
Acta Cybernetica 21 (2013) 149–163.

An Empirical Study of Reconstructing

hv-Convex Binary Matrices from

Horizontal and Vertical Projections∗

Zoltán Ozsvár
†
and Péter Balázs

‡

Abstract

The reconstruction of hv-convex binary matrices (or equivalently, binary
images) from their horizontal and vertical projections is proved to be NP-
hard. In this paper we take a closer look at the difficulty of the problem.
We investigate different heuristic reconstruction algorithms of the class, and
compare them from the viewpoint of running-time and reconstruction quality.
Using a large set of test images of different sizes and with varying number
of components, we show that the reconstruction quality can depend not only
on the size of the image, but on the number and location of its components,
too. We also reveal that the reconstruction time can also be affected by the
number of the so-called switching components present in the image.

Keywords: discrete tomography, reconstruction algorithm, hv-convex bi-
nary matrix, kernel-shell method, simulated annealing

1 Introduction

Tomography is a method of producing a 3D image of the internal structure of an
object from its projections, without damaging it. This is usually achieved by recon-
structing 2D slices from the projections and then assembling them. Applications
of computerized tomography arise from various fields of science: image processing,
medical imaging, nondestructive testing, electron microscopy, etc. The Filtered

∗This work was supported by the European Union and co-funded by the European Social
Fund under the grant agreement TÁMOP-4.2.2/B-10/1-2010-0012, ”Broadening the knowledge
base and supporting the long term professional sustainability of the Research University Centre
of Excellence at the University of Szeged by ensuring the rising generation of excellent scientists”.
The work of Péter Balázs was also supported by the János Bolyai Research Scholarship of the
Hungarian Academy of Sciences and the OTKA PD 100950 grant of the Hungarian Scientific
Research Fund.

†Faculty of Science and Informatics, University of Szeged, Aradi vértanúk tere 1., H-6720
Szeged, Hungary, E-mail: Ozsvar.Zoltan@stud.u-szeged.hu

‡Department of Image Processing and Computer Graphics, University of Szeged, Árpád tér 2.,
H-6720 Szeged, Hungary, E-mail: pbalazs@inf.u-szeged.hu

DOI: 10.14232/actacyb.21.1.2013.11

150 Zoltán Ozsvár and Péter Balázs

Backprojection and variants of the Algebraic Reconstruction Methods are the most
commonly used algorithms to reconstruct images from their projections [8, 12].
However, they require several hundreds of projections to ensure an acceptable im-
age quality. In Binary Tomography (BT) we assume that the examined object is
homogeneous, thus the image to be reconstructed contains only black (object) and
white (background) pixels. With this additional information, algorithms of BT
can often produce images of good quality, even from just a small amount (say, at
most 10-20) of projections [9, 10]. The reconstruction of a binary image is also
feasible from just its horizontal and vertical projections [15]. Nevertheless, in that
case the task is usually extremely underdetermined, i.e., there may be numerous
different binary images with the same two projections. To overcome this problem,
we can assume that the image satisfies certain geometrical conditions, too. In this
paper we study the reconstruction of hv-convex binary images from the horizontal
and vertical projections, from an experimental point of view. We perform several
tests to compare different algorithms for reconstructing hv-convex binary images.
The structure of the paper is the following. Chapter 2 is for the preliminaries. In
Chapter 3 we describe three heuristical algorithms for solving the abovementioned
task. In Section 4 we give our experimental results. Finally, Section 5 is for the
conclusion.

2 Preliminaries

A binary image is a digital image containing just black (also called as object or
foreground) and white (background) pixels. A binary image of size m × n (where
m,n ∈ N) can also be represented by a binary matrix F = (fij)m×n where value
1 (respectively, value 0) indicates that the color of the corresponding pixel is black
(respectively, white). Discrete sets (finite subsets of the 2D integer lattice Z2) can
also be used to represent a binary image, with the agreement that the rows are
numbered from top to bottom (and the columns are numbered from left to right).
A position of the lattice belongs to the discrete set if and only if the corresponding
matrix position has value 1. In this paper we will use the three concepts equiva-
lently. Since rows/columns with 0 projection value can be reconstructed easily in a
preprocessing step and then be eliminated, we also will assume that each row and
column of the matrix contains at least one 1. Figure 1 shows the three different
representations of the same binary image.

