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Simulated Annealing for Aiding Genetic Algorithm

in Software Architecture Synthesis∗

Outi Sievi-Korte†, Erkki Mäkinen‡, and Timo Poranen‡

Abstract

The dream of software engineers is to be able to automatically produce
software systems based on their requirements. Automatic synthesis of soft-
ware architecture has already been shown to be feasible with genetic algo-
rithms. Genetic algorithms, however, easily become very slow if the size of
the problem and complexity of mutations increase as GAs handle a large pop-
ulation with much data. Also, for purely scientific interest it is worthwhile
to investigate how other search algorithms handle the problem of software
architecture synthesis. The present paper studies the possibilities of using
simulated annealing for synthesizing software architecture. For this purpose
we have two goals: 1) to study whether a simpler search algorithm can handle
synthesis and 2) if a seeded algorithm can provide quality results faster than a
simple genetic algorithm. We start from functional requirements which form
a base architecture and consider three quality attributes, modifiability, effi-
ciency and complexity. Synthesis is performed by adding design patterns and
architecture styles to the base architecture. The algorithm thus produces a
software architecture which fulfills the functional requirements and also corre-
sponds to the quality requirements. It is concluded that simulated annealing
as such does not produce good architectures, but it is useful for speeding up
the evolution process by quickly fine-tuning a seed solution achieved with a
genetic algorithm. The main contribution is thus a new seeded algorithm for
software architecture design.

Keywords: search-based software engineering, simulated annealing, software
design, genetic algorithm, software architecture

1 Introduction

The ultimate goal of software engineering is to be able to automatically pro-
duce software systems based on their requirements. In Model Driven Architecture
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(MDA), class level designs of the software can already be transformed straightfor-
wardly into code [10]. However, a human is still required to interpret the given
quality requirements and build the class level design, or architecture, based on
which code can be written. This process is time consuming and requires expertise,
as systems become increasingly large and complex and the quality requirements
are often conflicting. Errors in design phase are unfortunately common, and have a
large impact on the functionality of the system. Our goal is to automate the process
of turning requirements into software architecture, where quality requirements are
not only met but also optimized to suit the preferences of the client.

Architectural design largely means the application of known standard solutions
in a combination that optimizes the quality properties (like modifiability and effi-
ciency) of the software system. These standard solutions are well documented as
architectural styles [39] and design patterns [11]. We argue that software archi-
tecture comes in parts: the functional requirements, the quality requirements and
the actual architectural design solutions. The functional and quality requirements
can only be elicited manually, but combining them to design solutions and, thus,
producing a complete architecture, which is more than the sum of its parts, can
be done automatically. Hence, we see the formation of software architecture as a
series of transformations beginning with a very crude outline of a system with only
the basic functionalities and ending with a highly sophisticated design. So far, this
has been accomplished by humans. Thus, as we view that software architecture
requires combining different entities (design solutions and requirements) and the
automatic process is synthetic when compared to man made architectures, we refer
to our approach as architecture synthesis.

Seeing software architecture as a combination of design solutions makes it an
optimization problem — what is the best way of combining the solutions, with
respect to quality requirements? Search-based software engineering (SBSE) studies
the application of meta-heuristic algorithms to such software engineering problems
[9]. In this field, genetic algorithms (GAs) [22] have been shown to be a feasible
method for producing software architectures from functional requirements [29, 33,
34]. However, experiments with asexual reproduction [30] suggest that the crossover
operator which is an essential part of GAs might not be critical for producing good
architectures, supporting the idea of using a simpler search method. Additionally,
the GA easily becomes very slow if the system is large, or if the search leans
heavily towards certain mutations (due to preferences of the architect). These
heavy mutations combined with a large system meant that the GA, which has
to handle an entire population of solutions simultaneously, had to deal with a
massive amount of data. It is, thus, natural to ask if other (lighter) search methods
are capable of producing equally good architectures alone or in co-operation with
genetic algorithms. The purpose of the present paper is to study the possibilities
of simulated annealing (SA) in the process of searching good architectures when
functional requirements are given.

While GA is already shown to produce reasonable software architectures, it is
of great interest to study whether SA is capable to do the same, as it explores
the search space in a completely different way than GA. An affirmative answer
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would, of course, give us a new competitive practical method for producing software
architectures. Contrary to GAs, SA is a local search method which intensively
uses the concept of neighborhood, i.e., the set of possible solutions that are near
to the current solution. The neighborhood is defined via transformations that
change an element of the search space (here, software architecture) to another.
In our application the transformations mean implementing a design pattern or an
architectural style. Contrary to, for example, hill climbing algorithms, SA does
allow also temporarily exploring worse solutions than what have been found so
far. Due to the nature of the fitness landscape (many small peaks and large dips
which lead to high peaks), this is essential in eventually finding a good architecture.
Our decision to study SA first is also backed up by the promising studies in related
fields where SA has been used for software refactoring [23]. Results from our studies
conducted with SA will give us further information on what is required from the
synthesis, and we may then possibly study other algorithms, such as particle swarm
optimization and ant colony optimization.

