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Online Clustering on the Line with Square Cost

Variable Sized Clusters

Gabriella Divéki∗

Abstract

In the online clustering problems, the classification of points into sets
(called clusters) is done in an online fashion. Points arrive one by one at
arbitrary locations, to be assigned to clusters at the time of arrival without
any information about the further points. A point can be assigned to an
existing cluster, or a new cluster can be opened for it. Existing clusters
cannot be merged or split. We study one-dimensional variants. The cost
of a cluster is the sum of a fixed setup cost scaled to 1 and the square of
the diameter of the cluster. The goal is to minimize the sum of costs of the
clusters used by the algorithm. In this paper we investigate the problem on
the line.

We examine two versions, both maintaining the properties that a point
which was assigned to a given cluster must remain assigned to this cluster,
and clusters cannot be merged. In the strict variant, the size and the exact
location of the cluster must be fixed when it is initialized. In the flexible
variant, the algorithm can shift the cluster or expand it, as long as it contains
all points assigned to it. We consider the online and the semi-online (the
input is sorted according to their coordinates from smallest to largest i.e.,
from left to right) versions of the above two variants.

We present the first online algorithms for the solution of the problem.
We describe algorithms for the strict and the flexible variant both for the
online and semi-online versions. We also give lower bounds on the possible
competitive ratio in all of the cases.

Keywords: online algorithms, competitive analysis, clustering problems

1 Introduction

In clustering problems, we seek for a partitioning of n demand points into k groups,
or clusters, while a given objective function, that depends on the distance between
points in the same cluster, is minimized. In the online version, the demand points
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are presented to the clustering algorithm one by one. The online clustering algo-
rithm maintains a set of clusters, where a cluster is identified by its name and the
set of points already assigned to it. Each point must be assigned to a cluster at the
time of arrival; the chosen cluster becomes fixed at this time. The clusters cannot
be merged or split.

Usually, the quality of an online algorithm is measured by competitive analysis.
An online algorithm for a minimization problem is C-competitive if the algorithm
cost is never more than C times the optimal offline cost. (For a good introduction
to competitive analysis, see [3, 11, 17].) In the case of clustering problems, the
costs are based on the number of clusters and their properties, and they depend on
the exact specification of the problem.

In this paper we consider the 1-dimensional variant of the 2-dimensional online
clustering with variable sized clusters problem which is presented in [22]. In our
model points of the 1-dimensional Euclidean space arrive one by one. After the
arrival of a point we have to assign it to an existing cluster or to define a new
cluster for it without any information about the further points. The clusters are
intervals, the cost of each cluster is the sum of the constant setup cost scaled to 1
and the square of the length of the interval. The goal is to minimize the total cost
of the clusters.

We consider two variants, both having property that a point assigned to a given
cluster must remain in this cluster, and clusters cannot be merged. In the strict
variant, the size and the location of the cluster must be fixed when it is initialized.
In the flexible variant, the algorithm can shift the cluster or expand it, as long as
it contains all the points assigned to it.

In [6] the one-dimensional variant of our problem is examined (with linear cost),
where there is no restriction on the length of a cluster, and the cost of a cluster
is the sum of a fixed setup cost and its diameter. Both the strict and the flexible
model have been investigated and an intermediate model, where the diameter is
fixed in advance but the exact location can be modified is also studied. In [6], tight
bounds are given on the competitive ratio of any online algorithm belonging to any
of these variants. Tight bounds are given of 1+

√
2 ≈ 2.414 on the competitive ratio

for the online problem in the strict model, and tight bounds of 2 in the semi-online
version. In the intermediate model, the results of the previous model were extended
and it is shown that the same bounds are tight for it as well. Using the flexible

model, the best competitive ratio dropped to Φ = 1+
√
5

2 ≈ 1.618. The semi-online
version of this model is solved optimally using a trivial algorithm which is discussed
as well in [6].

