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Cooperating Distributed Grammar Systems with
Random Context Grammars as Components
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Abstract

In this paper, we discuss cooperating distributed grammar systems where com-
ponents are (variants of) random context grammars. We give an overview of known
results and open problems, and prove some further results.
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1 Introduction
Rewriting systems based on a simple form of productions play an important role in formal
language theory. Therefore, it is no surprise that context-free grammars and their variants
are frequently studied models. However, many systems describing real-life applications,
such as parsers of natural and programming languages, require some additional mecha-
nisms that allow to check for context dependencies. From that viewpoint, context-free
grammars are not fully convenient for those applications because they are too simple to
handle such dependencies.

A natural method of handling more context dependencies with rewriting systems is
to compose systems of several components, and to define a cooperation protocol for these
components to generate a common sentential form. Such devices are known as cooperating
distributed (CD) grammar systems [2, 3, 12]. Components are represented by grammars
or other rewriting devices, and the protocol for mutual cooperation describes (roughly
speaking) the number of steps one component has to perform before allowing another
component to work. For instance, the most interesting protocol is the so-called terminal
derivation mode (t-mode, for short) making the component work until it is not able to
perform another derivation step. It is well-known that the cooperation has a significant
effect on context-free grammars. Namely, working in non-trivial modes, context-free CD
grammar systems are more powerful than ordinary context-free grammars [3].
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Thus, rewriting systems that are simple and able to check for context dependencies are
of interest as components of CD grammar systems [10]. One of such systems are random
context grammars [14], which are a natural generalization of context-free grammars with
respect to context dependency checking. Specifically, in random context grammars, two fi-
nite sets of non-terminals are attached to each context-free production—a permitting and a
forbidding set—and such a production is applicable only if all permitting symbols appear
in the current sentential form, while no forbidding symbol does. The family of random
context languages contains properly the family of context-free languages and is properly
included in the family of context-sensitive languages (coincides with the family of recur-
sively enumerable languages, respectively, if erasing productions are allowed [1, 14]). In
addition, random context grammars with all permitting (forbidding) sets empty result in
the introduction of forbidding (permitting) grammars, which are less powerful than ran-
dom context grammars (the reader is referred to [7, 15], respectively, for more details and
for some pumping-like properties of those languages).

In this paper, we discuss the generative power of several variants of CD grammar sys-
tems with random context grammars as components, give an overview of known results
and open problems, and prove some further results.

2 Preliminaries and Definitions
We assume that the reader is familiar with formal language theory [6, 12, 13]. An alphabet
is a finite non-empty set. For an alphabet V , V ∗ represents the free monoid generated by V .
The unit of V ∗, the empty string, is denoted by λ , and the free semigroup generated by V is
denoted by V+ =V ∗−{λ}. For a string w∈V ∗, let |w| denote the length of w and alph(w)
denote the set of all symbols occurring in w. Let CF, CS, and RE denote the families of
context-free, context-sensitive, and recursively enumerable languages, respectively.

A random context grammar [14] is a quadruple G = (N,T,P,S), where N is the alpha-
bet of non-terminals, T is the alphabet of terminals such that N∩T = /0, V = N∪T , S ∈ N
is the start symbol, and P is a finite set of productions of the form (A→ x,Per,For), where
A→ x is a context-free production, A ∈ N and x ∈V ∗, and Per,For⊆ N. For u,v ∈V ∗ and
a production (A→ x,Per,For) ∈ P, the relation uAv⇒ uxv holds provided that

Per ⊆ alph(uv) and alph(uv) ∩ For = /0. (1)

The transitive closure and the reflexive and transitive closure of⇒ are denoted by⇒+ and
⇒∗, respectively. The language generated by G is defined as L(G) = {w ∈ T ∗ : S⇒∗ w}.
A permitting (forbidding) grammar is a random context grammar G = (N,T,P,S), where
for each production (A→ x,Per,For) ∈ P, it holds that For = /0 (Per = /0, respectively).
The language families generated by random context grammars, permitting grammars, and
forbidding grammars are denoted by RCλ , PERλ , and FORλ , respectively, and by RC,
PER, and FOR, respectively, if they are generated by corresponding grammars without
erasing productions.

A left-random context grammar [4, 8] is a quadruple G = (N,T,P,S), where N, T ,
P, and S are the same as in random context grammars. For u,v ∈ V ∗ and a production
(A → x,Per,For) ∈ P, we define the relation uAv ⇒ uxv provided that Per ⊆ alph(u)
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and alph(u) ∩ For = /0. That is, only the symbols on the left side of the rewritten non-
terminal are considered. The language generated by G is defined as L(G) = {w ∈ T ∗ :
S⇒∗ w}. A left-permitting (left-forbidding) grammar is a left-random context grammar
G = (N,T,P,S), where for each production (A→ x,Per,For) ∈ P, it holds that For = /0
(Per= /0, respectively). The language families generated by left-random context grammars,
left-permitting grammars, and left-forbidding grammars are denoted by `RCλ , `PERλ ,
and `FORλ , respectively, and by `RC, `PER, and `FOR, respectively, if they are gener-
ated by grammars without erasing productions.

