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Density of Tautologies in Logics with One Variable

László Aszalós∗ and Tamás Herendi∗

Abstract

In the present paper we estimate the ratio of the number of tautologies and
the number of formulae of length n by determining the asymptotic density
of tautologies in different kinds of logics with one variable. The logics under
consideration are the ones with a single connective (nand or nor); negation
with a connective (disjunction or conjunction); and several connectives.
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1 Introduction

One of the authors developed a computer aided education software of introductory
logic, and he needed to generate formulae randomly. Naturally the following ques-
tion has arisen: What percent of the randomly generated formulae are tautologies
(logical law) or antilogies (contradiction)? We intend to answer this question for
several logics in the present paper.

Traditionally this answer is a number expressing the ratio of favourable cases
(tautologies) to the whole number of the cases possible (formulae). Since there are
infinitely many tautologies, the ratio became ∞/∞, which is not suitable for us.
To find a reasonable answer one have to use some approximation. At first we made
some experiments, we wrote programs to list the first ten million formulae (ordered
by their length) and to count the tautologies among them. The test showed that
the quotient of the numbers of tautologies and formulae may have a limit. Next we
calculated the numbers of different kinds of formulae up to the first 10100 formulae.
We obtained similar results. Later we realized that Marek Zaionc gave the exact
value of the asymptotic limit for some logics [10]. He, together with his collegues
and students, examined purely implicational [6], intuitionistic [7, 5] and modal [3, 4]
logics with a few propositional variables. Moreover he dealt with the case of several
propositional variables [11]. Harris studied the k-cnf case [2]. In the present paper
we provide limits for logics with one propositional variable. Our main tool for the
observation of asymptotics of sequences is generating function [9]. The exposition
of the method are nicely presented in the articles cited before, e.g. in [10]. Although
we used the Zaionc’s method, our set of logical connectives are not discussed yet.
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2 Definitions and preliminary results

In this section we introduce the concept of generating functions, and we give some
basic properties of them.

Definition 1. A complex function f is said to be analytic on a region R if it is
differentiable at every point in R. It is also called regular, if it is analytic and single
valued in R.

Definition 2. Suppose that the complex function f is analytic on a region R. Then
a point z on the boundary is called regular if the extension of f on an open region
containing R ∪ {z} is analytic. The point z is called singular, if it is not regular.

Remark 1. The complex function f(z) =
√
z has the only singularity at z0 = 0.

Remark 2. Let p(z) be a polynomial of degree d with not necessarily different roots
z1, . . . , zd. Since p is analytic on the whole complex plane, the function

√
p(z) may

have singularity only at the points, where p(z) = 0, i.e. at z1, . . . , zd.

Definition 3. Let un be a sequence of real numbers. The formal power series
U(x) =

∑∞
n=0 unx

n is called the generating function of the sequence un.

Remark 3. Let un, vn and wn be sequences of numbers with generating functions
U(x), V (x) and W (x), respectively, and let α be a real number. Then the following
properties hold:

1. If vn = un+1 for n ≥ 0 then U(x) = xV (x) + u0.

2. If wn =
∑n

i=0 uivn−i for n ≥ 0 then W (x) = U(x)V (x).

3. If wn = un + vn for n ≥ 0 then W (x) = U(x) + V (x).

4. If vn = α · un for n ≥ 0 then V (x) = α · U(x).

Theorem 1. Let un and vn be two sequences of real numbers with generating
functions U(x) and V (x), respectively. Suppose that both U(x) and V (x) have
singularity in x0 and they have no other singularities in the circle |x| ≤ |x0|. If

U (x0 · x) =

∞∑
n=0

ûn(1− x)
n
2 and V (x0 · x) =

∞∑
n=0

v̂n(1− x)
n
2

and v̂1 6= 0 then the limit un/vn exists and limn→∞ un/vn = û1/v̂1.