The horizontal and vertical projection of the image F is the vector H(F) = H
= (h1, . . . , hm) and V(F) = V = (v1, . . . , vn), respectively, where

hi =

n
∑

j=1

fij (i = 1, . . . ,m) and vj =

m
∑

i=1

fij (j = 1, . . . , n). (1)

For example, the binary image F in Fig. 1 has the horizontal and vertical projection
H(F) = (1, 1, 2, 2, 3), and V(F) = (3, 1, 2, 2, 1), respectively. The class of all binary
matrices having the horizontal projection H , and vertical projection V will be
denoted by BM(H,V).

An Empirical Study of Reconstructing hv-Convex Binary Matrices 151

1

11100

01100

00011

00001

0000

Figure 1: Different representations of the same object as a discrete set, as a binary
image, and as a binary matrix (from left to right).

A switching component of a matrix is a 2× 2 submatrix of the form

[

1 0
0 1

]

or

[

0 1
1 0

]

. (2)

To avoid confusion, we emphasize that the above submatrix is formed by select-
ing two (not necessarily consecutive) rows and two (not necessarily consecutive)
columns of the matrix. It is easy to see that the horizontal and vertical projections
of a matrix do not change if we invert the values in the four positions of a switching
component. A much stronger statement is also true.

Theorem 1. [15] Let A,B ∈ BM(H,V) (B 6= A). Then A is transformable into
B (or vice versa) by a finite sequence of switching components.

The reconstruction task consists in finding a binary image with the given hori-
zontal and vertical projections. However, due to the presence of switching compo-
nents, those projections usually do not uniquely determine the image itself. Thus,
further prior information is needed in order to reduce the number of possible solu-
tions. Two positions P = (p1, p2) and Q = (q1, q2) in a discrete set F are said to
be 4-adjacent if |p1 − q1|+ |p2 − q2| = 1. The positions P and Q are 4-connected if
there is a sequence of distinct positions P0, . . . , Pk in F such that P0 = P , Pk = Q,
and Pl is 4-adjacent to Pl−1 (for each l = 1, . . . , k). A discrete set F is 4-connected
if any two points in F are 4-connected. Every discrete set F can be partitioned
(in a uniquely determined way) into maximal 4-connected subsets, which are called
the components of F . The discrete set is called h-convex (respectively, v-convex) if
its elements follow consecutively in each row (respectively, in each column). The
discrete set is called hv-convex if it is both h- and v-convex. Figure 2 demonstrates
the above concepts.

3 Algorithms for Reconstructing hv-Convex Bi-

nary Images

It is known, that the reconstruction of general hv-convex discrete sets from their
horizontal and vertical projections is an NP-hard problem [16]. On the other hand,

152 Zoltán Ozsvár and Péter Balázs

Figure 2: An h-convex 4-connected discrete set (a), a v-convex 4-connected discrete
set (b), an hv-convex 4-connected discrete set (c), and a general hv-convex discrete
set with 4 components (d).

if the hv-convex discrete set is also 4-connected, then the reconstruction can be
solved in polynomial time [4, 5, 6]. Our goal is to reveal the reason of being the
more general problem computationally hard. In this section, we shortly describe
three heuristic algorithms from previous works to solve the problem.

