Acta Cybernetica 21 (2013) 177-190.

x86 Instruction Reordering for Code Compression

Zsombor Paroczi*

Abstract

Runtime executable code compression is a method which uses standard
data compression methods and binary machine code transformations to achieve
smaller file size, yet maintaining the ability to execute the compressed file as
a regular executable. With a disassembler, an almost perfect instructional
and functional level disassembly can be generated. Using the structural in-
formation of the compiled machine code each function can be split into so
called basic blocks.

In this work we show that reordering instructions within basic blocks
using data flow constraints can improve code compression without changing
the behavior of the code. We use two kinds of data affection (read, write)
and 20 data types including registers: 8 basic x86 registers, 11 eflags, and
memory data. Due to the complexity of the reordering, some simplification is
required. Our solution is to search local optimum of the compression on the
function level and then combine the results to get a suboptimal global result.

Using the reordering method better results can be achieved, namely the
compression size gain for gzip can be as high as 1.24%, for lzma 0.68% on the
tested executables.

Keywords: executable compression, instruction reordering, x86

1 Introduction

Computer programs, more precisely binary executables are the result of the source
code compiling and linking process. The executables have a well defined format
for each operating system (e.g. Windows exe and Mac binary [6, 15]) which usu-
ally consists of information headers, initialized and uninitialized data sections and
machine code for a specific processor instruction set.

Compression of executables is mainly used to reduce bandwidth usage on trans-
fer and storage needs in embedded devices [11]. Even today Linux kernels for
embedded devices are stored in a compressed file (so called bzlmage) [1], and ev-
ery program for Android comes in a compressed format (apk) [20]. The literature
distinguishes between two different approaches whether the produced compressed

*Department of Telecommunications and Media Informatics, Budapest University of Technol-
ogy and Economics, E-mail: paroczi@tmit.bme.hu

DOI: 10.14232/actacyb.21.1.2013.13

178 Zsombor Paroczi

binary remains executable without any additional software or hardware or not. In
the first case the resulted binary includes the decompression algorithm and some
bootstrapping instructions for restoring the original binary during runtime within
the memory of the device. In the second case, the decompression is done on the
operating system level or by special hardware, which has a predefined compression
method with built in parameters. In this case the decompression method and the
additional dictionaries is not an overhead in each binary, which allows decompres-
sion algorithms to use bigger dictionaries. If the decompression is hardware based,
the performance can be significantly improved, which can also limit pure software
based solutions.

Runtime executable code compression is a method which uses standard data
compression methods and binary machine code transformations to achieve smaller
file size, yet maintaining the ability to execute the compressed file as a regular
executable. In our work we focus on machine code compression for Intel x86 in-
struction set with 32bit registers for both type of code compression approaches. It
is important to note that the same method with minor modifications should work
on each instruction set.

Various compression methods for the x86 machine code have been developed
over the past years. Most of them use model based compression techniques (such
as Huffmann coding, arithmetic coding, dictionary-based methods, predication by
partial match and context tree weighting) with CPU instruction specific transfor-
mations such as jump instruction modification [2, 7]. These compression algorithms
are lossless, so the binary before compression and after decompression is identical.
In most cases the CPU instruction specific transformations are also reversible, the
most common transformation is the jump instruction modification. x86 long jump
instruction is 5 byte long. The first byte identifies the instruction, the last 4 is a
relative jump address. The transformation modifies the jump address from rela-
tive to absolute before compression and does the inverse after decompression. This
transformation may help producing smaller compressed binaries because most of
the addresses used in x86 are absolute, so the transformed jump instructions have
a better chance for model based matching and range encoding.

The compiled machine code is usually in one section of the executable, a contin-
uous chunk of raw data, with a few known entry points. There is no clear indication,
where each function or even instruction begins, it all depends on the actual exe-
cution. A function is a sequence of instructions in one continuous block with the
following limitation: jump and call instructions from one function can transfer ex-
ecution either into another part of the same function or to the first instruction
of another function. If functions are called from outside, they always return and
restore the stack according to the used call convention.

