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Weak Functional Dependencies on

Trees with Restructuring

Attila Sali∗ and Klaus-Dieter Schewe†

Abstract

We present an axiomatisation for weak functional dependencies, i.e. dis-
junctions of functional dependencies, in the presence of several constructors
for complex values. The investigated constructors capture records, sets, mul-
tisets, lists, disjoint union and optionality, i.e. the complex values are indeed
trees. The constructors cover the gist of all complex value data models in-
cluding object oriented databases and XML. Functional and weak functional
dependencies are expressed on a lattice of subattributes, which even carries
the structure of a Brouwer algebra as long as the union-constructor is absent.
Its presence, however, complicates all results and proofs significantly. The
reason for this is that the union-constructor causes non-trivial restructuring
rules to hold. In particular, if either the set- or the the union-constructor
is absent, a subset of the rules is complete for the implication of ordinary
functional dependencies, while in the general case no finite axiomatisation for
functional dependencies exists.

Keywords: functional dependency, weak functional dependency, axiomati-
sation, complex values, restructuring, embedded dependency, rational tree

1 Introduction

In the relational data model (RDM) a lot of research has been spent on the theory of
dependencies, i.e. first-order sentences that are supposed to hold for all database
instances (see [3, 25]). Various classes of dependencies for the RDM have been
introduced (see [32] for a survey), and large parts of database theory deals with the
finite axiomatisation of these dependencies and the finite implication problem for
them. That is to decide that a dependency ϕ is implied by a set of dependencies
Σ, where implication refers to the fact that all finite models of Σ are also models of
ϕ. The easiest, yet most important class of dependencies is the class of functional
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dependencies (FDs). Armstrong (see [6]) was the first to give a finite axiomatisation
for FDs.

Dependency theory is a cornerstone of database design, as the semantics of the
application domain cannot be expressed only by structures. Database theory has to
investigate the implications arising from the presence of dependencies. This means
to describe semantically desirable properties of “well-designed” databases, e.g. the
absence of redundancy, to characterise them (if possible) syntactically by in-depth
investigation of the dependencies, and to develop algorithms to transform schemata
into normal forms, which guarantee the desirable properties to be satisfied.

However, the field of databases is no longer the unique realm of the RDM.
First, so called semantic data models have been developed (see e.g. [9, 22]), which
were originally just meant to be used as design aids, as application semantics was
assumed to be easier captured by these models (see the argumentation in [7, 10, 35]).
Later on some of these models, especially the nested relational model (see e.g. [25]),
object oriented models (see e.g. [30]) and object-relational models, the gist of which
are captured by the higher-order Entity-Relationship model (HERM, see [33, 34])
have become interesting as data models in their own right and some dependency
and normalisation theory has been carried over to these advanced data models (see
[14, 23, 24, 25, 31] as samples of the many work done on this so far). Most recently,
the major research interest is on the model of semi-structured data and XML (see
e.g. [1]), which may also be regarded as some kind of object oriented model.

We refer to all these models as higher-order data models. This is, because the
most important extension that came with these models was the introduction of con-
structors for complex values. These constructors usually comprise bulk constructors
for sets, lists and multisets, a disjoint union constructor, and an optionality or null-
constructor. In fact, all the structure of higher-order data models (including XML
as far as XML can be considered a data model) is captured by the introduction of
(some or all of) these constructors.

The key problem is to develop dependency theories (or preferably a unified
theory) for the higher-order data models. The development of such a dependency
theory will have a significant impact on understanding application semantics and
laying the grounds for a logically founded theory of well-designed non-relational
databases.

So far, mainly keys and FDs for advanced data models have been investigated
(see [5, 8, 12, 13, 15, 19, 20, 26, 27, 37, 38]), and this has led to several normal
form proposals (see [4, 5, 16, 37]). The work in [16] contains explicit definitions of
redundancy and update anomalies and proves (in the spirit of the work in [36]) that
the suggested higher-level normal form (HLNF) in the presence of FDs is indeed
equivalent to the absence of redundancy and sufficient for the absence of update
anomalies. The work in [18] deals with disjunctions of FDs leading to so-called weak
functional dependencies (wFDs), while in [17], [21], [39] and [40] first attempts are
made to generalise multi-valued dependencies.

The work in this article still deals with functional dependencies and weak func-
tional dependencies, in particular with the axiomatisation problem. The motiva-
tion for this work is that all the approaches made so far only deal with part of the
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problem. In other words, we still do not have one coherent theory, but merely a
patchwork of partial (though nevertheless non-trivial) results:

• The different approaches use different definitions of functional dependencies
none of which subsumes the other ones. Arenas and Libkin (see [5]) and
similarly Vincent and Liu (see [37]) formalise FDs using paths in XML trees,
while Hartmann et al. (see [19]) exploit constructors for lists, disjoint unions
and optionality. Despite some initial attempts (see e.g. [41]) so far no common
framework subsuming all these different classes of FDs exists. In particular,
the class of FDs in [19] has a finite axiomatisation, while the one investigated
in [5] has not.

• No approach so far deals with all mentioned constructors at the same time.
Hartmann et al. (see [20]) prove a finite axiomatisation taking all construc-
tors into account except the disjoint union constructor. The proof exploits
the underlying algebraic structure of Brouwer algebras. Hartmann et al. (see
[19]) prove a finite axiomatisation taking all but the set and multiset con-
structors into account, but at the same time deal with embedded functional
dependencies and recursion. Finally, Sali and Schewe (see [27]) take all con-
structors into account and prove a finite axiomatisation for a restricted class
of FDs, which still subsumes the one in [20].

The first objective of the research reported in this article was to remove the
remaining restrictions in previous work (see [27]) and to achieve a finite axioma-
tisation for FDs on models, in which all constructors are present. We will show
that such an axiomatisation does not exist. More precisely, we show that we have
non-axiomatisability, if the set and the union constructor are combined, whereas if
one of them is absent, we obtain a finite axiomatisation. However, switching to the
slightly extended class of weak functional dependencies we obtain a finite, though
not k-ary axiomatisation. This axiomatisation contains a large number of struc-
tural axioms reflecting the non-trivial equivalences between subattributes, which
caused significant challenges for the completeness proof. These equivalences result
from restructuring rules, which were mostly known already long ago (see e.g. [2]).

Our second objective was to provide a framework that subsumes the existing ap-
proaches to dependency theory at outlined below. For this we extend the framework
of nested attributes resulting from the various constructors, which in fact captures
finite trees, to rational trees, i.e. we capture recursion. Furthermore, we deal with
wFDs and FDs that are defined on embedded attributes. With these extensions
the classes of FDs developed by Arenas, Libkin and Vincent, Liu, respectively, can
be represented as special cases of the general class of FDs. The axiomatisation of
the enlarged class of wFDs is straightforward, once the axiomatisation of wFDs in
the presence of all constructors is known.
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Overview

In Section 2 we define the preliminaries for our theory of wFDs. We start with
the definition of nested attributes that are composed of simple attributes using the
constructors that have been mentioned above. Each nested attribute defines a set
of complex values called its domain, and each complex value can be represented as
a finite tree. We then define subattributes, which give rise to canonical projection
maps on the domains. The presence of the union constructor leads to restructuring
rules, which define non-trivial equivalences the set of subattributes of a given nested
attribute. Finally, we investigate the algebraic structure of the set of subattributes
of a given nested attribute. We obtain a lattice, which is even a Brouwer algebra,
if the union constructor is absent. Nevertheless, also in the general case it is
advantageous to define the notion of relative pseudo-complement.

In Section 3 we study certain ideals in such lattices of subattributes, focusing
on the set of subattributes, on which two complex values coincide. These ideals
are therefore called coincidence ideals. The objective is to obtain a precise charac-
terisation in the sense that whenever an ideal satisfies the given set of properties,
we can guarantee the existence of two complex values that coincide exactly on the
given ideal. This leads to the Central Theorem on coincidence ideals, which will be
a cornerstone of the completeness proof. The proof of this result, however, appears
in [28].

In Section 4 we introduce FDs and wFDs formally and first derive sound deriva-
tion rules, most of which are structural axioms reflecting the properties of coinci-
dence ideals. The main result in this section will be the Completeness Theorem for
the implication of wFDs. We then approach the simpler class of FDs and first show
the completeness of a subset of the rules in case not both the set and the union con-
structors are used. If both appear together, we show non-axiomatisability. Thus,
the results in Section 4 fulfil our first objective.

In Section 5 we approach our second objective. We first introduce embedded
dependencies and show that they do not affect our axiomatisation of wFDs. In a
second step we extend the definition of nested attributes capturing also rational
tree values, as they are used in the object models (see e.g. [3] and [30]). We will
show that the axiomatisation of wFDs will also be preserved by this extension.

In Section 6 we discuss the relationship with related work. We show that the
classes of FDs defined by Arenas, Libkin and Vincent, Liu, respectively, are cap-
tured in our framework with all extensions discussed. We discuss the impact of this
result.

Finally, we summarise our work and discuss conclusions in Section 7. This
includes a brief discussion of additional restructuring rules, problems of keys and
Armstrong instances, and an outlook on other classes of dependencies.

2 Algebras of Nested Attributes

In this section we define our model of nested attributes, which covers the gist of
higher-order data models including XML. In particular, we investigate the structure
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of the set S(X) of subattributes of a given nested attribute X. We show that
we obtain a lattice, which in general is non-distributive. This lattice becomes a
Brouwer algebra, if the union constructor is not used.

2.1 Nested Attributes

We start with a definition of simple attributes and values for them.

Definition 1. A universe is a finite set U together with domains (i.e. sets of
values) dom(A) for all A ∈ U. The elements of U are called simple attributes.

For the relational model a universe was sufficient, as a relation schema could be
defined by a subset R ⊆ U. For higher-order data models, however, we need nested
attributes. In the following definition we use a set L of labels, and tacitly assume
that the symbol λ is neither a simple attribute nor a label, i.e. λ /∈ U∪L, and that
simple attributes and labels are pairwise different, i.e. U ∩ L = ∅.

Definition 2. Let U be a universe and L a set of labels. The set N of nested
attributes (over U and L) is the smallest set with λ ∈ N, U ⊆ N, and satisfying the
following properties:

• for X ∈ L and X ′1, . . . , X
′
n ∈ N we have X(X ′1, . . . , X

′
n) ∈ N;

• for X ∈ L and X ′ ∈ N we have X{X ′} ∈ N, X[X ′] ∈ N, and X〈X ′〉 ∈ N;

• for X1, . . . , Xn ∈ L and X ′1, . . . , X
′
n ∈ N we have X1(X ′1)⊕· · ·⊕Xn(X ′n) ∈ N.

We call λ a null attribute, X(X ′1, . . . , X
′
n) a record attribute, X{X ′} a set at-

tribute, X[X ′] a list attribute, X〈X ′〉 a multiset attribute and X1(X ′1)⊕· · ·⊕Xn(X ′n)
a union attribute.

In the following we will overload the use of symbols such as X, Y , etc. for
nested attributes and labels. As record, set, list and multiset attributes have a
unique leading label, this will not cause problems anyway. In all other cases it is
clear from the context, whether a symbol denotes a nested attribute in N or a label.
Usually, labels never appear as stand-alone symbols.

We also take the freedom to change the leading label X in a set, list or multiset
attribute to X{1,...,n}, if the component attribute is a union attribute, say X1(X ′1)⊕
· · ·⊕Xn(X ′n). This emphasises the factors in the union attribute. We will see in the
next two subsections that this notation will become important, when restructuring
is considered.

We can now extend the association dom from simple to nested attributes, i.e.
for each X ∈ N we will define a set of values dom(X).

Definition 3. For each nested attribute X ∈ N we get a domain dom(X) as
follows:

• dom(λ) = {>};
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• dom(X(X ′1, . . . , X
′
n)) = {(v1, . . . , vn) | vi ∈ dom(X ′i) for i = 1, . . . , n};

• dom(X{X ′}) = {{v1, . . . , vk} | k ∈ N and vi ∈ dom(X ′) for i = 1, . . . , k and
vi 6= vj for i 6= j}, i.e. each element in dom(X{X ′}) is a finite set with
(pairwise different) elements in dom(X ′);

• dom(X[X ′]) = {[v1, . . . , vk] | k ∈ N and vi ∈ dom(X ′) for i = 1, . . . , k}, i.e.
each element in dom(X[X ′]) is a finite (ordered) list with (not necessarily
different) elements in dom(X ′);

• dom(X〈X ′〉) = {〈v1, . . . , vk〉 | k ∈ N and vi ∈ dom(X ′) for i = 1, . . . , k}, i.e.
each element in dom(X〈X ′〉) is a finite multiset with elements in dom(X ′),
or in other words each v ∈ dom(X ′) has a multiplicity m(v) ∈ N in a value in
dom(X〈X ′〉);

• dom(X1(X ′1)⊕ · · · ⊕Xn(X ′n)) = {(Xi : vi) | vi ∈ dom(X ′i) for i = 1, . . . , n}.

Note that the relational model is covered, if only the record constructor is used.
Thus, instead of a relation schema R we will now consider a nested attribute X,
assuming that the universe U and the set of labels L are fixed. Instead of an
R-relation r we will consider a finite set r ⊆ dom(X).

Further note that each complex value v ∈ dom(X) for some nested attribute
X ∈ N can be represented as a finite tree. This will be extended in Section 5 to
rational trees.

2.2 Subattributes

In the relational model a functional dependency X → Y for X,Y ⊆ R ⊆ U is
satisfied by an R-relation r iff any two tuples t1, t2 ∈ r that coincide on all the
attributes in X also coincide on the attributes in Y . Crucial to this definition is
that we can project R-tuples to subsets of attributes.

Therefore, in order to define FDs on a nested attribute X ∈ N we need a notion
of subattribute. For this we define a partial order ≥ on nested attributes in such a
way that whenever X ≥ Y holds, we obtain a canonical projection πXY : dom(X)→
dom(Y ). However, this partial order has to be defined on equivalence classes of
attributes, as some domains may be identified.

Definition 4. ≡ is the smallest equivalence relation on N satisfying the following
properties:

• λ ≡ X();

• X(X ′1, . . . , X
′
n) ≡ X(X ′1, . . . , X

′
n, λ);

• X(X ′1, . . . , X
′
n) ≡ X(X ′σ(1), . . . , X

′
σ(n)) for any permutation σ ∈ Sn;

• X1(X ′1)⊕ · · · ⊕Xn(X ′n) ≡ Xσ(1)(X
′
σ(1))⊕ · · · ⊕Xσ(n)(X

′
σ(n)) for any permu-

tation σ ∈ Sn;
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• X(X ′1, . . . , X
′
n) ≡ X(Y1, . . . , Yn) if X ′i ≡ Yi for all i = 1, . . . , n;

• X1(X ′1)⊕· · ·⊕Xn(X ′n) ≡ X1(Y1)⊕· · ·⊕Xn(Yn) if X ′i ≡ Yi for all i = 1, . . . , n;

• X{X ′} ≡ X{Y } if X ′ ≡ Y ;

• X[X ′] ≡ X[Y ] if X ′ ≡ Y ;

• X〈X ′〉 ≡ X〈Y 〉 if X ′ ≡ Y ;

• X(X ′1, . . . , Y1(Y ′1)⊕ · · · ⊕ Ym(Y ′m), . . . , X ′n) ≡ Y1(X ′1, . . . , Y
′
1 , . . . , X

′
n)⊕ . . .

· · · ⊕ Ym(X ′1, . . . , Y
′
m, . . . , X

′
n);

• X{1,...,n}{X1(X ′1)⊕ · · · ⊕Xn(X ′n)} ≡ X{1,...,n}(X1{X ′1}, . . . , Xn{X ′n});

• X{1,...,n}〈X1(X ′1)⊕ · · · ⊕Xn(X ′n)〉 ≡ X{1,...,n}(X1〈X ′1〉, . . . , Xn〈X ′n〉).

