections. Secondly, we compared the
reconstructions of the same objects, from the same projections, but under different
conditions to find out whether or not the direction dependency of the objects re-
main consistent under different conditions – i.e., to see if there are projection angle
sets which lead to better (or worse) reconstruction results under all circumstances.

Although all the results proved our observations, due to the extremely high num-
ber of performed reconstructions we cannot present all of them in detail. Therefore,
in this section we will discuss our general observations, and show only samples of
the result dataset which demonstrate them the best.

5.1 Reconstruction from Equiangular Projection Sets

In the case of the equiangular angle sets the task was relatively easy. We could plot
the curves of RME values belonging to the reconstructions performed by one of the
three reconstruction algorithms, from a specific number of projections, and using a
given type of noise, according to the starting angle (as it was done in [19]). Then,
we could easily determine if the curves have significant differences between their
minimal and maximal values (i.e., if the accuracy of the reconstructions depend on
the choice of the projection angles), and if the curves on the diagrams are similar
or not (i.e., if there is correspondence between the reconstructions of the same
object from the same projections, but under different conditions). As an example,
the RME values belonging to the reconstructions of the phantoms in Figure 2e
and Figure 3e (the basic and altered versions of the same object) can be seen in
Figure 6. The plotted graphs show statistics of all the reconstructions performed
from equiangular projection sets containing 4 projections, grouped by the different
types of applied random noise.

Apparently, all the graphs have significant gaps between their minimum and
maximum points, showing that the binary reconstruction of an object can indeed
be improved only by taking the proper projections (Figures 7 and 8 give examples
of the reconstructed images preformed with different projection sets). We can
also notice, that the curves of the graphs are relatively smooth, suggesting that
projections with angles close to each other have similar information content. This
also indicates that small changes of the projection angles may only have negligible
effects on the result of the reconstruction. In addition, all the curves show some
degree of similarity, i.e., the minimal and maximal values correspond to similar
projection angle sets and the transitions between the extrema are also alike.

Such examination of equiangular projections has already been done in [17, 18],
but we decided to reproduce these results to highlight the regularities and give a



178 László Varga, Péter Balázs, and Antal Nagy

Reconstructions of Figure 2e with the DC algorithm

from 4 projections

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 5 10 15 20 25 30 35 40 45

Noise Free Additive 0.5 Gaussian noise

Additive 1.5 Gaussian noise Additive 5.0 Gaussian noise

Reconstructions of Figure 3e with the DC algorithm
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Reconstructions of Figure 2e with the DART
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Figure 6: RME values of the reconstructions of the phantoms in Figure 2e and
Figure 3e from 4 projections according to the starting angle. The three diagrams
on the left hand side are the reconstructions of Figure 2e, and those on the right
hand side are the reconstructions of Figure 3e. Each row shows the results of one
applied reconstruction algorithm (from the top to the bottom: DC, TSIRT and
DART algorithms, respectively). Each diagram shows four curves each belonging
to the reconstructions affected by the four different types of noise. On the diagrams:
horizontal axis stands for the starting angle, and vertical axis for the RME value.
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brief explanation of the projection selection dependency of objects.
Let us consider the problem of angle selection dependency in general, i.e., with-

out the assumption of examining any specific object, reconstruction algorithm, or
angle selection strategy. As it was described in Section 2, the goal of transmission
tomography is to reconstruct a function f ′, that has the prescribed projections in
a set of directions. We also mentioned that the limited amount of projection values
may not contain enough information for a proper reconstruction. This lack of data
makes it possible to have several different f ′ functions having the same projections,
i.e., different reconstructions. Nevertheless, we are usually interested in only one
specific result (the one identical to the original object), and any other solution is
considered to be incorrect.

In our discretized grid based representation, the lack of information means that
there can be several different binary images having the expected projections, some
of which can be entirely different from the expected reconstruction. In this case the
most we can expect from a reconstruction algorithm is to find one of these possible
solutions. If the set of possible reconstructions is large, the probability of finding
an accurate solution can be small. Naturally, if we want to increase the probability
of finding an acceptable reconstruction, we have to reduce the set of possibilities,
by gaining additional information for the reconstruction. This can be done by
either adding some extra prior knowledge to the model (e.g. by assuming that the
shape of the object of study fulfils some special property [9]), acquiring additional
projections, or taking better projections with higher information content.