2.1 Cooperating Distributed Grammar Systems
A cooperating distributed (CD) grammar system is a construct Γ = (N,T,P1,P2, . . . ,Pn,S),
n≥ 1, where N is the alphabet of non-terminals, T is the alphabet of terminals, N∩T = /0,
S∈N is the start symbol, and for 1≤ i≤ n, each component Pi is a finite set of context-free
productions. For u,v ∈V ∗, V = N ∪T , and 1≤ k ≤ n, let u⇒k v denote a derivation step
performed by the application of a production from Pk. As usual, extend the relation ⇒k
to ⇒m

k (the m-step derivation), m ≥ 0, ⇒+
k , and ⇒∗k . In addition, we define the relation

u⇒t
k v so that u⇒+

k v and there is no w ∈V ∗ such that v⇒k w. The languages generated
by Γ working in the f -mode, f ∈ {∗, t}∪{≤m, =m, ≥m : m ≥ 1}, denoted by L f (Γ), is
defined as follows.

t-mode Lt(Γ) = {w ∈ T ∗ : there are `≥ 1 and sentential forms αi,1≤ i≤ `,
such that αi⇒t

ki
αi+1, 1≤ ki ≤ n, α1 = S, and α` = w}.

∗-mode L∗(Γ) = {w ∈ T ∗ : there are `≥ 1 and sentential forms αi,1≤ i≤ `,
such that αi⇒∗ki

αi+1, 1≤ ki ≤ n, α1 = S, and α` = w}.
=m-mode L=m(Γ) = {w ∈ T ∗ : there are `≥ 1 and sentential forms αi,1≤ i≤ `,

such that αi⇒m
ki

αi+1, 1≤ ki ≤ n, α1 = S, and α` = w}, m≥ 1.

≤m-mode L≤m(Γ) = {w ∈ T ∗ : there are `≥ 1 and sentential forms αi,1≤ i≤ `,

such that αi⇒ ji
ki

αi+1, 1≤ ki ≤ n, 1≤ ji ≤ m, α1 = S, and α` = w}.

≥m-mode L≥m(Γ) = {w ∈ T ∗ : there are `≥ 1 and sentential forms αi,1≤ i≤ `,

such that αi⇒ ji
ki

αi+1, 1≤ ki ≤ n, 1≤ m≤ ji, α1 = S, and α` = w}.

Language families generated by CD grammar systems with n context-free components
working in the f -mode are denoted by CD f (CFλ ,n), or CD f (CF,n) if the components are
non-erasing. The following results are well-known [3].

1. CD f (CFλ ,n) = CD f (CF,n) = CF, for n≥ 1 and f ∈ {=1,≥1,∗}∪{≤k : k ≥ 1},
2. CF⊂ CD f (CF,2) ⊆ CD f (CF,r) ⊆MAT and

CF⊂ CD f (CFλ ,2) ⊆ CD f (CFλ ,r) ⊆MATλ , for f ∈ {=k,≥k : k ≥ 2} and r ≥ 3,

3. CDt (CFλ ,2) = CDt (CF,2) = CF and CDt (CFλ ,n) = CDt (CF,n) = ET0L, for n≥ 3,

where ET0L denotes the family of languages generated by extended tabled interaction-
less Lindenmayer systems [12], and MAT and MATλ denote the families of languages
generated by matrix grammars without and with erasing productions [6], respectively.
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Obviously, the definition of CD grammar systems can be generalized so that the com-
ponents are sets of productions of any type. This leads to several new definitions of CD
grammar systems with (permitting, forbidding, left-permitting, left-forbidding, left-) ran-
dom context grammars as components. The family of languages generated by CD grammar
systems with n components of type X working in the f -mode, f ∈ {∗, t}∪{≤k,=k,≥k :
k ≥ 1}, is denoted by CD f (Xλ ,n), or CD f (X,n) if the components are non-erasing.

3 Results
First, let us recall that CF ⊂ PERλ = PER ⊂ RC ⊂ CS, CF ⊂ FORλ ⊂ RCλ = RE,
and CF ⊂ FOR ⊂ RC [7, 15, 16]. In addition, in the case of left-forbidding grammars
`FORλ = `FOR = CF [8], i.e., left-forbidding languages coincide with context-free lan-
guages. However, it is of interest to compare this with results concerning context-free CD
grammar systems and left-forbidding CD grammar systems (below), where it turns out that
although the components are of the same power, left-forbidding CD grammar systems are
more powerful than context-free CD grammar systems. Furthermore, in the case of left-
permitting grammars CF ⊂ `PER [4], which is surprising in comparison with the result
concerning left-forbidding grammars. The inclusion is clear from the definition, and the
strictness follows from the following example [4].

Example 1. Let G = ({S,A,C,A′,C′},{a,b,c},P,S) be a left-permitting grammar, where

P = {(S→ AC, /0),(A→ aA′b, /0),(A→ ab, /0),(A′→ A, /0),
(C→ cC′,{A′}),(C→ c, /0),(C′→C,{A})} .