Proof. In the proof we follow the arguments of Theorem 21 of [10].
By the assumed properties of U(x) and V (x) we may define Ū(x) = U(x0 · x)

and V̄ (x) = V (x0 ·x) such that Ū(x) and V̄ (x) are regular for |x| < 1 and have the
only singularity in x = 1 on the unit circle. Hence Ū(x) =

∑∞
n=0 ûn(1 − x)

n
2 and

V̄ (x) =
∑∞

n=0 v̂n(1−x)
n
2 . Let ūn = un/x

n
0 and v̄n = vn/x

n
0 be two sequences. Then

Ū(x) and V̄ (x) are the generating functions of ūn and v̄n, respectively. Clearly

lim
n→∞

ūn
v̄n

= lim
n→∞

un/x
n
0

vn/xn0
= lim

n→∞

un
vn

. (1)
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By Theorem 8.4 of [8] the asymptotic expansion of the coefficient of xn in Ū(x)
and V̄ (x) are

û1

(
1/2

n

)
(−1)n +O(n−2) and v̂1

(
1/2

n

)
(−1)n +O(n−2),

respectively. Hence

lim
n→∞

ūn
v̄n

= lim
n→∞

û1

(
1/2
n

)
(−1)n +O(n−2)

v̂1

(
1/2
n

)
(−1)n +O(n−2)

Since limn→∞
(

1/2
n

)
(−1)n = −∞, thus

lim
n→∞

û1

(
1/2
n

)
(−1)n +O(n−2)

v̂1

(
1/2
n

)
(−1)n +O(n−2)

= lim
n→∞

û1

(
1/2
n

)
(−1)n

v̂1

(
1/2
n

)
(−1)n

= lim
n→∞

û1

v̂1
=
û1

v̂1
.

Combining this result with (1), we obtain the statement of the theorem.

In the present paper we use the following method for the computation of the
relative frequency of the tautologies:

1. We determine the generating function T of the number of tautologies and the
generating function S of the number of formulae.

2. We calculate the minimal singularities of T and S, and we show that they are
equal. We denote this common singularity by x0.

3. We compute the expansion of T (x0 · x) and S (x0 · x) around the common
singularity.

4. The limit of the relative frequency of the tautologies is t̂1/ŝ1.

3 Logical foundations

Definition 4. Let Γ be a nonempty set of unary (negation: ¬) and binary operators
(disjunction: ∨, conjunction: ∧, nand: ↑, nor: ↓, implication: ⊃ and equivalence:
≡) and let p be a unique propositional letter. The set of formulae of the logic of Γ
is the smallest set FΓ for which

- p ∈ FΓ

- If ¬ ∈ Γ and ϕ ∈ FΓ, then ¬ϕ ∈ FΓ.

- If 4 ∈ Γ and ϕ, ψ ∈ FΓ, then (ϕ4ψ) ∈ FΓ.

The length of a formula is defined as follows: l(p) = 1, l(¬ϕ) = l(ϕ) + 1 and
l (ϕ4ψ)) = l(ϕ) + l(ψ) + 1.
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The length of a formula is equal to the numbers of its characters excluding the
parentheses (or exactly the number of its characters in polish notation).

We say that formulae ϕ and ψ are equivalent, if the formula (¬ϕ∧¬ψ)∨ (ϕ∧ψ)
is tautology. We have only one propositional letter p, which may have two different
truth-values. Since the value of a formula can be true or false in both cases, we have
four different kinds of formulae. These equivalence classes based on the equivalence
defined before are denoted by their representatives: p, ¬p, > and ⊥. These sets
are the classes of those formulae which are equivalent with p, ¬p, tautologies and
antilogies, respectively. We will call the members of the equivalence class of p p-
formulae, and the members of the equivalence class of ¬p n-formulae. Denote the
numbers of the tautologies and antilogies, p-formulae and n-formulae of length n−1
with >Γ

n, ⊥Γ
n, PΓ

n and NΓ
n , respectively. If there is no danger of confusion, we omit

the Γ from notations.
If we negate an n-formula, we get a p-formula, if we connect with a conjunction

an n-formula and a p-formula we get an antilogy, etc. We summarize this in the
following tables:

¬
⊥ >
p ¬p
¬p p
> ⊥

∧ ⊥ p ¬p >
⊥ ⊥ ⊥ ⊥ ⊥
p ⊥ p ⊥ p
¬p ⊥ ⊥ ¬p ¬p
> ⊥ p ¬p >

∨ ⊥ p ¬p >
⊥ ⊥ p ¬p >
p p p > >
¬p ¬p > ¬p >
> > > > >

(2)

↑ ⊥ p ¬p >
⊥ > > > >
p > ¬p > ¬p
¬p > > p p
> > ¬p p ⊥

↓ ⊥ p ¬p >
⊥ > ¬p p ⊥
p ¬p ¬p ⊥ ⊥
¬p p ⊥ p ⊥
> ⊥ ⊥ ⊥ ⊥

(3)

Theorem 2. P
{¬,∨}
n = P

{¬,∧}
n , N

{¬,∨}
n = N

{¬,∧}
n , >{¬,∨}n = ⊥{¬,∧}n and

⊥{¬,∨}n = >{¬,∧}n .

Remark 4. These equivalence classes form a complete lattice which should remind
the reader to the Belnap’s 4 valued system [1], but in our case there are no two
natural ordering. Here the operations join and meet are the operation or and
and, respectively. Fortunately we have only four equivalence classes and we can
formulate the operation of ↑ (nand) as the join of the complementer set of the set
of the operands, e.g. p ↑ ¬p = >∨⊥, where the operands are p and ¬p, and their
complementer set is {>,⊥}. Similar statement holds for ↓ (nor): it is the meet of
the complementer set of the set of the operands.

Proof. We prove Theorem 2 by induction on n. In the logic of negation and con-

junction P
{¬,∧}
0 = N

{¬,∧}
0 = ⊥{¬,∧}0 = >{¬,∧}0 = 0, P

{¬,∧}
1 = N

{¬,∧}
1 = ⊥{¬,∧}1 =

>{¬,∧}1 = 0, N
{¬,∧}
2 = ⊥{¬,∧}2 = >{¬,∧}2 = 0 and P

{¬,∧}
2 = 1. Similar facts hold

for >{¬,∨}n , ⊥{¬,∨}n , P
{¬,∨}
n and N

{¬,∨}
n if n ≤ 2. Hence the statement is true for

n = 0, 1 and 2.
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According to (2) the following relations hold:

P {¬,∨}n = N
{¬,∨}
n−1 +

n−1∑
i=1

P
{¬,∨}
i

(
2⊥{¬,∨}n−i + P

{¬,∨}
n−i

)
P {¬,∧}n = N

{¬,∧}
n−1 +

n−1∑
i=1

P
{¬,∧}
i

(
2>{¬,∧}n−i + P

{¬,∧}
n−i

)
N{¬,∨}n = P

{¬,∨}
n−1 +

n−1∑
i=1

N
{¬,∨}
i

(
2⊥{¬,∨}n−i +N

{¬,∨}
n−i

)
N{¬,∧}n = P

{¬,∧}
n−1 +

n−1∑
i=1

N
{¬,∧}
i

(
2>{¬,∧}n−i +N

{¬,∧}
n−i

)
⊥{¬,∨}n = >{¬,∨}n−1 +

n−1∑
i=1

⊥{¬,∨}i ⊥{¬,∨}n−i

>{¬,∧}n = ⊥{¬,∧}n−1 +

n−1∑
i=1

>{¬,∧}i >{¬,∧}n−i

>{¬,∨}n = ⊥{¬,∨}n−1 +

n−1∑
i=1

>{¬,∨}i

(
2⊥{¬,∨}n−i + 2P

{¬,∨}
n−i + 2N

{¬,∨}
n−i +>{¬,∨}n−i

)
+

n−1∑
i=1

P
{¬,∨}
i N

{¬,∨}
n−i

⊥{¬,∧}n = >{¬,∧}n−1 +

n−1∑
i=1

⊥{¬,∧}i

(
2>{¬,∧}n−i + 2P

{¬,∧}
n−i + 2N

{¬,∧}
n−i +⊥{¬,∧}n−i

)
+

n−1∑
i=1

P
{¬,∧}
i N

{¬,∧}
n−i

Assume that our hypothesis hold for all numbers less than n. We want to prove

it for n. Let us examine the equations of P
{¬,∧}
n and P

{¬,∨}
n ! By the hypothesis

N
{¬,∧}
n−1 = N

{¬,∨}
n−1 , P

{¬,∧}
i = P

{¬,∨}
i and >{¬,∧}n−i = ⊥{¬,∨}n−i for all i < n. The

right sides of equations are equal, hence P
{¬,∧}
n and P

{¬,∨}
n are equal, too. The

verification of the equalities of the other pairs is left to the reader.

A similar theorem holds for the logic of nand and the logic of nor:

Theorem 3. P
{↓}
n = P

{↑}
n , N

{↓}
n = N

{↑}
n , >{↓}n = ⊥{↑}n and ⊥{↓}n = >{↑}n .
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Proof. By (3) we have:

P {↑}n =

n−1∑
i=1

N
{↑}
i

(
2>{↑}n−i +N

{↑}
n−i

)
P {↓}n =

n−1∑
i=1

N
{↓}
i

(
2⊥{↓}n−i +N

{↓}
n−i

)
N{↑}n =

n−1∑
i=1

P
{↑}
i

(
2>{↑}n−i + P

{↑}
n−i

)
N{↓}n =

n−1∑
i=1

P
{↓}
i

(
2⊥{↓}n−i + P

{↓}
n−i

)
⊥{↑}n =

n−1∑
i=1

>{↑}i >
{↑}
n−i

>{↓}n =

n−1∑
i=1

⊥{↓}i ⊥
{↓}
n−i

>{↑}n =

n−1∑
i=1

⊥{↑}i

(
2>{↑}n−i + 2P

{↑}
n−i + 2N

{↑}
n−i +⊥{↑}n−i

)
⊥{↓}n =

n−1∑
i=1

>{↓}i

(
2⊥{↓}n−i + 2P

{↓}
n−i + 2N

{↓}
n−i +>{↓}n−i

)

The statement follows by induction on n.

Theorem 4. Each formula in F{↑} have odd length.

Proof. We prove the statement by induction on the length of formulae of F{↑}. The
only formula of length 1 is p. Hence we can assume the statement for all formula of
length less than or equal to n, where n ≥ 1. Take a formula of length n+ 1, which
can be only a formula of the form A ↑ B, where the length of A and B are less
than n, therefore both of them are odd-length formulae. By definition, the length
of A ↑ B will be odd again, which concludes the proof.

To simplify the calculations we construct four sets of equivalence classes: a =
{⊥, p}, b = {¬p,>}, c = {⊥,¬p} and d = {p,>}. Denote by AΓ

n, BΓ
n , CΓ

n and
by DΓ

n the numbers of formulae length n − 1 belonging to the sets a, b, c and d,
respectively. It is obvious, that AΓ

n = ⊥Γ
n + PΓ

n , BΓ
n = >Γ

n + NΓ
n , CΓ

n = ⊥Γ
n + NΓ

n

and DΓ
n = >Γ

n + PΓ
n .

We leave it to the reader to check that if each operand is from the same set
then the results of the operation also belong to the same set. We summarize this
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in the following tables:

¬
a b
b a

¬
c d
d c

∧ a b
a a a
b a b

∧ c d
c c c
d c d

↑ a b
a b b
b b a

↑ c d
c d d
d d c

(4)

4 Generating functions

Let SΓ
n denote the number of formulae of length n − 1 of the logic corresponding

to Γ if n > 1, and let S1 = S0 = 0.