It is known that seeding GAs enable them to produce better results faster
[17, 36]. Our hypothesis is that a SA algorithm could also be used to quickly
produce a seed. An initial population can be generated based on this seed. A
significantly smaller number of generations would then suffice to find good solutions
with the GA.

As with our GA approach, we begin with the functional requirements of a
given system. The actual architecture is achieved by the SA algorithm, which
gradually transforms the system by adding (and removing) design patterns and
applying architecture styles. The resulting architecture is evaluated from three
(contradicting) viewpoints: modifiability, efficiency and complexity. As the SA is
implemented as close to the GA as possible, our set of research questions thus
becomes: How good are the architectures produced by SA (compared to GA)?
What kind of fitness values does SA achieve (compared to GA)? How fast is SA
(compared to GA)? And finally, how well does a seeded algorithm perform in terms
of both quality and speed (compared to GA)?

This paper proceeds as follows. In Section 2 we sketch current research in
the field of search algorithms in software design that is relevant for the present
paper. In Section 3 we cover the basics of implementing a SA algorithm and
give the algorithmic presentation for our GA, to be used in the experiments. In
Section 4 we introduce our method by defining the input for the SA algorithm, the
transformations and the evaluation function. In Section 5 we present the results
from our experiments, as we examine different parameters for the SA and combining
SA with our GA implementation. In Section 6 we discuss the findings and in Section
7 we give a conclusion of our results.

2 Related Work

SBSE considers software related topics as combinatorial search problems. Tradi-
tionally, testing has been the clearly most studied area inside SBSE [13]. Other
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well studied areas include software clustering and refactoring [9, 13, 26]. Using
meta-heuristic algorithms in the area of software design, and in particular at soft-
ware architecture design, is quite a novel idea. Only a few studies have been
published where the algorithm actually attempts to design something new, rather
than re-designing an existing software system. Approaches dealing with higher
level structural units, such as patterns, have also recently gained more interest. We
will briefly discuss the studies with the closest relation to our approach. As our
method in part combines two algorithms, and the result can be viewed as a seeded
algorithm (either SA provides a seed for the GA or vice versa), we will also briefly
discuss approaches using seeding.

Amoui et al. [2] use the GA approach to improve the reusability of software
by applying architecture design patterns to a UML model. Their goal is to find
the best sequence of transformations, i.e., pattern implementations. Used patterns
come from the collection presented by Gamma et al. [11]. From the software design
perspective, the transformed designs of the best chromosomes are evolved so that
abstract packages become more abstract and concrete packages, in turn, become
more concrete. This approach uses one quality factor (reusability) only, while we
use three quality factors, and also a more refined starting point than what is used
in our approach.

Bowman et al. [7] study the use of a multi-objective genetic algorithm (MOGA)
in solving the class responsibility assignment problem. The objective is to optimize
the class structure of a system through the placement of methods and attributes
within given constraints. So far, they do not demonstrate assigning methods and
attributes ”from scratch” (based on, e.g., use cases), but try to find out whether
the presented MOGA can fix the structure if it has been modified. Thus, their
approach currently works for refactoring only, and is not able to do forward design,
which is our aim.

Simons et al. [44] study using evolutionary, multi-objective search and software
agents to aid the software architect in class design. One individual (solution) is
thus the design containing all methods and attributes (and their class distribution).
Coupling and cohesion are used to calculate fitness. Simons et al. suggest that a
global multi-objective search is unnecessary, and the search should be narrowed
towards the ”most useful and interesting candidate designs”. They attempt to
achieve this by isolating discrete zones from the search space, and then using a
local search within these zones. Local search is conducted using a single-objective
genetic algorithm, which only considers coupling in the fitness calculations. The
designer then obtains the results of these local searches. Simons and Parmee [43]
have further enhanced their studies with elegance metrics, which should conform
to the desire for symmetry that human designers have.

Räihä et al. [29] have taken the design of software architecture a step further
than Simons and Parmee [40, 41] by starting the design from a responsibility de-
pendency graph. The dependency graph can also be achieved from use cases, but
the architecture is developed further than the class distribution of actions and data.
A GA is used for the automation of design. Mutations are implemented as adding
or removing an architectural design pattern [11] or an interface or splitting or join-
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ing class(es). Implemented design patterns are Façade and Strategy, as well as the
message dispatcher architecture style [39].

