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Loop Elimination, a Sound Optimisation Technique
for PTTP Related Theorem Proving

Zsolt Zombori and Péter Szerédi

Abstract

In this paper we preseldop elimination an important optimisation technique for
first-order theorem proving based on Prolog technologyh stscthe Prolog Technol-
ogy Theorem Prover or the DLog Description Logic Reasonéhodigh several loop
checking techniques exist for logic programs, to the bestuoknowledge, we are the
first to examine the interaction of loop checking with ancesésolution. Our main
contribution is a rigorous proof of the soundness of loomilation.
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1 Introduction

Resolution [8] has long been one of the major approachesttorated theorem proving.
Besides its theoretical importance, many academic as weticdustrial implementations
have been built using resolution. Prolog [7] is a prograngiéanguage that too imple-
ments a resolution based inference mechanism. Prologhgytogtimised and has a very
high inference rate, thanks to which more complex reasosystems, such as the Prolog
Technology Theorem Prover (PTTP) [9] and the DLog systerh@k been built on top of
Prolog. These systems exploit the backtracking mechanigtmdog to search for a proof
of the initial goal. Efficiency is crucial since these syssagpically need to explore a huge
search space. In this paper we present an optimisationiteehnalledioop elimination
for Prolog based reasoning, which can make a tremendoustrapahe speed of both of
the aforementioned systems. This technique prevents foggrams from trying to prove
the same goal over and over again, thus avoiding certairs typiafinite loops.

Detecting loops to prune the search space for logic progismst new, see for exam-
ple [2]. However, the systems that we are interested in eixtéendard Prolog execution
with a technique calledncestor resolutionthat corresponds to the positive factoring in-
ference rule. In the presence of ancestor resolution, theiderations that trivially justify
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loop elimination do not hold. It is easy to see that trying toye a goal that is identical
to some goal that we are already in the process of provingyieb useful solution and
the corresponding proof attempt can be aborted. Howeves far from trivial that the
same holds in case the two goals are identical ombglulo ancestor listi.e., they can be
different in one of their arguments, namely in their list atastors. Our paper proves this
stronger claim. We are not aware of any other work explotiregmteraction between loop
elimination and ancestor resolution.

In Section 2 we provide an overview of resolution reasonimdjRrolog programming,
that will be necessary for understanding the rest of thepap8&ection 3 we examine logic
programs in terms of termination and identify the sourcesfifite execution. Section 4
contains our main contribution: we define loop eliminatiowl rove its soundness. We
end the paper with some concluding remarks in Section 5.

2 Background

In this section we provide some background information afimt-order resolution (Sub-
section 2.1) and its connection to the Prolog programmingudage (Subsection 2.2). In
Subsection 2.3 we present the Prolog Technology TheoreneP(BTTP), a complete
first-order reasoner built-on top of Prolog. Finally, in Sabtion 2.4, we give an overview
of DLog, a Description Logic reasoner that implements a PlikdPapproach. We expect
the reader to be familiar with the basics of First-Order loogi

2.1 Resolution Theorem Proving

Resolution [8] is a powerful method for proving first-ordeeorems. Directly, it is used
to check the consistency of a set of first-order clauses, esvall common reasoning
tasks — such as entailment analysis — can be easily reducetststency checkClauses
are first-order formulae satisfying the following propesti all variables are universally
quantified, all quantifiers are at the beginning of the fomrauhd the quantifier-free part
is a disjunction ofiterals, i.e., possibly negated atomic predicates. It is well knohat
any set of first-order formulae can be translated into ansadjgfiable set of clauses (for
example, see [3]). Since all variables are universally tjfiad, it is customary to omit
the quantifiers. We will do so in the following. Resolutionfides two inference rules,
calledBinary ResolutiorandPositive Factoringpresented in Figure 1. In the figure, the
clauses above the bar are the premises of the inference athtise under the bar is the
conclusion.o is themost general unifieof B andC, i.e., a variable substitution to terms
that satisfies two properties: (1) after the substituBaandC are identical, i.e.Bo =Co,
and (2) o is a most general substitution that satisfies (1). In Figyre illustrate the

AvB -CvD AvBvC
AovDo AovCo

Figure 1: Binary Resolution and Positive Factoring

application of the the two inference rules. On the left stie Binary Resolution rule is
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used and on the right side the Positive Factoring rule firbg. ost general unifier is the
same in both examples: variabtés mapped toc and every other variable is mapped to
itself.