Several results are known on online clustering with fixed unit sized clusters. A
study of online partitioning of points into clusters was presented by Charikar et
al. [5]. The problem is called online unit covering. A set of n points needs to be
covered by balls of unit radius, and the goal is to minimize the number of balls used.
The authors designed an algorithm with competitive ratio O(2dd log d) and gave a
lower bound of Ω(log d/ log log log d) on the competitive ratio of deterministic online
algorithms in d dimensions. This problem is strictly online: the points arrive one
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by one, each point has to be assigned to a ball upon arrival, and if it is assigned to
a new ball, the exact location of this ball is fixed at this time. The tight bounds
on the competitive ratio for d = 1 and d = 2 are 2 and 4, respectively.

Chan and Zarrabi-Zadeh [4] introduced the unit clustering problem. Here the
input and goals are identical to those of unit covering, but the model of online
computation is different. This is an online problem as well, but it is more flexible
in the sense that the online algorithm is not required to fix the exact position of
each ball at the first time the ball is ”used”. The set of points which is assigned
to a ball (cluster) can always be covered by that ball and the ball can be shifted
if necessary. The goal is still to minimize the total number of balls used. Unit
covering and unit clustering are the same problem when observing in an offline
fashion, and the problem is solvable in polynomial time for d = 1. In the online
model an algorithm for the unit clustering problem has more flexibility because
of the optional shifting of a cluster. In [4], the authors showed that standard
approaches lead to algorithms of competitive ratio 2 (some of which are valid for
unit covering). The lower bound of 2 for unit covering in one dimension is valid even
for randomized algorithms. A non-trivial randomized algorithm was presented: a
15
8 -competitive algorithm; also in [21] an 11

6 -competitive randomized algorithm. In
[10] an improved deterministic algorithm was given (with competitive ratio 7

4 ) and
in [8] an algorithm of competitive ratio 5

3 . Currently the best known lower bound
is 8

5 (see [10]).
In [4, 8, 10, 21] the two-dimensional problem is considered using the ℓ∞ norm

instead of the ℓ2 norm. Thus, ”balls” are squares or cubes. The one-dimensional
algorithms are used as building blocks in most results in the mentioned papers.
This problem has a higher competitive ratio than the one-dimensional case (the
best known lower bound is 13

6 - see [8]). Other variants of the one-dimensional
online unit clustering problem were studied in [9].

Our problem is also related to online facility location [7, 12, 13, 14, 15, 19],
where the input is a sequence of points and the algorithm has to partition them
into clusters and it has to assign a facility to each cluster. On the other hand in
facility location the cost of the cluster differs: it is the sum a fixed setup cost and
the service cost which is the total distance of the points from a facility assigned to
the cluster. In some of the online facility location models it is allowed to merge
clusters or to re-assign points.

Our results: We present the first online algorithms for the solution of the
problem. We present algorithms for the strict and the flexible variant both for
the online and semi-online versions. In this paper, when we refer to a semi-online
algorithm we mean an online algorithm for restricted set of inputs in which the
points arrive one by one when they are sorted according to their coordinates from
smallest to largest (i.e., from left to right).We also give lower bounds on the possible
competitive ratio in all of the cases.

We analyze algorithms and give their competitive ratio. We prove that the
GRIDa algorithm is 3-competitive in the strict model if we use appropriate size
for the cells for the grid. We present the algorithm SOSMa for the semi-online
strict model and prove that it has competitive ratio 2 if the size of the cells are
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within appropriate bounds. We also give lower bounds in the strict model for both
variants: 2.2208 for the online and 1.6481 for the semi-online variant.

We extend the algorithm to the flexible model and we prove that it is 2-
competitive if we use appropriate size for the cells. In this model we show that
no online algorithm can have smaller competitive ratio than 1.2993. Also, we give
the lower bound for the semi-online flexible model: 1.1991144.

In the rest of the paper for an algorithm A and input I we use A(I) to denote
the cost of A on input I.

2 The offline problem

As far as we know the offline clustering with this objective function have not been
studied yet. Many papers are published on the offline version where the number
of clusters is a given constant k. Usually the cost is the sum of the diameters (see
[16] and its references for details) but there are also some results on the models
where it depends on the powers of the diameters (see [2]), and even for general cost
functions (see [18]). All of these problems are NP-hard. If the number of clusters is
not fixed and the cost depends on the diameters then the problem is polynomially
solvable for trees see [20] and it has not been studied for more general metric spaces
yet.

Lemma 1. The offline problem can be solved optimally by the dynamic program-
ming algorithm DP using the algorithm for the variation of the k-median problem.