Very few compression methods try to identify functions. Most of them use
binary pattern matching for known instructions - such as first byte match for jump
transformation. When the executable is generated by a “standard” compiler certain
patterns can help to identify functions in the code - such as stack protection stubs
(push ebp; mov ebp, esp). Using a disassembler, an almost perfect instructional and
functional level disassembly can be generated [21]. Using the structural information

x86 Instruction Reordering for Code Compression 179

of the compiled machine code, each function can be split into so called basic blocks,
sequences of instructions including zero or one control transfer instruction at the
end of the block [3, 9].

In our work we demonstrate that the reordering of instructions within a basic
block can improve code compression without changing the behavior of the code.
Our approach searches for local compression optimums on the function level for
each function than combines these results to achive a suboptimal global result.
With this novel approach we achieved the compression size gain for gzip can be as
high as 1.24%, for lzma 0.68% on the tested executables.

2 Related work

Compression techniques for executables have been investigated by a number of
researchers. Research directions can be categorized into two different groups: mod-
ification of the compiled (and sometimes not linked) machine code for smaller size or
better compression, and different compression methods and models for the specific
task of executable compression.

In the first category researchers tried to exploit the potentials of the same
methods used in compilers, which resulted in aggressive inter-procedural optimal-
ization of repeated code fragments, but without actual data compression methods.
To increase the matching code segments the register renaming and local factoring
transformation was used [11]. Using data dependency with instruction reordering
was presented in the PLTO framework, which used the conservative analysis to
gain performance with optimizing cache hit, instruction prefetching and branch
predication [23]. Basic block reordering, without modifying the block itself, is also
used to gain performance, mainly due to branch predication [18].

Reusing multiple instances of identical code fragments have been also exploited
in the Squeeze++ framework, but it was done on various levels of granularity: pro-
cedures, code regions with unique entry and exit points, basic blocks and partially
matched basic blocks [24, 8, 9.

Some works focus on the structural analysis of the whole program graph to
identify common patterns [5, 10] or some other ways to simplify the structure of
the graph [14, 5, 9] or even discover non-trivial equivalence in it [10, 13]. These
methods focus on the control flow nature of the machine code, on the basic block
level, they do not attempt to modify the code using the data flow information.

Refined compactation methods (unreachable code elimination, whole function
abstraction, duplicate code elimination, loop unrolling, branch optimalization) can
be used in various fields, which require specific tasks such as operation system
kernel compactation [13] and ARM specific compactation [10].

For simplicity, all of these methods used additional link-time data to help sepa-
rating the pointers (relocation data) from constant values, our method doesn’t rely
on such data. All of these compactation methods aim for smaller file size by modify-
ing the machine code, yet maintaining the executability. But non of these methods
exploit the results of the data compression research field, in fact some of these

180 Zsombor Paroczi

compactations have a negative effect, if the machine code is later compressed [12].

Compression method evaluation and modification is also a widely researched
field. Recompressing Java class files with various compression favorable modifica-
tion resulted in significant gains, modifications include custom opcodes and string
reordering, with the gzip compressor used as a black-box compressor [22]. Without
further knowledge, in compiled machine code stream compressors, like gzip, are
widely used as a black-box compressor, including android executables and linux
kernels [5]. Compression can benefit from the known structure of the data, split-
stream compression techniques conceptually split the input stream of instructions
into separate streams, one for each type of instruction field. This lossless com-
pression strategy can improve the compression rate significantly [19]. The same
concept of separating the machine code into multiple context models can be used
with instruction reordering, which can be compressed as non-sequential data [7]. In
systems with limited memory, such as embedded systems, decompression methods
have more limitations. Some algorithms decompress functions on demand, which
means that the functions are decompressed on the first access [5].

All of these compression methods either use data compression as a black-box to
simply compress the resulted binary as a stream, or use some special heuristic to
supposedly encourage redundancy. This will always result in a suboptimal solution,
neither of these works experiment with all the possible reorderings, due to the com-
plexity. In our solution, the granuality of the search is fixed on the function level,
but all the possible reorderings are tested, resulting the function level optimum of
the compression.