AX)VB(x) ~B(y)vD(y) AX)VB(x)vB(y)vD(y)
A(x)vD(x) A(X)vB(x)vD(x)

Figure 2. Examples illustrating the Binary Resolution argsiBve Factoring inference
rules

Theorem 1. Binary Resolution and Positive Factoring yield a calculhattis soundand
complete This means that a set of clauses is inconsistent if and bifigrie is a finite series

of clauses ¢,C,,...,Cy = 0, whereo denotes the empty clause, such that each clause is
either amember of the initial clause set or is obtained asrectigsion of Binary Resolution

or Positive Factoring with premises selected from precgdilauses.

A proof of Theorem 1 can be found, for example, in [8].

Linear resolution As Theorem 1 indicates, resolution captures logical emeilt very
well. However, finding a deduction of the empty clause to slieonsistency can be
rather tedious as we are given no guidance as to what clabsakide resolved in what
order. To address this, various selection strategies he@e evised, among thdinear
resolution

Linear resolution is motivated by the idea that if we add aistato a set of clauses
that is considered consistent, then we only have to checknteeactions that the new
clause can have with the rest. Hence, in the first step, wdvieetioe new clause with
some other, and in all subsequent steps, one of the premibés\the conclusion of the
preceding step. Unfortunately, while in linear resolutio@ number of possible deductions
is greatly decreased, we lose completeness. Howeverry liegalution remains complete
for a restricted type of clauses that contain at most ondipesiteral, calledHorn clauses
Besides, as it is shown in [5], linear resolution can be edeenwith a technique called
ancestor resolutioifsee below in Subsection 2.3) which yields a complete cafcidr the
whole of First-Order Logic.

2.2 Programming in Prolog

Prolog [7] is a declarative programming language equippigd abuilt-in logical infer-
ence mechanism that corresponds to linear resolution. fbkishanism is complete for
Horn clauses, which correspond directly to Prolog rules.uk has three parts: a head
containing the only positive literal, the symbdat and a body which is the list of neg-
ative literals without negation, separated by commas. &oinktance, the Horn clause
P(X) v-Q1(X) v-R(X,Y)v-Q2(Y) corresponds to the Prolog rule

P(X):-Q:(X), R(X,Y), Qa(Y).
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The semantics of this rule is as follows: if all atoms in thelypare true, then so is the
atom in the head. A Prolog program is a set of rules that cansbd to prove a query
atom, calledyoal The program will try to unify the goal with some rule headdam case
of a successful unification, it will recursively try to proeach statement in the body. If
the goal matches more than one rule head, then the prograemreens this by creating
a so callecchoice pointand proceeds with the first matching rule. If we manage toyunif
the goal with a bodiless rule head, then the goal is provethelinference fails, because
there is no matching rule head, then we roll back to the lagicelpoint and proceed with
the next matching rule. This algorithm corresponds to lirregolution that starts from
the negation of the query and that is always resolved in #tlfteral. This mechanism is
very efficient in that it starts out from the goal and examioely those rules that have a
potential to answer it.

2.3 Prolog Technology Theorem Proving

The Prolog Technology Theorem Prover approach (PTTP) weslajged by Mark E.
Stickel in the late 1980's [9]. PTTP is a sound and complest-&rder theorem prover,
built on top of Prolog. An arbitrary set of general clausdsdasformed into a set of Horn-
clauses that correspond to Prolog rules. Prolog executidhese rules yields first-order
logic reasoning.

In PTTP, to each first-order clause we assign a set of Housel the so-callezbn-
trapositives The first-order clausk; vL, v Lz Vv --- v L, hasn contrapositives of the form
Lk < -Lg,...,-Lk-1,-Lks1,---,-Ln, for each I k< n. Having removed double negations,
the remaining negations are eliminated by introducing nesdipate names for negated
literals. For each predicate narfea new predicate hameot P is introduced, and all
occurrences ofP(X) are replaced witlmot P(X), both in the head and in the body. The
link between the separate predicaeandnot P is provided usin@ncestor resolutioysee
below. For example, the clauggX) v -B(X) v -R(X,Y) is translated into three Prolog
rules, each with different rule head:

ACX) :- BX), RE,Y).
not_B(X) :— not_AX), RIX,Y).
not_R(X,Y) :- not_AX), BX).