We can see that L(G) = {anbncm : n≥ m≥ 1}, which is a non-context-free language.

Note that not all the relations among language families PER, FOR, `PER, RC, `RC,
CS (and analogously among their erasing variants) are known. More specifically, only the
relations depicted in Figure 1 are known. The reader is also referred to [1] for more details.

Open problem 1. What are the relations among the above mentioned language families?

3.1 Alternative Definition of the Direct Derivation Step
In the case of random context grammars, the direct derivation step is in the literature also
defined so that the rewritten symbol is considered by the context-dependency checking
mechanism (cf. [14] and [11]), i.e., for u,v ∈ V ∗ and a production (A→ x,Per,For) ∈ P,
the relation uAv⇒ uxv holds provided that

Per ⊆ alph(uAv) and alph(uAv) ∩ For = /0. (2)

Lemma 1. Definitions (1) and (2) are equivalent for random context (permitting, forbid-
ding) grammars.
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Figure 1: A hierarchy of language families. If two families are connected by a line (an
arrow), the upper family includes (includes properly) the lower family. If two families are
not connected, they are not necessarily incomparable.

Proof. (1)⇒ (2): Let G = (N,T,P,S) be a random context (permitting, forbidding) gram-
mar using definition (1). Construct the grammar G′ = (N ∪N′,T,P′,S) of the same type
using definition (2) so that N′ = {A′ : A ∈ N}, N∩N′ = /0, and P′ is defined as follows.

(a) P′ = {(A→ A′, /0,N′),(A′→ x,Per,For) : (A→ x,Per,For) ∈ P} for forbidding and
random context grammars.

(b) P′ = {(A→ A′, /0, /0),(A′→ x,Per, /0) : (A→ x,Per, /0)∈ P} for permitting grammars.

It is not hard to see that L(G) = L(G′).
(2)⇒ (1): Let G be a random context (permitting, forbidding) grammar using defini-

tion (2). Construct the grammar G′ of the same type using definition (1) so that for each
production p = (A→ x,Per,For) of G with A /∈ For, add p′ = (A→ x,Per−{A},For) to
productions of G′. Clearly, p is applicable in G if and only if p′ is applicable in G′.

Similarly, we can modify definition (2) of the direct derivation step for left-random
context grammars, i.e., for u,v ∈ V ∗ and a production (A→ x,Per,For) ∈ P, the relation
uAv⇒ uxv holds provided that Per ⊆ alph(uA) and alph(uA) ∩ For = /0. As above, we
refer to those two definitions as to definitions (1) and (2). The reader can see that the
implication (2)⇒ (1) of the previous lemma holds for left-random context (left-permitting,
left-forbidding) grammars. Thus, definition (2) is weaker than definition (1) in the sense
that every left-random context (left-permitting, left-forbidding) grammar using definition
(2) can be converted to an equivalent grammar of the same type using definition (1). As
left-forbidding grammars generate only context-free languages, we have that these two
definitions are equivalent for left-forbidding grammars. In addition, the implication (1)⇒
(2) holds for left-permitting grammars. Thus, we have the following result.
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Lemma 2. Definitions (1) and (2) are equivalent for left-permitting and left-forbidding
grammars.

However, the construction (1)⇒ (2) does not work for left-random context grammars.

Open problem 2. Are these two definitions equivalent for left-random context grammars?

As definition (2) is weaker than definition (1), in the sense mentioned above, we im-
plicitly use definition (1) from now on. However, definition (2) is also discussed.

3.2 (Left-)Random Context Components
Let Γ= (N,T,P1,P2, . . . ,Pn,S), n≥ 1, be a CD grammar system with (left-)random context
components and consider an f -mode, f ∈ {∗,=1,≥1}∪ {≤k : k ≥ 1}. The behavior of
Γ is then characterized by choosing a component and applying any of its productions; the
cycle is repeated. Thus, Γ behaves as the (left-)random context grammar G = (N,T,P1 ∪
P2∪·· ·∪Pn,S). The following holds.

Lemma 3. For n≥ 1 and f ∈ {∗,=1,≥1}∪{≤k : k ≥ 1},

1. CD f (RCλ ,n) = RCλ and CD f (RC,n) = RC,

2. CD f (FORλ ,n) = FORλ and CD f (FOR,n) = FOR,

3. CD f (PERλ ,n) = PERλ = PER = CD f (PER,n) [16],

4. CD f (`PERλ ,n) = `PERλ and CD f (`PER,n) = `PER,

5. CD f (`FORλ ,n) = CF = CD f (`FOR,n) [8].

By the well-known result RCλ = RE [6], we have the following result.

Lemma 4. For n≥ 1 and f ∈ {t}∪{=k,≥k : k ≥ 2}, CD f (RCλ ,n) = RCλ .

Given a random context grammar without erasing productions, the grammar can be
considered as the only component (with productions (A→A, /0, /0) added, if needed), which
gives the following.