Basically, the first four cases in this equivalence definition state that λ in record
attributes can be added or removed, and that order in record and union attributes
does not matter. The last three cases in Definition 4 cover restructuring rules, two
of which were already introduced by Abiteboul and Hull (see [2]). Obviously, if we
have a set of labelled elements with up to n different labels, we can split this set
into n subsets, each of which contains just the elements with a particular label, and
the union of these sets is the original set. The same holds for multisets. Of course,
we can also split a list of labelled elements into lists containing only elements with
the same label, thereby preserving the order, but in this case we cannot invert the
splitting and thus cannot claim an equivalence.

λ

X(X1{λ}) X{1,2}{λ} X(X2{λ})

X(X1{A}) X(X1{λ}, X2{λ}) X(X2{B})

X(X1{A}, X2{λ}) X(X1{λ}, X2{B})

X(X1{A}, X2{B})

Figure 1: The lattice S(X{X1(A)⊕X2(B)}) = S(X(X1{A}, X2{B}))

In the following we identify N with the set N/≡ of equivalence classes. In
particular, we will write = instead of ≡, and in the following definition we should
say that Y is a subattribute of X iff X̃ ≥ Ỹ holds for some X̃ ≡ X and Ỹ ≡ Y . In
particular, for X ≡ Y we obtain X ≥ Y and Y ≥ X.

Definition 5. For X,Y ∈ N we say that Y is a subattribute of X, iff X ≥ Y holds,
where ≥ is the smallest partial order on N/≡ satisfying the following properties:
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• X ≥ λ for all X ∈ N;

• X(Y1, . . . , Yn) ≥ X(X ′σ(1), . . . , X
′
σ(m)) for some injective σ : {1, . . . ,m} →

{1, . . . , n} and Yσ(i) ≥ X ′σ(i) for all i = 1, . . . ,m;

• X1(Y1)⊕ · · · ⊕Xn(Yn) ≥ Xσ(1)(X
′
σ(1))⊕ · · · ⊕Xσ(n)(X

′
σ(n)) for some permu-

tation σ ∈ Sn and Yi ≥ X ′i for all i = 1, . . . , n;

• X{Y } ≥ X{X ′} iff Y ≥ X ′;

• X[Y ] ≥ X[X ′] iff Y ≥ X ′;

• X〈Y 〉 ≥ X〈X ′〉 iff Y ≥ X ′;

• X{1,...,n}[X1(X ′1)⊕ · · · ⊕Xn(X ′n)] ≥ X(X1[X ′1], . . . , Xn[X ′n]);

• X{1,...,k}[X1(X ′1)⊕· · ·⊕Xk(X ′k)] ≥ X{1,...,`}[X1(X ′1)⊕· · ·⊕X`(X
′
`)] for k ≥ `;

• X(Xi1{λ}, . . . , Xik{λ}) ≥ X{i1,...,ik}{λ};

• X(Xi1〈λ〉, . . . , Xik〈λ〉) ≥ X{i1,...,ik}〈λ〉;

• X(Xi1 [λ], . . . , Xik [λ]) ≥ X{i1,...,ik}[λ].

Note that the last four cases in Definition 5 cover further restructuring rules
due to the union constructor. Obviously, if we are given a list of elements labelled
with X1, . . . , Xn, we can take the individual sublists – preserving the order – that
contain only those elements labelled by Xi and build the tuple of these lists. In
this case we can turn the label into a label for the whole sublist. This explains the
first of the last four subattribute relationships.

For the other restructuring rules we have to add a little remark on notation here.
As we identify X{X1(X ′1)⊕ · · · ⊕Xn(X ′n)} with X(X1{X ′1}, . . . , Xn{X ′n}), we ob-
tain subattributesX(Xi1{X ′i1}, . . . . . . , Xik{X ′ik}) for each subset I = {i1, . . . , ik} ⊆
{1, . . . , n}. However, restructuring requires some care with labels. If we simply
reused the label X in the last property in Definition 5, we would obtain

X{X1(X ′1)⊕X2(X ′2)} ≡ X(X1{X ′1}, X2{X ′2}) ≥
X(X1{X ′1}) ≥ X(X1{λ}) ≥ X{λ}.

However, the last step here is wrong, as the left hand side is an indicator for the
subset containing the elements with label X1 being empty or not, whereas the right
hand side is the corresponding indicator for the whole set, i.e. elements with labels
X1 or X2. No such mapping can be claimed. In fact, what we really have to do is to
mark the set label in an attribute of the form X{X1(X ′1)⊕· · ·⊕Xn(X ′n)} to indicate
the inner union attribute, i.e. we should use X{1,...,n} (or even X{X1,...,Xn}) instead
of X. As long as we are not dealing with subattributes of the form X{1,...,k}{λ}, the
additional index does not add any information and thus can be omitted to increase
readability. The same applies to the multiset- and the list-constructor.
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λ

X(X1[λ]) X{1,2}[λ] X(X2[λ])

X(X1[A]) X(X1[λ], X2[λ]) X(X2[B])

X(X1[A], X2[λ]) X(X1[λ], X2[B])

X(X1[A], X2[B])

X{1,2}[X1(λ)⊕X2(λ)]

X{1,2}[X1(A)⊕X2(λ)] X{1,2}[X1(λ)⊕X2(B)]

X{1,2}[X1(A)⊕X2(B)]

Figure 2: The lattice S(X[X1(A)⊕X2(B)])

Subattributes of the form XI{λ}, XI [λ] and XI{λ} were called counter at-
tributes in [27], because they can be considered as counters for the number of
elements in a list or multiset or as flags that tell, whether sets are empty or not.
Note that X∅{λ} = λ, X{1,...,n}{λ} = X{λ} and X{i}{λ} = X(Xi{λ}). Analogous
conventions apply to list and multiset attributes.

Further note that due to the restructuring rules in Definitions 4 and 5 we may
have the case that a record attribute is a subattribute of a set attribute and vice
versa. This cannot be the case, if the union-constructor is absent. However, the
presence of the restructuring rules allows us to assume that the union-constructor
only appears inside a set-constructor or as the outermost constructor. This will be
frequently exploited in our proofs.

Obviously, X ≥ Y induces a projection map πXY : dom(X) → dom(Y ). For
X ≡ Y we have X ≥ Y and Y ≥ X and the projection maps πXY and πYX are
inverse to each other.

We use the notation S(X) = {Z ∈ N | X ≥ Z} to denote the set of subattributes
of a nested attribute X. Figure 1 shows the subattributes of X{X1(A)⊕X2(B)} =
X(X1{A}, X2{B}) together with the relation ≥ on them. Note that the subat-
tribute X{1,2}{λ} would not occur, if we only considered the record-structure,
whereas other subattributes such as X(Xi{λ}) would not occur, if we only con-
sidered the set-structure. This is a direct consequence of the restructuring rules.

Figure 2 shows the subattributes of X[X1(A)⊕X2(B)] together with the relation
≥ on them. The subattributes X{1,2}[λ] would not occur, if we only considered the
list-structure, whereas other subattributes such as X(Xi[λ]) would not occur, if we
ignored the restructuring rules. Figure 3 shows the subattributes of X{X1(A) ⊕
X2(B) ⊕X3(C)} together with the relation ≥ on them. The subattribute XI{λ}
for |I| ≥ 2 would not occur, if we only considered the record-structure.
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1X(X {A},X {B},X {C})2 3

X(X {  },X {B},X {C})321 λ21 3X(X {A},X {B},X {  })λ λX(X {A},X {  },X {C})21 3

X(X {A},X {B})1 2 X(X {A},X {  },X {  })321 λλ X(X {  },X {B},X {  })321 λλ X(X {A},X {C})1 3 X(X {  },X {  },X {C})21 3λλ X(X {B},X {C})2 3

X(X {  },X {  },X {  })1 32λ λ λ X(X {  },X {C})1 3λ X(X {B},X {  })2 3 λ X(X {  },X {C})2 3λX(X {A},X {  })1 3 λX(X {  },X {B})1 2λX(X {A},X {  })1 2 λ

X(X {  },X {  })1 2λ λ X(X {B})2 X(X {  },X {  })1 3λ λ X(X {C})3
X(X {  },X {  })2 3λ λX(X {A})1

X(X {  })1 λ X(X     {  }){1,2} λ X(X {  })2 λ X(X       {  }){1,2,3} λ X(X     {  }){1,3} λ X(X {  })3 λ X(X     {  }){2,3} λ

λ

Figure 3: The subattribute lattice S(X{X1(A)⊕X2(B)⊕X3(C)})

2.3 The Lattice Structure

The set of subattributes S(X) of a nested attribute X plays the same role in the
dependency theory for higher-order data models as the powerset P(R) for a relation
schema R plays in the dependency theory for the relational model. P(R) is a
Boolean algebra with order ⊆, intersection ∩, union ∪ and the difference −. So,
the question arises which algebraic structure S(X) carries.

Definition 6. Let L be a lattice with zero and one, partial order ≤, join t
and meet u. L has relative pseudo-complements iff for all Y,Z ∈ L the infimum
Y ← Z = u{U | U t Y ≥ Z} exists. Then Y ← 1 (1 being the one in L) is called
the relative complement of Y .

If we have distributivity in addition, we call L a Brouwer algebra. In this case
the relative pseudo-complements satisfy U ≥ (Y ← Z) iff (U t Y ≥ Z), but if we
do not have distributivity this property may be violated though relative pseudo-
complements exist.

Theorem 1. The set S(X) of subattributes carries the structure of a lattice with
zero and one and relative pseudo-complements, where the order ≥ is as defined in
Definition 5, and λ and X are the zero and one, respectively. If X does not contain
the union constructor, S(X) defines a Brouwer algebra.
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Proof. For X = λ and simple attributes X = A we obtain trivial lattices with only
one or two elements. Applying the record constructor leads to a cartesian product
of lattices, while the set, list and multiset constructors add a new zero element to
a lattice. These extensions preserve the properties of a Brouwer algebra.

In the case of set, list and multiset constructors applied to a union attribute we
add counter attributes. This preserves the properties of a lattice and the existence
of relative pseudo-complement, while distributivity may be lost.

Example 1. Let X = X{X1(A) ⊕X2(B)} with S(X) as illustrated in Figure 1,
Y1 = X{λ}, Y2 = X(X2{B}), and Z = X(X1{A}). Then we have

Z u (Y1 t Y2) = X(X1{A}) u (X{λ} tX(X2{B})) =

X(X1{A}) uX(X1{λ}, X2{B}) = X(X1{λ}) 6= λ = λ t λ =

(X(X1{A}) uX{λ}) t (X(X1{A}) uX(X2{B})) = (Z u Y1) t (Z u Y2) .

This shows that S(X) in general is not a distributive lattice. Furthermore, Y ′tZ ≥
Y1 holds for all Y ′ except λ, X(X1{λ}) and X(X1{A}). So Z ← Y1 = λ, but not
all Y ′ ≥ λ satisfy Y ′ t Z ≥ Y1.

It is easy to determine explicit inductive definitions of the operations u (meet),
t (join) and← (relative pseudo-complement). This can be done by boring technical
verification of the properties of meets, joins and relative pseudo-complements and
is therefore omitted here.

3 Coincidence Ideals

In this section we investigate sets of subattributes, on which two complex values
coincide. It is rather easy to see that these turn out to be ideals in the lattice S(X),
i.e. they are non-empty and downward-closed. Therefore, we will call them coin-
cidence ideals. However, there are many other properties that hold for coincidence
ideals.

There are two major reasons for looking at coincidence ideals. The first one is
that properties of subattributes, on which two complex values coincide, may give
rise to axioms for functional dependencies. We will indeed see that the properties
of coincidence ideals in Definition 7 are very closely related to the sound axioms
and rules that we will derive in Theorems 3, 5 and 6.

The second reason is that in the completeness proof we will have to construct
two complex values that coincide exactly on a given set of attributes, so that a set
of dependencies is satisfied by these values, while a non-derivable dependency is
not. This step appears also in the corresponding completeness proof for the RDM,
but in that case it is trivial, because it simply amounts to getting two tuples that
coincide on a given set of attributes, but differ on all others.

Thus, what we want to achieve is a characterisation of a coincidence ideal that
allows us to construct two complex values that coincide exactly on it. This will be
the main result of this section, called the Central Theorem 2 on coincidence ideals.
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The proof of this result in [28] is very technical. In a nutshell, what we did was
to discover properties of coincidence ideals, “translate” them into axioms for (weak)
functional dependencies, ensure that we can rediscover these properties from the
particular set of subattributes that arises naturally in the completeness proof (see
Lemma 2), which required to weaken the axioms as much as possible, and finally
show that the properties are sufficient for the desired Central Theorem.

Definition 7. A subset F ⊆ S(X) is called a coincidence ideal on S(X) iff there
exist complex values t1, t2 ∈ dom(X) such that F = {Y ∈ S(X) | πXY (t1) =
πXY (t2)} ⊆ S(X) is the set of subattributes, on which they coincide.

In [18] and in [26] the term “SHL-ideal” was used instead; in [19] in a restricted
setting the term “HL-ideal” was used. Note that in all these cases not all the
conditions in Theorem 2 were yet present.

In order to characterise sufficient and necessary properties of coincidence ideals
we will need the notion of reconsilable subattributes, which was already used in the
axiomatisations of restricted cases (see [19, 20]). The following Definition 8 extends
this notion to capture all constructors, in particular the union constructor.

Definition 8. Two subattributes Y,Z ∈ S(X) are called reconsilable iff one of the
following holds:

1. Y ≥ Z or Z ≥ Y ;

2. X = X[X ′], Y = X[Y ′], Z = X[Z ′] and Y ′, Z ′ ∈ S(X ′) are reconsilable;

3. X = X(X1, . . . , Xn), Y = X(Y1, . . . , Yn), Z = X(Z1, . . . , Zn) and Yi, Zi ∈
S(Xi) are reconsilable for all i = 1, . . . , n;

4. X = X1(X ′1) ⊕ · · · ⊕ Xn(X ′n), Y = X1(Y ′1) ⊕ · · · ⊕ Xn(Y ′n), Z = X1(Z ′1) ⊕
· · · ⊕Xn(Z ′n) and Y ′i , Z

′
i ∈ S(X ′i) are reconsilable for all i = 1, . . . , n;

5. X = X[X1(X ′1) ⊕ · · · ⊕ Xn(X ′n)], Y = X(Y1, . . . , Yn) with Yi = Xi[Y
′
i ] or

Yi = λ = Y ′i , Z = X[X1(Z ′1)⊕ · · · ⊕Xn(Z ′n)], and Y ′i , Z ′i are reconsilable for
all i = 1, . . . , n.

Note that for the set- and multiset-constructor we can only obtain reconsilability
for subattributes in a ≥-relation.