3.1 Kernel-Shell Algorithm

The kernel-shell (or core-envelope) algorithm (see Algorithm 1) is a greedy type
heuristic algorithm which approximates the discrete set F to be reconstructed by
two sequences of discrete sets [13]. The first sequence is nondecreasing, and it
consists of the so-called core sets which satisfy

C0 ⊆ C1 ⊆ · · · ⊆ F, (3)

while the second (nonincreasing) sequence of so-called envelope sets satisfies

S0 ⊇ S1 ⊇ · · · ⊇ F. (4)

Denoting the minimal bounding rectangle of F by T , as initial core and envelope
sets we can use

C0 = ∅ and S0 = T. (5)

In every iteration, the new core set is constructed as the maximal hv-convex
discrete set (operator J) from the current core set Ck, extending it to horizontal
and vertical directions by taking into account the horizontal and vertical projection
values (operator c) and the current envelope set Sk (Step 2). Similarly, the new
shell is constructed as the intersection of the maximal possible extensions of the
current core Ck, by taking into account the horizontal and vertical projection values
(operator s) and the current envelope set Sk (Step 3).

If the kernel and the shell coincide, then we found a solution (Steps 4-6). Oth-
erwise, if C = Ck (i.e., the core set does not change in an iteration), then the core
cannot be further increased. Thus, we use a stack memory P , and guess all the

An Empirical Study of Reconstructing hv-Convex Binary Matrices 153

positions of the shell not belonging to the kernel whether the core can be extended
with that given position (Steps 7-9). This heuristic step might be repeated (if
needed) several times (Steps 10-11). If we get that Ck * Sk, then the guess led to
a contradiction, and we do a backtrack step (by deleting the tested position from
the shell) if possible, i.e., if the stack is not empty (Steps 15-18). Otherwise, there
is no solution (Steps 13-14).

Algorithm 1 Core-Shell Algorithm

Input: the vectors H ∈ Nm and V ∈ Nn

Output: the binary matrix F with H(F) = H, V(F) = V or the message ”no
solution”

1: C0 = ∅, S0 = T, k = 0, P is an empty stack
2: C := J(c(Sk, H) ∪ c(Sk, V) ∪ Ck)
3: S := s(Ck, H) ∩ s(Ck, V) ∩ Sk

4: if Ck = Sk then

5: return F
6: end if

7: if C = Ck then

8: (C, S, ((i, j) ∈ S\C)→ P);C := C∪{(i, j)};Ck+1 := C;Sk+1 := S; k := k+1
9: end if

10: if Ck ⊂ Sk then

11: goto Step 2
12: else

13: if Ck * Sk and P is empty then

14: FAIL (no solution)
15: else

16: P → (C, S, (i, j));Ck+1 := C;Sk+1 = Sk \ {(i, j)}; k := k + 1; goto Step 2
17: end if

18: end if

3.2 Algorithm Based on Simulated Annealing

The next algorithm is based on Simulated Annealing (SA) [14] where the objective
is to maximize the number of adjacent ones in an unknown binary matrix X =
(xij)m×n, i.e., the following function

f(X) =

m−1
∑

i=1

n
∑

j=1

xijxi+1,j +

m
∑

i=1

n−1
∑

j=1

xijxi,j+1 (6)

subject to
n
∑

j=1

xij = hj (i = 1, . . . ,m) (7)

154 Zoltán Ozsvár and Péter Balázs

n
∑

i=1

xij = vj (j = 1, . . . , n) (8)

with xi,j ∈ {0, 1} (i = 1, . . . ,m and j = 1, . . . , n). Constraints (7) and (8) ensure
that the matrix X satisfies the given projections.

Algorithm 2 outlines this method that was published in [11] on the basis of [7].
For generating an initial solution that satisfies the projections, Ryser’s algorithm is
used [15]. The neighborhood of a solution matrix is defined as the set of all matrices
obtained by a single switching. As Theorem 1 says, by applying such switchings,
all the binary matrices satisfying the given projections can be constructed. In
Step 3, p ∈ (0, 1) is a random variable, generated in each iteration from a uniform
random distribution. The initial temperature was set to 5, and the algorithm was
terminated when the best solution did not improve for the last 1000 iterations or
when the temperature reached 0.0005. Those parameters as well as the cooling
factor were set empirically by a long process of trial and error.