Lemma 5. For n≥ 1 and f ∈ {t}∪{=k,≥k : k ≥ 2}, RC⊆ CD f (RC,n).

We prove that the other inclusion holds true, too.

Lemma 6. For n≥ 1, CDt (RC,n)⊆ RC.

Proof. Let Γ = (N,T,P1,P2, . . . ,Pn,S) be a CD grammar system with n random context
components. Construct the random context grammar G = (Ñ ∪{S̃},T ∪{c},P′, S̃), where
c, S̃ are new symbols, c, S̃ 6∈ T ∪ Ñ, Ñ = N ∪N′ ∪{[Qi],〈p,Qi〉, [p,Qi], [i] : Qi ⊆ Pi, p ∈
Qi, 1≤ i≤ n}, N′ = {X ′ : X ∈ N}, and P′ is constructed as follows:

1. For each (A→ x,Per,For) ∈ Pi, add (A→ x,Per ∪{[i]},For) to P′.

2. For 1≤ i, `≤ n, add to P′
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a) (S̃→ S[i], /0, /0),
b) ([i]→ [Pi], /0, /0),

c) ([ /0]→ [`], /0, /0),
d) ([i]→ c, /0, /0).

3. For Qi ⊆ Pi and p = (A→ x,Per,For) ∈ Qi, 1≤ i≤ n, add also to P′

e) ([Qi]→ [Qi−{p}], /0,{A}),
f) ([Qi]→ 〈p,Qi〉,{A}, /0),
g) (A→ A′,{〈p,Qi〉},{A′}),
h) (〈p,Qi〉 → [p,Qi],{A′},{X}),

for X ∈ Per,

i) (〈p,Qi〉 → [p,Qi],{A′,X}, /0),
for X ∈ For,

j) (A′→ A, /0, /0),

k) ([p,Qi]→ [Qi−{p}], /0,{A′}).

The main idea of the proof is to simulate the CD grammar system so that the non-
terminal [i] denotes the simulated component, the grammar uses productions of Pi, and in
some moment it non-deterministically decides that no other productions of Pi are applica-
ble, see production (2.b). This is then verified by productions in (3) so that a production
p is removed from the non-terminal Qi if it is not applicable. If no productions of Pi are
applicable, production (2.c) can change the component.

We prove that Lt(Γ)c= L(G). As non-erasing random context grammars are closed un-
der restricted homomorphisms (Lemma 1.3.3 in [6]), we get that there is a random context
grammar H such that Lt(Γ) = L(H).

The simulation of Γ by G starts with a production constructed in (2.a) applied only
once because S̃ does not occur on the right side of any production. Furthermore, every
successful derivation is finished by the application of a production constructed in (2.d).
If uAv⇒i uxv in Γ, for 1 ≤ i ≤ n, A ∈ N, u,v,x ∈ (N ∪T )∗, then uAv[i]⇒ uxv[i] in G by
(A→ x,Per ∪{[i]},For). If Γ changes components from Pi to P̀ , for some 1 ≤ i, ` ≤ n,
and the sentential form is w ∈ (N∪T )∗, then no production from Pi can be applied. This is
verified in G by the following sequence of productions: w[i]⇒G w[Pi]⇒∗G w[ /0]⇒G w[`],
by (2.b), (3)*, and (2.c). In more detail, for every p = (A→ x,Per,For) ∈ Pi, if A does not
occur in w, then w[Qi]⇒G w[Qi−{p}], by (3.e); otherwise, if w = uAv, we need to check
that it is not applicable because of permitting and forbidding sets:

uAv[Qi]⇒G uAv〈p,Qi〉 ⇒G uA′v〈p,Qi〉 (by (3.f) and (3.g))
⇒G uA′v[p,Qi] (by (3.h) or (3.i))

⇒G uAv[p,Qi]⇒G uAv[Qi−{p}] (by (3.j) and (3.k))

where (3.h) is applied if there is X ∈ Per missing in uv, whereas (3.i) is applied if there is
Y ∈ For occurring in uv. As p is not applicable to w in Γ, at least one of (3.h) and (3.i)
must be applicable in G.