Theorem 2 (Central Theorem). Let X ∈ N be a nested attribute. Then F ⊆ S(X)
is a coincidence ideal iff the following conditions are satisfied:

1. λ ∈ F;

2. if Y ∈ F and Z ∈ S(X) with Y ≥ Z, then Z ∈ F;

3. if Y, Z ∈ F are reconsilable, then Y t Z ∈ F;

4. a) if XI{λ} ∈ F and XJ{λ} /∈ F for I ( J , then
X(Xi1{X ′i1}, . . . , Xik{X ′ik}) ∈ F for I = {i1, . . . , ik};
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b) if XI{λ} ∈ F and X(Xi{λ}) /∈ F for all i ∈ I, then there is a partition

I = I1
·
∪ I2 with XI1{λ} /∈ F, XI2{λ} /∈ F and XI′{λ} ∈ F for all I ′ ⊆ I

with I ′ ∩ I1 6= ∅ 6= I ′ ∩ I2;

c) if X{1,...,n}{λ} ∈ F and XI−{λ} /∈ F (for I− = {i ∈ {1, . . . , n} |
X(Xi{λ}) /∈ F}), then there exists some i ∈ I+ = {i ∈ {1, . . . , n} |
X(Xi{λ}) ∈ F} such that for all J ⊆ I− XJ∪{i}{λ} ∈ F holds;

d) if XJ{λ} /∈ F and X{j}{λ} /∈ F for all j ∈ J and for all i ∈ I there
is some Ji ⊆ J with XJi∪{i}{λ} /∈ F, then XI∪J{λ} /∈ F, provided
I ∩ J = ∅;

e) if XI−{λ} ∈ F and I ′ ⊆ I+ such that for all i ∈ I ′ there is some
J ⊆ I− with XJ∪{i}{λ} /∈ F, then XI′∪J′{λ} /∈ F for all J ′ ⊆ I− with
XJ′{λ} /∈ F;

5. a) if XI{λ} ∈ F and XJ{λ} ∈ F with I ∩ J = ∅, then XI∪J{λ} ∈ F;

b) if XI [λ] ∈ F and XJ [λ] ∈ F with I ∩ J = ∅, then XI∪J [λ] ∈ F;

c) if XI〈λ〉 ∈ F and XJ〈λ〉 ∈ F with I ∩ J = ∅, then XI∪J〈λ〉 ∈ F;

d) if XI [λ] ∈ F and XJ [λ] ∈ F with J ⊆ I, then XI−J [λ] ∈ F;

e) if XI〈λ〉 ∈ F and XJ〈λ〉 ∈ F with J ⊆ I, then XI−J〈λ〉 ∈ F;

f) if XI [λ] ∈ F and XJ [λ] ∈ F, then XI∩J [λ] ∈ F iff X(I−J)∪(J−I)[λ] ∈ F;

g) if XI〈λ〉 ∈ F and XJ〈λ〉 ∈ F, then XI∩J〈λ〉 ∈ F iff X(I−J)∪(J−I)〈λ〉 ∈ F;

6. a) for X = X{X̄{X1(X ′1)⊕· · ·⊕Xn(X ′n)}}, whenever I ⊆ {1, . . . , n}, there
is a partition I = I− ∪ I+− ∪ I+ ∪ I− such that

i. X{X̄{i}{λ}} ∈ F iff i /∈ I−,

ii. X{X̄I′{λ}} ∈ F, whenever I ′ ∩ I+ 6= ∅,
iii. X{X̄I′{λ}} ∈ F iff X{X̄I′∩(I+−∪I−){λ}} ∈ F, whenever I ′ ⊆ I+− ∪

I− ∪ I−;

b) for X = X〈X̄{X1(X ′1)⊕· · ·⊕Xn(X ′n)}〉, whenever I ⊆ {1, . . . , n}, there
is a partition I = I− ∪ I+− ∪ I+ ∪ I− such that

i. X〈X̄{i}{λ}〉 ∈ F iff i /∈ I−,

ii. X〈X̄I′{λ}〉 ∈ F, whenever I ′ ∩ I+ 6= ∅,
iii. X〈X̄I′{λ}〉 ∈ F iff X〈X̄I′∩(I+−∪I−){λ}〉 ∈ F, whenever I ′ ⊆ I+− ∪

I− ∪ I−;

7. a) if X = X(X ′1, . . . , X
′
n), then Fi = {Yi ∈ S(X ′i) | X(λ, . . . , Yi, . . . , λ) ∈

F} is a coincidence ideal;

b) if X = X[X ′], such that X ′ is not a union attribute, and F 6= {λ}, then
G = {Y ∈ S(X ′) | X[Y ] ∈ F} is a coincidence ideal;

c) If X = X1(X ′1) ⊕ · · · ⊕Xn(X ′n) and F 6= {λ}, then the set Fi = {Yi ∈
S(X ′i) | X1(λ)⊕ · · · ⊕Xi(Yi)⊕ · · · ⊕Xn(λ) ∈ F} is a coincidence ideal;
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d) if X = X{X ′}, such that X ′ is not a union attribute, and F 6= {λ}, then
G = {Y ∈ S(X ′) | X{Y } ∈ F} is a defect coincidence ideal;

e) if X = X〈X ′〉, such that X ′ is not a union attribute, and F 6= 〈λ〉, then
G = {Y ∈ S(X ′) | X〈Y 〉 ∈ F} is a defect coincidence ideal.

In property 7 of the theorem a defect coincidence ideal on S(X) is a subset
F ⊆ S(X) satisfying properties 1, 2, 4(a)-(d), 6(a),(b), 7(d)-(e) and

8. a) if X = X(X ′1, . . . , X
′
n), then Fi = {Yi ∈ S(X ′i) | X(λ, . . . , Yi, . . . , λ) ∈ F}

is a defect coincidence ideal;

b) if X = X[X ′], such that X ′ is not a union attribute, and F 6= {λ}, then
G = {Y ∈ S(X ′) | X[Y ] ∈ F} is a defect coincidence ideal;

c) If X = X1(X ′1) ⊕ · · · ⊕Xn(X ′n) and F 6= {λ}, then the set Fi = {Yi ∈
S(X ′i) | X1(λ)⊕ · · · ⊕Xi(Yi)⊕ · · · ⊕Xn(λ) ∈ F} is a defect coincidence
ideal.

The proof of Theorem 2, in particular, showing that the conditions are suffi-
cient, is very technical and lengthy (see [28]). The general idea is to use structural
induction extending the corresponding proofs in [19] and in [20]. However, a diffi-
culty arises with the set and multiset constructors, as for them defect coincidence
ideals have to be dealt with. The work in [20, Lemmata 21 and 24] contains a
proof for the case that the union constructor does not appear at all. This has been
generalised in [27, Lemma 4.3] to the general case but excluding counter attributes,
i.e. attributes of the form XI{λ}, XI〈λ〉 or XI [λ] with |I| ≥ 2.

4 Functional Dependencies and Weak Functional
Dependencies

In this section we will define functional and weak functional dependencies on S(X)
and derive a sound and complete system of derivation rules for wFDs.

Definition 9. Let X ∈ N. A functional dependency (FD) on S(X) is an expression
Y → Z with Y,Z ⊆ S(X). A weak functional dependency (wFD) on S(X) is an
expression |{Yi → Zi | i ∈ I|} with an index set I and Yi,Zi ⊆ S(X).

In the following we consider finite sets r ⊆ dom(X), which we will call simply
instances of X.

Definition 10. Let r be an instance of X. We say that r satisfies the FD Y→ Z

on S(X) (notation: r |= Y → Z) iff for all t1, t2 ∈ r with πXY (t1) = πXY (t2) for all
Y ∈ Y we also have πXZ (t1) = πXZ (t2) for all Z ∈ Z.

An instance r ⊆ dom(X) satisfies the wFD |{Yi → Zi | i ∈ I|} on S(X) (notation:
r |= |{Yi → Zi | i ∈ I|}) iff for all t1, t2 ∈ r there is some i ∈ I with {t1, t2} |= Yi →
Zi.
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According to this definition we identify a wFD |{Y → Z|}, i.e. the index set
contains exactly one element, with the “ordinary” FD Y→ Z.

Note that our notion of weak functional dependencies is indeed more general
than the one used in [32, p.75] based on the work by Demetrovics and Gyepesi
(see [11]). The straighforward generalisation of the dependencies introduced by
Demetrovics and Gyepesi would only lead to wFDs of the form |{Y→ {Zi} | i ∈ I|},
i.e. the left hand side of all involved FDs is always the same, while the right
hand side only contains a single subattribute. Our notion of wFDs covers also so
called dual functional dependencies (dFDs) (see [11]), which would take the form
|{{Yi} → {Zj} | i ∈ I, j ∈ J |}.

Let Σ be a set of FDs and wFDs. A FD or wFD ψ is implied by Σ (notation:
Σ |= ψ) iff all instances r with r |= ϕ for all ϕ ∈ Σ also satisfy ψ. As usual we write
Σ∗ = {ψ | Σ |= ψ}.

As usual we write Σ+ for the set of all FDs and wFDs that can be derived
from Σ by applying a system R of axioms and rules, i.e. Σ+ = {ψ | Σ `R ψ}.
We omit the standard definitions of derivations with a given rule system, and also
write simply ` instead of `R, if the rule system is clear from the context.

Our goal is to find a finite axiomatisation, i.e. a finite rule system R such that
Σ∗ = Σ+ holds. The rules in R are sound iff Σ+ ⊆ Σ∗ holds, and complete iff
Σ∗ ⊆ Σ+ holds.

4.1 Sound Derivation Rules

Let us first look only at FDs. In general, two complex values in dom(X) that
coincide on subattributes Y and Z of X need not coincide on Y t Z. So we
cannot expect a simple generalisation of Armstrong’s extension rule for FDs in the
relational model. However, the notion of “reconsilability” introduced in Definition
8 will permit such a generalisation.

Theorem 3. The following axioms and rules are sound for the implication of FDs
on S(X):

reflexivity axiom:

Y→ Z
Z ⊆ Y (1)

subattribute axiom:

{Y } → {Z}
Y ≥ Z (2)

join axiom:

{Y,Z} → {Y t Z}
Y,Z reconsilable (3)

λ axiom:

∅ → {λ}
(4)
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extension rule:
Y→ Z

Y→ Y ∪ Z
(5)

transitivity rule:
Y→ Z Z→ U

Y→ U
(6)

Proof. The soundness of the axioms (1), (2) and (4) is trivial.
For (3) let t1, t2 ∈ r for some instance r ⊆ dom(X) with πXY (t1) = πXY (t2) and

πXZ (t1) = πXZ (t2) for reconsilable subattributes Y,Z ∈ S(X).

1. In case Y ≥ Z we have Y t Z = Y and thus πXY tZ(t1) = πXY tZ(t2).

2. In case X = X[X ′] we must have Y = X[Y ′] and Z = X[Z ′] with recon-
silable subattributes Y ′, Z ′ ∈ S(X ′). Furthermore, t1 = [t1,1, . . . , t1,n] and

t2 = [t2,1, . . . , t2,m]. This gives n = m, πX
′

Y ′ (t1,j) = πX
′

Y ′ (t2,j) and πX
′

Z′ (t1,j) =

πX
′

Z′ (t2,j) for all j = 1, . . . , n. By induction we obtain πX
′

Y ′tZ′(t1,j) =

πX
′

Y ′tZ′(t2,j) for all j = 1, . . . , n. From this and Y t Z = X[Y ′ t Z ′] fol-
lows πXY tZ(t1) = πXY tZ(t2).

3. In case X = X(X1, . . . , Xn) we must have Y = X(Y1, . . . , Yn) and Z =
X(Z1, . . . , Zn) with reconsilable subattributes Yi, Zi ∈ S(Xi) for i = 1, . . . , n.
Furthermore, t1 = (t1,1, . . . , t1,n) and t2 = (t2,1, . . . , t2,n), which implies

πXi

Yi
(t1,i) = πXi

Yi
(t2,i) and πXi

Zi
(t1,i) = πXi

Zi
(t2,i) for all i = 1, . . . , n. By in-

duction we obtain πXi

YitZi
(t1,i) = πXi

YitZi
(t2,i) for all i = 1, . . . , n. From this

and Y t Z = X(Y1 t Z1, . . . , Yn t Zn) follows πXY tZ(t1) = πXY tZ(t2).

4. In case X = X1(X ′1)⊕· · ·⊕Xn(X ′n) we must have Y = X1(Y1)⊕· · ·⊕Xn(Yn)
and Z = X1(Z1)⊕· · ·⊕Xn(Zn) with reconsilable subattributes Yi, Zi ∈ S(X ′i)
for i = 1, . . . , n. Furthermore t1 = (Xi : t′1) and t2 = (Xi : t′2) for some

i ∈ {1, . . . , n}, which implies π
X′i
Yi

(t′1) = π
X′i
Yi

(t′2) and π
X′i
Zi

(t′1) = π
X′i
Zi

(t′2). By

induction we obtain π
X′i
YitZi

(t′1) = π
X′i
YitZi

(t′2). Finally, Y tZ = X1(Y1 tZ1)⊕
· · · ⊕Xn(Yn t Zn) implies πXY tZ(t1) = πXY tZ(t2) as desired.

5. In case X = X[X1(X ′1) ⊕ · · · ⊕ Xn(X ′n)] we must have Y = X(Y1, . . . , Yn)
with Yi = Xi[Y

′
i ] or Yi = λ = Y ′i , and Z = X[X1(Z ′1) ⊕ · · · ⊕Xn(Z ′n)], such

that Y ′i , Z ′i are reconsilable for all i = 1, . . . , n. We get Y t Z = X[X1(Y ′1 t
Z ′1) ⊕ · · · ⊕Xn(Y ′n t Z ′n)]. As Z ≥ X[λ], we also have πXX[λ](t1) = πXX[λ](t2),

so t1 and t2 are lists of equal length. Therefore, assume tj = [tj1, . . . , tjm]
for j = 1, 2 and tjk = (X` : t′′jk). This gives πXY tZ(tj) = [t′j1, . . . , t

′
jm] with

t′jk = (X` : π
X′`
Y ′`tZ

′
`
(t′′jk)). We know π

X′`
Z′`

(t′′1k) = π
X′`
Z′`

(t′′2k), so we are done for

Y` = λ. For Y` 6= λ the sublists containing all (X` : t′′jk) coincide on Y ′` . As

Y ′` and Z ′` are semi-disjoint, we have π
X′`
Y ′`tZ

′
`
(t′′1k) = π

X′`
Y ′`tZ

′
`
(t′′2k) by induction,

which implies πXY tZ(t1) = πXY tZ(t2).
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For the extension rule (5) let t1, t2 ∈ r for some instance r ⊆ dom(X) with
r |= Y → Z, and assume πXY (t1) = πXY (t2) holds for all Y ∈ Y. Then we must
have as well πXZ (t1) = πXZ (t2) for all Z ∈ Z, which implies πXY (t1) = πXY (t2) for all
Y ∈ Y ∪ Z, i.e. r |= Y→ Y ∪ Z.

For the transitivity rule (6) let t1, t2 ∈ r for some instance r ⊆ dom(X) with
r |= Y→ Z and r |= Z→ U, and assume πXY (t1) = πXY (t2) holds for all Y ∈ Y. Then
we must have as well πXZ (t1) = πXZ (t2) for all Z ∈ Z by the first premise, and hence
πXU (t1) = πXU (t2) for all U ∈ U by the second premise, which shows r |= Y → U as
desired.

In [20] it was shown that the six of axioms and rules in Theorem 3, i.e. (1) – (6)
are complete for the implication of FDs, if the union constructor is not present. In
this case (2), (3) and (4) are axioms that deal with the Brouwer algebra structure
on S(X), while (1), (5) and (6) are the well known Armstrong axioms and rules.

Theorem 4. The following rules for the implication of FDs on S(X) can be derived
from the rules in Theorem 3:

union rule:
Y→ Z Y→ U

Y→ Z ∪ U
(7)

fragmentation rule:
Y→ Z

Y→ {Z}
Z ∈ Z (8)

join rule:
{Y } → {Z}
{Y } → {Y t Z}

Y,Z reconsilable (9)

Proof. For the union rule (7) we use the following derivation:

Y ∪ Z→ Y Y→ U

Y ∪ Z→ U

Y→ Z Y ∪ Z→ Y ∪ Z ∪ U Y ∪ Z ∪ U→ Z ∪ U

Y→ Y ∪ Z Y ∪ Z→ Z ∪ U

Y→ Z ∪ U

For the fragmentation rule (8) we use the following derivation:

Y→ Z Z→ {Z}
Y→ {Z}

Finally, for the join-rule (9) we use the following derivation:

{Y } → {Z}
{Y } → {Y,Z} {Y,Z} → {Y t Z}

{Y } → {Y t Z}
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If the union constructor is present, we obtain further subattributes, for which
we obtain additional axioms. These will be set, multiset and list axioms (10) – (18)
in the following Theorem 5. Furthermore, we obtain rules that derive FDs on S(X)
from FDs on S(X ′) for embedded attributes X ′, i.e. X ′ results from X by stripping
away the outermost constructor. The following definition clarifies in an exact way,
how embedded attributes and induced instances for embedded attributes have to
be understood. This will become important also for the extensions in Section 5.