Lemma 1.

S{¬,∧}n = S
{¬,∧}
n−1 +

n−1∑
i=1

S
{¬,∧}
i S

{¬,∧}
n−i for n > 2 (5)

Proof. A formula of length n − 1 can be either a negation of a formula of length
n− 2 or can be a formula of the kind of ϕ4ψ, where ϕ and ψ has length i− 1 and
n− 1− i, respectively.

Let

S(x) =

∞∑
n=0

S{¬,∧}n xn (6)

be the generating function of S
{¬,∧}
n . For the sake of brevity the generating function

of S
{¬,∧}
n will be denoted by S.

Lemma 2.

S =
1− x−

√
1− 2x− 3x2

2

Proof. By (5) and the properties of generating functions we may write

S = xS + S2 + x2. (7)

We had to add x2 to the right side, because S
{¬,∧}
2 6= S

{¬,∧}
1 + S

{¬,∧}
1 S

{¬,∧}
1 .

Solving (7) in S we obtain two solutions, but one of them does not satisfy the

condition S(0) = S
{¬,∧}
0 = 0, hence we have proved our lemma.

By theorem 4 we have no even length formulae in the logic of nand, so to

eliminate the zero values, we will use a bit different notation: S
{↑}
n denotes the

number of formulae of length 2n− 1. It is easy to check that in this logic S
{↑}
1 = 1,

moreover we set S
{↑}
0 = 0. Let S(x) =

∑∞
n=0 S

{↑}
n xn be the generating function of

S
{↑}
n .

Lemma 3.

S =
1−
√

1− 4x

2
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Proof. S
{↑}
n =

∑n−1
i=1 S

{↑}
i S

{↑}
n−i, because 2n−1 = 2i−1+2(n− i)−1+1. Therefore

S = SS+x, and solving this by using S(0) = S
{↑}
0 = 0 we proved our statement.

5 Logic of negation and conjunction

Remark 5. By Theorem 2 the relative frequencies of the logic of negation and dis-
junction can be derived easily from the relative frequencies of the logic of negation
and conjunction.

In this section the set Γ is {¬,∧}. For the sake of brevity we will omit Γ, so

write ⊥n instead ⊥{¬,∧}n , etc.

Lemma 4. Let B, D and P be the generating functions of Bn, Dn and Pn, re-
spectively. Then

B =
1 + x−

√
1 + 3x2 + 2xY

2
(8)

D =
1 + x− Z

2
(9)

P =
2x− Z +

√
7x2 − 2xZ + 1 + 2xY − 2x

√
1 + 3x2 + 2xY

2
(10)

Here Y =
√
− (x+ 1) (3x− 1) and Z =

√
1− x2 + 2xY .

Proof. By (4),

Bn = An−1 +

n−1∑
i=1

BiBn−i

that is we obtain a tautology or a n-formula of length n−1 by negating an antilogy
or a p-formula of length n − 2, or by conjugating two suitably long tautologies or
n-formulae. Since Sn = An + Bn = Cn + Dn, thus B = x(S − B) + B2 holds.
Solving it and using that B(0) = B0 = 0, we obtain (8). Similarly, we have
D = x(S −D) + D2 + x2, using that D(0) = D0 = 0, we achieve (9). We obtain
a p-formula of length n− 1 either by negating an n-formula of length n− 2, or by
conjugating two suitably long p-formulae or a p-formula and a tautology. Hence,

Pn = Nn−1 +

n−1∑
i=1

PiPn−i +

n−1∑
i=1

>iPn−i +

n−1∑
i=1

Pi>n−i.