Thanks to using contrapositives, each literal of a firsteordause appears in the head of a
Horn clause. This ensures that each literal can participaderesolution step, in spite of
the restricted selection rule of Prolog.

Next, let us see how PTTP implements positive factoring.pdgp we want to prove
the goalA and during execution we obtain the subgeal What this means that by this
time we have inferred a rule, according to which if a seriegadls starting with-A is
true, thenA follows:

A< not.A, Py, P2,...Py.

The logically equivalent first-order clause is

AVAV-Pv-P2v...v =R
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from which we see immediately that the two occurrenceé eiin be unified, so there
is no need to prove the subgaalt_A. This step is calleédncestor resolutiofi5], which
corresponds to the positive factoring inference rule. Atmeresolution is implemented in
Prolog by building arancestor listwhich contain®©penpredicate calls (i.e. goals that we
started but have not yet finished proving).

Ancestor resolution is the inference step that checks iftieestor list contains a goal
which can be matched with the negation of the current goathisfis the case, then the
current goal succeeds and the unification with the ancektarent is performed. Note
that in order to retain completeness, as an alternativedestor resolution, one has to try
to prove the current goal using normal resolution, too. Thignportant if the ancestor
element contains variables and a different proof can yielffarent variable substitution.

There are two further features in the PTTP approach. Firstyeid infinite loops, iter-
ative deepening is used instead of the standard depth-fokig’search strategy. Second,
in contrast with most Prolog systems, PTTP uses occurs ahgikg unification, i.e., for
example terms< and f(X) are not allowed to be unified because this would result in a
term of infinite depth.

To sum up, PTTP uses five techniques to build a first-orderrémegrover on the
top of Prolog: contrapositives, renaming of negated liggrancestor resolution, iterative
deepening, and occurs check.

2.4 DLog, a Description Logic Reasoner

The system DLog [6] is a Description Logic (DL) [1] reasonartheSHZ QO DL language,
geared towards data reasoning, i.e., so called ABox inéerdihproceeds by transforming
the initial knowledge base into a set of first-order clausesthen performs a two-phase
reasoning. The first phase deals only with the so called tertogy box (TBox) part of the
knowledge base that contains general background knowletye point of this phase is
that by the end we obtain a syntactically simpler set of @aus be used in the subsequent
data reasoning. The second phase uses Prolog to perforraghefrthe reasoning in a
way similar to PTTP. Due to the syntactically simpler inplatuse set, the general PTTP
approach can be optimised and simplified in a number of ways.

In [10] we describe the algorithm of the first phase, as a tefulvhich we obtain
clauses of the following types:

_‘R(va) \/S(y, X) (1)
ﬁR(va) \/S(X,y) (2)
P(X) 3)
\i/(Pl(Xi)V (\j/ﬂR(m,yj)V\j/Pz(yj)Vj\/j (Vi =yj2))) 4)
R(a,b) (5)
C(a) (6)

a=b (7
azb (8)
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whereP(x) is a shorthand fof-)Py(X) v (=)P2(X) v--- v (=) R(X). Note some nice prop-
erties of our clause set:

1. There are no function symbols.

2. Inthe contrapositives generated from these clausesainedinary literal can only
appear in the body in case the head is a negative binary lftaaises of type 1 and
2).

3. For every clause that contains binary literals, all y@ga occur in some binary
literal.

4. Clauses that do not contain binary literals have at mostvanable.

As we will see later, these nice properties allow for spé&ta PTTP to obtain a
terminating decision procedure for ti8¢{ZQ DL language.

3 Termination of Logic Programs

Given that first-order logic is undecidable, it is not susprg that the Prolog Technology
Theorem Prover is not guaranteed to terminate. In thismeete review the ways in which
a logic program can fall short of termination. Afterwards sompare PTTP and DLog
with respect to termination.