The most closely related work to ours is PPMexe [12]. In this work the reorder-
ing is done globally (A1l algorithm) and on basic block level (A2, A3 algorithm),
but the goal is to improve the predication rate of PPM by maximizing the num-
ber of n-symbol context occurrences. PPM highly depends on split-stream coding,
a reversible transformation, which separates the structural information of an in-
struction into different streams. Our approach uses gzip and lzma and treats the
machine code as one stream, searching for local optimum on the function level.

3 Reordering instructions

Original basic block Reordered basic block

mov eax, ebx mov ecx, edx
mov ecx, edx mov eax, ebx
add eax,ecx add eax,ecx
ret ret

Table 1: Instruction reordering

Instructions have a predefined order in the executable, but in fact, every instruc-
tion could be executed once every required parameter is available. This statement
is referred as data dependency. The basic idea behind reordering is that changing

x86 Instruction Reordering for Code Compression 181

the instruction order within a basic block will produce different raw data, which
could lead to different compressed size, that may be smaller than the compressed
original one. An example of reordering can be seen in Table 1. The original and the
reordered basic block are functionally equal, after running both on various input
the effect (observable registers and flags) are the same for both code sequence. The
byte representation of the blocks in this example differ in 2 bytes. The original byte
sequence is 6689d86689d16601c8c3 in hexadecimal notation while the reordered
byte sequence is 6689d16689d86601c8c3, which can lead to better compression - for
example if other parts of the code section has the pattern of d86601.

62293 6229¢
mov eax, edi mov esi, dword ptr [esp+000000B8h]

. '

622a3 62295

mov edi, dword ptr [esp+000000BCh] mov ebx, dword ptr [esp+000060B4h]
622aa
add esp. 000000C0Oh

Y

622b0

ret

Figure 1: Data dependency graph inside a basic block

To ensure that the reordered block has exactly the same effect as the original
one, the data dependency relations must be analyzed. The data usage for each
instruction can be calculated using a disassembler [21], and from the dependencies
a local data flow graph can be produced for each basic block. (See Figure 1.)

[(EAX)] - .
cs:) | | EBx ggi‘(
DS : ECX 1
ss:| || Epx ECX 1]y
) + EDX 3 « + [displacement] (1)
ES : ESP EBP 4
FS EBP EST 8
GS: ESI EDI
(eprf] L :

The x86 instruction set in user mode uses 8 data registers (EAX, EBX, ECX,
EDX, EBP, ESI, EDI, ESP), the instructions can access memory using a strict
addressing mode (1). Due to the memory protection methods provided by modern
operating systems, segment registers (CS, DS, SS, ES, FS, GS) are usually not used

182 Zsombor Paroczi

in user space programs. It is safe to ignore those along with debug registers and
control registers.

The x86 instruction set uses a special status flag register which contains the cur-
rent state of the processor represented as different binary flags stored as bits of the
register. These bits are used to store extra information about the last instruction
and can be used to manipulate the outcome of the next instruction. For example
the multiply instruction sets the overflow flag if the result cannot be represented on
the current register due to overflow, the overflow flag can be tested in a conditional
jump which may transfer execution to some error handling code.

Memory access uses a well defined formula but identifying whether two pointers
are the same or not is impossible in the majority of the cases. For example [eax+14]
, [00401000h] and [esp+14h] could point to the same address or to three completely
different address. Some disassemblers, like Hex-Rays’ IDA!, can identify trivial
cases for identical memory pointers but the analysis is complicated and should be
done on the whole code section [21]. In our work we decided to treat the whole
memory as one entity, the so called memory data. This simplifies the dependency
model because every memory location can be treated as a single virtual register
which can be used for both reading and writing. It is required to handle memory
writes and reads because it will cause further data dependencies in the code.

We distinguish two kinds of data affection (read and write) and use 20 data types
including registers: 8 basic x86 registers, 11 binary flags in the eflags register, and
memory as a whole. Each instruction has a well defined data usage [16], which
defines which registers / flags are used in different instructions, and how these
registers affect the output. For simplicity each control flow instruction (such as
condition, unconditional jump and call instructions) should be treated as if they
write every data type. This ensures that during reordering within a basic block the
control flow instructions remain at the end of the block.