On the other hand, to prove L(G)⊆ Lt(Γ)c, let h be a homomorphism defined as h(X)=
X , X ∈ N ∪T , h(A′) = A, A′ ∈ N′, h(B) = λ otherwise, and let NQ = Ñ− (N ∪N′). We
prove that if yY ⇒ zZ in G by (2.b), (2.c), (2.d), or (3), then h(y)⇒∗ h(z) in Γ, for y,z ∈
(N ∪N′ ∪T )∗, Y ∈ NQ, and Z ∈ NQ ∪{c}. As yY contains exactly one symbol from NQ
and this is preserved by (2.b), (2.c), and (3), yY ⇒ zZ by (2.b), (2.c), (2.d), or (3) implies
that |yY | = |zZ|. Consider the form of Y : (I) If Y = [i], productions (1), (2.b), and (2.d)
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can be applied. (1) is applied if yY = uAv[i]⇒ uxv[i] = zZ in G, which corresponds to
y = uAv⇒i uxv = z in Γ by (A→ x,Per,For) ∈ Pi. (2.b) implies that y = z and Z = [Pi].
(2.d) is the last step of any successful derivation of G replacing the rightmost non-terminal
with c; here, y = z and Z = c. (II) If Y = [Qi], p = (A→ x,Per,For) ∈ Qi is tested for its
non-applicability to y. If (3.e) is applied, A does not occur in y, which implies that p is not
applicable; this is remembered by removing p from Qi. Here, y = z and Z = [Qi−{p}].
If (3.f) is applied, then A appears in y, y = z, and Z = 〈p,Qi〉 (see III below). If (2.c)
is applied, then Qi = /0, y = z, and Z = [`], for some 1 ≤ ` ≤ n. This means that there
is no applicable production and the component can be changed to `. (III) Y = 〈p,Qi〉,
p = (A→ x,Per,For) ∈ Qi. If (3.g) is applied, then A′ does not occur in y, A′ occurs in z,
h(y) = h(z), and only (3.h), (3.i), and (3.j) can be applied. If (3.h) is applied, A occurs in
h(y) and at least one symbol X ∈ Per is missing in uv, for h(y) = h(z) = uAv. Thus, p is not
applicable in Γ, and Z = [p,Qi] (see IV below). Analogously, if (3.i) is applied, then there
is X ∈For occurring in uv. Again, p is not applicable in Γ, and Z = [p,Qi]. (IV) Y = [p,Qi],
p = (A→ x,Per,For) ∈ Qi. If (3.j) is applied, then A′ occurs in y, h(y) = h(z) = z, and
Z = Y . If (3.k) is applied, then A′ does not occur in y = z and Z = [Qi−{p}]. Thus,
we remember than p is not applicable. This cycle is repeated until the non-terminal [ /0] is
reached (see II above). As the successful derivation starts by (2.a), the proof proceeds by
induction. Thus, for u[i],v[`] ∈ (N ∪T )∗NQ, we have proved that if u[i]⇒∗ v[`] in G, then
u⇒t

i v in Γ by productions from Pi, which completes the proof.

The following lemma discusses the effect of the remaining two derivation modes.

Lemma 7. For n≥ 1 and f ∈ {=k,≥k : k ≥ 2}, CD f (RC,n)⊆ RC.

Proof. Let Γ = (N,T,P1,P2, . . . ,Pn,S) be a CD grammar system with n random context
components working in the ≥k-mode, for k ≥ 2. Construct the random context grammar
G = (Ñ ∪{S̃},T ∪{c},P′, S̃), where c, S̃ /∈ T ∪ Ñ, Ñ = N ∪Nrhs ∪{[i,m],〈i,m〉 : 1 ≤ i ≤
n,0≤m≤ k}, Nrhs = {〈x〉 : (A→ x,Per,For) ∈ Pi,1≤ i≤ n}, and for all Pi, 1≤ i≤ n, and
all (A→ x,Per,For) ∈ Pi, add the following productions to P′:

1. (S̃→ S[i,k], /0, /0),

2. (A→ 〈x〉,Per∪{[i,m]},For ∪Nrhs), where 1≤ m≤ k

3. (〈x〉 → x,{〈i,m〉}, /0), where 0≤ m≤ k

4. ([i,k]→ 〈i,k〉,{〈x〉}, /0),

5. ([i,m]→ 〈i,m−1〉,{〈x〉}, /0), where 1≤ m≤ k,

6. (〈i,m〉 → [i,m], /0,{〈x〉}), where 0≤ m≤ k,

7. ([i,0]→ [ j,k], /0, /0), where 1≤ j ≤ n,

8. ([i,0]→ c, /0, /0).

Each non-terminal of the form [i,m] or 〈i,m〉 consists of the index, i, of the simulated
component of Γ and the counter, m, of the number of productions of Pi which need to be
applied by Γ to allow another component to work. They are used to simulate productions
of the ith component and to count the number of simulated components, respectively.
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To prove that L≥k(Γ)c⊆ L(G), we demonstrate that if uAv⇒i uxv in Γ by a production
(A→ x,Per,For) ∈ Pi, then

uAv[i,m]⇒ u〈x〉v[i,m] (by (2))
⇒ u〈x〉v〈i,o〉 (by (4) or (5))
⇒ uxv〈i,o〉 (by (3))
⇒ uxv[i,o] (by (6))

where o = m− 1, for m < k, or o ∈ {k,k− 1}, for m = k. If Γ makes k+ ` steps by pro-
ductions from Pi, for some ` ≥ 0, then in k+ ` repetitions of the derivation of G shown
above, the first ` is made using production (4), while the last k is made using production
(5). Furthermore, when Γ changes its component from Pi to Pj, for some 1≤ i, j ≤ n, then
G derives x[i,0]⇒ x[ j,k] by production (7). As every derivation of G starts by a produc-
tion constructed in (1), the proof proceeds by induction. Finally, the last non-terminal is
rewritten to c by (8) as the last step of the simulation.

