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Parameter Estimation of Flow-Measurement in

Digital Angiography∗
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Abstract

The purpose of angiographic procedures used in cardiovascular interven-

tions is to classify the patient’s potential of regeneration after strokes caused

by dead blood cells in the main arteria. The flow of blood into heart’s capil-

laries is measured using x-ray radiometry with contrastive fluids. One quick

and reliable method for estimating this potential could save lives and would

allow further treatments to be more accurately planned.

Our task was to fit a 5-parameter Gamma function to the intensity sam-

ples extracted from the x-ray angiograms. The estimation of this function’s

parameters is hard given that the raw data set is heavily polluted with several

different types of noise.

Our complete solution has four main parts which have also been suc-

cessfully verified and validated. First, we propose a solution for eliminating

the noise by applying a specially designed moving window Gauss filter. Se-

condly, we have designed an algorithm for computing a good initial guess for

the Levenberg-Marquardt optimizer in order to achieve the required preci-

sion. Third, an algorithm is proposed for selecting significant points on the

smoothed data set with an interval-based classification method. Finally, we

apply the LM algorithm to compute the solutions in a nonlinear least squares

way.

We have also formulated an algorithm based on interval arithmetic which

can be effectively used for comparing nonlinear least-squares fit results and

assign goodness values based on their residuals. This method has been used

for measuring improvements during the development.

We must emphasize that the proposed algorithms are distinct, they can

be used in other applications together or separately since they are generally

applicable, they do not depend on specialties of the presented application.
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1 Introduction

The digital substraction angiography [17] used in medical surgery is one kind of an
image recording and processing method where panoramic x-ray images are taken
while contrastive x-ray fluid [8] is injected into the patient’s heart’s main arteria.
The x-ray fluid flow is similar to blood-flow [11], thus the amount of blood that
can reach the critical region can be measured. The goal is to estimate the patient’s
survival chances who has recently survived a stroke, being dead blood cells removed
by means of a surgery intervention. There is a high correlation between these and
the regeneration ratio (perfusion parameter) of his/her cardiac muscle [1], [22].

X-ray panoramic images are recorded at a rate of 15 fps for 10 to 15 seconds
yielding 150 to 225 frames as digital substraction angiograms [17]. The surgerer
in charge selects the critical cardiac muscle region as the Region of Interest (ROI)
[21] on the first couple of frames. The intensity of the x-ray fluid can be computed
on each frame [3] by calculating the average intensity of the interior pixels in that
ROI. In this way, an aggregate intensity value for each frame brings on a time-series
(M(t)) which is going to be our input. Two examples are shown in Figure 1.
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Figure 1: One valid and one erronous input time-series of x-ray intensities
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1.1 Modelling flow dynamics

Our main task was to characterize the x-ray fluid flow in blood vessels by means of
numerical values. Several theoretical formulations have been proposed to explain
the shape of peripheral indicator dilution curves [24], [25]. One expression proposed
by Evans [5] and examined by Howard [13] has a graphical representation which
bears a remarkable resemblance to indicator dilution curves without recirculation.
This function can be expressed in the original form

H(t) = Ks(t−AT )αe
−

t−AT

β + Zl, (1)

being Ks > 0 a constant scale factor, AT > 0 the appearance time, Zl > 0 an
offset, and α, β > 0 the rising and descending slope shape parameters. To have a
quick overview of this mathematical model, we have plots with different parameter
sets in Figure 2.
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Figure 2: The effect of changing single parameters of H(t)

The AT parameter specifies the time when the contrastive fluid has been injected
while Zl and Ks are the base intensity and intensity scaling values of the x-ray
device. The slope parameters describe the way blood can enter and exit the cardiac
muscle. Since well-studied physiological meanings are to be abstracted from these
numerical parameters [13], estimating them precisely and accurately is a must.