3.1 Sources of infinite execution

We identify three sources of infinite execution:

« If the program containfunction symbols then we might obtain terms of ever in-
creasing depth. Consider, for example, the following senpbgram:

p(X) = p(£(X)).

If we attempt to provep(a) using the above rule, we will end up reducing it to the
proof of p(f(a)), p(f(f(a))) etc. and the program will never stop.

A proof attempt might visit infinitely many goals if an unbmled number ohew
variables can be introduced during the proof. This is the case for examith the
transitivity rule:

r(X,Y) - r(X,Z2), r(Z,Y).

It is easy to see that a proof attempt for the ggal,b) using the above rule will
generate infinitely manyg(X,Y) subgoals, always with fresh variables.

« Even if both the depth of terms and the number of variablesbmabounded, the
program might fall into doop and attempt to prove the same goal over and over
again. For example, the program consisting of the followirlg
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pX) - p(X).

will never terminate, even though there are no function sylsyénd no new variables
are introduced.

One can see easily that the above list is exhaustive. If tmebeu of variables is
bounded and there are no functions, then the total set ofterthat of the variables and
the constants appearing in the program, i.e., it is finitac&the predicate names are also
finite, there can be finitely many different goals. If there ao loops, even if a proof
attempt goes though all possible goals (the worst case)ll #ventually terminate.

Hence, we conclude that infinite execution is due exactlyhted aspects of logic
progams: function symbols, the proliferation of new valéatand loops.

3.2 Termination in DLog

In light of the preceding subsection, let us reexamine tpaticlause set of the DLog data
reasoner. We see immediately that the absence of functiob@g eliminates one of the
three sources of infinite execution.

We shall see that new variables are not introduced, eithliee SEcond nice property
of the input clause set is that the resulting contrapositiv@ly contain a negative binary
literal in the body in case the head is a negative binaryditérhis means that we can only
encounter negative binary subgoals if the initial querglitss a negative binary goal. In
SHZQ DL reasoning, however, negative binary queries are fodziddo all contraposi-
tives with a negative binary literal are unnecessary andesagisposed of. Consequently,
in our logic program binary literals will only appear pogdly. For proving such binary
goals only contrapositives from clauses of type 1 and 2 saigedble:

r(X,Y) - s(X,YV).
r(X,Y) - s(Y,X).

These rules do not introduce new variables. A proof of a lyigaal consists of applying
such rules possibly several times, until finally we obtainadahing data assertiar(a,b),
thanks to which the variables in the binary goal get instaeti. We know that in all rule
bodies that contain binary literals every variable occarsame binary literal (the third
nice property of our input clause set). These are the rulgsitiroduce new variables.
If, however, we move the binary literals to the front of thedipai.e., we prove the binary
goals first, by the time we reach the unary goals, they becaomend. Hence, any unary
goal in the body either contains the same variable as therothe ihead — in case the rule
contains no binary predicates — or else it is ground by the tiris called. New variables
may appear only for a short time — until we prove the binarjgbalding them. Hence,
DLog will never encounter infinitely many new variables dgria proof attempt.

If there are no terms of increasing depth and variables dpmudiferate, then the only
way a DLog program may not terminate is if it falls in an infeibop and proves the same
goal repeatedly.
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3.3 Eliminating Loops

We have seen that there are three independent featuresathatake a PTTP execution
non-terminating, of which only one, namely loops can ocaubLog programs. In Sec-
tion 4 we shall show that proofs containing such loops arenaoessary for completeness.
This result yields an important optimization for both PTTiRId&Log, calledoop elimi-
nation General PTTP still has to cope with infinite proof attemjlisg( to the other two
sources) and hence has to use iterative deepening, i.lel seweral proof attempts in par-
allel. However, even if loop elimination does not allow fdramging the proof search
strategy, but it still prunes the search space significaiml¥pLog, loop elimination elim-
inates the only remaining source of infinite proofs. Accogly, DLog always terminates
and uses the standard depth-first search strategy of Pwlogh gives much better per-
formance than iterative deepening.