Definition 11. Let X ∈ N be a nested attribute. The set of embedded attributes of
X is the smallest set emb(X) with X ∈ emb(X) satisfying the following properties:

1. If X = X(X1, . . . , Xn) is a record attribute, then emb(Xi) ⊆ emb(X) holds
for all i = 1, . . . , n.

2. If X = X1(X ′1)⊕· · ·⊕Xn(X ′n) is a union attribute, then emb(X ′i) ⊆ emb(X)
holds for all i = 1, . . . , n.

3. If X = X{X ′} is a set attribute, then emb(X ′) ⊆ emb(X) holds.

4. If X = X[X ′] is a list attribute, then emb(X ′) ⊆ emb(X) holds.

5. If X = X〈X ′〉 is a multiset attribute, then emb(X ′) ⊆ emb(X) holds.

If r ⊆ dom(X) is an instance of X, then for each Y ∈ emb(X) we obtain the
induced instance r ↓ Y in the following way:

1. r ↓ X = r;

2. r ↓ Z = (r ↓ Y ) ↓ Z for Z ∈ emb(Y ) and Y ∈ emb(X);

3. r ↓ Xi = {ti ∈ dom(Xi) | ∃t ∈ r.t = (t1, . . . , ti, . . . , tn)} for a record attribute
X = X(X1, . . . , Xn);

4. r ↓ Xi = {ti ∈ dom(Xi) | ∃t ∈ r.t = (Xi : ti)} for a union attribute
X = X1(X ′1)⊕ · · · ⊕Xn(X ′n);

5. r ↓ X ′ = {t′ ∈ dom(X ′) | ∃t ∈ r.t′ ∈ t} for a set attribute X = X{X ′};

6. r ↓ X ′ = {t′ ∈ dom(X ′) | ∃t ∈ r.t′ ∈ t} for a multiset attribute X = X〈X ′〉;

7. r ↓ X ′ = {t′ ∈ dom(X ′) | ∃t ∈ r.t = [. . . , t′, . . . ]} for a list attribute X =
X[X ′].

In dealing now with FDs Y → Z defined embedded attributes U ∈ emb(X) we
let r |= Y→ Z mean r ↓ U |= Y→ Z. This generalises canonically to wFDs.

Theorem 5. In addition to the axioms and rules in Theorem 3 the following
axioms and rules are sound for the implication of FDs on S(X):
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set axiom:

{XI{λ}, XJ{λ}} → {XI∪J{λ}}
I ∩ J = ∅ (10)

multiset axioms:

{XI〈λ〉, XJ〈λ〉} → {XI∪J〈λ〉}
I ∩ J = ∅ (11)

{XI〈λ〉, XI∪J〈λ〉} → {XJ〈λ〉}
I ∩ J = ∅ (12)

{XI〈λ〉, XJ〈λ〉, XI∩J〈λ〉} → {X(I−J)∪(J−I)〈λ〉}
(13)

{XI〈λ〉, XJ〈λ〉, X(I−J)∪(J−I)〈λ〉} → {XI∩J〈λ〉}
(14)

list axioms:

{XI [λ], XJ [λ]} → {XI∪J [λ]}
I ∩ J = ∅ (15)

{XI [λ], XI∪J [λ]} → {XJ [λ]}
I ∩ J = ∅ (16)

{XI [λ], XJ [λ], XI∩J [λ]} → {X(I−J)∪(J−I)[λ]}
(17)

{XI [λ], XJ [λ], X(I−J)∪(J−I)[λ]} → {XI∩J [λ]}
(18)

set lifting rule:

{Y } → Z

{X{Y }} → {X{Z} | Z ∈ Z}
X = X{X ′}, Y ∈ S(X ′),Z ⊆ S(X ′) (19)

record lifting rule:

Yi → Zi

{X(λ, . . . , Yi, . . . , λ) | Yi ∈ Yi} → {X(λ, . . . , Zi, . . . , λ) | Zi ∈ Zi}
C (20)

with conditions C : X = X(X1, . . . , Xn) and Yi,Zi ⊆ S(Xi)

union lifting rule:

Yi → Zi

{· · · ⊕Xi(Yi)⊕ · · · | Yi ∈ Yi} → {· · · ⊕Xi(Zi)⊕ · · · | Zi ∈ Zi}
C (21)

with conditions C : X = X(X1, . . . , Xn) and Yi,Zi ⊆ S(X ′i),Yi 6= ∅
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multiset lifting rule:

{Y } → Z

{X〈Y 〉} → {X〈Z〉 | Z ∈ Z}
X = X〈X ′〉, Y ∈ S(X ′),Z ⊆ S(X ′) (22)

list lifting rule:

Y→ Z

{X[Y ] | Y ∈ Y} → {X[Z] | Z ∈ Z}
X = X[X ′], Y,Z ⊆ S(X ′),Y 6= ∅ (23)

Proof. For the set axiom (10) let t1, t2 ∈ dom(X) with πXXI{λ}(t1) = πXXI{λ}(t2)

and πXXJ{λ}(t1) = πXXJ{λ}(t2). In case πXXI{λ}(t1) = πXXJ{λ}(t1) = ∅ there are no

values of the form (Xi : vi) with i ∈ I ∪ J in t1, hence also not in t2. In case at
least one of these projections leads to a non-empty set we must have (Xi : vi) ∈ t1
for at least one i ∈ I ∪J and one value vi ∈ dom(X ′i). The same holds for t2, hence
in both cases πXXI∪J{λ}(t1) = πXXI∪J{λ}(t2).

For the first list axiom (15) let t1, t2 ∈ dom(X). Then πXXI [λ](t1) = πXXI [λ](t2)

means that t1 and t2 contain the same number of elements of the form (Xi : vi)
with i ∈ I. If the same holds for I ∪ J , then t1 and t2 must also contain the same
number of elements of the form (Xi : vi) with i ∈ J , i.e. πXXJ [λ](t1) = πXXJ [λ](t2).

The soundness of the second list axiom (16) follows from the same argument.
Analogously, for the third list axiom (17) for Y ∈ {XI [λ], XJ [λ], XI∩J [λ]}

πXY (t1) = πXY (t2) means that t1, t2 contain the same number of elements with
labels in I, J and I ∩ J , respectively. So they also contain the same number of
elements with labels in (I − J) ∪ (J − I). The soundness of the fourth list axiom
(18) follows from the same argument.

The proof for the four multiset axioms (11) – (14) is completely analogous to
the proof for the list axioms.

For the set lifting rule (19) let t1, t2 ∈ dom(X) with πXX{Y }(t1) = πXX{Y }(t2).
Without loss of generality – repeat elements, if necessary – we may write ti =
{ti1, . . . , tik} (i = 1, 2). Then for all j = 1, . . . , k we have πX

′

Y (t1j) = πX
′

Y (t2j).

From the premise of the rule we get πX
′

Z (t1j) = πX
′

Z (t2j) for all j = 1, . . . , k and all
Z ∈ Z, which implies πXX{Z}(t1) = πXX{Z}(t2) for all X{Z} with Z ∈ Z.

For the record lifting rule (20) let t1, t2 ∈ dom(X) with πXX(λ,...,Yi,...,λ)(t1) =

πXX(λ,...,Yi,...,λ)(t2) for all Yi ∈ Yi. If tj = (t1j , . . . , tnj) for j = 1, 2, then it follows

πXi

Yi
(ti1) = πXi

Yi
(ti2) for all Yi ∈ Yi and thus also πXi

Zi
(ti1) = πXi

Zi
(ti2) for all Zi ∈ Zi

by the premise of the rule. This gives πXX(λ,...,Zi,...,λ)(t1) = πXX(λ,...,Zi,...,λ)(t2) for
all Zi ∈ Zi as desired.

For the union lifting rule (21) let t1, t2 ∈ dom(X) with πX···⊕Xi(Yi)⊕...(t1) =

πX···⊕Xi(Yi)⊕...(t2) for all Yi ∈ Yi. In particular, t1 and t2 must have the same label,

and we can assume tj = (Xi : t′j) for j = 1, 2. Then we get πXi

Yi
(t′1) = πXi

Yi
(t′2) for

all Yi ∈ Yi and thus also πXi

Zi
(t′1) = πXi

Zi
(t′2) for all Zi ∈ Zi by the premise of the

rule. This implies πX···⊕Xi(Zi)⊕...(t1) = πX···⊕Xi(Zi)⊕...(t2) for all Zi ∈ Zi as desired.
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For the multiset lifting rule (22) let t1, t2 ∈ dom(X) with πXX〈Y 〉(t1) = πXX〈Y 〉(t2).
In particular, t1 and t2 must contain the same number of elements, so we may write
ti = 〈ti1, . . . , tik〉 (i = 1, 2). Then for all j = 1, . . . , k we obtain πX

′

Y (t1j) = πX
′

Y (t2j).

From the premise of the rule we get πX
′

Z (t1j) = πX
′

Z (t2j) for all j = 1, . . . , k and all
Z ∈ Z, which implies πXX〈Z〉(t1) = πXX〈Z〉(t2) for all X〈Z〉 with Z ∈ Z.

For the list lifting rule (23) let t1, t2 ∈ dom(X) with πXX[Y ](t1) = πXX[Y ](t2) for

all X[Y ] with Y ∈ Y. As Y 6= ∅, it follows that t1 and t2 must have the same
length, say ti = [ti1, . . . , tik] (i = 1, 2), and for all j = 1, . . . , k and all Y ∈ Y we
have πX

′

Y (t1j) = πX
′

Y (t2j). Hence πX
′

Z (t1j) = πX
′

Z (t2j) for all j = 1, . . . , k and all
Z ∈ Z, which implies πXX[Z](t1) = πXX[Z](t2) for all X[Z] with Z ∈ Z.

According to the observation made before we may still say that all axioms and
rules in Theorem 5 arise from the lattice structure on S(X).

The axioms and rules in Theorem 3 only apply to “ordinary” FDs. For the
implication of wFDs we need additional axioms and rules.

Theorem 6. The following axioms and rules are sound for the implication of
wFDs on S(X):

weakening rule:
|{Yi → Zi | i ∈ I|}
|{Yj → Zj | j ∈ J |}

I ⊆ J (24)

left union rule:
|{Y→ Zi | i ∈ I|}
|{Yi → Zi | i ∈ I|}

Y =
⋃
i∈I

Yi (25)

shift rule:

|{Y ∪ U1 → {Z} | Z ∈ Z ∪ (U− U1)|} . . . |{Y ∪ Uk → {Z} | Z ∈ Z ∪ (U− Uk)|}
|{Y→ {Z} | Z ∈ Z|}

C

(26)

with condition C : P(U) = {U1, . . . ,Uk}

union axiom for X = X{X1(X ′1)⊕ · · · ⊕Xn(X ′n)} and I = {i1, . . . , ik}:

|{{XI{λ}} → {XJ{λ}}, {XI{λ}} → {X(Xi1{X ′i1}, . . . , Xik{X ′ik})}|}
I ( J

(27)

partition axiom for X = X{X1(X ′1)⊕ · · · ⊕Xn(X ′n)} and I ⊆ {1, . . . , n}:

|{{XI{λ}} → {XI′1∪I′2{λ} | ∅ 6= I ′1 ⊆ I1, ∅ 6= I ′2 ⊆ I2},
{XI{λ}} → {X(Xi{λ})} | I = I1 ∪ I2, I1 ∩ I2 = ∅, I1 6= ∅ 6= I2, i ∈ I|}

(28)
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first plus/minus axiom for X = X{X1(X ′1)⊕ · · · ⊕Xn(X ′n)}:

|{{λ} → {XJ∪{i}{λ} | J ⊆ I−}, {X{1,...,n}{λ}} → {XI−{λ}},
{X(Xj{λ})} → {X}, {λ} → {X(Xk{λ})} | i, j ∈ I+, k ∈ I−|}

C (29)

with condition C : {1, . . . , n} = I+
·
∪ I−

second plus/minus axiom for X = X{X1(X ′1)⊕ · · · ⊕Xn(X ′n)}:

|{{XI∪J{λ}} → {XJ{λ}}, {XI∪J{λ}} → {X{j}{λ}},
{XI∪J{λ}} → {XJ′∪{i0}{λ} | J ′ ⊆ J} | i0 ∈ I, j ∈ J |}

(30)

with condition I ∩ J = ∅

third plus/minus axiom for X = X{X1(X ′1)⊕ · · · ⊕Xn(X ′n)}:

|{{XI−{λ}, XI′∪J′{λ}, X{i}{λ} | i ∈ I+} → {XJ′{λ}},
{XI−{λ}, XI′∪J′{λ}, X{i}{λ} | i ∈ I+} → {XJ∪{`}{λ} | J ⊆ I−},
{XI−{λ}, XI′∪J′{λ}, X{i}{λ} | i ∈ I+} → {X{k}{λ}} | k ∈ I−, ` ∈ I ′|}

(31)

with conditions I+ ∪ I− = {1, . . . , n}, I+ ∩ I− = ∅, I ′ ⊆ I+, J ′ ⊆ I−

partition axiom for sets for X = X{X̄{X1(X ′1) ⊕ · · · ⊕ Xn(X ′n)}} and P ⊆
P(I):

|{{λ} → {X{X̄I′{λ}} | I ′ ∩ I+ 6= ∅}∪
{X{X̄J∪J−{λ}}, X{X̄J{λ}} | J− ⊆ I−, J ∈ Q, J ⊆ I+− ∪ I−},
{λ} → {X{X̄K{λ}}}, {X{X̄K′{λ}}} → {X} |
I = I−

·
∪ I+

·
∪ I−

·
∪ I+−, Q ⊆ P(I),

K ∈ (P(I+− ∪ I−))−Q,K ′ ∈ (P(I+− ∪ I−)) ∩Q|}

(32)

partition axiom for multisets for X = X〈X̄{X1(X ′1) ⊕ · · · ⊕ Xn(X ′n)}〉 and
P ⊆ P(I):

|{{λ} → {X〈X̄I′{λ}〉 | I ′ ∩ I+ 6= ∅}∪
{X〈X̄J∪J−{λ}〉, X〈X̄J{λ}〉 | J− ⊆ I−, J ∈ Q, J ⊆ I+− ∪ I−},
{λ} → {X〈X̄K{λ}〉}, {X〈X̄K′{λ}〉} → {X} |
I = I−

·
∪ I+

·
∪ I−

·
∪ I+−, Q ⊆ P(I),

K ∈ (P(I+− ∪ I−))−Q,K ′ ∈ (P(I+− ∪ I−)) ∩Q|}

(33)
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Proof. The soundness proof for the weakening rule (24) is trivial.

For the left union rule (25) assume r 6|= |{Yi → Zi | i ∈ I|}, i.e. there exist
t1, t2 ∈ r such that for all i ∈ I we get πXY (t1) = πXY (t2) for all Y ∈ Yi and
πXZi

(t1) 6= πXZi
(t2) for some Zi ∈ Zi. In particular, πXY (t1) = πXY (t2) for all Y ∈ Y,

hence r 6|= |{Y→ Zi | i ∈ I|}.
For the shift rule (26) assume r 6|= |{Y→ {Z} | Z ∈ Z|}, i.e. there exist t1, t2 ∈ r

such that πXY (t1) = πXY (t2) for all Y ∈ Y and πXZ (t1) 6= πXZ (t2) for all Z ∈ Z.
Take a maximal U′ ⊆ U such that πXU (t1) = πXU (t2) for all U ∈ U′. If we had
r |= |{Y ∪ U′ → {Z} | Z ∈ Z ∪ (U − U′)|}, we would have U′ ( U, and there would
exist some V ∈ U−U′ with πXV (t1) = πXV (t2), which contradicts the maximality of
U.

Let X = X{X1(X ′1)⊕· · ·⊕Xn(X ′n)} = X(X1{X ′1}, . . . , Xn{X ′n}), Y = XI{λ},
Z1 = XJ{λ} and Z2 = X(X(Xi1{X ′i1}, . . . , Xik{X ′ik}) for the union axiom (27).