Algorithm 2 Algorithm Based on Simulated Annealing

Input: Xact = computed initial solution, Temp = 5, Nbr = 0
Output: the binary matrix X with H(X) = H and V(X) = V

1: while (Temp > 0.0005 and Nbr < 1000) do
2: Xnext ←− invert a randomly chosen switching component in Xact

3: if (f(Xact) < f(Xnext)) or (p < exp(−|f(Xact)− f(Xnext)|/Temp) then
4: Xact ← Xnext; Temp := Temp · 0.9995; Nbr := 0;
5: else

6: Nbr++;
7: end if

8: end while

3.3 Algorithm Based on the Location of the Components

Let F be a binary image with k (k ≥ 1) components such that Il×Jl = [il, i
′

l]×[jl, j
′

l]
is the minimal bounding rectangle of the l-th component of F (l = 1, . . . , k). We
say that the components of F are disjoint if for any l 6= l′ (where 1 ≤ l, l′ ≤ k)
Il ∩ Il′ = ∅ and Jl ∩ Jl′ = ∅ (see Fig. 3).

In [1] the author presented an algorithm to reconstruct discrete sets having
disjoint components from their horizontal and vertical projections, by locating the
possible positions of the components. It is clear, that the hv-convex images nat-
urally consist of disjoint components. Moreover, those components are hv-convex
4-connected images, which can be reconstructed in polynomial time ([4, 5, 6]).
Thus, this algorithm is also capable of the fast reconstruction of hv-convex im-
ages. The outline of the method is given as Algorithm 3, which uses the following
definition.

Definition 1. Let S be a class of 4-connected binary images, H ∈ Nm and V ∈ Nn.
We say that the intervals [i1, i2] of H (1 ≤ i1 ≤ i2 ≤ m) and [j1, j2] of V (1 ≤ j1 ≤

An Empirical Study of Reconstructing hv-Convex Binary Matrices 155

Figure 3: A discrete set with three disjoint components (left), and an hv-convex
discrete set with four disjoint components (right).

j2 ≤ n) are compatible with respect to the class S if a 4-connected binary image
P ∈ S exits with H(P) = (hi1 , . . . , hi2) and V(P) = (vj1 , . . . , vj2).

Algorithm 3 Algorithm Based on the Location of the Components

1: find and store all compatible interval-pairs [i1, i2] of H and [j1, j2] of V w.r.t.
the class of hv-convex 4-connected binary images;

2: starting out from the first row connect interval-pairs found in Step 1, until all
the components of the image are found, such that
a) the rows of the intervals of H are consecutive and pairwisely disjoint, and
b) the columns of the intervals of V are pairwisely disjoint;

4 Experimental Results

4.1 Implementation Details

We implemented the algorithms of Section 3 in order to study their performance
from the viewpoint of running-time and reconstruction quality.

The kernel-shell algorithm was implemented with two different data structures.
We designed an array data type where we represented the set of core and shell
positions by two two-dimensional arrays of size m × n. The core positions were
marked by 1s, and the shell points by 2s. The second data structure (called first-
last type) stored the first and the last elements of the core and the shell in each
row and each column (or alternatively -1, if there was no element of the set in
the given row or column). This structure was suggested in [13] and it uses four
one-dimensional arrays of size m and another four one-dimensional arrays of size
n. The two data structures are presented in Fig. 4.

The two variants of the kernel-shell heuristic, the algorithm based on Simulated
Annealing and the method based on the location of the components were imple-
mented in JAVA, and the test run on an AMD Athlon X2, 2.1 GHz with 2GB RAM
under Ubuntu 11.01. In the experiments we used a large set of hv-convex images,