This is an interesting transition: our offline clustering problem on the line with
linear objective function can be solved with a simple greedy algorithm with O(n ·
logn) time complexity (see [6]), the problem on the line with squared cost can be
solved by a standard O(n3) time dynamic programming algorithm. On the other
hand the 2-dimensional case seems to be much harder, we conjecture that it is
NP-hard.

The input is n request points (x1, ..., xn). The dynamic programming algorithm
is shown in Algorithm 1.

Algorithm 1 Algorithm DP

• The request points are sorted by their coordinates in ascending order.

• Define the subproblem F (i, r) (i ≥ r): the first i request points are di-
vided into r clusters. Then the optimal cost of the clustering problem is
minr(F (n, r) + r).

• The values of F (i, r) can be calculated by the following recursions.

F (i, 1) = (xi − x1)
2

F (i, r) = mini
j=r{F (j − 1, r − 1) + (xi − xj)

2}
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The dynamic programming algorithm correctly calculates because if the last
cluster is [xj , xi] then we have to assign the first j − 1 request points into r − 1
clusters optimally.

Based on these steps of the dynamic programming algorithm a 2-dimensional
array can be filled sorted by the second dimension r in ascending order. Then one
can get the optimal solution from this table. As the algorithm DP fills an n × n
table and an element of the table can be computed in O(n) steps, therefore the
time complexity of algorithm DP is O(n3).

3 The strict model

3.1 The online problem

The GRID algorithm which uses a grid in the 1-dimensional space is defined in
[9] for the problem of unit covering with rejection. In [22] the GRIDa algorithm
was investigated in 2 dimensions for the strict model; we consider its special 1-
dimensional case and also the analysis is similar.

Algorithm GRIDa works as follows. Upon arrival of the first point in the
interval Ik = (ka, (k+1)a] for every integer −∞ < k < ∞, a new cluster is opened
in the interval [ka, (k+1)a] and all future points in this interval are assigned to this
cluster. The competitive ratio of GRIDa is determined by the following theorem.

Theorem 1. The competitive ratio of algorithm GRIDa is

max{F (⌊−2 +

√

4 +
1

a2
⌋), F (⌈−2 +

√

4 +
1

a2
⌉), 2 + 2a2}

where F (k) = (k+2)(1+a2)
1+k2a2 , k ≥ 1.

Proof. Consider an arbitrary sequence and an optimal solution for it, denoted by
OPT. We investigate the clusters of OPT separately. Consider an arbitrary cluster.
Let r denote the length of this cluster.

Figure 1: The optimal cluster intersects at most k + 2 clusters from the grid

Suppose first that k · a < r ≤ (k+1) · a for an integer k ≥ 1. Then this optimal
cluster intersects at most k + 2 clusters from the grid (see Figure 1). Therefore,
if we consider only the requests of this optimal cluster then GRIDa has at most
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(1 + a2)(k + 2) cost. Thus the competitive ratio on this subsequence is at most
(1+a2)(k+2)

r2+1 < (1+a2)(k+2)
k2a2+1 = F (k). The derivative of this function is

F ′(k) =
(1 + a2) · (1− 4ka2 − k2a2)

(1 + k2a2)2
.

F ′(k) is 0 at k∗ = −2 +
√

4 + 1
a2 . The second derivative of F (k) is

F ′′(k) =
2 · (1 + a2) · a2 · (k3a2 − 3k + 6k2a2 − 2)

(k2a2 + 1)3

while F ′′(k∗) < 0 for every a. Therefore F ′(k) is positive before k∗, and it is
negative after k∗. This yields that F (k) has maximum at k∗. We have to consider

the positive integers, so the maximum is attained either at k = ⌊−2+
√

4 + 1
a2 ⌋ or

at k = ⌈−2 +
√

4 + 1
a2 ⌉.

Now suppose that r ≤ a. Then the cluster intersects at most 2 clusters from
the grid. Therefore, considering the requests of this cluster GRIDa has at most
2 · (1 + a2) cost. Thus the competitive ratio on this subsequence is at most (2 +
2a2)/(1 + r2) ≤ 2 + 2a2.