Räihä et al. [34] have also applied GAs in model transformations that can
be understood as pattern-based refinements. In MDA, such transformations can
be exploited for deriving a Platform Independent Model from a Computationally
Independent Model. The approach uses design patterns as the basis of mutations
and exploits various quality metrics for deriving a fitness function. They give a
genetic representation of models and propose transformations for them. The results
suggest that GAs provide a feasible vehicle for model transformations, leading to
convergent and reasonably fast transformation process. Räihä et al. [31] have also
later on added scenarios, which are common in real world architecture evaluations,
to evaluate the fitness of their synthesized architectures. Our work differs from the
work of Räihä et al. [31] by using simulated annealing in addition to GA.

Jensen and Cheng [15] present an approach based on genetic programming
(GP) for generating refactoring strategies that introduce design patterns. They
have implemented a tool, RE-MODEL, which takes as input a UML class diagram
representing the system under design. The system is refactored by applying mini-
transformations. The encoding is made in tree form (suitable for GP), where each
node is a transformation. A sequence of mini-transformations can produce a de-
sign pattern; a subset of the patterns specified by Gamma et al. [11] is used to
identify desirable mini-transformation sequences. Mutations are applied by sim-
ply changing one node (transformation), and crossover is applied as exchanging
subtrees. The QMOOD [4] metrics suite is used for fitness calculations. In addi-
tion to the QMOOD metrics, the authors also give a penalty based on the number
of used mini-transformations and reward the existence of (any) design patterns.
The output consists of a refactored software design as well as the set of steps to
transform the original design into the refactored design. This way the refactoring
can be done either automatically or manually; this decision is left for the software
engineer. This approach is close to those of Räihä et al. [29] and the approach
used here, the difference being that Jensen and Cheng have clearly a refactoring
point of view, while we attempt upstream synthesis, thus expecting less from the
architect and relying more on the algorithm, which makes our problem setting far
more complex. Our fitness metrics are also different, as we only reward patterns
that clearly improve the design — the simple existence of a pattern is not a reason
for reward itself.

A higher level approach is studied by Aleti et al. [1], who use AADL models
as a basis, and attempt to optimize the architecture with respect to Data Transfer
Reliability and Communication Overhead. They use a GA and a Pareto optimal
fitness function in their ArcheOptrix tool, but they concentrate on the optimal
deployment of software components to a given hardware platform rather than how
the components are actually constructed and how they communicate with one an-
other. Research has also been made on identifying concept boundaries and thus
automating software comprehension [12] and re-packaging software [5], which can
be seen as finding working subsets of an existing architecture. These approaches
are, however, already pushing the boundaries of the concept ”software architecture
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design”. As for different aspects on GAs, the role of crossover operations in genetic
synthesis of software architectures is studied by Räihä et al. [30, 32].

SA has been used in the field of search-based software engineering for software
refactoring [23, 24, 25] and quality prediction [6]. O’Keeffe and Ó Cinnéide [23,
24, 25] work on the class level and use SA to refactor the class hierarchy and move
methods in order to increase the quality of software. Their goal is to minimize
unused, duplicated and rejected methods and unused classes, and to maximize
abstract classes. The algorithm operates with pure source code, and the outcome
is given as refactored code as well as a design improvement report. This approach is
the closest to the one presented here, but it operates on a lower level and backwards
(re-engineering), while our approach operates on a higher level architecture and
goes forwards in the design process. Similar studies (class level refactoring) have
also been made by Seng et al. [37, 38] who use GA as their search algorithm and
Harman and Tratt [14], who use hill climbing. In the area of quality prediction,
Bouktif et al. [6] attempt to reuse and adapt quality predictive models, each of
which is viewed as a set of expertise parts. The search then aims to find the best
subset of expertise parts, which forms a model with an optimal predictive accuracy.