Let t1, t2 ∈ r with πXY (t1) = πXY (t2) and πXZ1
(t1) 6= πXZ1

(t2). Thus, one of t1 or
t2 — without loss of generality let this be t2 — must not contain elements of the
form (Xj : vj) with j ∈ J . On the other hand, either t1 and t2 both contain
elements of the form (Xi : vi) with i ∈ I or both do not. As I ( J , it follows
πXX(Xi{λ})(t1) = πXX(Xi{λ})(t2) = ∅ for all i ∈ I, which implies πXZ2

(t1) = πXZ2
(t2).

For the partition axiom (28) let t1, t2 ∈ r with πXXI{λ}(t1) = πXXI{λ}(t2) and

πXX(Xi{λ})(t1) 6= πXX(Xi{λ})(t2) for all i ∈ I. Let Ij ⊆ I be such that tj contains an

element of the form (Xi : vi) for all i ∈ Ij (j = 1, 2). Obviously, I = I1
·
∪ I2 and

πXXI′{λ}
(t1) = πXXI′{λ}

(t2) for all I ′ ⊆ I with I ′ ∩ I1 6= ∅ 6= I ′ ∩ I2.

For the first plus/minus axiom in (29) let t1, t2 satisfy πXXj{λ}(t1) = πXXj{λ}(t2)

and πXXk{λ}(t1) 6= πXXk{λ}(t2) for all j ∈ I+ and k ∈ I−. Assume that for all

i ∈ I+ there is some J ⊆ I− with πXXJ∪{i}{λ}(t1) 6= πXXJ∪{i}{λ}(t2), i.e. one of

these projections must be ∅. As we have πXXi{λ}(t1) = πXXi{λ}(t2), these must both

be ∅, which implies πXXI+{λ}
(tj) = ∅ for j = 1, 2. Now πXXk{λ}(t1) 6= πXXk{λ}(t2)

for all k ∈ I−, so if πXXI−{λ}
(t1) 6= πXXI−{λ}

(t2) holds, one of these projections

must be ∅ again, which implies that one tj is ∅, the other not empty. That is
πXX{1,...,n}{λ}(t1) 6= πXX{1,...,n}{λ}(t2).

For the second plus/minus axiom in (30) assume that it does not hold. Then we
find two complex values t1, t2 that coincide on XI∪J{λ}, but differ on XJ{λ} and
all X{j}{λ} with j ∈ J . Furthermore, for each i ∈ I there is at least one Ji ⊆ J
such that t1, t2 differ on XJi∪{i}{λ}. It follows that one of the two complex values –
without loss of generality let this be t1 – contains values (Xj : τj) for all j ∈ J , while
the other one does not contain such values. Then we obtain πXXJ′∪{i}{λ}

(t1) 6= ∅
for all J ′ ⊆ J and all i ∈ I. As t1, t2 coincide on XI∪J{λ}, this also gives
πXXJ′∪{i}{λ}

(t2) 6= ∅ for all J ′ ⊆ J and at least one i ∈ I contradicting the assump-

tion that for at least one such J ′ = Ji we have πXXJ′∪{i}{λ}
(t1) 6= πXXJ′∪{i}{λ}

(t2).

For the third plus/minus axiom in (31) assume that it does not hold. Then we
find two complex values t1, t2 that coincide on XI−{λ}, all X{i}{λ} for i ∈ I+, and
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on XI′∪J′{λ}, but differ on XJ′{λ} and all X{k}{λ} with k ∈ I−. Furthermore, for
each ` ∈ I ′ there is at least one J` ⊆ I− such that t1, t2 differ on XJ`∪{`}{λ}. Define

I−j = {i ∈ I− | πXX{i}{λ}(tj) 6= ∅} (j = 1, 2) to define a partition I− = I−1 ∪ I
−
2 . As

t1, t2 differ on XJ′{λ}, this implies J ′ ⊆ I ′1 or J ′ ⊆ I ′2. Without loss of generality
we can assume the first of these possibilities. As t1, t2 coincide on XI′∪J′{λ}, we
must have πXXI′{λ}

(t2) 6= ∅, so also πXX{i}{λ}(t2) 6= ∅ for some i ∈ I ′. Then also

πXX{i}{λ}(t1) 6= ∅ due to I ′ ⊆ I+. Hence we get πXXJ∪{i}{λ}(tj) 6= ∅ for j = 1, 2 and

all J ⊆ I− contradicting the assumption that at least one such J = Ji exists, such
that t1, t2 differ on XJi∪{i}{λ}.

For the set partition axiom in (32) take any S1, S2 ∈ dom(X). In case S1 =
S2 = ∅ we simple choose I+ = I, so we must have I− = I− = I+− = ∅. Further
take Q′ = {∅}. In case exactly one of the Si is empty, we choose I− = I, I+ =
I− = I+− = ∅, and

Q′ = {J ⊆ I− | πXX{X̄J{λ}}(S1) = πXX{X̄J{λ}}(S2)}.

In both cases we immediately get the satisfaction of the first involved FD, if
Q ∩ (P(I+− ∪ I−)) = Q′. However, if there is some K ∈ Q′ with K /∈ Q, the FD
{λ} → {X{X̄K{λ}}} is satisfied. Similarly, if there is some K ′ ∈ Q with K ′ /∈ Q′,
then the FD {X{X̄K′{λ}}} → {X} is satisfied.

In the remaining case with S1 6= ∅ 6= S2 we take

I+ = {i ∈ I | πXX{X̄{i}{λ}}(S1) = {{>}} = πXX̄{X{i}{λ}}(S2)},

I− = {i ∈ I | πXX{X̄{i}{λ}}(S1) = {∅} = πXX̄{X{i}{λ}}(S2)},

I− = {i ∈ I | πXX{X̄{i}{λ}}(S1) 6= πXX̄{X{i}{λ}}(S2)},

and I+− = I − I−− I+− I−. Then S1, S2 obviously coincide on all X{X̄I′{λ}}
with I ′ ∩ I+ 6= ∅. If we take again

Q′ = {J ⊆ I− ∪ I+− | πXX{X̄J{λ}}(S1) = πXX{X̄J{λ}}(S2)},

then S1, S2 coincide on all X{X̄J∪J−{λ}} and all X{X̄J{λ}} with J− ⊆ I− and
J ∈ Q′. As in the previous two cases we obtain the satisfaction of the first involved
FD, if Q ∩ (P(I+− ∪ I−)) = Q′ holds. If this is not the case, one of the other FDs
will be satisfied by {S1, S2}.

Finally, for the multiset partition axiom in (33) we proceed analogously. Let
M1,M2 ∈ dom(X). In case M1 = M2 = 〈〉 we simple choose I+ = I, so we
must have I− = I− = I+− = ∅. Further take Q′ = {∅}. In case exactly one
of the Mi is the empty multiset, we choose I− = I, I+ = I− = I+− = ∅, and
Q′ = {J ⊆ I− | πX

X〈X̄J{λ}〉(M1) = πX
X〈X̄J{λ}〉(M2)}.
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In case M1 6= 〈〉 6= M2 we take

I+ = {i ∈ I | πXX〈X̄{i}{λ}〉(M1) = 〈 {>}︸︷︷︸
x times

〉 = πXX〈X̄{i}{λ}〉(M2)},

I− = {i ∈ I | πXX〈X̄{i}{λ}〉(M1) = 〈 ∅︸︷︷︸
x times

〉 = πXX〈X̄{i}{λ}〉(M2)},

I− = {i ∈ I | πXX〈X̄{i}{λ}〉(M1) 6= πXX〈X̄{i}{λ}〉(M2)},

and I+− = I − I− − I+ − I−. As before we define Q′ = {J ⊆ I− ∪ I+− |
πX
X〈X̄J{λ}〉(M1) = πX

X〈X̄J{λ}〉(M2)}.
In all three cases M1,M2 coincide on all X〈X̄I′{λ}〉 with I ′ ∩ I+ 6= ∅, on all

X〈X̄J∪J−{λ}〉 and all X〈X̄J{λ}〉 with J− ⊆ I− and J ∈ Q′. Hence {M1,M2}
satisfies the first involved FD, if Q ∩ (P(I+− ∪ I−)) = Q′ holds, while for other Q
one of the other FDs will be satisfied.

Note that the first three rules (24), (25) and (26) in Theorem 6 are a slight
generalisation of the rules used for wFDs in the RDM (see e.g. [32, p.100f.]). The
other axioms (27) – (33) arise again from the structure of the subattribute lattice.

4.2 The Completeness Theorem for the Derivation of wFDs

We now want to show that the axioms and rules for the implication of wFDs in
Theorems 3, 5 and 6 are also complete. This gives our main result. Before we come
to the proof let us make a little observation on the union-constructor.

If X = X1(X ′1) ⊕ · · · ⊕ Xn(X ′n), then each instance r of X can be partioned
into ri (i = 1, . . . , n), where ri contains exactly the Xi-labelled elements of r. Then
r satisfies a FD ϕ ≡ Y → Z iff each ri satifies the i’th projection ϕi of ϕ, which
results by replacing all subattributes Y = X1(Y1) ⊕ · · · ⊕ Xn(Yn) in Y or Z by
Xi(Yi). Similarly, we see ϕ ∈ Σ+ iff ϕi ∈ Σ+

i for all i = 1, . . . , n.

Lemma 1. Let r ⊆ dom(X) be an instance of X = X1(X ′1) ⊕ · · · ⊕ Xn(X ′n)
and let Y → Z be a FD on S(X). Define ri = {(Xi : vi) | (Xi : vi) ∈ r},
Yi = {Xi(Yi) | X1(Y1) ⊕ · · · ⊕ Xn(Yn) ∈ Y for some Yj(j = 1, . . . , n, j 6= i)}, and
Zi = {Xi(Zi) | X1(Z1) ⊕ · · · ⊕ Xn(Zn) ∈ Z for some Zj(j = 1, . . . , n, j 6= i)}
(i = 1, . . . , n). Furthermore, for a set Σ of FDs on S(X) let Σi = {Yi → Zi | Y→
Z ∈ Σ}. Then the following holds:

1. r |= Y→ Z iff ri |= Yi → Zi holds for all i = 1, . . . , n;

2. Y→ Z ∈ Σ+ iff Yi → Zi ∈ Σ+
i for all i = 1, . . . , n.

Proof. For the first claim let us first assume r |= Y→ Z. Take t1 = (Xi : t′1) ∈ ri
and t2 = (Xi : t′2) ∈ ri with π

X′i
Yi

(t′1) = π
X′i
Yi

(t′2) for all Yi with Xi(Yi) ∈ Yi. Then

πXX1(Y1)⊕···⊕Xn(Yn)(t1) = πXX1(Y1)⊕···⊕Xn(Yn)(t2) holds for all X1(Y1)⊕· · ·⊕Xn(Yn) ∈
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Y, and thus r |= Y→ Z implies πXX1(Z1)⊕···⊕Xn(Zn)(t1) = πXX1(Z1)⊕···⊕Xn(Zn)(t2) for

all X1(Z1) ⊕ · · · ⊕ Xn(Zn) ∈ Z. This gives π
X′i
Zi

(t′1) = π
X′i
Zi

(t′2) for all Zi with
Xi(Zi) ∈ Zi, hence ri |= Yi → Zi holds for all i = 1, . . . , n.

Conversely, assume ri |= Yi → Zi holds for all i = 1, . . . , n, and take t1 = (Xi :
t′1) ∈ r and t2 = (Xj : t′2) ∈ r. If i 6= j, then t1, t2 differ on all subattributes except
λ, i.e. {t1, t2} |= Y→ Z. So assume j = i, i.e. t1, t2 ∈ ri, and πXY (t1) = πXY (t2) for

all Y ∈ Y, i.e. for Y = X1(Y1) ⊕ · · · ⊕ Xn(Yn) we obtain π
X′i
Yi

(t′1) = π
X′i
Yi

(t′2). As

Xi(Yi) ∈ Yi, the premise implies π
X′i
Zi

(t′1) = π
X′i
Zi

(t′2) for all Zi with Xi(Zi) ∈ Zi and

further πXZ (t1) = πXZ (t2) for all Z ∈ Z, hence r |= Y→ Z.
For the second claim first assume Yi → Zi ∈ Σ+

i for all i = 1, . . . , n. Then Y→
Z ∈ Σ+ results from successive applications of the union lifting rule (21) together
with the subattribute axiom (2), the reflexivity axiom (1) and the transitivity rule
(6).

Conversely, in a derivation of Y → Z from Σ all involved subattributes other
than λ will have the form X1(U1)⊕ · · · ⊕Xn(Un) with X ′i ≥ Ui. Reducing this to
Xi(Ui) in each step gives a valid derivation of Yi → Zi from Σi.

Theorem 7 (Completeness Theorem). The set of axioms and rules in Theorems
3, 5 and 6 is complete for the implication of wFDs on S(X).

Proof. Let Σ be a set of wFDs on S(X) and assume |{Yi → Zi | i ∈ I|} /∈ Σ+. Due to
the union rule (7) we must have |{Yi → {Zi} | i ∈ I|} /∈ Σ+ for some selected Zi ∈ Zi.
Furthermore, due to the left union rule (25) we get |{Y→ {Zi} | i ∈ I|} /∈ Σ+ with
Y =

⋃
i∈I

Yi.

Let Z = {Z | Z ≥ Zi for some i ∈ I} and U = S(X) − Y − Z. Due to the
reflexivity axiom (1) we obviously have Zi /∈ Y, and then Y u Z = ∅ due to the
subattribute axiom (2). Due to the shift rule (26) there must exist some U′ ⊆ U

with |{Y ∪ U′ → {Z} | Z ∈ Z ∪ (U − U′)|} /∈ Σ+. Otherwise we could derive
|{Y → {Z} | Z ∈ Z|}, and thus |{Y → {Zi} | i ∈ I|} ∈ Σ+ contradicting our
assumption.

Lemma 2. Let U′ be maximal with the given property. Then F = Y ∪ U′ is a
coincidence ideal.

We first prove Lemma 2, then continue the proof of Theorem 7.

of Lemma 2. 1. Assume F = ∅. This implies Z∪U = S(X) and thus |{∅ → {Z} |
Z ∈ S(X)|} /∈ Σ+. This wFD, however, can be derived from ∅ → {λ} ∈ Σ+

(due to the λ-axiom (4)) using the weakening rule (24). Thus, F is not empty.

2. Now let Y ∈ F and Y ≥ Y ′ Assume Y ′ /∈ F. So Y ′ ∈ U, otherwise we get
Y ′ ∈ Y∪Z, which implies Y ′ ≥ Zi for some i ∈ I and furtheron Y ≥ Y ′ ≥ Zi,
which gives the contradiction Y ∈ Z.
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Now take U′′ = U′ ∪ {Y ′}. The subattribute axiom (2) together with the
extension and transitivity rules (5) and (6) implies Y∪U′ → Y∪U′′ ∈ Σ+. As
U′ was chosen maximal, we also have |{Y ∪ U′′ → {Z} | Z ∈ Z ∪ (U− U′′)|} ∈
Σ+. Using the transitivity rule (6) again, this gives |{Y ∪ U′ → {Z} | Z ∈
Z∪ (U−U′′)|} ∈ Σ+. Then the weakening rule (24) leads to the contradiction
|{Y ∪ U′ → {Z} | Z ∈ Z ∪ (U− U′)|} ∈ Σ+.

3. Let Y1, Y2 ∈ F be reconsilable. Assume Y = Y1 t Y2 /∈ F. If Y ∈ U, we take
U′′ = U′ ∪ {Y }. Due to the maximality of U′ we get |{Y ∪ U′′ → {Z} | Z ∈
Z ∪ (U − U′′)|} ∈ Σ+, thus by the weakening rule (24) also |{Y ∪ U′′ → {Z} |
Z ∈ Z ∪ (U− U′)|} ∈ Σ+.

On the other hand, the join axiom (3) implies {Y1, Y2} → {Y } ∈ Σ+. Using
the reflexivity axiom (1), the extension rule (5) and the transitivity rule (6)
we obtain Y ∪ U′ → Y ∪ U′′ ∈ Σ+, from which we get the contradiction
|{Y ∪ U′ → {Z} | Z ∈ Z ∪ (U − U′)|} ∈ Σ+ by another application of the
transitivity rule.