The main objective was to efficiently fit H(t) to the initial samples M(t) with
high confidence regarding the nature of the consequences our results could intro-
duce. Early studies showed that our inputs can be more precisely modeled with a
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slightly modified version of H(t):

G(t) =





Zl | AT < t

H(t) = Ks(t−AT )αe

−(t−AT )

β + Zl | AT ≥ t



 , (2)

What we have now, is a formulation of a non-linear parameter estimation prob-
lem where the measured data is M(t) and the model is G(t). There are several
methods for solving such problems [6],[14],[23] among which we have selected the
Least Squares Estimation procedure. To be more precise, we are going to use the
Levenberg-Marquardt algorithm [15], [19], minimizing the difference between the
model and sample values in a nonlinear least squares way [7], [16]:

Zres =
n∑

i=1

(G(ti)−M(ti))
2 → min . (3)

1.2 Normalizing residual squares

After estimating the regression parameters, an essential aspect of the analysis is
to test the appropriateness of the overall model. To declare a fit ’good’ or ’bad’,
the sole sum of the residuals (Zres) are not reasonably satisfactory, since a ’better’
fit can have higher Zres values than a ’worse’ one caused by heavy noise or badly
scaled sample.

Widely used techniques such as proportion of variance, chi-square and covari-
ance matrix calculations showed nothing better. Since Zres can be arbitrarily large,
we propose a method for scaling these values into any chosen interval.

Let f ,m ∈ R
n, f be the vector of our fitted values, m the measurement vector,

gl,ml ∈ R lower, and gu,mu ∈ R upper bound values. Then ∀i ∈ 1, . . . , n

mi ∈ [ml,mu], ml ≤ mu, ml,mu ∈ [0, 255],

gi ∈ [gl, gu], gl ≤ gu, gl, gu ∈ [0, 255],

which results the following inclusion (based on interval arithmetic):

(gi −mi) ∈ [gl, gu]− [ml,mu] ∈ [gl −mu, gu −ml].

From interval arithmetic we know that for any f : Rn 7→ R function, its natural
interval extension is given by the interval-valued function in the form

F : [Rn] 7→ [R] where F ([x]) ⊇ {f(y) | y ∈ [x]}

and can be formulated by replacing each value with its thickest encasing interval:

x ∈ R 7→ [x, x] ∈ [R].
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Now we can easily compute the natural interval extension of Zres:

Zres =

n∑

i=1

(G(ti)−M(ti))
2
=

n∑

i=1

(gi −mi)
2

∈
n∑

i=1

([gl −mu, gu −ml])
2 ∈

n∑

i=1

(
[0,max

(
(gl −mu)

2, (gu −ml)
2
)
]
)

∈ [0, nmax
(
(gl −mu)

2, (gu −ml)
2
)
].

which implies that

Ẑres =
1

n

Zres

max ((gl −mu)2, (gu −ml)2)
∈ [0, 1]. (4)

The plotted original Zres and normalized Ẑres values for different inputs are
shown in Figure 3 (smaller value means better accuracy). Note that the normalized
values are more scattered than the original ones meaning that normalization pushes
away ’bad’ and ’good’ fits.
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Figure 3: Original and normalized residuals on 66 different M(t) samples
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1.3 Results on the initial samples

To evaluate our solution we had 66 real life, anonymous medical samples at our
disposal. We must emphasize that these samples contain noises from uncountable
sources [10] (i.e. unprecise recording, unprecise fluid injection [8], x-ray device’s
auto-intensity regulation [9], image processing bugs [18]) and our effort in figuring
out suitable noise models was a fool’s errand.

We have implemented our solution in C++ by making the most of the Insight
Toolkit [26]. On the first attempt we tried to directly fit the model (2) to our input
using the mentioned LMA algorithm. Since the latter is an iterative curve-fitting
method, we had to feed it with a suitable initial guess vector which was chosen for
the following:

P0 = (Ks, AT, α, β, Zl) = (0.02, 34.0, 3.3, 11, 1, 106.0)

Based on our statistic analyses P0 describes a nearly-optimal estimator for a
well-conducted, unnoisy, and error-free measurement sample. Since the results
were really bad (concerning either performance or precision), we classified each
fit in a graphical way into appropriate and inappropriate fit classes (see Figure
4), separately computed the normalized residuals and lastly matched these two
properties.
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Figure 4: Normalized results on the test database (naive fit)

In Figure 4 a somewhat sharp interface showed up between appropriate and
inappropriate classes from which we may conclude that there exist a high correlation
between our normalized values and the optimality of the estimators.