Now we prove that the analysis is tight. Consider an arbitrary a and let ε be
a small positive number. If the request sequence consists of the points −ε and ε
then the optimal solution uses only one cluster and has cost 1 + (2ε)2 while the
algorithm uses two clusters and has cost 2(1+ a2). Since ε can be arbitrarily small
we obtain that the competitive ratio is not smaller than 2 + 2a2.

Figure 2: The interval with endpoints −ε and ka+ ε

Now suppose that all the points are requested in the interval with endpoints −ε
and ka+ ε (see Figure 2). If we use only one cluster then the cost is 1+ (ka+2ε)2.
GRIDa uses k+2 cells, thus its cost is (1+a2)(k+2). This yields that a lower bound
on the ratio of the cost of GRIDa and the optimal cost tends to F (k) as ε tends to
0. Therefore we obtained that the competitive ratio of GRIDa is not smaller than
F (k) for any positive k, and this shows the tightness of our analysis.

Corollary 1. The smallest competitive ratio of GRIDa is obtained if 1
2
√
2
≤ a ≤

1√
2
, then the competitive ratio of the algorithm is 3.

Proof. First observe that F (k) = 3 for k = 1 for each value of the parameter a. If
1

2
√
2
≤ a ≤ 1√

2
then F (k) ≤ 3 for all integers k > 1 and also 2(1 + a2) ≤ 3, thus

the algorithm is 3-competitive. If a > 1√
2
then 2(1 + a2) > 3. If a < 1

2
√
2
then
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F (2) > 3, therefore if a /∈ [ 1
2
√
2
, 1√

2
] then the competitive ratio of GRIDa is larger

than 3.

Remark 1. The competitive ratio of any online algorithm for the strict model is
at least 2.2208. The proof of this lower bound in [22] (where the 2-dimensional
variant of this problem is studied) uses one dimension so it also applies in our case.

3.2 The semi-online strict model

In the semi-online model the points arrive in ascending order. A possible algorithm
to solve this problem is SOSMa.

Algorithm 2 Algorithm SOSMa

1. Let p be the new point.

2. If the algorithm has a cluster which contains p, then assign p to that cluster.

3. Else, open a new cluster [p, p+ a] and assign p to the new cluster.

Theorem 2. The competitive ratio of algorithm SOSMa is

max{F (⌊−1 +

√

1 +
1

a2
⌋), F (⌈−1 +

√

1 +
1

a2
⌉), 1 + a2}

where F (k) = (k+1)(1+a2)
1+k2a2 , k ≥ 1.

Proof. Consider and arbitrary sequence and an optimal solution for it, denoted by
OPT. We investigate the clusters of OPT separately. Consider an arbitrary cluster.
Let r denote the length of this cluster.

Suppose first that k · a < r ≤ (k+1) · a for an integer k ≥ 1. Then this optimal
cluster intersects at most k+2 clusters (see Figure 1). We have to consider only the
clusters which left endpoint is bigger than or equal to the left endpoint of this opti-
mal cluster. The eventual other cluster which is hanging into this optimal cluster is
considered with the optimal cluster on the left. Therefore, if we consider only these
clusters then SOSMa has at most (1 + a2)(k+1) cost. Thus the competitive ratio

on this subsequence is at most (1+a2)(k+1)
r2+1 < (1+a2)(k+1)

k2a2+1 = F (k). The derivative of
this function is

F ′(k) =
(1 + a2) · (1− 2ka2 − k2a2)

(1 + k2a2)2
.

F ′(k) is 0 at k∗ = −1 +
√

1 + 1
a2 . The second derivative of F (k) is
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F ′′(k) =
2 · (1 + a2) · a2 · (k3a2 − 3k + 3k2a2 − 1)

(k2a2 + 1)3

while F ′′(k∗) < 0 for every a (the calculations have been made in MATLAB). This
yields that F (k) has maximum at k∗. We have to consider the positive integers, so

the maximum is attained at k = ⌊−1 +
√

1 + 1
a2 ⌋ or at k = ⌈−1 +

√

1 + 1
a2 ⌉.

Now suppose that r ≤ a. Then the cluster intersects at most 2 SOSMa clusters,
but we have to consider only the cluster which left endpoint is bigger than or equal
to the left endpoint of this optimal cluster. Therefore, considering the requests of
this cluster SOSMa has at most 1 + a2 cost. Thus the competitive ratio on this
subsequence is at most (1 + a2)/(1 + r2) ≤ 1 + a2.