In UML software design SA has been used in the context of dynamic parameter
control in interactive local search by Simons and Parmee [42]. The level of design is
quite similar, as it also deals with classes, methods and attributes. In this study the
approach using simulated annealing was shown to be inferior to other method used
in parameter control, while dynamic parameter control in general proved to be an
efficient way for improving the results. Our approach differs significantly from that
of Simons and Parmee, as we use simulated annealing itself in a different way (as
the actual search algorithm itself, as opposed to controlling the parameters). We
also have a very different mutation setting and problem domain. We have sixteen
mutations, while there were only a couple in the presented study, thus the setting
for dynamically controlling all the probabilities is much more complex, though we
acknowledge the idea worth pursuing (initial experiments with a similar idea have
been done in our previous work [34]). All in all, the studies using SA are few, and
none use this approach for such a high-level design problem as designing software
architecture from requirements

Our approach of combining SA and GA can be seen as a seeded algorithm,
as one algorithm provides a developed seed for the other. Julstrom [17] has used
the idea of seeding the initial population of a GA with advanced individuals in the
rectilinear Steiner problem. The seeded algorithm produced more consistent results
and was significantly faster than the algorithm with a randomly created initial
population. Ramsey and Greffenstett [36] have studied case-based initialization of
GAs in learning systems. In their study, the population of the GA is dynamically
initialized with achieved (good) results, which aids in (intentionally) biasing the
search towards a certain area, and quickly answering to a changing environment.
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3 Simulated Annealing

Simulated annealing is a widely used optimization method for hard combinatorial
problems. Principles behind the method were originally proposed by Metropolis
et al. [20] and later Kirkpatrick et al. [18] generalized the idea for combinatorial
optimization.

Algorithm 1 simulatedAnnealing

1: Input: Responsibility dependency graph G, base architecture M , initial tem-
perature t0, frozen temperature tf , cooling ratio α, and temperature constant
r

2: Output: UML class diagram D

3: initialSolution← encode(G,M)
4: initialQuality← evaluate(initialSolution)
5: S1 ← initialSolution

6: Q1 ← initialQuality

7: t← t0
8: while t > tf do

9: ri ← 0
10: while ri < r do

11: Si ← transform(S1)
12: Qi ← evaluate(Si)
13: if Qi > Q1 then

14: S1 ← Si

15: Q1 ← Qi

16: else

17: δ ← Q1 −Qi

18: p← UniformProbability

19: if p < e
−δ

t then

20: S1 ← Si

21: Q1 ← Qi

22: end if

23: end if

24: ri ← ri + 1
25: end while

26: t← (1− α)× t

27: end while

28: D ← generateUML(S1)
29: return D

The SA algorithm starts from an initial solution which is enhanced during the
annealing process by searching and selecting other solutions from the neighborhood
of the current solution. There are several parameters that guide the annealing. The
search begins with initial temperature t0 and ends when temperature t is decreased
to the frozen temperature tf , where 0 ≤ tf ≤ t0. The temperature gives the
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Algorithm 2 geneticAlgorithm

1: Input: formalization of solution, initialSolution
2: population← createPopulation(initialSolution)
3: while NOT terminationCondition do

4: for all chromosome in population do

5: p← randomProbability
6: if p > mutationProbability then

7: mutate(chromosome)
8: end if

9: end for

10: for all chromosome in population do

11: cp← randomProbability

12: if cp > crossoverProbability then

13: addToParents(chromosome)
14: end if

15: end for

16: for all chromosome in parents do

17: father← chromosome

18: mother ← selectNextChromosome(parents)
19: offspring← crossover(father,mother)
20: addToPopulation( offspring)
21: removeFromParents (father,mother)
22: end for

23: for all chromosome in population do

24: calculatefitness(chromosome)
25: end for

26: selectNextPopulation()
27: end while

probability of choosing solutions that are worse than the current solution. The
result of a transformation that worsens the current solution by d, is accepted to
be the new current solution if a randomly generated real i is less than or equal to
a limit which depends on the current temperature t. If a transformation improves
the current solution, it is accepted directly without a test.

An important parameter of SA is the cooling schedule, i.e., how the temperature
is decreased. We use the geometric cooling schedule, in which a constant r is used to
determine when the temperature is decreased, and the next temperature is obtained
simply by multiplying the current temperature by cooling ratio a (0 < a < 1). This
is the most frequently used schedule [45]. It was chosen because of its simplicity,
and because of the fact that all the classical cooling schedules can be tuned so that
they give the same practical temperatures [45].

The SA has been successfully applied for numerous combinatorial optimization
problems, for an instructive introduction to the use of SA as a tool for experimen-
tal algorithmics, see [3, 16]. In order to determine good parameters for a problem,
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experimental analysis is often needed. There are also adaptive techniques for de-
tecting the parameters [19]. The SA implementation used in our tests is shown
in Algorithm 1. The encoding, transformation and evaluation procedures are dis-
cussed in more detail in Section 4. Notice, that our SA only operates with a single
solution at a time, and the solution is built by transformations (i.e., moving towards
better neighbors).