The following rules are used to generate the data dependency :

A instruction should be before B instruction (considering original order A before
B):

e if A reads any data type B writes, or
e if A writes any date type B writes, or

o if A writes any data type B reads.

The reordered and the original code have the same data flow graph, which means
that they have the same effect (observable registers, flags and memory), only the
control flow graph can be different, but at the end of each basic block the executed
instructions have the same quantity, and only the execution order may vary [5, 12].

An example of basic block instruction data dependency is demonstrated in Fig-
ure 1. Each instruction is indicated by a separate box, the original position in the
first line, and the actual instruction in the second line. The arrows represent data
dependencies within the block. All the indirect dependencies are hidden. The circle
marks the entry point of the basic block.

Thttp://www.hex-rays.com/products/ida/index.shtml (Last accessed: 2013-01-15)

x86 Instruction Reordering for Code Compression 183

4 Compression and permutation count

Most of the lossless data compression algorithms are designed to exploit statistical
redundancy in the data. Reordering basic blocks could change the data statistics
which may improve compression. Without any assumption about the actual data
compression method we will consider a non-zero compression time which grows at
least linearly with the size of the input data. To determine which input is the most
compressible, the compression method should be executed on each input variation,
then the one with the smallest compressed data size should be chosen.

The possible number of different reorderings for a basic block are bounded by k!
, where k is the number of instructions within the block, but this number could be
significantly lower because of the data flow constraints. Using the following formula
the total permutation count can be calculated:

N M;
[T11n 2)
i

where N is the total number of functions, M; is the number of basic blocks within
the *" function and n;; is the permutation count for the 4t basic block in the
it" function. The best compression can be achieved only by testing all reorderings,
which gives the global optimum. Due to the huge permutation count and the
non-zero compression time this could be done only for very small files.

—_
o
o

Function count
ot
<)

0 20 40 60 80 100 120 140
Instruction count within a function

Figure 2: Function count by instruction count

Common programming methodology and practices suggest that the complexity
(possible execution path count - branches) of each function should be relatively
low. This way the source code can be easy to understand, maintain and test. Dur-
ing compilation the control flow can change after inlining/outlining functions but
the distribution of the instruction count for functions does not change significantly.
Analyzing a sample dataset which was taken from the libc system executable, a his-
togram can be created (Figure 2.), which shows the instruction count in functions.
As expected, there are a lot of functions with only few instructions, the average
function consists of 57 instructions, and only a couple of functions have more than
100 instructions.

184 Zsombor Paroczi

F m o B g ol T

m”ng Sapel snw -
ERUE I Sty el PR E
o F . . " B
© [gm B
=] . o = B
Q wm
g . P l
S10'f Tl st on]
e =Tl |
[aW} . oo o " B

100 I 1 1 1 1 1
20 40 60 80 100 120

Instruction count (in a function)

Figure 3: Permutation count

The permutation count (with valid data dependency) for each function was
also calculated. The results can be seen on Figure 3. By increasing the instruc-
tion count, the permutation count of a function is also increasing. There is no
common rule for the permutation count growth, low instruction count functions
may also have a lot of permutations (e.g. “__strespn_g” function in the dataset,
30 instructions, 76.951.350 possible permutations), and long functions may have
only a few permutations (e.g. “getpass” function in the dataset, 133 instructions,
192 permutations). The permutation count heavily depends on efficient data type
usage.

To keep the permutation count at a manageable level instead of searching for
the global optimum in the compressibility local optimum places should be consid-
ered. The local optimum search is done on the function level, where each function
is evaluated separately and every basic block permutation is tested within the func-
tion.The search algorithm is detailed in pseudo code in Algorithm 1.

first basic block | second basic block | third basic block
perm. #1 perm. #1 perm. #1

first basic block | second basic block | third basic block
perm. #2 perm. #1 perm. #1

first basic block | second basic block | third basic block

perm. #K perm. #1 perm. #1
first basic block | second basic block | third basic block
perm. #1 perm. #2 perm. #1

Figure 4: Local optimum search iterations

This means that the optimal reordering for a selected function is calculated by
compressing all the possible reorderings on the function level. In each iteration one

x86 Instruction Reordering for Code Compression 185

Algorithm 1 Pseudo code for the global suboptimum search

1: result=empty
2: for each function do
3: perms=calculate every permutation of basic blocks in the function

4: for each perms do

5: compress the selected permutation

6: if this is the smallest compressed size then
7 incode=the uncompressed function

8: end if

9: end for

10: append incode to result

11: end for

of the basic blocks gets another permutation and the whole function is recompressed
and tested. As shown on Figure 4., this can be done with a simple limited counter
function. This way the optimum search problem can be calculated in a distributed
way, the algorithm should not have any information regarding the jump/call target
for the control flow instructions.