Now we prove that the analysis is tight. Consider an arbitrary a and let ε be
a small positive number. If the request sequence consists of one point then the
optimal solution has cost 1 and the algorithm uses one cluster and has cost 1 + a2.
We obtain that the competitive ratio is not smaller than 1 + a2.

Now suppose that all the points are requested in the interval with endpoints
−ε and ka+ ε. If we use only one cluster then the cost is 1 + (ka+ 2ε)2. SOSMa

uses k + 1 cells, thus its cost is (1 + a2)(k + 1). This yields that a lower bound on
the ratio of the cost of SOSMa and the optimal cost tends to F (k) as ε tends to
0. Therefore we obtained that the competitive ratio of SOSMa is not smaller than
F (k) for any positive k, and this shows the tightness of our analysis.

Corollary 2. The smallest competitive ratio of SOSMa is obtained if 1√
5
≤ a ≤ 1,

then the competitive ratio of the algorithm is 2.

Proof: First observe that F (k) = 2 for k = 1 for each value of the parameter
a. If 1√

5
≤ a ≤ 1 then F (k) ≤ 2 for all integers k > 1 and also 1 + a2 ≤ 2, thus

the algorithm is 2-competitive. If a > 1 then 1 + a2 > 2. If a < 1√
5
then F (2) > 2,

Therefore if a /∈ [ 1√
5
, 1] then the competitive ratio of SOSMa is larger than 2.

Theorem 3. The competitive ratio of any semi-online algorithm for the strict
model is at least 1.6481.

Proof. Let the first request point be p1 = 0 and let a1 be the length of the cluster
which is opened by the algorithm. Let the second request point be p2 = a1 + ε.
Then the online algorithm opens a new cluster with length a2 ≥ 0.

• If a1 + ε ≤ 0.83035 then

– if a2 ≤ 0.30817 then another request point arrives: p3 = a1 + a2 + 2ε.

A(I)

OPT (I)
≥ 3 + a21 + a22 + a23

1 + (a1 + a2 + 2ε)2
→ 3 + a21 + a22 + a23

1 + (a1 + a2)2
≥ 3 + a21 + a22

1 + (a1 + a2)2
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≥ 3 + 0.830352 + 0.308172

1 + (0.83035 + 0.30817)2
> 1.6481

The inequality is valid because the ratio is decreasing both in a1 and a2;
ε → 0, a1 ≤ 0.83035, 0 ≤ a2 ≤ 0.30817 and a3 ≥ 0.

– if a2 > 0.30817 then the request sequence stops and we have:

A(I)

OPT (I)
≥ 2 + a21 + a22

1 + (a1 + ε)2
→ 2 + a21 + a22

1 + a21

≥ 2 + 0.830352 + 0.308172

1 + 0.830352
> 1.6481

The inequality is valid because the ratio is decreasing both in a1 and a2;
ε → 0, a1 ≤ 0.83035 and a2 > 0.30817.

• If a1 + ε > 0.83035 then

– if a2 ≤ 0.77894 then another request point arrives: p3 = a1 + a2 + 2ε.
The optimal solution may use 2 clusters ([p1, p1] and [p2, p3]) and the
estimation follows:

A(I)

OPT (I)
≥ 3 + a21 + a22 + a23

2 + (a2 + ε)2
→ 3 + a21 + a22 + a23

2 + a22

≥ 3 + a21 + a22
2 + a22

≥ 3 + 0.830352 + 0.778942

2 + 0.778942
> 1.6481

The inequality is valid because the ratio is decreasing both in a1 and a2;
ε → 0, a1 ≤ 0.83035, 0 ≤ a2 ≤ 0.77894 and a3 ≥ 0.