To complete the proof, we demonstrate that L(G)⊆ L≥k(Γ)c. Let NQ = Ñ−(N∪Nrhs),
and let h be a homomorphism defined as h(X) = X , X ∈ N∪T , h(〈x〉) = x, 〈x〉 ∈ Nrhs, and
h(B) = λ otherwise. As S̃⇒ S[i,k] starts the simulation, we prove that if yY ⇒ zZ in G,
then h(y)⇒∗ h(z) in Γ, for y,z∈ (N∪Nrhs∪T )∗, Y ∈NQ, and Z ∈NQ∪{c}. Clearly, S[i,k]
contains one symbol from NQ and this is preserved by productions (4) and (2) through (7).
The last non-terminal, Y , and the occurrence of a symbol from Nrhs control the derivation
of G in the following way: (I) Y = [i,m], 1 ≤ m ≤ k. If y contains no symbol 〈x〉, (2)
simulates the corresponding production of Pi including permitting and forbidding checks,
i.e., y = uAv⇒ u〈x〉v = z and h(y) = uAv⇒ uxv = h(z); Z = [i,m]. If it contains 〈x〉,
(4) or (5) is applied to count the number of remaining steps of the current component.
Thus, h(y) = h(z), and Z = 〈i,m〉 or Z = 〈i,m− 1〉. (II) Y = 〈i,m〉, 0 ≤ m ≤ k. If 〈x〉
occurs in y, (3) finishes the simulation of a production from Pi, i.e., y = u〈x〉v⇒ uxv = z
and h(y) = h(z); Z = 〈i,m〉. If there is no 〈x〉 in y, Y is rewritten by (6), y = z, and
Z = [i,m]. (III) Y = [i,0]. Then, either (7) is applied to replace [i,0] with Z = [ j,k], for
some 1 ≤ j ≤ n, or (8) finishes the simulation by replacing [i,0] with Z = c. Thus, for
α[i,m]∈ (N∪T )∗NQ, we have proved that only the sequence of productions (2), (4) or (5),
(3), and (6) is applicable, resulting in a string over (N∪T )∗NQ. As the derivation starts by
(1), generating a string over (N∪T )∗NQ, the proof proceeds by induction. As, in addition,
productions (4) do not change the counter, (5) decrease the counter, and (2) (simulating
productions from Pi) are applicable only if the counter is not zero, G simulates at least k
applications of productions from Pi. Thus, we have proved that L(G) = L≥k(Γ)c and, again,
by [6, Lemma 1.3.3], there exists a random context grammar H such that L≥k(Γ) = L(H).

Finally, by omitting productions constructed in (4), G simulates exactly k applications
of productions of the given component. Thus, it proves the statement for =k-mode, where
k ≥ 2. Hence, the proof is complete.

The constructions of proofs of Lemmas 6 and 7 can be modified so that the results also
hold for random context components using definition (1). Productions constructed in (3.g)
and (3.j) are removed from the construction of the proof of Lemma 6, and symbol A′ is
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replaced with A in the productions constructed in (3) of that proof. The proof of Lemma 7
holds for definition (1) as it is.

We summarize the results in the following theorem.

Theorem 1. For n≥ 1 and f ∈ {t}∪{=k,≥k : k ≥ 2}, CD f (RC,n) = RC.

3.3 (Left-)Forbidding Components
Considering terminal derivation mode, the following theorem is proved in [9]. Note that
definition (2) of the direct derivation step is used there. However, by simple modifications,
constructions are also valid for forbidding components using definition (1).

Theorem 2. For n≥ 2, CDt (FORλ ,n) = RE and CDt (FOR,n) = RC⊂ CS.

The following theorems discuss the remaining modes.

Theorem 3. RC =
⋃

k,n≥1 CD=k(FOR,n) and RCλ =
⋃

k,n≥1 CD=k(FORλ ,n).

Proof. The inclusions CD=k(FORλ ,n)⊆RCλ and CD=k(FOR,n)⊆RC follow by Lem-
mas 4 and 7, respectively. To prove the other inclusions, let G = (N,T,P,S) be a random
context grammar, and construct the CD grammar system Γ with n = |P|+ 1 forbidding
components. The main idea of the proof is to introduce a new component for each produc-
tion of G in which the presence of all the permitting symbols is verified by replacing them
one by one (see more details below). Thus, Γ = (N ∪N′ ∪Nrhs ∪Ncnt ,T,P1,P2, . . . ,Pn,S),
where

• N′ = {A′ : A ∈ N}, Nrhs = {〈x〉 : (A→ x,Per,For) ∈ P},
• m = max{|Per−{A}| : (A→ x,Per,For) ∈ P},
• Ncnt =

⋃m
i=1 N(i), for N(i) = {A(i) : A ∈ N}, 1≤ i≤ m,

and Γ works in =k-mode, where k = m+1. Let β be a bijection from P to {1,2, . . . , |P|}.
The components of Γ are constructed as follows:

1. For each production (A→ x,Per,For) ∈ P, add to Pβ (A→x,Per,For):

a) (A→ A(m−|Per−{A}|), /0,Ncnt ∪Nrhs∪N′), for m−|Per−{A}|> 0,
b) (A(i)→ A(i−1), /0,Nrhs∪N′), where 1 < i≤ m−|Per−{A}|,
c) (B→ B′, /0,Nrhs∪{B′}), where B ∈ Per−{A},
d) (A(1)→ 〈x〉, /0,For∪Nrhs),
e) (A→ 〈x〉, /0,For∪Nrhs), for m−|Per−{A}|= 0.