4 Loop Elimination

In this section we present the optimization heurittigp eliminationfor both PTTP and
DLog. In the literature, loop elimination is often refertedasidentical ancestor pruning
see for example [9] or [4]. Although both systems employ tiEmisation, there has not
yet been any rigorous proof of its soundness. In Subsectibrvé describgroof trees
that can be used to represent Prolog execution. Afterw&ulssection 4.2 contains the
proof of soundness.

Definition 1 (Loop elimination) Let P be a Prolog program and G a Prolog goal. Exe-
cuting G w.r.t. P usindoop eliminationmeans the Prolog execution of G extended in the
following way: we stop the given execution branch with aufglwhenever we encounter
a goal H that is identical to an open subgoal (that we starteuat, have not yet finished
proving). Two goals are identical only if they are syntaalig the same.

Loop elimination is very intuitive. If, for example, we watd prove goalG and at
some point we realise that this involves proving the samé Goghen there is no point
in going further, because 1) either we fall in an infinite l@op obtain no proof or 2) we
manage to prove the second occurrenc& @ some other way that can be directly used
to prove the first occurrence of the g@l This is the standard justification that we find in
the literature. For example [4] says:

Identical ancestor pruning (IAP) is a powerful pruning hstic in a model
elimination search. Imagine, in the course of expanding aawiof space for
a particular goal P, that one were to encounter that sameRgaghin. One of
two situations must hold:

1. There are no proofs of P from this database (because ihtdidegically
follow).

2. Whether or not there is a proof using this second occuereh®, there
must be another proof of the original P not using it. Also, difeerent
proof occurs at a shallower depth.
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This is true because the second occurrence must eventeagtiyoven some-
how, so this recursion must bottom out. And then, by whatgveof this
second occurrence succeeds, an analogous proof path nistsbebow the
first occurrence of P. In either case, it is justifiable to grtime space below
the second occurrence of P.

Things get complicated, however, due to ancestor resolulibe twoG goals have differ-
ent ancestor lists and it can be the case that we only mangmeue the secon@ due to
the ancestors that the firl® does not have. As it will turn out in the rest of this section,
while we can indeed construct a proof of the fi&from that of the second, this proof
might have to be very different from the original one.

4.1 Proof Trees

In this subsection we introdug@oof trees that are used to represent Prolog execution.
We will only consider trees in the context of a PTTP like Pgpfisogram, more precisely
we will assume that the program contains all contrapogiti#ach tree node has a unique
name and is labelled with a goalName : Goal) refers to a node callebme and labelled
with goalGoal. The root is labelled with the initial goal to be proved. Sag@the current
goal G is unified with the head of rule

G:— Bl,B2,...,Bk.

In this case, the node labell&iwill have k children, each labelleB4,B,, ..., By, respec-
tively. In each inference step, the validity of a goal is regllito the validity of a set of
goals in the children. After a successful execution, weialg#groof tree such that each of
its leaves can be considered true without further proof. ¥maélise this in the following
definitions.

Definition 2. Anatomic proof treeconsists of a root node labelledsAwith children la-
belled Bo,B,0,...,B,0, whereo is a variable substitution. We say that the atomic proof
tree isvalid if the corresponding Prolog program contains a rule

A:— Bl,BQ,...,Bn.

A valid atomic proof tree can be seen as an instance of a rulproff treeis built from
atomic proof trees by matching nodes of identical labelsrodfitree isvalid if all consti-
tuting atomic proof trees are valid.

Remark 1. The labels of proof trees are atomic predicates that carmtowdriables. Note
that labelsp(X) andp(Y) are not identical.

Definition 3. In a valid proof tree, a node labelled A is calledmpletef either 1) A can
be unified with the head of a bodiless Prolog rule or 2) the nloai®e an ancestor labelled
-A (ancestor resolution). A valid proof tree is complete [fital leafs are complete.
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To each successful Prolog execution that employs ancesgotution, we can assign
a complete proof treé. In fact, the execution mechanism can be seen as a search in the
space of complete proof trees. While standard Prolog will mexessarily traverse the
whole space (because it might fall into an infinite loop) BT TP and DLog are built so
that they can enumerate all complete proof trees. This ntbang is enough to show the
existence of a complete proof tree to guarantee a succ&SETl or DLog execution.