Since we have been experimenting on deterministic algorithms, the choice of the
reconstruction method can also be regarded as a prior knowledge, i.e., to decide
which strategy should be used for choosing a reconstruction out of the possible
ones.

Regarding the previous discussion, the differences in the curves of Figure 6 can
easily be explained. First, let us consider the effects of the additive noise. In this
case changing the projection data also affects the feasible solutions the algorithms
can choose from, and all the possible solutions will have some degree of error. Since
we applied the same noise each time, the distortion of data is similar with every
reconstruction and the effect in Figure 6 is an approximately constant upwards
shifting in the RME value curves. Naturally, higher noise levels result in bigger
upwards shifting of the curves.

The effect is different when we compare the RME curves on Figure 6, belonging
to the basic and altered version of the phantoms. We know, that some objects
can be reconstructed easier if their projections are taken from a specific set of
directions. It is also clear, that different objects can have different optimal angle
sets. Therefore, we can only find the optimal set of directions for a specific object.
If we alter the structure of the the object, the information content of its projections
taken from specific directions can change, thus some of them can be more (or less)
useful for the reconstruction. This means that the modified object can have different
optimal angle sets. Our results show that this change of the optimal directions
correspond to the level of modification of the object. Small modifications do not
notably affect the result of reconstruction, but by increasing the distortion we reach
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a) b) c)

d) e) f)

Figure 7: Reconstructions of the phantom in Figure 2e performed by the three
reconstruction algorithms, from different projection sets containing 4 projections.
Images a, b, c correspond to the worst, and d, e, f to the best reconstructions gained
by using equiangular projection sets. The three columns contain results belonging
to the different reconstruction algorithms (DC: a, d; DART: b, e; TSIRT: c, f ).

a certain point, where we are dealing with an entirely different object, with different
properties.

The differences in the curves of Figure 6 are the most remarkable in the case of
comparing the results belonging to the different reconstruction algorithms. Since
we used the same information in all the reconstructions (the projection data and
the fact that we are looking for binary solutions), the choice of the reconstruction
algorithm should only influence which one of the feasible results is found. This
previous assumption is, however, not true, since the algorithms we used are not
guaranteed to give optimal solutions. Still, having more informative projection
sets can make it more likely to get better results from the same projection sets
regardless of the applied reconstruction algorithm.

We should also take a look at what this projection angle dependency means
regarding the reconstructed images themselves. In Figure 7 we gave the best and
worst reconstructions of the phantom in Figure 2e reconstructed by the three ex-
amined algorithms from equiangular projection sets containing 4 projections. Here,
we can see significant differences, especially on the reconstructions performed by
the DC and the DART algorithms, but even the results of the TSIRT algorithm
can notably be improved by finding the proper projections.
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5.2 Reconstruction from Non-Equiangular Projection Sets

It was also shown [18] that – in the case of noiseless projections – the dissimilarity
between the result of the reconstructions using different projection sets can be even
more significant if we allow the acquisition through non-equiangular projection sets.
Here, we extended the previous work by examining the case when the projection
data is affected by random noise. A brief example this can be seen in Figure 8,
showing the reconstructions of the phantom of Figure 3e, from different projection
sets. Our results indicate that the previous observations still hold, even in the case
of distorted data, and loosing the assumption of equiangularity can bring further
improvement to the reconstruction.

Comparing the results numerically is a bit harder when using non-equiangular
angle sets, than with the equiangular ones. In this case we could only compare
a set of reconstruction pairs by plotting both RME values of the corresponding
reconstructions. We used this technique for a pairwise comparison of the different
reconstruction algorithms. Examples for the resulting diagrams can be seen in
Figure 9.

We would expect Figure 9 to show some degree of correspondence between
the reconstructions of the different algorithms. If it is so, then the projection
sets producing better results for one algorithm should also produce high quality
reconstructions for other ones, and the points in the diagrams should be placed
along – or at least close to – a diagonal straight line. As we can see, the points
of Figure 9 do satisfy our expectations so we can deduce that there is a strong
correspondence between the results of the different reconstruction algorithms.

We used the same technique for comparing the reconstructions of the basic and
altered versions of the images from projection sets using the same angles, in the case
when we allow non-equiangular angles and the projection data can be corrupted by
noise. An example of such results is given in Figure 10 by giving the RME value
pairs of the reconstructions of Figure 2e and Figure 3e, performed with the DC
reconstruction algorithm. Again, we can see that the points highlighted in Figure 10
are allocated close to a diagonal straight line indicating that small distortions of the
object of study do not have a significant influence on the reconstruction. Moreover,
we also can deduce that such distortions do not affect the information content of
projections taken from specific angles, i.e., if a projection of an object holds high
information content, then another projection taken from the same direction, but
from a slightly different object would also provide similarly useful information for
the reconstruction.