If Y /∈ U, we get Y ∈ Z, thus {Y } is among the right hand sides in |{Y∪U′ →
{Z} | Z ∈ Z ∪ (U − U′)|} /∈ Σ+. However, the join rule (9) together with
the reflexivity axiom and the transitivity rule imply Y ∪ U′ → {Y } ∈ Σ+,
hence the weakening rule leads to the contradiction |{Y ∪ U′ → {Z} | Z ∈
Z ∪ (U− U′)|} ∈ Σ+.

4. a) Assume XI{λ} ∈ F, but (XJ{λ} /∈ F for {i1, . . . , ik} = I ( J . As
S(X) is partitioned into Z ∪ (U − U′) and F = Y ∪ U′, we must have
XJ{λ} ∈ Z∪ (U−U′). From the union axiom (27), the transitivity rule
and X(XI{λ}) ∈ F we conclude

|{Y ∪ U′ → {Z} | Z ∈ {XJ{λ}, X(Xi1{X ′i1}, . . . , Xik{X ′ik})}|} ∈ Σ+.

Due to the weakening rule (24) it follows |{Y ∪ U′ → {Z} | Z ∈ W|} ∈
Σ+ for all W ⊆ S(X) with XJ{λ}, X(Xi1{X ′i1}, . . . , Xik{X ′ik}) ∈ W.
According to the definition of U′ we must have either XJ{λ} /∈ Z ∪
(U − U′) or X(Xi1{X ′i1}, . . . , Xik{X ′ik}) /∈ Z ∪ (U − U′), which implies
X(Xi1{X ′i1}, . . . , Xik{X ′ik}) ∈ F.

b) Assume XI{λ} ∈ F, but X(Xi{λ}) /∈ F for all i ∈ I. In particular
X(Xi{λ}) ∈ Z∪(U−U′). Using the partition axiom (28), the transitivity
rule and XI{λ} ∈ F we conclude |{Y∪U′ → {XI′1∪I′2{λ} | ∅ 6= I ′1 ⊆ I1, ∅ 6=
I ′2 ⊆ I2},Y ∪ U′ → {X(Xi{λ})} | I = I1

·
∪ I2, i ∈ I, I1 6= ∅ 6= I2|} ∈ Σ+.

If for all partitions I = I1
·
∪ I2 we had at least one XI′1∪I′2{λ} ∈ Z ∪

(U − U′), we can apply the reflexivity axiom, the transitivity rule and
the weakening rule to derive |{Y ∪ U′ → {Z} | Z ∈ Z ∪ (U − U′)|} ∈ Σ+

contradicting the assumption on U′. Therefore, there is a partition I =

I1
·
∪ I2 with {XI′1∪I′2{λ} | ∅ 6= I ′1 ⊆ I1, ∅ 6= I ′2 ⊆ I2} ⊆ F.
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Choose such a partition. If we had XI1{λ} ∈ F, we could choose a
maximal J ( I1 with XJ{λ} /∈ F, and X{j}{λ} /∈ F for all j ∈ J . So,
we can partition I1 into J and I ′ = I1 − J . Now use property 4(d) –
which we prove soon not using 4(b). Due to this property we find some
i ∈ I ′ such that XJ′∪{i}{λ} ∈ F holds for all J ′ ⊆ J . In particular, for
J ′ = ∅ we obtain a contradiction. Hence we must have XI1{λ} /∈ F and
by symmetry also XI2{λ} /∈ F.

c) Assume X{1,...,n}{λ} ∈ F, XI−{λ} /∈ F and for all i ∈ I+ there is some
J ⊆ I− with XJ∪{i}{λ} /∈ F. Let this J be denoted as Ji. Taking the
first plus/minus axiom (29), the left hand side of the FDs are always in
F. Therefore, using the reflexivity axiom and the transitivity rule we
derive |{F → {XJi∪{i}{λ}},F → {X},F → {Xj{λ}},F → {XI−{λ}} |
i ∈ I+, j ∈ I−|} ∈ Σ+. Now the right hand sides of the FDs are all not in
F, so the weakening rule implies |{F → {Z} | Z /∈ F|} ∈ Σ+ contradicting
the construction of F, according to which S(X)−F = Z∪ (U−U′). and
|{F → {Z} | Z ∈ Z ∪ (U− U′)|} /∈ Σ+.

d) Let I ∩ J = ∅ and XJ{λ} /∈ F, X{j}{λ} /∈ F for all j ∈ J , and for
all i ∈ I there is some Ji ⊆ J with XJi∪{i}{λ} /∈ F. Furthermore,
assume XI∪J{λ} ∈ F. Then from the second plus/minus axiom (30),
the transitivity rule (6) and the reflexivity axiom (1) we derive |{F →
{XJ{λ}},F → {X{j}{λ}},F → {XJi∪{i}{λ}} | i ∈ I, j ∈ J |} ∈ Σ+.
Here the right hand sides of all involved FDs have the form {Z} with
Z /∈ F, so the weakening rule (24) gives |{F → {Z} | Z /∈ F|} ∈ Σ+

contradicting the construction of F. Hence we must have XI∪J{λ} /∈ F.

e) AssumeXI−{λ} ∈ F, and let I ′ ⊆ I+ such that for all i ∈ I ′ there is some
Ji ⊆ I− with XJi∪{i}{λ} /∈ F. Let J ′ ⊆ I− with XJ′{λ} /∈ F and assume
XI′∪J′{λ} ∈ F. Then for i ∈ I ′, k ∈ I− using the the third plus/minus
axiom (31), the reflexivity axiom (1) and the transitivity rule (6) we
derive |{F → {XJ′{λ}},F → {XJi∪{i}{λ}},F → {X{k}{λ}}|} ∈ Σ+.
Again the right hand sides of all involved FDs have the form {Z} with
Z /∈ F leading to the contradiction |{F → {Z} | Z /∈ F|} ∈ Σ+ by
applying the weakening rule (24). Hence we must have XI′∪J′{λ} /∈ F

for all J ′ ⊆ I− with XJ′{λ} /∈ F.

5. a) Let XI{λ}, XJ{λ} ∈ F with I ∩ J = ∅, but assume XI∪J{λ} /∈ F, i.e.
XI∪J{λ} ∈ Z∪ (U−U′). From the set axiom (10), the reflexivity axiom
(1) and the transitivity rule (6) we derive F → {XI∪J{λ}} ∈ Σ+ and
further |{F → {Z} | Z /∈ F|} ∈ Σ+ by the weakening rule (24). This
contradicts the construction of F, so we must have XI∪J{λ} ∈ F.

The proof of properties 5(b) and (c) is completely analogous using (15)
and (11), respectively, instead of (10).

d) Let XI [λ], XJ [λ] ∈ F with I ⊆ J , but assume XJ−I [λ] /∈ F. From the
second list axiom (16), the reflexivity axiom (1) and the transitivity rule
(6) we derive F → {XJ−I [λ]} ∈ Σ+. Applying the weakening rule (24)



Weak Functional Dependencies on Trees with Restructuring 313

leads to the contradiction |{F → {Z} | Z /∈ F|} ∈ Σ+. Hence we must
have XJ−I [λ] ∈ F.

The proof of property 5(e) is completely analogous using (12) instead of
(16).

f) Let XI [λ], XJ [λ] ∈ F and assume XI∩J [λ] ∈ F, but X(I∪J)−(I∩J)[λ] /∈
F. The the third list axiom (17), the reflexivity axiom (1) and the
transitivity rule (6) allow us to derive F → {X(I∪J)−(I∩J)[λ]} ∈ Σ+.
Further application of the weakening rule (24) leads to the contradiction
|{F → {Z} | Z /∈ F|} ∈ Σ+. Hence we must have X(I∪J)−(I∩J)[λ] ∈ F.

Analogously, assuming XI∩J [λ] /∈ F and X(I∪J)−(I∩J)[λ] ∈ F leads to
the same contradiction using the fourth list axiom (18) instead of (17).
The proof of property 5(g) is completely analogous using (13) and (14)
instead of (17) and (18), respectively.

6. If property 6(a) were not satisfied, then for all partitions I∩I+ = I+∪I−∪I+−
one of the properties ii or iii in Definition 7 6(a) would be violated. In case
property ii is violated there is some I ′ with I ′ ∩ I+ 6= ∅ and X{X̄I′{λ}} /∈ F.
In case property iii is violated there exists some I ′ ⊆ I+− ∪ I− ∪ I− such that
either X{X̄I′{λ}} ∈ F and X{X̄I′∩(I+−∪I−){λ}} /∈ F or X{X̄I′{λ}} /∈ F and
X{X̄I′∩(I+−∪I−){λ}} ∈ F. Then define J− = I ′ − I+− − I− and J = I ′ − I−,
which gives X{X̄J{λ}} /∈ F in the first case and X{X̄J−∪J{λ}} /∈ F in the
second case.

Let Q = {J ⊆ I | X{X̄J{λ}} ∈ F}. Then the right hand side of the first
FD in the set partition axiom (32) contains a subattribute Z /∈ F, and the
same holds for the involved FDs of the form {λ} → {X{X̄K{λ}}}. For the
remaining involved FDs we can replace the right hand side by {Z} with some
Z /∈ F using the subattribute axiom (2) and the transitivity rule. Thus,
using (32), (2), the reflexivity axiom, the transitivity rule, and the weakening
rule, we derive the contradiction |{F → {Z} | Z /∈ F|} ∈ Σ+. Hence there
is a partition I = I− ∪ I+ ∪ I− ∪ I+− satisfying the properties i, ii or iii in
Definition 7 6(a).

The proof of property 6(b) is completely analogous using the multiset parti-
tion axiom (33) instead of (32).

7. For the proof of property 7 observe that the proofs of properties 1 - 6 follow
a simple pattern. Assuming that the property does not hold we obtain an
instance of a particular axiom, which together with the reflexivity axiom (1),
the transitivity rule (6) and the weakening rule (24) allows us to derive the
contradiction |{F → {Z} | Z /∈ F|} ∈ Σ+.

To be precise, we used the λ axiom (4) for property 1, the subattribute axiom
(2) for property 2, the join axiom (3) for property 3, the union axiom (27) for
property 4(a), the partition axiom (28) for property 4(b), the first plus/minus
axiom (29) for property 4(c), the second plus/minus axiom (30) for property
4(d), the third plus/minus axiom (31) for property 4(e), the set axiom (10)
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for property 5(a), the four list axioms (15) – (18) for properties 5(b),(d) and
(f), the four multiset axioms (11) – (14) for properties 5(c),(e) and (g), the
set partition axiom (32) for property 6(a), and the multiset partition axiom
(33) for property 6(b).

We can apply the record lifting rule (20), the union lifting rule (21) and the
list lifting rule (23) to all these axioms to derive additional axioms, and we can
apply the set lifting rule (19) and the multiset lifting rule (22) to the axioms
except (3), (31) and (10) – (18). The resulting axioms differ from the original
ones only by “wrapping” constructors around the involved attributes. Then
using exactly the same arguments as before, we obtain additional properties
for F that correspond to the required properties for the embedded ideals Fi
or G used in properties 7(a)-(e) and 8(a)-(c), which completes the proof.

Proof of Theorem 7 (continued): Due to the restructuring rules in Definition
4 we may assume that the union-constructor appears in X only inside a set-, list-
or multiset-constructor or as the outermost constructor.

Let us first assume that the outermost constructor is not the union-constructor.
Then we can apply the Central Theorem 2, which gives us r = {t1, t2} ⊆ dom(X)
with πXY (t1) = πXY (t2) iff Y ∈ F = Y ∪ U′. In particular, πXY (t1) = πXY (t2) for
all i ∈ I and Y ∈ Yi, and πXZi

(t1) 6= πXZi
(t2) for all i ∈ I. That is, r 6|= |{Yi →

{Zi} | i ∈ I|}. From the soundness of the fragmentation rule (8) we conclude
r 6|= |{Yi → Zi | i ∈ I|}.

Now assume that the outermost constructor of X is the union-constructor, say
X = X1(X ′1) ⊕ · · · ⊕ Xn(X ′n). We know from Lemma 2 that F = Y ∪ U′ is a
coincidence ideal on S(X). If F = {λ}, then take t1 = (X1 : t′1) and t2 = (X2 : t′2)
with arbitrary t′j ∈ dom(X ′j). Then πXY (t1) = πXY (t2) iff Y = λ. As before this
implies r 6|= |{Yi → Zi | i ∈ I|} with r = {t1, t2}.

For F 6= {λ} take the embedded coincidence ideal Fi on S(X ′i) according
to Definition 7. Using the Central Theorem 2 we find ti1, ti2 ∈ dom(X ′i) with

π
X′i
Yi

(ti1) = π
X′i
Yi

(ti2) iff Yi ∈ Fi.

As we have |{F → {Z} | Z ∈ Z ∪ (U − U′)|} /∈ Σ+, we must also have |{Fj →
{Z} | Z ∈ (Z ∪ (U − U′))j |} /∈ Σ+

j for at least one j according to Lemma 1. In
particular, for Zi = X1(Z ′i1)⊕ · · · ⊕Xn(Z ′in) we find some j such that Z ′ij /∈ Fj for
all i ∈ I.

Now take r = {(Xj : tj1), (Xj : tj2)}. Then for all i ∈ I and all Y = X1(Y1)⊕
· · · ⊕Xn(Yn) ∈ Yi ⊆ F we have Yj ∈ Fj , and we obtain

πXY ((Xj : tj1)) = (Xj : π
X′j
Yj

(tj1)) = (Xj : π
X′j
Yj

(tj2)) = πXY ((Xj : tj2)) .

On the other hand, Z ′ij /∈ Fj implies

πXZi
((Xj : tj1)) = (Xj : π

X′j
Z′ij

(tj1)) 6= (Xj : π
X′j
Z′ij

(tj2)) = πXZi
((Xj : tj2))



Weak Functional Dependencies on Trees with Restructuring 315

for all i ∈ I. That is r 6|= |{Yi → {Zi} | i ∈ I|}, and hence r 6|= |{Yi → Zi | i ∈ I|}
by the soundness of the fragmentation rule (8).

The next Lemma 3 shows r |= Σ in both cases. This implies r |= Σ∗, and thus
|{Yi → Zi | i ∈ I|} /∈ Σ∗, which completes the proof of Theorem 7.

Lemma 3. r |= Σ.

Proof. First assume again that the outermost constructor is not the union-con-
structor. Let |{Vj →Wj | j ∈ J |} ∈ Σ.

1. If Vj 6⊆ Y ∪ U′ for some j ∈ J , we get πXV (t1) 6= πXV (t2) for some V ∈ Vj .
Thus r |= Vj → Wj and due to the soundness of the weakening rule also
r |= |{Vj →Wj | j ∈ J |}.

2. If Vj ⊆ Y ∪ U′ for all j ∈ J , we get Y ∪ U′ → Vj ∈ Σ+ from the reflexivity
axiom, |{Y∪U′ →Wj | j ∈ J |} ∈ Σ+ from the transitivity rule, and |{Y∪U′ →
{Wj} | j ∈ J |} ∈ Σ+ for any choices Wj ∈Wj from the fragmentation rule.

Assume we could select Wj ∈Wj − Y−U′ for all j ∈ J . Then the weakening
rule implies |{Y ∪ U′ → {W} | W ∈ S(X) − Y − U′|} ∈ Σ+. However, S(X) −
Y− U′ = Z ∪ (U− U′), so we get a contradiction to the choice of U′.

Therefore, we must have Wj ⊆ Y ∪ U′ for some j ∈ J . By construction of r
we get πXW (t1) = πXW (t2) for all W ∈ Wj , thus r |= Vj → Wj . This implies
r |= |{Vj →Wj | j ∈ J |} due to the soundness of the weakening rule.

If the outermost constructor is the union-constructor, then according to Lemma
1 we have to show rj |= Σj . The proof is analogous to the case before.