In a basic block there is only one (if any) control flow instruction. This instruc-
tion is always at the end of a basic block. Among x86 instructions only control
flow instructions have relative to current address pointers, that is why reordering
instructions can be done by simply changing the instruction’s order.

5 Implementation

In our implementation the function splitting is done by starting from the entry
point and dynamic library export addresses then tracing the code using a disas-
sembler and following each control flow edge with a depth-first-search. On each call
instruction target a new function splitting point must be created. This way most
of the code section gets analyzed, and using function split points the code can be
split into functions. This result is double checked with the constraint for functions
introduced in the second section, and if needed, the result gets modified.

Splitting functions into basic blocks are done by identifying the control flow
instructions within a function, then splitting the code after the control flow in-
structions and finally at the point before the jump target points. This way the
constraint for basic blocks can be granted (an example is shown in Figure 5., where
9 basic blocks have been identified in the example function). According to data
flow analysis among these basic blocks only two can be reordered at the instruction
level. The stack is heavily used to store data, which results in a large number of
memory writes and reads.

The data dependency analysis is done using the free open source x86 disassem-
bler called BeaEngine?. A binary dependency matrix gets defined which defines the

2http://www.beaengine.org/ (Last accessed: 2013-01-15)

186 Zsombor Paroczi

o

Figure 5: Data flow and basic blocks in a function

instruction order constraints. In the matrix the item n; ; is true if the i*" instruc-
tion within the basic block must be before the j*. This constraint is transitive, so
by propagating the items in the matrix, the transitive closure can be generated for
easier access of the rules.

Some functions can still have a lot of permutations therefore only functions with
less than 2.000 possible permutations were tested due to the computational limits.
In the example shown on Figure 5. the 2nd block has 11 different permutations,
the Tth block has 12 different permutations, so overall 132 cases have been tested.

The latest stable gzip® (version 1.3.12) and lzma* (version 5.0.3) software were
used to compress the produced code. The parameters used for compression are:

e gzip: -9 (best compression)

e lzma: -e (extreme compression)

6 Results

For the sample function shown on Figure 5. the original code was 195 bytes com-
pressed with gzip and 176 bytes compressed with lzma. Using reordering the com-
pressed size was decreased by 2 bytes using gzip and 3 bytes using lzma, so the
original code was not optimally ordered for compression purposes as shown on
Figure 6.

To evaluate the explained method and the implementation, several files were
tested from various compilers and operating systems. The filenames, operating
systems, compilers and sources for the testfiles are shown in Table 2. In case of
node.js, due to the high number of functions, only the first 1000 were tested. These
binaries are commonly used on each operating system. All of these programs /
libraries are written on a high level language (usually C++), which means that a

Shttp://www.gzip.org/ (Last accessed: 2013-01-15)
4http://tukaani.org/xz/ (Last accessed: 2013-01-15)

x86 Instruction Reordering for Code Compression 187

E | | |
S 43 44
e I 0
2 40} 36 a
=
g
g 24
5 20| 17 15 [I18 3
3
& 12
) 7
E 1 4 3
z = 10 m
z 0 f T T T T T
-3 -2 -1 0 1 2 3 4)
Compressed size change
00gzip0lzma
Figure 6: gzip and lzma compression results
Name os ‘ Compiler Source (Last accessed: 2013-01-15)
libc-2.13.50 (-Oubuntul3.1) Ubuntu gee http://packages.ubuntu.com/natty/libc6-i386
unzip (6.0-4) Debian gee http://packages.debian.org/squeeze/unzip
libconfig.dll (1.4.8) Windows VS2008 http://www.hyperrealm.com/libconfig/
node.js (0.8.8) Mac 1lvm http://nodejs.org/dist/latest/node-v0.8.8-darwin-x86.tar.gz

Table 2: Source of the files used in tests

compiler generates and optimizes the executable part of the binary. This excludes
macro optimization which usually done at the machine code level by a human
expert.