2. To Pn add:

a) (B′→ B, /0,Ncnt), where B ∈ N,
b) (〈x〉 → 〈x〉, /0,N′∪Ncnt), where 〈x〉 ∈ Nrhs.
c) (〈x〉 → x, /0,N′∪Ncnt), where 〈x〉 ∈ Nrhs,
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Note that the crucial point of the construction is that exactly |Per−{A}| productions
of type (1.c) have to be applied, where the forbidding context guarantees that only one
occurrence of any nonterminal can be primed.

To prove L(G) = L=k(Γ), we show that each component Pi, i= 1,2, . . . ,n−1, simulates
exactly one production of G. Let p = (A→ x,Per,For) be a production of G. The simula-
tion is done by a sequence of productions from Pβ (p) as follows. (A) For m−|Per−{A}|>
0: A production constructed in (1.a), then m−|Per−{A}|−1 productions constructed in
(1.b), then |Per− {A}| productions constructed in (1.c), finished by a production con-
structed in (1.d). Summarized, 1 + (m− |Per−{A}| − 1) + (|Per−{A}|) + 1 = m + 1
productions are applied, and the component is changed. (B) For m− |Per−{A}| = 0:
|Per−{A}| productions constructed in (1.c), finished by a production constructed in (1.e).
Again, |Per−{A}|+1=m−|Per−{A}|+ |Per−{A}|+1=m+1 productions are applied,
and the component is changed. After that, the current sentential form contains |Per−{A}|
primed non-terminals and one symbol 〈x〉, for some x. The following sequence of pro-
ductions of Pn is applied to remove these symbols: |Per−{A}| productions constructed
in (2.a), m−|Per−{A}| productions constructed in (2.b), and a production constructed in
(2.c).

On the other hand, we show that this is the only possible behavior of Γ. (A) For
m−|Per−{A}|> 0: Considering the work of Pi, a production constructed in (1.a) has to be
applied first; otherwise, if (1.c) is applied first, then (1.a) (and also (1.b) and (1.d)) cannot
be applied. However, as |Per−{A}|< m and Pi has to perform m+1 steps, the derivation
is blocked. (B) For m−|Per−{A}| = 0: Considering the work of Pi, if |Per−{A}| > 0,
then productions constructed in (1.c) have to be applied first; otherwise, if (1.e) is applied
first, then (1.c) cannot be applied. However, as |Per−{A}| = m > 0, the derivation is
blocked. Thus, each component Pi, i = 1,2, . . . ,n− 1, generates no more than m primed
non-terminals and one symbol 〈x〉, for some x. Considering the component Pn, productions
constructed in (2.a) have to be applied first. Then, if (2.c) is not applied as the (m+ 1)st
production, the derivation is blocked. On the other hand, if (2.c) is not applied at all, i.e.,
only (2.b) is applied, then only Pn contains applicable productions. Thus, until a production
constructed in (2.c) is applied as the (m+1)st production, Pn is chosen repeatedly to work.

As we do not introduce any new erasing productions, the proof is complete.

Corollary 1. RC =
⋃

k,n≥1 CD≥k(FOR,n) and RCλ =
⋃

k,n≥1 CD≥k(FORλ ,n).

Proof. In the proof of the previous theorem, each component Pi, i = 1,2, . . . ,n− 1, per-
forms exactly k steps, only Pn can perform more than k steps.

Corollary 2.

1. RC =
⋃

n≥1 CD=2(FOR,n) =
⋃

n≥1 CD≥2(FOR,n), and

2. RCλ =
⋃

n≥1 CD=2(FORλ ,n) =
⋃

n≥1 CD≥2(FORλ ,n).

Proof. It is shown in [5] that, for any random context grammar G′, there is an equivalent
random context grammar G = (N,T,P,S) using definition (2) such that G is with erasing
productions if and only if G′ is, and for (A→ w,Per,For) ∈ P, |Per∪For|= 1. Thus, in the
proof of the previous theorem, we have m≤ 1, and if m= 1, then Γ works in =2-mode.
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Open problem 3. Can the number of components be reduced?

The following is proved for left-forbidding CD grammar systems in [8].

Theorem 4. For n≥ 2 and f ∈ {t}∪{=k,≥k : k ≥ 2}, RE = CD f (`FORλ ,n) and CS =
CD f (`FOR,n). In addition, any recursively enumerable language can be generated by a
left-forbidding CD grammar system working in terminal derivation mode with two compo-
nents and twelve non-terminals.