– if a2 > 0.77894 then the request sequence stops. The optimal solution
may use 2 clusters ([p1, p1] and [p2, p2]) and we have:

A(I)

OPT (I)
≥ 2 + a21 + a22

2
≥ 2 + 0.830352 + 0.778942

2
> 1.6481

The inequality is valid because the ratio is decreasing both in a1 and a2;
a1 ≤ 0.83035 and a2 > 0.77894.
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4 The flexible model

4.1 The online problem

In the case of 1 dimension with the linear cost the ECC (extend closed cluster)

algorithm (see [6]) has competitive ratio 1+
√
5

2 ≈ 1.618. In [22] it is extended to
2-dimensions and it is shown that the extended algorithm ECC is not constant
competitive. If we consider the 1-dimension variant with the square cost we obtain
that it is neither constant competitive. The proof of that claim is the same as in
[22]. As the proof shows an algorithm should limit the size of the clusters. The
following extension of the GRIDa algorithm satisfies this property.

Algorithm 3 Algorithm FGRIDa

1. Let p be the new point.

2. If the algorithm has a cluster whose current associated interval contains p,
then assign p to that cluster, and do not modify the associated interval of the
cluster.

3. Else, consider the cell from the grid which contains p.

a) If this cell does not have a cluster, then open a new cluster and assign
p to the new cluster. In this case the current cluster consists of a single
point p.

b) Otherwise, extend the cluster contained in the interval to cover p.

Theorem 4. The competitive ratio of algorithm FGRIDa is 2 if 1√
5
≤ a ≤ 1.

Proof. Consider an arbitrary sequence and an optimal solution for it, denoted by
OPT. We investigate the clusters of OPT separately. Consider an arbitrary cluster.
Let r denote the length of the side of this cluster.

Suppose that k ·a < r ≤ (k+1)·a for an integer k ≥ 1. Then the optimal cluster
intersects at most k+2 cells of the grid. The cells which are not at endpoints of the
optimal cluster might be completely covered by FGRIDa. Consider now the end
cells, denote by A1 and A2 the square costs of the intervals covered by the optimal
cluster in these end cells and let A = A1 + A2. At these end cells of the optimal
cluster we have two possibilities. If the cell has no intersection with other optimal
clusters, then OPT and FGRIDa cover the same parts of the cell. If the cell
intersects at least one other optimal cluster, then it might be completely covered
by FGRIDa but then its online cost is divided between at least two optimal clusters
and we have to consider only the half of this cost here which is 1

2 ·(1+a2). Therefore
we obtained that assigning a total cost 2 · 12 (1+a2)+A from the online cost to these
end cells we cover the full online cost by the costs assigned to the optimal clusters.
Thus we assigned at most (1 + a2) · k + 2 · 1

2 (1 + a2) + A = (k + 1)(1 + a2) + A



Online Clustering on the Line with Square Cost Variable Sized Clusters 85

cost from FGRIDa(I) to this optimal cluster. The cost of the optimal cluster is
at least 1 + k2a2 +A. If we consider the ratio of these costs we obtain that it is

(k + 1)(1 + a2) +A

k2a2 + 1 +A
≤ (k + 1)(1 + a2)

k2a2 + 1
.

If k = 1 then this ratio is 2 for each a. For k > 1 and a > 1 this ratio is smaller
than 2.

Now suppose that r < a. Then the optimal cluster intersects at most 2 cells
from the grid. At these cells again we have two possibilities. If the cell has no
intersection with other optimal clusters, then OPT and FGRIDa cover the same
parts of the cell. If the cell intersects at least one other optimal cluster, then it might
be completely covered by FGRIDa but then its cost is divided between at least
two optimal clusters and we have to consider only the half of this cost here which
is 1

2 (1 + a2). Therefore we obtained that assigning a total cost 2 · 1
2 (1 + a2) + r2 =

1 + a2 + r2 from FGRIDa(I) to this cluster we cover FGRIDa(I) by the costs
assigned to the optimal clusters. The cost of the optimal cluster is at least 1 + r2.
If we consider the ratio of these costs we obtain that it is

1 + a2 + r2

1 + r2
≤ 1 + a2.

On the other hand 1 + a2 ≤ 2 if a ≤ 1.

Figure 3: The competitive ratio of FGRIDa: the n intervals with endpoints (2i−
1)a− ε and 2ia+ ε, i = 1, ..., n

Now we prove the tightness. Fix an a and let ε > 0 be a small positive number.
Consider the input In where all the points in the n intervals with endpoints (2i−
1)a− ε and 2ia+ ε, i = 1, ..., n are requested (see Figure 3).