For verifying the statement, that the reordered code is functionally equal to
the original, we performed several unit tests on the reordered functions. During
the tests there were no major performance regressions which may arise due to
reordering of code which was optimized for speed.

Code section Compressed size in bytes Gain
Name in bytes without reordering with reordering percentage
all processed gzip lzma gzip lzma gzip lzma
libc-2.13.s0 | 413.619 110.944 46.353 39.848 45.778 | 39.576 | 1.24% | 0.68%
unzip 74.905 5.012 2.933 2.944 2.903 2.924 1.02% | 0.67%
libconfig.dll 17.123 8.982 4.128 3.952 4.127 3.944 0.02% 0.20%
node.js 303.248 93.544 39.554 33.688 39.451 | 33.616 | 0.26% | 0.21%

Table 3: Compression results

For evaluating the compression result, the non-machine code part of each file
have to be omitted, the result should be compared using the reordered and the
original data in compressed form. In Table 3. the result for compression tests can
be seen, the function level statistics are in Table 4. Using the reordering method

188 Zsombor Paroczi

Name Method Byte gain per function
Avg. Std. dev.
libe-2.13.s0 gzip 2.666 3.663
libc-2.13.s0 lzma 0.993 2.094
unzip gzip 1.288 1.766
unzip lzma 1.244 2.227
libconfig.dll gzip 0.583 1.096
libconfig.dll lzma 0.366 1.269
node.js gzip 0.902 1.650
node.js lzma 0.543 1.604

Table 4: Detailed compression results

better results can be achieved: the compression size gain for gzip can be as high as
1.24%, for lzma 0.68%.

!
2 800 [724
2 573
b | 57: N
g 600
£
2 400 |- 200325 y
[<§)
"2 200 H 120146]
= ‘

36 39 28 q

Z 163913289 91 4 2 1 1

T T H\H [_]\ﬂ = = 1 T T T T

0 1 2 3 4 5 6 7 8 9 10

Compression gain (in bytes)
00gzipl0lzma

Figure 7: Compressed code size change

A detailed statistics on compression gain can be seen on Figure 7, these results
are for libc-2.13.s0. In this case more than 40% of all the functions can have a
better compressible reordering than the original one but the compression gain is
usually small (1-3 bytes/function) but significantly bigger gains are also possible
(5-10 bytes / function).

7 Future work

Future work will include evaluation of other code transformation methods used
together with instruction reordering, such as pattern based instruction substitu-
tion [14, 4, 17] and also exploiting the basic principles of the split-stream com-
pression. The data types used in this work can be also refined using much more
sophisticated analysis on memory access, especially on the stack. Instead of local

x86 Instruction Reordering for Code Compression 189

optimum search on function level, other search methods or optimum criteria should
be considered, such as genetic algorithms.

References

[1]

2]

[11]

[12]

Linux kernel 2.6.30 changelog. Online. Last accessed: 2013-01-15.
http://kernelnewbies.org/Linux_2_6_30.

Beszédes, Arpéd, Ferenc, Rudolf, Gyiméthy, Tibor, Dolenc, André, and Kar-
sisto, Konsta. Survey of code-size reduction methods. ACM Comput. Surv.,
35(3):223-267, September 2003.

Bruening, Derek L. Efficient, transparent and comprehensive runtime code
manipulation, 2004.

Bruschi, Danilo, Martignoni, Lorenzo, and Monga, Mattia. Code normaliza-
tion for self-mutating malware. IEEE Security and Privacy, 5(2):46-54, March
2007.

Chanet, Dominique, De Sutter, Bjorn, De Bus, Bruno, Van Put, Ludo, and
De Bosschere, Koen. Automated reduction of the memory footprint of the
linux kernel. ACM Trans. Embed. Comput. Syst., 6(4), September 2007.