4.3 The Case of Functional Dependencies

Theorem 7 shows the axiomatisation of wFDs. If Σ is a set of “ordinary” FDs, we
can apply the axioms and rules to Σ and then the FDs in Σ+ will be the implied
FDs. Of course, we would like to have an axiomatisation for FDs that avoids such
a detour via the wFDs.

We first observe that most of the axioms and rules for wFDs in Theorem 6
depend on the joint occurrence of the set and the union constructor. Only the
weakening rule (24), the left union rule (25) and the shift rule (26) do not make such
a special assumption. In particular, in a derivation of FDs for a nested attribute X
that does not contain both the union and the set constructor, the special axioms in
Theorem 6 will not be needed. We now show that indeed none of the rules for the
derivation of wFDs are needed either, i.e. the set of axioms and rules in Theorems
3 and 5 excluding the set axiom (10) are sound and complete for the derivation of
FDs in this case.

In order to prove this, observe that properties 4, 5(a) and 6 in Theorem 2 can
be ignored, if the union and the set constructor do not appear jointly.
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Theorem 8. Let X ∈ N be a nested attribute not containing both the set and the
union constructor. Then the set of axioms and rules in Theorems 3, 5 excluding
the set axiom (10) is complete for the implication of FDs on S(X).

Proof. Let Σ be a set of FDs on S(X) and assume Y → Z /∈ Σ+. Then due to
the union rule (7) there exists a subattribute Z ∈ Z with Y → {Z} /∈ Σ+. Thus,
Z /∈ Ȳ = {Z ′ | Y → {Z ′} ∈ Σ+}. We show that F = Ȳ is a coincidence ideal on
S(X):

1. λ ∈ F follows immediately from the reflexivity axiom (1), the λ axiom (4),
and the transitivity rule (6).

2. For Z1 ∈ F and Z1 ≥ Z2 the subattribute axiom (2) and the transitivity rule
(6) imply Z2 ∈ F.

3. For reconsilable Z1, Z2 ∈ F the join axiom (3) and the transitivity rule (6)
imply Z1 t Z2 ∈ F.

5. Property (b)–(g) result immediately from applying the multiset axioms (11)
– (14) and the list axioms (15) – (18) together with the transitivity rule (6).

7. The proof of property 7 in Definition 7 is analogous to the corresponding
proof for Lemma 2. We apply lifting rules (19) – (23) to the axioms used in
the proof of properties 1, 2, 3 and 5, then apply the same argument as before.

If the outermost constructor is not the union-constructor, we can apply the
Central Theorem 2, which gives us r = {t1, t2} ⊆ dom(X) with πXY (t1) = πXY (t2) iff
Y ∈ F. In particular, πXY (t1) = πXY (t2) for all Y ∈ Y, and πXZ (t1) 6= πXZ (t2). That
is, r 6|= Y → {Z}. From the soundness of the fragmentation rule (8) we conclude
r 6|= Y→ Z.

If the outermost constructor of X is the union-constructor, say X = X1(X ′1)⊕
· · · ⊕Xn(X ′n) with n ≥ 2, then either F = {λ} or we obtain embedded coincidence
ideals Fi on S(X ′i) (i = 1, . . . , n) according to Definition 7. In the first case take
t1 = (X1 : t′1) and t2 = (X2 : t′2) with arbitrary t′j ∈ dom(X ′j). Then πXU (t1) =

πXU (t2) iff U = λ. As before Z /∈ F implies r 6|= Y→ Z with r = {t1, t2}.
In the second case the Central Theorem 2 gives us ti1, ti2 ∈ dom(X ′i) with

π
X′i
Yi

(ti1) = π
X′i
Yi

(ti2) iff Yi ∈ Fi. As we have F → {Z} /∈ Σ+, we must also have

Fj → {Zj} /∈ Σ+
j for at least one j according to Lemma 1, in particular Zj /∈ Fj .

Now take r = {(Xj : tj1), (Xj : tj2)}. Then for all Y = X1(Y1)⊕· · ·⊕Xn(Yn) ∈
Y ⊆ F we have Yj ∈ Fj , and we obtain

πXY ((Xj : tj1)) = (Xj : π
X′j
Yj

(tj1)) = (Xj : π
X′j
Yj

(tj2)) = πXY ((Xj : tj2)).

On the other hand, Zj /∈ Fj implies

πXZ ((Xj : tj1)) = (Xj : π
X′j
Zj

(tj1)) 6= (Xj : π
X′j
Zj

(tj2)) = πXZ ((Xj : tj2)).
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That is r 6|= Y→ {Z}, and hence r 6|= Y→ Z by the soundness of the fragmen-
tation rule (8).

We finally show r |= Σ in both cases, which proves the theorem. We show
this for the case that the outermost constructor is the not union-constructor. If
the outermost constructor is the union-constructor, then according to Lemma 1 we
have to show rj |= Σj for all j = 1, . . . , n, the proof of which is analogous to the
first case. So let U→ V ∈ Σ. We distinguish two cases:

• If U ⊆ F, then πXU (t1) = πXU (t2) for all U ∈ U. The reflexivity axiom and
the transitivity rule allow us to derive Y→ V ∈ Σ+, which means V ⊆ F and
thus πXV (t1) = πXV (t2) for all V ∈ V, i.e. r |= U→ V.

• If U ⊆ F, then there is some U ∈ U with πXU (t1) 6= πXU (t2), which immediately
implies r |= U→ V.

In fact, the proof shows a bit more than claimed. We only needed that properties
4, 5(a) and 6 of Theorem 2 are immediately satisfied, because the corresponding
attributes can both appear as subattributes of an attribute X ′ ∈ emb(X). This
gives the following theorem.

Theorem 9 (Completeness Theorem for FDs). Let X ∈ N be a nested attribute
such that no subattribute Y ∈ S(X ′) of an embedded attribute X ′ ∈ emb(X) has
the form X ′I{λ} with |I| ≥ 2. Then the set of axioms and rules in Theorems 3, 5
excluding the set axiom (10) is complete for the implication of FDs on S(X).

Let us now investigate the question, whether the restriction on the attributeX in
Theorem 9 can be dropped. Unfortunately, this is not the case, i.e. if both the union
and the set constructor are present, more precisely, if the union constructor does
appear immediately inside a set constructor, then there is no finite axiomatisation.

Theorem 10. If X ∈ N is a nested attribute such that there exists a subattribute
X ′I{λ} ∈ S(X ′) with |I| ≥ 2 of an embedded attribute X ′ ∈ emb(X), then there does
not exist a finite, sound and complete system of axioms and rules for the implication
of FDs on S(X).

The proof will exploit a general result about closures under k-ary implication,
which was proven in [3, Proposition 9.3.2]. We first define the necessary notions
for this result.

Definition 12. Let X ∈ N be a nested attribute, Γ a class of dependencies on
S(X), and k ≥ 0.

A set Σ ⊆ Γ of dependencies on S(X) is closed under implication with respect
to Γ iff Σ |= ϕ implies ϕ ∈ Σ for all ϕ ∈ Γ.

Σ is closed under k-ary implication with respect to Γ iff for all ϕ ∈ Γ whenever
Σ′ |= ϕ holds for some Σ′ ⊆ Σ with |Σ′| ≤ k, then this implies ϕ ∈ Σ.
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Furthermore, we will exploit ground derivation rules that result from the deriva-
tion rules we used so far by instantiating the variables in the premise and the
conclusion in such a way that the side conditions are satisfied.

Theorem 11. Let X ∈ N be a nested attribute, Γ a class of dependencies on
S(X), and let k ≥ 0. Then there exists a k-ary ground axiomatisation for Γ iff each
Σ ⊆ Γ that is closed under k-ary implication is also closed under implication.

The proof of Theorem 11 was given in [3, Proposition 9.3.2]. In fact, the propo-
sition was formulated for the relational model, but the proof does not depend on
that.

of Theorem 10. If for the class Γ of FDs on S(X) we had a finite axiomatisation,
then there would exist some k ≥ 0 such that Γ has a k-ary ground axiomatisation.
According to Theorem 11 Σ ⊆ Γ that is closed under k-ary implication would also
be closed under implication. So take X = X{X1(X ′1)⊕· · ·⊕Xk+2(X ′k+2)} and the
set

Σk = {{X{1,...,k+1}{λ}, X{i,k+2}{λ}} → {X} | i = 1, . . . , k + 1}.
By looking at instances that satisfy only k of these k+ 1 FDs we see that there

is no k-ary implication of ϕk = {X{1,...,k+1}{λ}} → {X{k+1}{λ}} from Σk. So the
k-ary closure of Σk will not contain ϕk.

On the other hand we obviously have Σk |= ϕk, so the closure of Σk will contain
ϕk. That is, the k-ary closure of Σk is not closed under implication contradicting
our assumption.

5 Extensions

In this section we extend the work on FDs and wFDs in several directions. First
we will consider dependencies also on embedded attributes that were introduced
in Section 3. We will see that this has very little impact on the theory, as we can
show a completeness result also for these dependencies without extending the set of
axioms and rules. Secondly, we will abandon the restriction on the trees to be finite
and look at rational trees. Also this extension will not require additional rules.

5.1 Embedded Dependencies

The set emb(X) of embedded attributes of a nested attribute X is simply charac-
terised by: X ′ ∈ emb(X) iff X ′ occurs somewhere within the nested structure of
X. Embedded attributes are used in the proof of Theorem 2 in [28], but the theory
of FDs and wFDs in the previous section did not make much further use of these
attributes.

However, the lifting rules (19)-(23) implicitly contained FDs on embedded at-
tributes. Nevertheless, we only looked at sets Σ of dependencies on S(X), so only
trivial dependencies on embedded attributes played a role. We now make depen-
dencies on embedded attributes explicit.
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Definition 13. Let X ∈ N. An embedded functional dependency (eFD) on S(X) is
an expression X ′ : Y→ Z with X ′ ∈ emb(X) and Y,Z ⊆ S(X ′). An embedded weak
functional dependency (ewFD) on S(X) is an expression X ′ : |{Yi → Zi | i ∈ I|}
with X ′ ∈ emb(X), an index set I and Yi,Zi ⊆ S(X ′).

In the following we consider again instances of X, i.e. finite sets r = r(X) ⊆
dom(X). For each embedded attributeX ′ ∈ emb(X), r induces an instance r(X ′) ⊆
dom(X ′) in the obvious way: v′ ∈ r(X ′) iff there exists some v ∈ r(X) such that v′

occurs in v at the position indicated by X ′ in the nesting of X. Using this extension
of instances, the satisfaction definition for eFDs and ewFDs is straightforward.

Definition 14. Let r be an instance of X. We say that r satisfies the eFD
X ′ : Y → Z on S(X) (notation: r |= X ′ : Y → Z) iff for all t1, t2 ∈ r(X ′) with
πXY (t1) = πXY (t2) for all Y ∈ Y we also have πXZ (t1) = πXZ (t2) for all Z ∈ Z.

An instance r ⊆ dom(X) satisfies the ewFD X ′ : |{Yi → Zi | i ∈ I|} on S(X)
(notation: r |= X ′ : |{Yi → Zi | i ∈ I|}) iff for all t1, t2 ∈ r(X ′) there is some i ∈ I
with {t1, t2} |= Yi → Zi.

According to this definition we may again identify an ewFD X ′ : |{Y→ Z|}, i.e.
the index set contains exactly one element, with an “ordinary” eFD X ′ : Y→ Z.

If Σ is a set of eFDs or ewFDs on S(X), we write again Σ |= ψ, if the eFD or
ewFD ψ is implied by Σ, and Σ ` ψ, if the eFD or ewFD ψ can be derived from Σ
by means of some set R of axioms and rules. In this way we retain the definition
of Σ∗ and Σ+ for a set of eFDS or ewFDs on S(X).

We may further introduce another extension to FDs and wFDs by means of
contexts. A context is a set of embedded attributes, i.e. C ⊆ emb(X). A context
C is non-trivial for X ′ ∈ emb(X) iff no X ′′ ∈ C is a subattribute of X ′ nor can it
be rewritten as a record attribute with X ′ as one of its components.

Definition 15. Let X ∈ N. A contextual functional dependency (cFD) on S(X)
is an expression C | X ′ : Y → Z with X ′ ∈ emb(X), a non-trivial context C, and
Y,Z ⊆ S(X ′). A contextual weak functional dependency (cwFD) on S(X) is an
expression C | X ′ : |{Yi → Zi | i ∈ I|} with X ′ ∈ emb(X), a non-trivial context C,
an index set I and Yi,Zi ⊆ S(X ′).

A context C partitions an instance r(X) into disjoint instances using an equiva-
lence relation ∼C defined as follows: v1 ∼C v2 iff for each Y ∈ C there exists some
v ∈ dom(Y ) appearing in both v1 and v2 as the only value with this property. An
equivalence class of r(X) with respect to ∼C is called a C-restricted fragment of
r(X).

Definition 16. Let r be an instance of X. We say that r satisfies the cFD
C | X ′ : Y → Z on S(X) (notation: r |= C | X ′ : Y → Z) iff each C-restricted
fragment of r(X) satisfies the eFD X ′ : Y→ Z.

r satisfies the cwFD C | X ′ : |{Yi → Zi | i ∈ I|} on S(X) (notation: r |= C |
X ′ : |{Yi → Zi | i ∈ I|}) iff each C-restricted fragment of r(X) satisfies the ewFD
X ′ : |{Yi → Zi | i ∈ I|}.
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5.2 Extended Completeness Result

Let us first look at the derivation rules in Theorems 3, 5 and 6. In all these rules
except the lifting rules (19)-(23) all dependencies are defined on S(X) with X left
implicit, and the soundness proofs use arbitrary instances of X. In making X
explicit, we turn the rules into derivation rules for eFDs and ewFDs. We can even
turn them into derivation rules for cFDs and cwFDs by adding the prefix C | X
to all occurring dependencies. The soundness proof remains in all cases the same,
because the notion of satisfaction defined in Definitions 14 and 16 only requires to
consider only specific instances of X.

For the lifting rules the situation is similar; the only difference is that the
dependencies in the rule conclusions are defined on some attribute X, while those in
the premises are defined on some X ′ ∈ emb(X). More precisely, we have X = {X ′},
X = X(X1, . . . , Xn) with Xi = X ′, X = X1(X ′1) ⊕ · · · ⊕ Xn(X ′n) with X ′i = X ′,
X = 〈X ′〉, and X = [X ′], respectively. Nevertheless, making these attributes
explicit and adding a context prefix defines derivation rules for eFDs, ewFDs, cFDs
and cwFDs. These rules are obviously sound, as the soundness proof (Theorem 5)
does not require any change except the mentioned syntactic modifications.

For cwFDs (and hence also for cFDs) we can add another derivation rule linking
different contexts together. For this we define that context C ′ is more restrictive
than context C (notation: C ′�C) iff ∼C′⊆∼C holds. Obviously, the empty context
is the least restrictive one. Then we get the following derivation rule (context rule):

C | X ′ : |{Yi → Zi | i ∈ I|}
C ′ | X ′ : |{Yi → Zi | i ∈ I|}

C ′ � C (34)

Theorem 12. The rules in Theorems 3, 5 and 6 (with the syntactic modifications
above) and rule (34) are sound for the implication of eFDs, ewFDs, cFDs and
cwFDs.

Proof. We only have to show the soundness of the context rule (34). So assume
that r = r(X) satisfies C | X ′ : |{Yi → Zi | i ∈ I|}. Take a C ′-restricted fragment
rC′(X) of r(X) and t1, t2 ∈ rC′(X ′). As ∼C′⊆∼C holds, t1 and t2 must be in the
same C-restricted fragment rC(X ′) of r(X). Furthermore, there is some i ∈ I such
that {t1, t2} satisfies the FD Yi → Zi, hence r |= C ′ | X ′ : |{Yi → Zi | i ∈ I|}.

Now we can even extend the completeness result in Theorem 7 to cwFDs.

Theorem 13 (Completeness Theorem). The set of axioms and rules in Theorems
3, 5 and 6 (with the syntactic modifications above) and rule (34) is complete for
the implication of cwFDs on S(X).