However, we must recognize that not every inappropriatedly classified sample
is a clearly wrong measurement which means that the LMA algorithm should be
fined-tuned and other pre-, and post-processing phases should be included in our
complete solution.
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2 Noise filtering

In order to achieve better results, we have decided to apply a noise filtering algo-
rithm whose primary goal was to eliminate spikes and produce a smoothed sample.
Simple filters like median and arithmetic mean moving-window filters did not per-
form well on all types of measurements.

The chosen filtering algorithm is a general Gaussian moving window average
type [12] filter with specially designed weights and variable length window size.
The weights are designed to be precomputable given an initial sample, and not to
introduce undesired offsets and scaling on the input values:

M∗(ti) =

i+Lw∑

j=i−Lw

M(tj)

2Lw + 1
wj if Lw ≤ ti ≤ |M(t)| − Lw,

where ∀j ∈ [i− Lw, i+ Lw], and the weights are:

wj = e−(tj−ti)
2/(2Lw+1) 2Lw + 1

∑i+Lw

j=i−Lw
e−(tj−ti)2/(2Lw+1)

.

By selecting the weights in this way, it is guaranteed that ∀i ∈ [1, n]:

i+Lw∑

j=i−Lw

wj =

i+Lw∑

j=i−Lw

(
e−(tj−ti)

2/(2Lw+1) 2Lw + 1
∑i+Lw

j=i−Lw
e−(tj−ti)2/(2Lw+1)

)
= 2Lw + 1.

Generally speaking our proposed weighting method gives us a (not arithmetic)
mean moving window filter with Gaussian weights. The optimal window size has
been selected by generating a histogram for all possibly usable window sizes for all
inputs in our database resulting the value 33.

This modification of the original smoothing filter has the same advantages as
to the Savitzky-Golay [20] filter because it also tends to preserve features of the
distribution such as relative maxima, minima and width, which are usually ’flat-
tened’ by other adjacent averaging techniques. However, further researches should
be conducted to compare the performance, stability and applicability of these two
filters and select the most appropriate one.

Our proposed filtering algorithm can successfully be used on any one-dimensio-
nal sample since weights depend only on the measurement vector and the optimal
window size can also be found in the above way.

2.1 Smoothing results

In Figure 5 we present four different initial samples and the result of our proposed
smoothing filter. One can see that our filter is not sensitive to radidly changing
curves or spikes and keeps the dominant part of the input signal.
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Figure 5: Smoothing filter results on real medical samples
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2.2 Results on the filtered samples (M∗(t))

We modified the NLLS LMA minimizer’s objective function as to minimize the dif-
ference between the model (G(t) and the filtered sample (M∗(t)). Table 1 shows
aggregate statistics about the results generated on the 66-element test database.

Table 1: Numerical results of the LMA algorithm on M(t) and M∗(t) samples

M(t) min max mean median
iterations: 3 9999 3796.09 46

Zres: 121.84 35815.86 7010.51 2811.72

Ẑres: 0.0034 0.267 0.069 0.037
CPU time (s): 0.01 7.22 2.03 0.21

M∗(t) min max mean median
iterations: 4 9998 2158.71 45

Zres: 122.09 30084.45 3730.36 2480.72

Ẑres: 0.0034 0.255 0.048 0.034
CPU time (s): 0.01 7.34 1.13 0.07

One can see that when using M∗(t) as reference, half the time is required to

achieve double precision (compare Zres values). The normalized values (Ẑres) have
also significantly decreased which means better fits. As before, we evaluated all
curve-fitting results, classified them, and plotted the Ẑres values (Figure 6).
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Figure 6: Normalized results on the test database (filtered fit)

Notice that the bad fit count decreased and the interface between appropriate
and inappropriate classes sharpened which let us conclude that using the filtered
signal is far better than using the original one.
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3 Initial guess computation for LMA

Until now, we used a static, constant initial vector P0 for the LM algorithm. Given
the nature of the source experiments, real solution vectors are expected to be scat-
tered in space. Scattering means greater search space, which indicates that a static
initial vector for the LMA is in general a bad choice.