156 Zoltán Ozsvár and Péter Balázs

core=













0 0 1 0 0
0 1 1 0 0
0 1 1 1 0
0 1 0 0 0
0 0 0 0 0













shell=













2 2 2 2 2
2 2 2 2 0
2 2 2 2 2
2 2 0 0 0
2 2 0 2 2













Core: Shell:
RowFirst: 3,2,2,2,-1 RowFirst: 1,1,1,1,1
RowLast: 3,3,4,2,-1 RowLast: 5,4,5,2,5
ColumnFirst: -1,2,1,3,-1 ColumnFirst: 1,1,1,1,1
ColumnLast: -1,4,3,3,-1 ColumnLast: 5,5,3,5,5

Figure 4: Example image, where × represents the core and the gray pixels form
the shell. The state is represented both by the array and the first-last data types.

with different sizes (from 10 × 10 to 50 × 50) and varying number of components
(from 1 to 4), by picking them from uniform random distributions, using the meth-
ods of [2, 3].* For each size and number of components the data set contained 100
images. Since the algorithm based on Simulated Annealing uses random values, for
each test data we repeated the reconstruction 5 times, and took the average speed
and correctness of the five runs. In the following we present results just for a part
of the test images, but we made the same observations by investigating the entire
data set.

4.2 The Quality of the Reconstructions

First, we studied the quality of the reconstructions. Even if the image to be re-
constructed is hv-convex, there can be a significant difference between two images
having the same horizontal and vertical projections, due to the presence of the
switching components (see, e.g., Fig. 5). To measure the error of reconstruction,
we computed the conventionally used RME (relative mean error) [17] with the
formula

RME =

∑

i,j |m
o
i,j −mr

i,j |
∑

i,j m
o
i,j

, (9)

where Mo = (mo
i,j) is the original binary matrix (the expected image), and M r =

(mr
i,j) is the binary matrix of the reconstruction.
The mean value and the variance of the RME for some of the data sets are given

in Table 1. Note that the reconstruction quality of the kernel-shell method does not
depend on the applied data structure. We can observe that – due to the fact that

* We used the benchmark collection available at http://www.inf.u-szeged.hu/~pbalazs/

benchmark/benchmark.html

An Empirical Study of Reconstructing hv-Convex Binary Matrices 157

Figure 5: Two different hv-convex discrete sets with the same projections.

the SA algorithm does not guarantee hv-convexity – the quality of its results are
usually worse than those of the other two methods. The core-shell method usually
outperforms the algorithm based on the location of the components, although not
significantly. However, all algorithms show an increasing trend in the RME value
(yielding worse and worse quality) with the increasing number of components of
the image. We found that images consisting of fewer components have usually
significantly fewer switching components than those with more components, which
could be an explanation for this trend.

Table 1: Quality of the reconstructions in RME as a function of the number of
components (first column), and the size of the image (horizontally)

Core-Shell - Array/First-last data type
10× 10 20× 20 30× 30 40× 40 50× 50

mean variance mean variance mean variance mean variance mean variance
1 0.0181 0.0918 0.0027 0.0128 0.0002 0.0017 0.0002 0.0017 0.0001 0.0008
2 0.1005 0.3577 0.0138 0.0406 0.0062 0.0186 0.0320 0.1712 0.0114 0.0999
3 0.2669 0.5426 0.0483 0.1130 0.0173 0.0433 0.0668 0.2929 0.1234 0.3405
4 0.7000 0.7730 0.1171 0.2279 0.0570 0.1608 0.1044 0.4083 0.1890 0.5122

Simulated Annealing
10× 10 20× 20 30× 30 40× 40 50× 50

mean variance mean variance mean variance mean variance mean variance
1 0.3771 0.3239 0.5606 0.3573 0.6905 0.3711 0.7091 0.4536 0.6965 0.3957
2 0.7919 0.5172 1.0104 0.4949 1.0682 0.5091 1.1263 0.5371 1.1255 0.5326
3 0.9133 0.6889 1.1019 0.6027 1.2006 0.5825 1.2678 0.6125 1.2609 0.5963
4 1.0685 0.8217 1.3180 0.6548 1.3653 0.6394 1.3086 0.6827 1.2806 0.6590