Corporation, Microsoft. Microsoft portable executable and common
object file format specification. Online. Last accessed: 2013-01-15.
http://msdn.microsoft.com/en-us/library /windows /hardware/gg463119.aspx.

Dai, Wenrui, Xiong, Hongkai, and Song, Li. On non-sequential context mod-
eling with application to executable data compression. In Data Compression
Conference, 2008. DCC 2008, pages 172 —181, march 2008.

De Sutter, Bjorn, De Bus, Bruno, and De Bosschere, Koen. Sifting out the
mud: low level c++ code reuse. SIGPLAN Not., 37(11):275-291, November
2002.

De Sutter, Bjorn, De Bus, Bruno, and De Bosschere, Koen. Link-time binary
rewriting techniques for program compaction. ACM Trans. Program. Lang.
Syst., 27(5):882-945, September 2005.

De Sutter, Bjorn, Van Put, Ludo, Chanet, Dominique, De Bus, Bruno, and
De Bosschere, Koen. Link-time compaction and optimization of arm executa-
bles. ACM Trans. Embed. Comput. Syst., 6(1), February 2007.

Debray, Saumya K., Evans, William, Muth, Robert, and De Sutter, Bjorn.
Compiler techniques for code compaction. ACM Trans. Program. Lang. Syst.,
22(2):378-415, March 2000.

Drini¢, Milenko, Kirovski, Darko, and Vo, Hoi. Ppmexe: Program compres-
sion. ACM Trans. Program. Lang. Syst., 29(1), January 2007.

190

[13]

Zsombor Paroczi

He, Haifeng, Trimble, John, Perianayagam, Somu, Debray, Saumya, and An-
drews, Gregory. Code compaction of an operating system kernel. In Proceedings
of the International Symposium on Code Generation and Optimization, CGO
‘07, pages 283-298, Washington, DC, USA, 2007. IEEE Computer Society.

Hundt, Robert, Raman, Easwaran, Thuresson, Martin, and Vachharajani,
Neil. Mao — an extensible micro-architectural optimizer. In Proceedings of
the 9th Annual IEEE/ACM International Symposium on Code Generation and
Optimization, CGO '11, pages 1-10, Washington, DC, USA, 2011. IEEE Com-
puter Society.

Inc., Apple. Os x abi mach-o file format reference. Online. Last accessed:
2013-01-15. https://developer.apple.com/library /mac/#documentation /De-
veloperTools/Conceptual/MachORuntime/ Reference/reference.html.

Intel. Intel 64 and ia-32 architectures software de-
veloper manuals. Online. Last accessed: 2013-01-15.
http://www.intel.com /content /www/us/en/processors/architectures-
software-developer-manuals.html.

Kumar, Rajeev, Gupta, Amit, Pankaj, B. S., Ghosh, Mrinmoy, and
Chakrabarti, P. P. Post-compilation optimization for multiple gains with pat-
tern matching. SIGPLAN Not., 40(12):14-23, December 2005.

LIU Xian-Hua, YANG Yang, ZHANG Ji-Yu CHENG Xu. A basic-block
reordering algorithm based on structural analysis. Journal of Software,
2008/19:1603-1612, 2008.

Lucco, Steven. Split-stream dictionary program compression. SIGPLAN Not.,
35(5):27-34, May 2000.

Morrill, Dan. Inside the android application framework. 2008.

Paleari, Roberto, Martignoni, Lorenzo, Fresi Roglia, Giampaolo, and Bruschi,
Danilo. N-version disassembly: differential testing of x86 disassemblers. In
Proceedings of the 19th international symposium on Software testing and anal-
ysis, ISSTA ’10, pages 265-274, New York, NY, USA, 2010. ACM.

Pugh, William. Compressing java class files. SIGPLAN Not., 34(5):247-258,
May 1999.

Schwarz, Benjamin, Debray, Saumya, Andrews, Gregory, and Legendre,
Matthew. Plto: A link-time optimizer for the intel ia-32 architecture. In
In Proc. 2001 Workshop on Binary Translation (WBT-2001, 2001.

Sutter, Bjorn De, Bus, Bruno De, Bosschere, Koen De, and Debray, Saumya.
Combining global code and data compaction. Technical report, 2001.