3.4 (Left-)Permitting Components
Although the relation between the families PER and FOR is not known, permitting CD
grammar systems and forbidding CD grammar systems working in terminal derivation
mode are of the same power [4].

Theorem 5. For n≥ 2, CDt (PERλ ,n) = CDt (`PERλ ,n) = RE and CDt (PER,n) = RC⊂
CS = CDt (`PER,n). In addition, any recursively enumerable language can be generated
by a left-permitting CD grammar system working in terminal derivation mode with six
components and nineteen non-terminals.

Open problem 4. What is the generative power of permitting (left-permitting) CD gram-
mar systems working in the f -mode, for f ∈ {=k,≥k : k ≥ 2}?

In this paper, the components use definition (1) of the direct derivation step. In com-
parison with forbidding CD grammar systems working in terminal derivation mode where
these two definitions are equivalent, we do not know whether they are equivalent in the
case of permitting CD grammar systems with at least two components, although they are
equivalent for permitting grammars (see Lemma 1).

Open problem 5.

1. What is the power of permitting CD grammar systems if the components (permitting
grammars) use definition (2) of the direct derivation step?

2. What is the power of left-permitting CD grammar systems if the components use
definition (2)?

4 Conclusion and discussion
In this paper, we have discussed CD grammar systems where components are (variants of)
random context grammars. Recall that CD grammar systems with only permitting and with
only forbidding components have been studied in [4] and [9], respectively. Originally, the
components of forbidding CD grammar systems used definition (2) of the direct derivation
step. However, the constructions can be modified so that the results hold for forbidding CD
grammar systems with components using definition (1) as well. In addition, all the results
concerning CD grammar systems with random context components proved in this paper
hold for both definitions. On the other hand, to achieve results concerning the generative
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power of CD grammar systems with permitting components proved in [4], definition (1)
of the direct derivation step is used. Unfortunately, in this case, we do not know whether
the same results can also be achieved for CD grammar systems with permitting compo-
nents using definition (2), although definitions (1) and (2) are equivalent for permitting
grammars (see Lemma 1). Note that it is not hard to see that definition (1) allows us to
check for at least two occurrences of a given non-terminal symbol (the rewritten one and
the one occurring on the left or on the right of the rewritten symbol), while definition (2)
seems to be too weak to check for that property. However, it might be possible to check
for that property by using some mechanisms of CD grammar systems instead. The cases
of CD grammar systems with left-permitting and left-forbidding grammars as components
are studied in [4] and [8], respectively. In these cases, only definition (1) of the direct
derivation step is considered. An overview of the results follows.

For any n≥ 1, derivation modes f ∈ {∗,=1,≥1}∪{≤k : k≥ 1}, and language families
X ∈ {RCλ ,RC,FORλ ,FOR,PERλ ,PER, `RCλ , `RC, `PERλ , `PER, `FORλ , `FOR},

CD f (X,n) = X ,

and for any n≥ 2 and derivation modes f ∈ {t}∪{=k,≥k : k ≥ 2},

1. CD f (RCλ ,n) =
⋃

m≥1 CD f (FORλ ,m) = CD f (`RCλ ,n) = CD f (`FORλ ,n) = RE,

2. CDt (FORλ ,n) = CDt (PERλ ,n) = CDt (`PERλ ,n) = RE,

3. CD f (`RC,n) = CD f (`FOR,n) = CDt (`PER,n) = CS,

4. CD f (RC,n) =
⋃

m≥1 CD f (FOR,m) = RC,

5. CDt (FOR,n) = CDt (PER,n) = RC.

Recall that it has recently been shown in [16] that the generative power of permitting
grammars coincides with the generative power of non-erasing permitting grammars. In
other words, the erasing productions can be removed from permitting grammars. In addi-
tion, although left-permitting grammars are similar to permitting grammars, it is an open
problem whether a similar relation holds for left-permitting grammars with and without
erasing productions. Note that the proof from [16] cannot be directly applied to the case of
left-permitting grammars because it uses the following property of permitting grammars
that does not hold for left-permitting grammars: for any permitting production (A→w,U),
if the production can be used to one of the occurrences of A, then it can be used to any oc-
currence of A in the sentential form.

Finally, given two families of grammars generating the same family of languages,
an interesting question is whether or when it is also the case that the language families
generated by CD grammar systems, using these two types of grammars as components,
also coincide. From the results mentioned above, we can immediately see that, e.g., al-
though CF= `FOR= `FORλ , we have that for any n≥ 2, CDt(CF,n)⊂CDt (`FOR,n)⊂
CDt (`FORλ ,n). Similarly, although PER = PERλ , the proper inclusion CDt (PER,n) ⊂
CDt (PERλ ,n) holds for any n ≥ 2. On the other hand, it is obvious that the equality of
language families generated by CD grammar systems with different types of components
does not imply that the language families generated by grammars of these types coincide.
Thus, the question when the same power of components implies the same power of CD
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grammar systems is open. Moreover, note that the discussion in Section 3.1 can also be
considered in this way.
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