Definition 4. For an arbitrary child b of an atomic proof tree, the transfioationflipping
over along theb child is defined as follows: the root node is switched with its chitehd
their labels are negated. The rest of the tree is unalteréds Fansformation is illustrated
in Figure 3.

() >

Figure 3: Flipping over along thechild

Lemma 1. For every valid atomic proof tree, the atomic tree obtainé&eflipping over
along a child results in a valid atomic proof tree.

Proof. Let T be an atomic proof tree with the root node labelexiand children labelled
Bo,C,0,...,Co. T is an instance of the Prolog clause

A:— B,Ci,...,Ch.

which is a contrapositive of the first-order clauwse -Bv -Cy v --- v Cy. Since the Prolog
program contains all contrapositives of this clause, we h#sve

not B:- not A Cy,...,Ck.
an instance of which corresponds to the flipped over versidn o O

Note that flipping over allows us to move between contrapesitof the same first-order
clause.

Definition 5. The transformatiorlipping over along thea, a branchis defined on proof
trees as follows: let F be a proof tree, with a noke: A) which has a leaf descendant
(a:-A). The nodes on the path from adaare a= Xg, X1, ...,Xn-1,%n = &. To this tree we
assign a tree Fwhich differs from F only in the subtree rooted at a. This setontains

a branch y = Xn,¥1 = Xn-1,---,¥i = Xn—i,---,Yn = X0, and the label of each of these nodes is
negated. Furthermore, each in F’ has the same siblings ag x.1 in F. The subtrees
under the siblings are left unaltered. This transformati®iilustrated in Figure 4.
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——
=) (=) () ()

@ O © ©

Figure 4: Flipping over along th@,a) branch

Lemma 2. If we have a complete proof tree T that contains no@esA) and (a: -A)
such thai@'is a leaf descendant of a, then the tree obtained after fiip{di along thea, a)
branch is a valid proof tree.

Proof. The new downward path — a consists of atomic trees that are the flipped over
versions of the atomic trees of the initial upward path a. We know from Lemma 1 that
flipping over a valid atomic proof tree yields another valtdraic proof tree, hence the
whole new proof tree is valid. O

Remark 2. Although we obtained a valid proof tree after flipping ovée proof tree is
not necessarily complete. This is because some ancegtocliange and branches that
previously terminated in ancestor resolution might havbaexpanded further (because
the required ancestor disappeared).

4.2 The Soundness of Loop Elimination

In this subsection we show that for every complete prooftineé contains loops, one can
construct a complete proof tree that is loop free.

Definition 6. A complete proof tree is said to contain a loop L if it contadnsair of nodes
(p1:P),(p2:P), for some label P, such thab|is a descendant of;p Node p is called
thetop nodeand node p thebottom nodeof the loop L. We define thdepthof L to be the
distance of p from the root.

Definition 7. Anode nN is said to beeligible for ancestor resolutiahit has an ancestor
with label -N. If an inner node is eligible for ancestor resolution, thers called abad
node

Bad nodes are called bad, because they are unnecessaglyde There is no need
to provide a proof tree under a bad node, since it is complete i it remains a leaf.

1In the Logic Programming community, it is customary to resehe name proof tree only for complete proof
trees. We introduce the notion of completeness because Meawe to refer to trees that are not fully expanded.
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Lemma 3. If we have a complete proof tree that contains a bad node m the tree
obtained after removing the subtree under n yields a coragletof tree in which n is not
bad any more.

Proof. Removing the subtree undemakesn a leaf node. Howeven is complete due to
ancestor resolution. The rest of the leaves are unalteogtiey remain complete. Hence,
the new proof tree is complete. O

Definition 8. We define théoop-depthof a tree T with a pair of integeré-D,C), where
D is the minimum depth of all loops in T and C is the number ofesdtiat are bottom
nodes of some loop of depth D. If the tree contains no loops,ith loop-depth i§—o0, 0).
Loop-depths are comparable using lexicographic orderirgy, loop-depthA,B) is less
than loop-deptiC, D) if and only if either A< C or else A=C and B<D.