Algorithm Based on the Location of the Components
10× 10 20× 20 30× 30 40× 40 50× 50

mean variance mean variance mean variance mean variance mean variance
1 0.0123 0.0401 0.0022 0.0094 0.0033 0.0019 0.0023 0.0014 0.0012 0.0009
2 0.0382 0.1105 0.0055 0.0257 0.0126 0.1002 0.0303 0.2217 0.0058 0.2406
3 0.1852 0.3217 0.0290 0.0676 0.0346 0.1772 0.1380 0.4023 0.1466 0.5303
4 0.5757 0.6457 0.0839 0.3402 0.1123 0.4233 0.1560 0.6073 0.2964 0.7169

158 Zoltán Ozsvár and Péter Balázs

It is easy to see that if the X ∈ BM(H,V) image is hv-convex, then

f(X) = max{f(M)|M ∈ BM(H,V)} =
i=1
∑

m

(hi − 1) +

j=1
∑

n

(vj − 1) . (10)

However, SA can also produce non-hv-convex images, which occasionally can have
better RME values than others which are not hv-convex (see Fig. 6 for an example).
For this reason, we also calculated how the criteria of convexity defined in (6) is
satisfied. Table 2 depicts for each reconstructed set the value of (6) divided by its
possible maximum determined by (10). From this table it becomes evident that –
regarding the SA based algorithm – not only the RME value but also the convexity
of the reconstructed image gets worse and worse, as the size of the image and the
number of its components is increasing.

Figure 6: Original image (a). An hv-convex solution with RME=1 (b). A non-
hv-convex image (c) with the same projections but better RME value (RME=0.5)
than image (b).

Table 2: Quality of the reconstruction measured as the fraction of the number of
adjacent ones and its possible maximum

Number of adjacent ones - Simulated Annealing
10× 10 20× 20 30× 30 40× 40 50× 50

mean variance mean variance mean variance mean variance mean variance
1 0.94 0.04 0.89 0.06 0.86 0.07 0.86 0.09 0.87 0.07
2 0.87 0.05 0.79 0.06 0.77 0.06 0.76 0.05 0.76 0.06
3 0.87 0.05 0.77 0.06 0.73 0.06 0.71 0.06 0.70 0.05
4 0.87 0.05 0.72 0.05 0.69 0.05 0.68 0.06 0.69 0.06

We also analyzed the effectiveness of the switching operators in the SA based
algorithm. We calculated the difference of f(S)− f(R) and again, divided by the
maximum value given by (10), where S and R denoted the final reconstruction
and the initial solution matrix provided by the Ryser algorithm, respectively. The
results are shown in Table 3. We can deduce that the more components the discrete
set has, the greater the difference is in quality between the initial and the final
solutions. This again, can be justified by the observation, that – owing to the more
switching components in the image – Ryser’s algorithm gives a worse initial solution
regarding the hv-convex property, in case of bigger number of components.

An Empirical Study of Reconstructing hv-Convex Binary Matrices 159

Table 3: Quality of the correction as a function of the number of components (first
column) and the size of the image (horizontally)

Quality of the correction - Simulated Annealing
10× 10 20× 20 30× 30 40× 40 50× 50

mean variance mean variance mean variance mean variance mean variance
1 0.08 0.05 0.06 0.04 0.05 0.03 0.05 0.04 0.04 0.03
2 0.18 0.07 0.10 0.04 0.09 0.03 0.08 0.03 0.08 0.03
3 0.22 0.07 0.13 0.04 0.10 0.03 0.09 0.02 0.10 0.02
4 0.27 0.08 0.16 0.04 0.12 0.03 0.10 0.02 0.10 0.02

4.3 Running Time of the Reconstructions

Table 4 shows the running time (clear CPU usage, without garbage collecting) of
the algorithms. First of all, the running time of the SA based algorithm is more
or less independent of the number of components. It is rather influenced by the
cooling schedule and the number of the switching components which increases with
the size of the image. Furthermore, the two versions of the core-shell algorithm show
similar performance. Images with 1 or 2 components can be reconstructed much
faster than images with 3 or 4 components. In both implementations, the running
time increases rapidly both by increasing the size of the set, and the number of
its components. On the contrary, the speed of the algorithm based on the location
of the components is mostly influenced by the size of the image, and not by the
number of components. Finally, the implementation with the array data type is
much faster than the one using the first-last data structure. The reason is, that
this latter one needs more calculation for processing the new kernel and shell, when
a heuristic step is taken.