The results indicate that there is a strong correspondence between the binary
reconstructions of an object performed with different reconstruction algorithms,
even in the case when the projections are chosen non-equiangularly, and the pro-
jection data is affected by different types of random noise. Furthermore, we can
say that the projection angle dependency of objects remains consistent and some-
what predictable under different conditions, and therefore it is possible to use the
direction-dependency of objects in practical applications for improving the results
of reconstruction (like it was proposed in [17, 19]).
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a) b) c)

d) e) f)

g) h) i)

Figure 8: Comparing of the reconstructions of the phantom in Figure 3e, recon-
structed by the DC algorithm, from different projection sets, with different levels of
noise. Each column contains the angles of the projection sets and the corresponding
reconstructions. Top row indicates the angles in the projection sets, second row
gives the reconstruction in the noiseless case, bottom row contains the reconstruc-
tions from projection sets affected by random noise with 1.5 deviance.



Projection Selection Dependency in Binary Tomography 183

Comparison of the DC and the

DART algorithms

0

0,25

0,5

0,75

1

1,25

1,5

1,75

2

0 0,25 0,5 0,75 1 1,25 1,5 1,75 2

RME values of the reconstructions produced by

the DC algorithm

R
M

E
v

a
lu

e
s

o
f

th
e

re
co

n
st

ru
ct

io
n

s

p
ro

d
u

ce
d

b
y

th
e

D
A

R
T

a
lg

o
ri

th
m

Comparison of the DC and the

TSIRT algorithms

0

0,25

0,5

0,75

1

1,25

1,5

1,75

2

0 0,25 0,5 0,75 1 1,25 1,5 1,75 2

RME values of the reconstructions produced by

the DC algorithm

R
M

E
v

a
lu

e
s

o
f

th
e

re
co

n
st

ru
ct

io
n

s

p
ro

d
u

ce
d

b
y

th
e

T
S

IR
T

a
lg

o
ri

th
m

Comparison of the DART and the

TSIRT algorithms

0

0,25

0,5

0,75

1

1,25

1,5

1,75

2

0 0,25 0,5 0,75 1 1,25 1,5 1,75 2

RME values of the reconstructions produced by

the DART algorithm

R
M

E
v

a
lu

e
s

o
f

th
e

re
co

n
st

ru
ct

io
n

s

p
ro

d
u

ce
d

b
y

th
e

T
S

IR
T

a
lg

o
ri

th
m

Figure 9: Cross comparison of the algorithms of Section 3 for the reconstructions of
the phantom in Figure 2e. Each diagram contains points representing RME value
pairs corresponding to reconstruction performed by two algorithms. The graphs
contain results with projection numbers from 2 to 18, and all the additive random
noise described in Section 4. The red lines are regression lines fitted to the points
for better visibility.
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Figure 10: Reconstructions of Figure 2e and Figure 3e performed with the DC
reconstruction algorithm from projection sets acquired with different angles. Each
point of the diagram is positioned according to the RME values of the reconstruc-
tions of the two images from the projection sets having the same angles. Different
points of the diagram give reconstructions corresponding to different angle sets.
The diagram also contain reconstructions performed with noise-corrupted projec-
tions.
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Although, we have only given a sample of the performed reconstructions, we
must note that our observations seemed to hold in all our many test cases.

6 Conclusion

In this paper we studied the projection angle selection dependency of reconstruc-
tions in the field of binary tomography. We have summarized and extended previous
results by showing, that there is a strict correspondence between the reconstruc-
tions performed by different binary tomography reconstruction algorithms even
in the case when the projection angles are selected from arbitrary directions, the
objects of study are distorted and the projection data is affected by random noise.

Our results indicate that this angle selection dependency is caused by the differ-
ent information content of the different projections, which is the intrinsic property
of the images themselves. In the future we intend to discover the deep connections
between our experimental results and the theory of discrete tomography, and also
to extend our investigations to the case of three dimensional tomography, i.e, when
the objects to be reconstructed are represented in three dimensions, and we can
take projections from any directions on the sphere.
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