We propose an algorithm which is able to dynamically compute an excellent
approximation of the estimator based on the filtered sample in O(1) time and O(n)
space. Further advantage of our proposed algorithm is that is can also be used in
other applications where the same (or analytically equivalent) model is applied.

It is known, that fluid injection is scheduled to be one second after the start of
the recording, so the estimation of the Zl parameter is trivial; we have to compute
the arithmetical mean of the first 15 values of M∗(t).

To estimate the other 4 parameters, we have computed the first order H ′(t) and
second order H ′′(t) derivatives of H(t) and solved the H ′(t) = 0 and H ′′(t) = 0
equations for identifying minimizer, maximizer and inflection points. The results
showed that H(t) has only one single maximum point (at tmax), and two inflection
points (at ti,1 and ti,2) which can be expressed with α,β, and AT :

tmax = αβ +AT,

ti,1 = αβ −
√
αβ +AT,

ti,2 = αβ +
√
αβ +AT.

In this way, if we were able to produce a good estimation for tmax, ti,1 and
ti,2, by solving the above nonlinear systems of equations we would acquire good
estimations for AT , α, and β. However, the solution of this NLP problem is hard,
complex NLP solvers are likely to introduce further errors, that is why we have
chosen a simpler and faster heuristic method.

Taking the above three equations the following expressions can be derived:

α =
(tmax −AT )2

(tmax − ti,1)2
=

(tmax −AT )2

(ti,2 − tmax)2
, (5)

β =
(tmax − ti,1)

2

tmax −AT
=

(ti,2 − tmax)
2

tmax −AT
. (6)

Since the AT parameter (the x-ray fluid appearance time) can easily be detected
on M∗(t), and given the tmax and one of the ti,1 and ti,2 values, α and β are directly
computable using equations (5) and (6). The estimation of the AT parameter is
done by combining zero and first order assumptions on the ideal model:

AT ≈ 1

3
argmax

t

(
M∗

′

(t) = 0
)
+

1

3
argmax

t
(M∗(t) = Z) + (7)

+
1

3
argmin

t
(M∗(t) > Z) .
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Last but not least, an estimation for the Ks parameter must be given. This
scaling is determined by the maxima of G(t) (2). Given that

H(tmax) = (αβ)αe
−αβ

β + Z = (αβ)αe−α + Z,

an approximation for Ks can be formulated as

Ks ≈
max(M∗(t))− Z

(αβ)αe−α . (8)

Summarizing our method, we must

1. localize the maximum point tmax and maxima of M∗(t),

2. localize at least one inflection point (ti,1 and/or ti,2) by searching discrete

approximated roots of M∗
′

(t),

3. compute an approximation for AT given the equation 7,

4. compute approximations for α, β, and Ks using equations 5, 6, and 8.

One may wonder how good estimation is computed by the proposed algorithm.
To astonish the reader, we present some numerical and graphical results. Table
2 shows the general and normalized residuals as if the initial guess was our final
solution vector.

Table 2: Computed initial guess vector evaluation

min max mean median
Zres: 235.88 17085.28 4009.98 343.64

Ẑres: 0.0090 0.2379 0.0436 0.02719
CPU time (s): 0.01 0.26 0 .025 0.02

If compared to Table 1, it is in full view that the newly proposed algorithm
performs much better than using the LMA with static starting point. Of course,
being an initial vector we can achieve further improvements (Table 3).