One more observation is that in case of the kernel-shell method the size of the
components has an important effect on the speed of the reconstruction. If the image
contains a relatively big component, then it is more likely that in the first step a
non-empty kernel can be produced, yielding less or no need for using the time-costly
stack operators. In case of smaller components, the stack must be used more often
for guessing, which means many steps of backtracking and a lot of execution time
(see Fig. 7).

Finally, it is worth to note that the average time of the reconstruction with the
kernel-shell method and the algorithm based on the location of the components can
significantly differ with the same components but aligning them in different ways.
Figure 8 shows just an example in case of images of size 30×30 with 4 components,
but we found similar trends in any other test cases.

160 Zoltán Ozsvár and Péter Balázs

Table 4: The average and the variance of the running times in milliseconds
Core-Shell - Array data type

10 20 30 40 50
average variance average variance average variance average variance average variance

1 39.73 4.92 52.82 11.33 74.77 37.12 147.81 126.75 246.45 325.99
2 42.53 4.20 71.63 45.65 146.87 97.71 334.67 351.82 735.52 1172.44
3 45.08 4.87 102.21 83.98 341.86 478.53 872.21 1341.80 1526.40 2783.91
4 47.33 13.61 292.23 402.12 1032.04 2333.96 1697.22 2264.28 3094.40 3277.27

Core-Shell - First-Last data type
10 20 30 40 50

average variance average variance average variance average variance average variance
1 37.67 1.87 50.16 9.54 73.98 27.93 124.15 74.56 215.61 143.69
2 42.22 3.99 80.52 34.43 166.89 103.44 530.95 534.85 1349.71 1467.54
3 45.82 4.99 169.31 138.09 570.69 495.88 1719.58 1574.60 2223.90 2043.90
4 45.41 5.88 755.18 824.58 2006.66 2155.59 2934.82 2408.63 5889.01 4992.17

Simulated Annealing
10 20 30 40 50

average variance average variance average variance average variance average variance
1 145.36 63.91 319.39 154.14 492.51 248.76 673.49 351.06 852.51 456.82
2 182.08 72.76 421.86 168.49 638.97 266.82 839.62 367.29 1053.75 461.08
3 184.24 69.54 386.23 143.50 612.47 245.05 832.27 334.91 1037.32 419.95
4 182.63 60.67 366.21 117.53 571.41 201.29 752.02 274.17 940.79 352.44

Algorithm based on the location of the components
10 20 30 40 50

average variance average variance average variance average variance average variance
1 1.07 0.43 2.03 1.32 1.66 12.45 2.86 3.74 9.05 71.72
2 1.64 1.79 7.01 14.22 44.86 128.45 77.67 325.58 446.63 945.98
3 3.02 2.48 91.56 423.13 217.65 505.17 267.18 510.26 687.54 1591.19
4 4.47 10.07 356.46 790.07 436.50 1214.05 575.66 507.71 962.66 2212.41

5 Conclusion

In this paper we studied different algorithms for reconstructing hv-convex binary
images. Knowing from theory that the task is NP-hard, we found that the difficulty
of the problem depends on several factors. In case of the core-shell algorithm, the
reconstruction speed and quality is in connection with the size of the image, and
the number, the position, and the size of the components. The efficiency of the SA
based algorithm depends on the number of the switching components in the image.
Finally, the reconstruction efficiency of the algorithm based on the location of the
components is mostly determined by the size of the image, and the number and
position of the components. Thus, a fast algorithm for reconstructing hv-convex
binary images must somehow combine the core-shell operators, the localization of
the components, and the switching operators, too. In a future work we also intend
to investigate how prior information on the number and size of the components can
facilitate the reconstruction. We believe that the deeper insight we gained through
our experiments can help us to design more efficient reconstruction algorithms for
this class, in the near future. We also hope that this knowledge could also reveal
the difficultness of the reconstruction in other classes of binary images, too.