Since >j = Dj −Pj , and Nj = Cj − (Aj −Pj), we have P = xC +xA+xP +P 2 +
2P (D − P ) + x2. Solving this equation and using that P (0) = P0 = 0, we obtain
(10).

Lemma 5. The singularity of S, B, D and P (defined by (6) and in lemma 4,
respectively) with minimal modulus is 1/3.
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Proof. By Remark 1, the functions S, B, D and P may have singularities when

1− 2x− 3x2 = 0 (11)

1 + 3x2 + 2x
√

1− 2x− 3x2 = 0 (12)

1− x2 + 2x
√

1− 2x− 3x2 = 0 (13)

or

7x2 − 2x
√

1− x2 + 2xY + 1 + 2x
√

1− 2x− 3x2

− 2x

√
1 + 3x2 + 2x

√
1− 2x− 3x2 = 0

The roots of (11) are −1 and 1/3. The equation (12) has two solutions, which are
approximately −0.4110− 0.3592i and −0.4110 + 0.3592i having modulus ≈ 0.5458.
The equation (13) has also two solutions, which are −1 and ≈ −0.3733. Finally
the last equation has two solutions, which are approximately 0.6434 + 0.3378i and
0.6434− 0.3378i having modulus ≈ 0.7267.

Among the possible singularities 1/3 has the smallest modulus, and 1/3 is a
singularity for all of S, B, D and P .

Theorem 5. The relative frequency of tautologies, p-formulae, n-formulae and
antilogies of length n are asymptotically the following:

lim
n→∞

Pn

Sn
=

√
2

4 −
12−3

√
2−2
√

3

24
√

4−
√

3−
√

2
≈ 0.15995

lim
n→∞

>n

Sn
= 12−3

√
2−2
√

3

24
√

4−
√

3−
√

2
≈ 0.19360

lim
n→∞

Nn

Sn
=

√
3

6 −
12−3

√
2−2
√

3

24
√

4−
√

3−
√

2
≈ 0.09507

lim
n→∞

⊥n

Sn
= 12−3

√
2−2
√

3
24

(
2− 1√

4−
√

3−
√

2

)
≈ 0.55138

Proof. By Lemma 5, the generating function S(x) of the sequence Sn has the
minimal singularity 1/3, and the function

S(x/3) =
3− x−

√
9− 6x− 3x2

6

has an expansion in the form 1
3 −

√
3

3

√
1− x + O (1− x). Again by Lemma 5, the

generating function P (x) of the sequence Pn has a singularity at 1/3, which is the
one with the least modulus, and the function P (x/3) has an expansion

1 +
√

4−
√

3−
√

2−
√

2

3
+

(
4
√

3−
√

6− 2

24
√

4−
√

3−
√

2
−
√

6

12

)
√

1− x+O (1− x) ,
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whence by Theorem 1,

lim
n→∞

Pn

Sn
=

√
2

4
− 12− 3

√
2− 2

√
3

24
√

4−
√

3−
√

2
.

Similarly, the generating function D(x) of the sequence Dn has singularity

1/3 with minimal modulus, and the function D(x/3) has an expansion 2−
√

2
3 −

√
6

12

√
1− x+O (1− x). Hence by the definition of Dn and Theorem 1,

lim
n→∞

>n

Sn
= lim

n→∞

Dn − Pn

Sn
= lim

n→∞

Dn

Sn
− lim

n→∞

Pn

Sn
=

√
2

4
−

(√
2

4
− 12− 3

√
2− 2

√
3

24
√

4−
√

3−
√

2

)
=

12− 3
√

2− 2
√

3

24
√

4−
√

3−
√

2
.

Furthermore, the generating function B(x) of the sequence Bn has singularity

1/3 with minimal modulus, and the function B(x/3) has an expansion 2−
√

3
3 −

1
6

√
1− x+O (1− x). Hence by the definition of Bn and Theorem 1,

lim
n→∞

Nn

Sn
= lim

n→∞

Bn −>n

Sn
= lim

n→∞

Bn

Sn
− lim

n→∞

>n

Sn
=

√
3

6
− 12− 3

√
2− 2

√
3

24
√

4−
√

3−
√

2
.