Then a solution can use each such interval as a cluster therefore the cost of
OPT is at most n · (1 + (a + ε)2). Now investigate the behavior of FGRIDa. It
covers completely the grid cells with endpoints ia and (i+1)a, i = 1, ..., 2n− 1 and
with ε2 cost the 2 end cells.

Therefore we obtained that FGRIDa(In) ≥ (1 + a2)(2n− 1) + 2(1 + ε2). The
ratio FGRIDa(In)/OPT (In) tends to 2 as ε tends to 0 and n tends to ∞, thus we
proved that the algorithm is not better than 2-competitive.

Theorem 5. The competitive ratio of any online algorithm for the flexible model
is at least 1.2993.
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Proof. Suppose that there exists an online algorithm with smaller competitive ratio
than 1.2993, denote it by A. Consider the following input sequence. The first two
points are p1 = 0 and p2 = 0.878. Now distinguish the following cases.

• If A assigns these points to different clusters then three more points arrive:
p3 = 0.329, p4 = 0.439 and p5 = 0.549. The optimal algorithm uses only
one cluster and its cost is 1 + 0.8782 = 1.770884. The cost of the online
algorithm is at least 2 + 0.3292 + 0.4392 = 2.300962 (it is the case when A
extends both existing clusters ”inward”: one to the nearest new point and
the other to the second new point – see Figure 4), thus the ratio is at least
2.300962/1.770884> 1.2993, which is a contradiction.

• If A assigns the points to one cluster then two more points arrive p3 = −0.355
and p4 = 1.233. Then the optimal algorithm uses two clusters, both of them
have size 0.355, thus the optimal cost is 2 · (1 + 0.3552) = 2.25205. The cost
of A is at least 2 + (0.878 + 0.355)2 = 3.520289, thus the ratio is at least
3.520289/2.25205≈ 1.563149, which is a contradiction.

Figure 4: Lower bound in the flexible model: the cost of the online and offline
algorithms

We obtained contradiction in both cases, thus we proved the theorem.

4.2 The semi-online flexible model

Theorem 6. The competitive ratio of any semi-online algorithm for the flexible
model is at least 1.1991144.

Proof. Suppose that there exists a semi-online algorithm with smaller competitive
ratio than 1.1991144, denote it by A. Let the first two request points be p1 = 0
and p2 = 0.81725.

• If the semi-online algorithm A puts them into one cluster then another request
point arrives p3 = 1.29147. The cost of the semi-online algorithm is at least
1 + 1.291472 = 2.6678947609 (it is the case when the algorithm extends the
existing cluster to the new point) while the optimal offline algorithm uses two
clusters with p1 in the first and p2 and p3 in the second cluster. Its cost is
2 + 0.474222 = 2.2248846084, so we obtain:
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A(I)

OPT (I)
≥ 2.6678947609

2.2248846084
≈ 1.199116 > 1.1991144

.

• If the semi-online algorithm A puts p1 and p2 into two clusters, the sequence
stops. The offline algorithm puts them into one cluster, so the competitive
ratio is:

A(I)

OPT (I)
≥ 2

1 + 0.817252
≈ 1.199114409> 1.1991144

.

In both cases we have contradiction so the claim of the theorem holds.

Remark 2. We note that a similar modification to the algorithm SOSMa like
in the online case (modification of GRIDa that led to the algorithm FGRIDa)
does not result in a better competitive ratio than 2 (like in the online case with
algorithm FGRIDa).
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Antal Iványi, mondAt, Budapest 2007, 395–428.

[18] Levin, A. A generalized minimum cost k-clustering. ACMTrans. Algorithms,
5(4), Article 36, 2009.

[19] Meyerson, A. Online facility location. In Proceedings of the 42nd Annual
Symposium on Foundations of Computer Science (FOCS2001), pages 426–431,
2001.

[20] Shah, R. and Farach-Colton, M. Undiscretized dynamic programming: faster
algorithms for facility location and related problems on trees. In Proc. of the
13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2002),
pp. 108–115, 2002.

[21] Zarrabi-Zadeh, H. and Chan, T. M. An improved algorithm for online unit
clustering. Algorithmica, 54(4), 490–500, 2009.
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