An Empirical Study of Reconstructing hv-Convex Binary Matrices 161

Figure 7: Two different images with the same number of components. (a) When
the core-shell algorithm can give an initial non-empty kernel (indicated by thick
lines), and (b) when the algorithm cannot give an initial non-empty kernel.

Figure 8: Average reconstruction time of the core-shell algorithm (with array data
type) in milliseconds for images of size 30×30 with 4 components allocated them in
different orders. Permutations on the horizontal axis indicate how the components
are positioned relatively to each other. Components are numbered from top to
bottom, and the permutation shows their orders from left to right.

162 Zoltán Ozsvár and Péter Balázs

References

[1] P. Balázs, Discrete tomographic reconstruction of binary images with disjoint
components using shape information, International Journal of Shape Modeling
14:2 (2008) 189–207.

[2] P. Balázs, A benchmark set for the reconstruction of hv-convex discrete sets,
Discrete Appl. Math. 157 (2009) 3447–3456.

[3] P. Balázs, A framework for generating some discrete sets with disjoint compo-
nents by using uniform distributions, Theoret. Comput. Sci. 406 (2008) 15–23.

[4] E. Barcucci, A. Del Lungo, M. Nivat, R. Pinzani, Reconstructing convex poly-
ominoes from horizontal and vertical projections, Theor. Comput. Sci. 155

(1996) 321–347.

[5] S. Brunetti, A. Del Lungo, F. Del Ristoro, A. Kuba, M. Nivat, Reconstruction
of 4- and 8-connected convex discrete sets from row and column projections,
Lin. Algebra Appl. 339 (2001) 37–57.

[6] M. Chrobak, C. Dürr, Reconstructing hv-convex polyominoes from orthogonal
projections, Inform. Process. Lett. 69 (1999) 283–289.

[7] G. Dahl, T. Flatberg, Optimization and reconstruction of hv-convex (0,1)-
matrices, Discrete Appl. Math. 151 (2005) 93–105.

[8] G.T. Herman, Fundamentals of Computerized Tomography: Image Reconstruc-
tion from Projections, 2nd edition, Springer, 2009.

[9] G.T. Herman, A. Kuba (Eds.), Discrete Tomography: Foundations, Algorithms
and Applications, Birkhäuser, Boston, 1999.

[10] G.T. Herman, A. Kuba (Eds.), Advances in Discrete Tomography and Its Ap-
plications, Birkhäuser, Boston, 2007.

[11] F. Jarray, G. Tlig, A simulated annealing for reconstructing hv-convex binary
matrices, Electronic Notes in Discrete Mathematics 36 (2010) 447–454.

[12] A.C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging, IEEE
Service Center, Piscataway, NJ., 1988.

[13] A. Kuba, Reconstruction of two-directionally connected binary patterns from
their two orthogonal projections, Computer Vision, Graphics, and Image Proc.
27 (1984) 249–265.

[14] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, Equation
of state calculation by fast computing machines, J. Chem. Phys. 21 (1953)
1087–1092.

An Empirical Study of Reconstructing hv-Convex Binary Matrices 163

[15] H.J. Ryser, Combinatorial properties of matrices of zeros and ones, Canad. J.
Math. 9 (1957) 371–377.

[16] G.J. Woeginger, The reconstruction of polyominoes from their orthogonal pro-
jections, Inform. Process. Lett. 77 (2001) 225–229.

[17] A. Kuba, G.T. Herman, S. Matej, A. Todd-Pokropek: Medical applications
of discrete tomography, Discrete Mathematical Problems with Medical Appli-
cations, DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, AMS, 55:195–208 (2000).