Since Sn = An +Bn, thus

lim
n→∞

⊥n

Sn
= lim

n→∞

An − Pn

Sn
= lim

n→∞

Sn −Bn − Pn

Sn
=

lim
n→∞

Sn

Sn
− lim

n→∞

Bn

Sn
− lim

n→∞

Pn

Sn
=

1−
√

3

6
−

(√
2

4
− 12− 3

√
2− 2

√
3

24
√

4−
√

3−
√

2

)
=

12− 3
√

2− 2
√

3

24

(
2− 1√

4−
√

3−
√

2

)
.

6 Logic of nand

Remark 6. By Theorem 3 the relative frequencies of the logic of nor can be derived
easily from the relative frequencies of the logic of nand.
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In this section the set Γ is {↑}. For the sake of brevity we omit Γ, hence we

write ⊥n instead ⊥{↑}n , etc.

Lemma 6. Let A, C and P be the generating functions of An, Cn and Pn, respec-
tively. Then

A = 1− 1

2
Y − 1

2
Z2 (14)

C = 1− 1

2
Y − 1

2
Z1 (15)

P = −1 +
1

2
Z1 +

1

2

√
7− 2Z1 − 2Y − 2Z2 (16)

where Y =
√

1− 4x, Z1 =
√

3− 2Y and Z2 =
√

3− 2Y − 4x.

Proof. By (4),

An =

n−1∑
i=1

(Si −Ai)(Sn−i −An−i) and Cn =

n−1∑
i=1

(Si − Ci)(Sn−i − Cn−i).

For the corresponding generating functions we have A = (S − A)(S − A) + x and
C = (S−C)(S−C). Solving these equations we get (14) and (15). By (3) and the
definition of A, B, C and D, we have

Pn =

n−1∑
i=1

Ni(2>n−i +Nn−i) =

n−1∑
i=1

Ni (2Bn−i −Nn−i) =

n−1∑
i=1

(Ci −Ai + Pi) (2Sn−i −An−i − Cn−i − Pn−i)) .

From this we get P = (C −A+P )(2S −A−C −P ) + x. Solving this equation we
get (16).

Lemma 7. The singularity of S, A, C and P (defined in lemma 6) with minimal
modulus is 1/4.

Proof. The functions S, A, C and P may have singularities when

1− 4x = 0 (17)

3− 2
√

1− 4x = 0 (18)

3− 2
√

1− 4x− 4x = 0 (19)

or

7− 2

√
3− 2

√
1− 4x− 2

√
1− 4x− 2

√
3− 2

√
1− 4x− 4x = 0.

The root of (17) is 1/4. The equation (18) has solution −5/16, and the equation
(19) has two solutions: 1/4−1/2i and 1/4+1/2i. Finally the last equation has two
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solutions, which are approximately −0.41823 − 0.48428i and −0.41823 + 0.48428i
having modulus ≈ 0.63987.

Among the possible singularities 1/4 has the smallest modulus, and 1/4 is a
singularity for all of S, A, C and P .

Theorem 6. The relative frequency of tautologies, p-formulae, n-formulae and
antilogies of length n are asymptotically the following:

lim
n→∞

Pn

Sn
=

√
3

3 −
2
√

3−6+3
√

2

6
√

7−2
√

3−2
√

2
≈ 0.23916

lim
n→∞

>n

Sn
= 2

√
3−6+3

√
2

6
√

7−2
√

3−2
√

2
≈ 0.33819

lim
n→∞

Nn

Sn
=

√
2

2 + 2
√

3−6+3
√

2

6
√

7−2
√

3−2
√

2
≈ 0.36892

lim
n→∞

⊥n

Sn
= 6−2

√
3−3
√

2
6

(
1 + 1√

7−2
√

3−2
√

2

)
≈ 0.05373

Proof. By Lemma 7, the generating function S(x) of the sequence Sn has the only
singularity 1/4, and the function