Proof. Let Σ be a set of cwFDs on S(X) and assume C | X ′ : |{Yi → Zi | i ∈
I|} /∈ Σ+. Due to the context rule also ∅ | X ′ : |{Yi → Zi | i ∈ I|} /∈ Σ+ holds, so
we actually have to deal with an ewFD. Due to the union rule (7) we must have
X ′ : |{Yi → {Zi} | i ∈ I|} /∈ Σ+ for some selected Zi ∈ Zi. Furthermore, due to the
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left union rule (25) we get X ′ : |{Y→ {Zi} | i ∈ I|} /∈ Σ+ with Y =
⋃
i∈I

Yi. Due to the

lifting rules we may assume that there is no cwFD C ′ | X ′′ : |{Y′j → Z′j | j ∈ J |} ∈ Σ
with X ′′ ∈ emb(X ′); otherwise we could use a restricted set of dependencies.

Let Z = {Z | Z ≥ Zi for some i ∈ I} and U = S(X ′) − Y − Z. Due to the
reflexivity axiom (1) we obviously have Zi /∈ Y, and then Y u Z = ∅ due to the
subattribute axiom (2). Due to the shift rule (26) there must exist some U′ ⊆ U

with |{Y ∪ U′ → {Z} | Z ∈ Z ∪ (U − U′)|} /∈ Σ+. Otherwise we could derive
X ′ : |{Y→ {Z} | Z ∈ Z|}, and thus X ′ : |{Y→ {Zi} | i ∈ I|} ∈ Σ+ contradicting our
assumption.

Let U′ be maximal with the given property. Then using Lemma 2 we obtain
that F = Y ∪ U′ is a coincidence ideal.

Without loss of generality we may assume X ′ 6= X; otherwise we are back to
the case that was already handled in the proof of Theorem 7. Therefore, due to
the restructuring rules we can assume that the outermost constructor in X ′ is not
the union constructor. Then we can apply the Central Theorem 2, which gives us
r′ = {t′1, t′2} ⊆ dom(X ′) with πXY (t′1) = πXY (t′2) iff Y ∈ F = Y ∪ U′. In particular,
πXY (t′1) = πXY (t′2) for all i ∈ I and Y ∈ Yi, and πXZi

(t′1) 6= πXZi
(t′2) for all i ∈ I. That

is, r′ 6|= |{Yi → {Zi} | i ∈ I|}. From the soundness of the fragmentation rule (8) we
conclude r′ 6|= |{Yi → Zi | i ∈ I|}.

We now “lift” r′ to an instance r of X such that r(X ′) = r′ holds. For this take a
chain X0, . . . , Xk of maximal length with X0 = X, Xk = X ′, and Xi ∈ emb(Xi−1)−
{Xi} for i = 1, . . . , k. Then for i = k, . . . , 0 define inductively ti1, ti2 ∈ dom(Xi)
starting with tkj = t′j for j = 1, 2.

• For Xi = Xi(X
′
1, . . . , X

′
`) define tij = (t1ij , . . . , t

`
ij) with

thij =

{
t(i+1)j if X ′h = Xi+1

τ
X′h
λ else

.

• For Xi = Xi{Xi+1} define tij = {t(i+1)j}, if Xi /∈ C holds; otherwise take
ti1 = ti2 = {t(i+1)1, t(i+1)2}.

• For Xi = Xi〈Xi+1〉 define tij = 〈t(i+1)j〉, if Xi /∈ C holds; otherwise take
ti1 = ti2 = 〈t(i+1)1, t(i+1)2〉.

• For Xi = Xi{Xi+1} define tij = [t(i+1)j ], if Xi /∈ C holds; otherwise take
ti1 = ti2 = [t(i+1)1, t(i+1)2].

Finally, take tj = t0j for j = 1, 2 and r = {t1, t2}. Then obviously r(X ′) = r′

holds. Consequently, r 6|= X ′ : |{Yi → Zi | i ∈ I|}.
If C contains an attribute X̄ with X ′ ∈ emb(X̄), then r only contains one

element, so it is its only C-restricted fragment. In this case we obviously get
r 6|= C | X ′ : |{Yi → Zi | i ∈ I|}. However, if C does not contain such an attribute,
then due to our construction we also get that r equals its only C-restricted fragment,
hence again r 6|= C | X ′ : |{Yi → Zi | i ∈ I|}.
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Now take C ′ | X ′′ : |{Vj →Wj | j ∈ J |} ∈ Σ. If X ′ /∈ emb(X ′′) holds, then due to
our construction r(X ′′) will only contain one element, hence r trivially satisfies this
cwFD. Thus we can assume X ′ ∈ emb(X ′′). In this case we unnest the attributes
in Vj and Wj , until we obtain V′j .W

′
j ⊆ S(X ′). As in Lemma 3 we consider two

cases:

1. If V′j 6⊆ Y∪U′ for some j ∈ J , we get πX
′

V ′ (t
′
1) 6= πX

′

V ′ (t
′
2) for some V ′ ∈ V′j . We

can assume that r(X ′′) contains two elements, say r(X ′′) = {t′′1 , t′′2}. Then we
get πX

′′

V (t′′1) 6= πX
′′

V (t′′2) for some V ∈ Vj . Thus r |= X ′′ : |{Vj →Wj | j ∈ J |},
hence also r |= C ′ | X ′′ : |{Vj →Wj | j ∈ J |}.

2. If V′j ⊆ Y ∪ U′ for all j ∈ J , then using the same arguments as in the proof
of Lemma 3 we must have W′j ⊆ Y ∪ U′ for some j ∈ J . By construction of

r′ we get πX
′

W ′(t
′
1) = πX

′

W ′(t
′
2) for all W ′ ∈ W′j . Due to our construction oif r

this implies πX
′′

W (t′′1) = πX
′′

W (t′′2) for all W ∈ Wj . Thus r |= X ′′ : Vj → Wj .
This implies r |= C ′ | X ′′ : |{Vj → Wj | j ∈ J |} due to the soundness of the
weakening rule and the context rule.

So r |= Σ, hence also r |= Σ∗, from which we get C | X ′ : |{Yi → Zi | i ∈ I|} /∈ Σ∗.
This completes the proof of the theorem.

Note that this completeness proof is only a slight modification of the proof of
Theorem 7 exploiting the additional context rule, while the major arguments remain
the same. Therefore, it is straightforward to apply these modifications also to the
proof of Theorem 9, which leads to the following theorem on the completeness of
cFDs (with the necessary syntactic modifications of the rules).

Theorem 14. Let X ∈ N be a nested attribute such that no subattribute Y ∈ S(X ′)
of an embedded attribute X ′ ∈ emb(X) has the form X ′I{λ} with |I| ≥ 2. Then the
set of axioms and rules in Theorems 3, 5 excluding the set axiom (10) together with
the context rule (34) is complete for the implication of cFDs on S(X).

5.3 Rational Trees

So far, all nested attributes had a fixed depth, and all complex values were repre-
sentable as finite trees. In order to capture object oriented structures as in [30] and
XML as in [1], we have to allow recursively defined attributes that take rational
trees as their values, i.e. trees with only finitely many distinct subtrees. The notion
of nested attributes has already been extended in this direction in [19]; we simply
have to add L ⊆ N to Definition 2 of nested attributes.

Definition 17. Let U be a universe and L a set of labels. The set N of nested
attributes (over U and L) is the smallest set with λ ∈ N, U ⊆ N, L ⊆ N, and
satisfying the following properties:

• for X ∈ L and X ′1, . . . , X
′
n ∈ N we have X(X ′1, . . . , X

′
n) ∈ N;
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• for X ∈ L and X ′ ∈ N we have X{X ′} ∈ N, X[X ′] ∈ N, and X〈X ′〉 ∈ N;

• for X1, . . . , Xn ∈ L and X ′1, . . . , X
′
n ∈ N we have X1(X ′1)⊕· · ·⊕Xn(X ′n) ∈ N.

We say that a label Y ∈ L occurring inside a nested attribute X, is a defining
label iff it is introduced by one of the three cases in Definition 2. Otherwise it
is a referencing label . We require that each label Y appears at most once as a
defining label in a nested attribute X, and that each referencing label also occurs
as a defining label. In other words, if we represent a nested attribute by a labelled
tree, a defining label is the label of a non-leaf node, and a referencing label is the
label of a leaf node.

We still have to extend Definition 3. For this assume X ∈ N and let Y be a
referencing label in X. If we replace Y by the nested attribute that is defined by
Y within X, we call the result an expansion of X. Note that in such an expansion
a label may now appear more than once as a defining label, but all the nested at-
tributes defined by a label can be identified, as the corresponding sets of expansions
are identical.

In order to define domains assume set of label variables ψ(Y ) for each Y ∈ L.
Then for each expansion X ′ of a nested attribute X we define dom(X ′) as in
Definition 3 with the following modifications:

• for a referencing label Y we take dom(Y ) = ψ(Y );

• for a label Y defining the nested attribute Y ′ take dom(Y ) = {y : v | y ∈
ψ(Y ), v ∈ dom(Y ′)};

• allow only such values v in dom(X ′), for which the values of referencing labels
also occur inside v exactly once at the position of a defining label.

Finally, define dom(X) =
⋃
X′ dom(X ′), where the union spans over all expansions

X ′ of X.

There is no need to change the definition of subattributes. We only have to be
aware of the fact that now a nested attribute has several expansions, and they all
can be used to define subattributes. Also the definitions of FDs and wFDs do not
require more than the tiny addition that the sets of subattributes used in them
must be finite (which they were automatically so far).

With these modifications we can easily repeat the whole theory of coincidence
ideals and dependencies. The decisive property we exploit is the finiteness of a set
Σ of wFDs. Then we can always find an expansion of X that is large enough such
that the remaining referencing labels can actually be treated in the same way as
simple attributes. In particular, the domain associated with these labels is infinite.
This leads immediately to the following result.

Theorem 15. The soundness and completeness theorems 3, 5, 6, 7 and 9 also
hold for nested attributes X with the extensions from Definition 17.
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The same arguments also apply to embedded and contextual FDs and wFDs. We
only have to be careful with the notation of embedded attributes in their definition,
as these are no longer unique. Thus, instead of X ′ ∈ emb(X) we consider embedding
paths X0, . . . , Xk of maximal length with X0 = X, Xk = X ′ and Xi ∈ emb(Xi−1)−
{Xi} for i = 1, . . . , k. We also define S(X0, . . . , Xk) = S(Xk) as the associated set
of subattributes.

Definition 18. Let X ∈ N. An embedded functional dependency (eFD) on S(X) is
an expression P : Y→ Z with an embedding path P and Y,Z ⊆ S(P ). An embedded
weak functional dependency (ewFD) on S(X) is an expression P : |{Yi → Zi | i ∈ I|}
with an embedding path P , an index set I and Yi,Zi ⊆ S(P ).

This definition carries over naturally to contextual dependencies. Using the
same argument as for wFDs we can also generalise the soundness and completeness
results for contextual dependencies.

Theorem 16. The soundness and completeness theorems 12, 13 and 14 also hold
for nested attributes X with the extensions from Definition 17.

6 Related Work

Apart from previous work by us and our colleagues Link and Hartmann that has
been intensively used in this article there are two major related research groups
working on dependencies on trees. Both Arenas and Libkin (see [5]) and Vincent,
Liu and Liu (see [37]) place their work directly in the context of XML, while we
take a more general approach using various constructors and rational trees. This
implies that depending on the choice of incorporating order or not, these related
approaches only handle one of the three bulk constructors, either lists or sets, while
we take all three into account simultaneously. In fact, both Arenas and Libkin and
Vincent et al. do not consider order, so the related case in our work refers to the
use of the set constructor, apparently exactly the case, for which FDs cannot be
finitely axiomatised. Furthermore, none of the other groups handles weak functional
dependencies.

As emphasised in [37], but not proven, the different notions of XML FDs in
the work by Arenas and Libkin and Vincent et al., respectively, coincide in case of
complete information. Vincent, Liu and Liu claim that their notion of FDs actually
captures incomplete information, while Arenas’s and Libkin’s work does. In our
work, incomplete information is captured by the null attribute λ, so it boils down
to the question, whether our definition of FDs can capture those defined by the
other groups.

As emphasised in Section 5 the notion of FD from Definition 9 is bound to
finite trees of fixed depth, while the work by the others deal with the variable
depth of XML trees. So, without the extension to rational trees our notion of FDs
cannot capture the other ones nor vice versa, because our definition of FDs involves
complex subattributes, so equality is “generated” even on sets. However, taking
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cFDs on rational trees, it is not too difficult to see that the XFDs defined in [5]
are actually representable in our framework. We may always restrict ourselves to
XFDs p1 . . . pk → p, i.e. the right hand side is a singleton. Then the right hand
side defines an embedded attribute X ′, while the paths on the left hand side then
give rise to either a subattribute of X ′ or the context subattributes. We illustrate
this relation by a final example referring to the DTD in [5, Example 1.1] and the
XFDs in [5, Example 4.1].

Example 2. The DTD in [5, Example 1.1] can be represented by the nested
attribute

courses{course(CNO, title(S), taken by{student(SNO, name(S), grade(S))})}.

Then the following eFDs and cFDs represent the XFDs in [5, Example 4.1]:

course : {course(CNO)} →
{course(CNO, title(S), taken by{student(SNO, name(S), grade(S))})}

course | student : {student(SNO)} → {student(SNO, name(S), grade(S))}
student : {student(SNO)} → {student(name(S))}

7 Conclusions

In this article we completed our work on the axiomatisation of functional depen-
dencies and weak functional dependencies on trees with restructuring. These trees
arise from constructors for complex values comprising arbitrarily nesting of finite
sets, multisets, lists, disjoint unions and records and a “null” attribute. Restruc-
turing, i.e. non-trivial equivalence between these attributes are mainly due to the
presence of the union constructor. While our previous work in [27] captured the
case, where so called counter-attributes were excluded, we now were able to provide
a sound and complete set of derivation rules for weak functional dependencies with-
out this restriction. The price for this result was a very deep and very technical
investigation of certain ideals in the algebra of subattributes leading to the cen-
tral theorem on coincidence ideals, which gives an exact characterisation of sets of
subattributes, on which two complex values coincide. We were further able to gen-
eralise the axiomatisation to capture dependencies on embedded attributes thereby
including classes of FDs defined by others (see e.g. [5]).

Though our results require quite a heavy mathematical machinery, the technical
characterisation of coincidence ideals in [28] to remove a seemingly not severe re-
striction in our previous results, we should emphasise that the unrestricted classes
of FDs and wFDS treated in this article capture counting by means of subattributes.
That is, whenever we have a multiset or list attribute, the projection of a complex
value to a counter-attribute tells us how many values of a certain kind appear in
this multiset or list. This is a concept that has not been handled in the context of
functional dependencies before.
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Unfortunately, for set attributes this is slightly different, as the counter-attrib-
utes in this case merely function as flags indicating, whether the subset of values
of a certain kind is empty or not. This shows us that there is still more work
needed to capture counting completely. In [29] we started work in this direction
by deliberately adding more restructuring rules – so far, only intrinsic, unavoidable
equivalences have been used. However, we may even take a list and forget the
order of its elements, thus mapping it to a multiset, or map a multiset to its
set of elements, i.e. we obtain an extension of the subattribute order by adding
X[Y ] ≥ X〈Y 〉 ≥ X{Y }. Similarly, we could treat a set attribute as a multiset
attribute, and then define FDs on it by using the subattributes of this corresponding
multiset attribute.

The work in [29] only contains the first step in this direction, as only functional
dependencies not involving the union constructor are handled. That is, the more
interesting counter-attributes and the intrinsic restructuring rules are absent. The
natural question is, how our results in this article can be generalised to deal also with
these extensions to restructuring in general. Other open problem to be addressed
in future are linked to other classes of dependencies, e.g. multi-valued and join
dependencies as in [21] and [40] and to the existence of Armstrong instances (see
e.g. [27]).
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