Table 3: LMA results using computed initial guess

M∗(t) min max mean median
Zres: 120.45 11245.8 3210.77 134.66

Ẑres: 0.007 0.231 0.0316 0.0187
CPU time (s): 0.01 2.54 0.42 0.05
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Figure 7: Initial guess computation results on the test database
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Figure 8: Normalized results with dynamic initial vector

In Figure 7 four results are shown along with the original and filtered samples.
Notice that how diverse could be the shape of the input measurements. In Figure 8
showing the normalized residuals for the new approach, each fit has been classified
as appropriate, higher values indicate wrong samples which must be dropped or
re-recorded. At this point, the required efficiency and precision has been achieved.

4 Significant point selection

Although we could have stopped at this point, we was wondering how could we
improve the physiological accuracy (not the numerical) of our solution. In order
to achieve this new goal, the compression [2] of the input signal was the first step.
All 200 (on average) intensity values in the filtered sample are too much for our
model’s 5 parameters [4]. Using less measurement values (about 20), we expected
that our curve-fitting would be even more faster and accurate in a biological sense.
The results showed a positive feedback.

Our basic idea was to classify the filtered sample’s values as significant and
non-informational points. To select the significant ones, we must detect those
points where there are sudden changes in M∗(t). Generally speaking, we want to
approximates the curve with a polyline. Our point selection scheme is based on the
first order discrete derivative of M∗(t):

∂M∗(t) = DS(t) =

{
0 if t = 1

M∗(t)−M∗(t− 1) otherwise

by dividing its codomain into a pre-defined number of intervals (CI). The limits
for an interval Ii can be computed using the following equations:

Ii = min(DS) + (i − 1)

(
max(DS)−min(DS)

CI

)
,

Ii = min(DS) + i

(
max(DS)−min(DS)

CI

)
.
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The second part of the point selection is while scanning DS(t), we track some
history on the previously seen values and note those moments where the previous
point was located in another interval than the current one. This yields selected
points near interval borders.
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Figure 9: Significant point selection algorithm

The scheme of this method is shown in Figure 9, where the bottom graph shows
the codomain of DS(t) divided into CI = 4 equidistant intervals. The blue squares
are the selected significant points which are then projected onto the top graph.

Of course, increasing CI would increase the selected points, since the interval
lengths would be smaller yielding more interval-border crossings. The proposed
algorithm is designed to be driven by only one parameter – the target significant

point count. The implementation is designed to select as many points as requested;
more requested points mean more accurate approximation but less compression and
vice versa. Also take note that our third proposed algorithm can also be used on
any kind of a discrete sample in any dimensions.
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Figure 10: Significant point selection results
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5 Final results

To summarize the work, our complex solution consists of a special filter, a pure
mathematical initial guess computation algorithm, a measurement compression
method and last but not least a NLLS Levenberg-Marquardt solver. This is also
the order of their application, so after getting the initial sample, we apply our fil-
ter, compute an appropriate initial vector and select significant points using the
filtered sample, and apply the LM optimizer with the pre-computed vector on the
significant data points as empirical data.

We have successfully applied our solution for all the 66 real measurements at
our disposal, selected 4 measurements to be re-recorded, and computed an excel-
lent approximation of the model’s parameters for the remaining 62 data sets. These
have been validated by surgeons specialized in cardiovascular experiments and in-
terventions at the Cardiovascular Research Laboratory at University of Szeged,
Hungary.

 90

 95

 100

 105

 110

 115

 120

 125

 0  50  100  150  200

M
(t

)

t

input
filtered

fit
significant pts

Figure 11: Composite result of a particular fit

Our composite solution technique is able to determine the validity of the mea-
surement, then if it proves to be valid, we provide guaranteed results on any kind
of input sample with high precision using no more than 2 seconds of computation
time!1!

Comparing our solution with the time requirements of arranging the patient
into the examination room, recording the x-ray video, image processing and ROI
selection, we can surely say that our solution is really efficient and also effective
enough to incorporate it into real-world devices.

1Using an Intel Core 2 T2300, 4 GB RAM based PC
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