S(x/4) =
1−
√

1− x
2

has an expansion in the form 1
2 −

1
2

√
1− x. Again by Lemma 7, the generating

function P (x) of the sequence Pn has a singularity at 1/4, which is the one with the

least modulus, and the function P (x/4) has an expansion −2+
√

3+
√

7−2
√

3−2
√

2
2 +(

−
√

3
6 + 2

√
3−6+3

√
2

12
√

7−2
√

3−2
√

2

)√
1− x+O (1− x) ,whence by Theorem 1,

lim
n→∞

Pn

Sn
=

√
3

3
− 2

√
3− 6 + 3

√
2

6
√

7− 2
√

3− 2
√

2
.

Similarly, the generating function A(x) of the sequence An has singularity

1/4 with minimal modulus, and the function A(x/4) has an expansion 1 −
√

2
2 +

−2+
√

2
4

√
1− x+O (1− x). Hence by the definition of An and Theorem 1,

lim
n→∞

⊥n

Sn
= lim

n→∞

An − Pn

Sn
= 1−

√
2

2
−

(√
3

3
− 2

√
3− 6 + 3

√
2

6
√

7− 2
√

3− 2
√

2

)
=

6− 2
√

3− 3
√

2

6

(
1 +

1√
7− 2

√
3− 2

√
2

)
.

Furthermore, the generating function C(x) of the sequence Cn has singularity

1/4 with minimal modulus, and the function C(x/4) has an expansion 1 −
√

3
2 +
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−3+
√

3
6

√
1− x+O (1− x). Hence by the definition of Cn and Theorem 1,

lim
n→∞

Nn

Sn
= lim

n→∞

Cn −⊥n

Sn
=

√
2

2
+

2
√

3− 6 + 3
√

2

6
√

7− 2
√

3− 2
√

2
.

Since Sn = Cn +Dn, thus

lim
n→∞

>n

Sn
= lim

n→∞

Dn − Pn

Sn
=

2
√

3− 6 + 3
√

2

6
√

7− 2
√

3− 2
√

2
.

7 Summary

The logic of negation and equivalence is not a known logic, because in the general
case we cannot express any truth-value function with the help of negation and
equivalence. But if we have only one propositional variable, we can construct
formulae equivalent with p, ¬p, > and ⊥. We leave it to the reader to check that
a formula of this language is a tautology if and only if it contains even number
of negations and odd number of equivalences. (Hint. Use the following rewrite
rules: (¬ϕ ≡ ψ) ∼ ¬(ϕ ≡ ψ), ((ϕ ≡ ψ) ≡ χ) ∼ ϕ ≡ ψ ≡ χ, p ≡ p ≡ p ∼ p,
ϕ ≡ ψ ∼ ψ ≡ ϕ and double negation.)

From this it follows that the length of each tautology is even. This is the reason
why >n/Sn has no limit. We will discuss this logic in a separate article.

Following the method described in the proof of Theorem 1, we were able com-
pute the relative frequency of tautologies, p-formulae, n-formulae and antilogies
in several logics, determined by different combinations of connectives. The table
below summarizes the numerical results of the calculations of different ratios.

Γ Approximation of proportion of
p-formulae antilogies n-formulae tautologies

↑ 23.916% 5.373% 36.892% 33.819%
↓ 23.916% 33.819% 36.892% 5.373%
¬∧ 15.995% 55.138% 9.507% 19.360%
¬∨ 15.995% 19.360% 9.507% 55.138%
¬ ∧ ∨ 32.498% 26.081% 15.341% 26.081%
¬∧ ⊃ 27.803% 19.986% 15.906% 36.305%
¬∧ ⊃≡ 27.804% 20.681% 17.787% 33.729%
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