Lemma 4. Let F be a complete proof tree with loop-depth LD that cordaitleast one
loop. It is possible to find another complete proof tréefdt the same goal (i.e., with the
same label in the root) such that the loop-depth 6fdstrictly less than LD.

Proof. The loop-depth of is LD=(-D,C). This means that there is at least one loop of
depthD and there are no loops with depth less titanLet L be one such loop with top
and bottom node$p; : P) and (pz : P), respectively. First, we eliminate all bad nodes
by removing the subtrees rooted at the bad nodes. Accordihgrima 3, we obtain a
complete proof tree.

In case the elimination of the subtrees under bad nodesreltes loopL, then the
obtained complete proof tree has loop-deptD,,C,). In case there were no other loops
of depthD in F thenD, > D. OtherwiseD;, = D andC; = C- 1. In either cas¢-D,,C,) <
(-D,C), so our lemma is satisfied.

Otherwise, in the obtained tree, all nodes that are eligitm@ncestor resolution are
leaf nodes. The ancestor list pf contains the ancestors pf plus the nodes on the path
betweenp; andp,. Let ANCdenote the set of nodes betwganand ps.

In case none of the nodes ANC play any role in the proof ofy (i.e., they do not
participate in ancestor resolution), the prooffcan be directly replaced with that p$,
eliminating loopL. This is illustrated in Figure 5. We obtained a complete ptoee F’
with loop-depth(-D>,Cy). In case there were no other loops of deptim F thenD» > D.
Otherwise,D, =D andC, =C-1. In either cas€-D,,C;) < (-D,C), so our lemma is
satisfied.

The situation is more complicated when some nodeANIT participate in ancestor
resolution undep,. Among these, lefa: A) be the lowest one (i.e., the last one to enter
the ancestor list). Somewhere ungerthere is a leafa: -A) that is complete due to
ancestor resolution. Let us flip ovEralong the branci¢a,a). In the flipped over branch
the nodes betweenanda will appear with negated labels and in inverse order. Afeeds,
we once more eliminate all bad nodes by removing the subtmegsr them. Nod@, is
on the path betweea anda, so its label will turn to-P, which makesp, eligible for
ancestor resolution. Hence, when we eliminate badness|immate the subtree under
p2. As a result, loo. disappears. An example of this is shown in Figure 6. We know
that flipping a complete proof tree results in a valid proektrbut it is not necessarily
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B

Figure 5: Replacing the proof gf; with that of p»
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Figure 6: Flipping over along th@,a) branch, then bad node elimination
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complete, because some goals that previously succeededmgestor resolution might
loose the required ancestor (cf. Remark 2). This is the césmthere is a nodé: B)
undera and somewhere underneath there is a (#af-B). Nodeb has to be on the path
betweera anda otherwiseb will continue to be an ancestor bfand their labels will not
change. There are two possibilities:

N N

) O = C
) © ) ©
O © o © O

/
OO,

Figure 7: Ancestor resolution eliminates bbtandb

1. Asitisillustrated in Figure M lies betweera andp,. Then,b cannot appear under
p2, becaus@ was chosen to be the lowest node participating in ancesfotuton
underp,. Hence b appears unddy, but not undep,. After flipping, bothb andb
will appear undeipy, so they will be eliminated when we eliminate the badness of
p2. Hence, this case will not yield any incomplete leaves.

2. We illustrate the second case, namely whésnunderp, in Figure 8. We will treat
all such nodes together, i.e., Igt; : B1), (b2 : By),... (bk: By) be nodes on the path
betweena anda (nodesb,c on Figure 8), such that eadh has at least one leaf
descendan(b; : -B;j). The nodes are ordered so thats the closest tg, andby is
the farthest. After flipping over, the labels of these nodilide negated, i.e., turn to
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-B;, respectively, and they will appear on the branch leadingtim inverted order,
i.e., bg will be the topmost, whild; the lowest.

Let us consideb;. Due to flipping over, it will lose all its previous descentian

Its new descendants will be its previous ancestors on the lpettveenp, andb;
along with their descendants towards other branches. Wa titat none of the new
descendants df; can have lost an ancestor which previously allowed for a@nces
resolution, i.e., none can be one®f This is because the lost ancestor would have
been abovéd,;, howeverb; was chosen to be the topmost one. Consequently, the
subtree undeb; after flipping has no incomplete leaves. This subtree ifiis@ot
necessarily complete, because the ancestasfiht be needed for some ancestor
resolution steps. We express this by saying that the subtiderb; is complete

in the context of the ancestors af In the following, we will always assume the
same context (the ancestorsa)fand will omit specifying it whenever it leads to
no misunderstanding. The labellof is -B;, so we have a complete proof feB;
(again in the context of the ancestorsapf This means that we can copy the subtree
underb; to any nodg by : -B;), thus compensating such nodes for the lost ancestor.
Note that we need to rename the copied nodes to ensure tiehede has a unique
name.

We next turn tob,. Through analogous reasoning we can see that the new leaf
descendants df;, are either complete or else are incomplete because thegrost
ancestor labelledB;. However, by copying the subtree under we have already
turned such leaves into complete trees. Hence, we have aeteppoof tree under

b, (in the context of), proving-B,, which we copy to any incomplete leélb, :

-B>) (again assigning new names to the newly created nodes).

We continue the process. In til8 step, we have a complete proof tree under
which we copy to any leafb; : -B;). By the end of thé!" step, we obtain a complete
proof tree. Note that we make exactly one copying for each lbgahat lost its
completeness after flipping over, so copying terminates.

We now obtained a new proof tr&€. Let us show thaE’ has the properties claimed
by the lemma being proved. Flipping over turns the labgd.ofrom P to —-P, which
makes loof disappear. New loops can arise (some nodes were negatecyérn

no such loop can start above or@t We show this by contradiction. Suppose a
node(n; : N) above or ap; obtains a descendaf, : N) after flipping. The labels

of the nodes under; in the new tree are either the same or the negated labels that
appeared undemn, before flipping. So, if a new loop appeared, it was either bsea
the bottom node of an already existing ldopwas copied or because the label of a
descendant afi;, namely ofn,, changed fronN to N. In the first case, the depth
of loop L, is smaller than the depth of lodp which is impossible becausewas
chosen to be a loop of minimum depth (cf. Definition 8. of latgpth). In the
second case, before flipping ovag,was eligible for ancestor resolution. Since we
eliminated all bad nodes, was a leaf. However, flipping over does not negate the
labels of leaf nodes, so we obtained a contradiction.

We conclude that the possibly arising loops are all of gredépth than the eliminated
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loop. Hence, the number of loops of defifis reduced by one, i.e., the loop-depth of the
new tree is strictly less than that of the original tree. O

Theorem 2. For every complete proof tree containing loops there is aglete proof tree
that is loop free.

Proof. Using the transformation described in Lemma 4, we can creaeries of proof
trees of the same goal such that the loop-depth is alwaysasog. The second compo-
nent of the loop-depth is a positive integer (the number opat minimum depth) which
cannot decrease infinitely, so eventually the first compbnéhdecrease as well. This
means that the minimum depth of the loops increases, i.@slget deeper and deeper.
There are two possibilities:

1. Eventually, we manage to eliminate each loop after a fimitaber of iterations. The
resulting proof tree satisfies our theorem.

2. The elimination never terminates. Since the loops aringefarther from the root,
it follows that the part of the proof tree that is loop free \ysobeyond any limit.
Suppose the initial tree containgdistinct labels in its nodes. The transformation
steps involve flipping over, copying subtrees and elimimatiodes, each of which
either preserves node labels or introduces the negationré dabel to a node.
Hence, there can be at most distinct labels, i.e., any loop free path from the root
node can be at mosh2ong. This contradicts the assumption that the loop free par
of the tree grows beyond any limit. Hence, all loops have sapipear after finitely
many iterations.

O

5 Conclusion

Prolog based inference systems like PTTP and DLog can beaipedve a query goal. We
have shown is Section 4 that these systems need not exptwEtmes that contain loops,
because in case there is a complete proof tree, there is tmeuwioops (Theorem 2). This
allows for reducing the search space, making both systestesfdesides, loop elimination
is sufficient to make the DLog reasoner terminating, thumahg one to replace iterative
deepening search with depth-first search, which furtheeeses performance.
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Figure 8: Copying makes firds thenc complete
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