In Section 5 we compare the present SA and our previous GA implementation
[29]. We assume the reader has knowledge of the basic principles of GA, as given
by, e.g., Michalewicz [21]. The GA implementation used is given in Algorithm 2.
Mutation is executed in the same way as a transformation for simulated annealing,
and more details will be given in Section 4. Crossover is a single-point random
crossover and selecting the next population is made with a rank-based roulette
wheel selection. For more details on how crossover and selection is implemented in
our approach, we refer to [27].

The result of GA is the best solution found during the search process. Thus, in
that sense, both SA and GA are single solution algorithms and their comparison
is straightforward. In order to be able to fairly compare the implementations, the
solutions produced by the two methods should be evaluated by the same quality
functions and the initial solutions should be of the same quality. Hence, we use the
same method for producing the initial solutions for SA as we have done with GA in
[29, 31, 33, 34]. The initial solution is achieved by encoding functional requirements
and thus building a base architecture. The base class structure is derived from the
base architecture, and the base architecture is achieved by randomly applying a
transformation. The same approach for creating several solutions for an initial
population is used in our GA implementation [29, 31, 33, 34], and thus the initial
quality is the same for both SA and GA, as they both use the same evaluation
function.

4 Method

We begin by creating use cases to define the basic functional requirements. Use
cases are an intuitive starting point in most software projects, and little domain
knowledge is required to define them. Thus, use cases are a natural way to begin
eliciting the functional requirements of a system. Use cases can, in turn, be refined
into sequence diagrams. The refining process requires some effort from the architect
but still quite little domain knowledge and is still fairly intuitive, as the architect
simply needs to think how different use cases proceed on operation level. From
sequence diagrams it is simple to elicit classes (the participants/owners’ of lifelines)
and operations (calls in the diagram). This results in a base architecture, giving
a structural view of the functional requirements of the system at hand but not
dealing with the quality requirements. The base architecture is encoded to a form
that can be processed by the search algorithm in question. The algorithm produces
software architecture for the given quality requirements by implementing selected
architecture styles and design patterns, and produces a UML class diagram as the
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result.

4.1 Requirements

We will use two example systems: the control system for a computerized home,
called hereafter ehome, and a robot war game simulator, called robo. We will
demonstrate building input for the search algorithm in the case of ehome; the
process is similar in the case of robo.

UserInterface TemperatureRegulation HeaterManager

adjustTemperature

setTemperature

measureTemperature

setHeaterOn

heaterState

measureTemperature

setHeaterOff

heaterState

temperatureOk

Figure 1: Adjust temperature use case refined

Specifying requirements begins with giving use cases. Use cases for the ehome
system are assumed to consist of, e.g., logging in, changing the room temperature,
changing the unit of temperature, making coffee, moving drapes, and playing music.
Here, we will take as an example the adjust room temperature use case. The user
simply places a command that the temperature should be adjusted (for the sake of
simplicity, we can here consider elevation), and ehome adjusts the temperature by
turning on the heater.
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The sequence diagram for the temperature adjustment use case is given in Figure
1. The process begins with a call from the user to set the temperature to a new level.
The system then calls the temperature regulation component, which measures the
current temperature, and then sets the heater on. After the correct temperature is
reached, the heater is turned off.

While sequence diagrams already give a good understanding of how the different
operations depend on each other, a structural view still needs to be obtained, as
patterns cannot be inserted into sequences of calls. Fortunately, sequence diagrams
can easily be turned into class diagrams. At this point, the class diagram would not
consist of anything but the classes, their methods and attributes, and connections
between classes, as defined in the sequence diagram. We have chosen to use sequence
diagrams as the basis, as they can be straightforwardly build based on use case
diagrams, and use case diagrams are the most intuitive way to start formulating
the requirements.

+makeCoffee()

+adjustTemperature()

+playMusic()

+alterDrapes()

+logIn()

UserInterface

+passwordCheck()

+registryAdmin()

+activateUserInRegistry()

+addUserToRegistry()

+changePassword()

+removeUserFromRegistry()

+setUserRegistry()

-userDB

UserRegistry
+showCoffeeMachineStatus()

+chooseCoffeeQuality()

+chooseCoffeeAmount()

+calculateCoffeeWaterAmount()

+setCoffee()

+setWater()

+addCoffeePortion()

+startCoffeeMachine()

+setCoffeeMachineWarm()

+stopCoffeeMachine()

+ringBuzzer()

-coffeeState

CoffeeMachine

+addWater()

+openWater()

+closeWater()

-waterState

WaterManager
+runDrapeMotor()

+stopDrapeMotor()

-drapeMotorState

DrapeManager

+measureDrapePosition()

+calculateOptimalDrape()

+measureSun()

+showDrapePosition()

-drapeState

DrapeRegulation

+setRoomTemperature()

+measureTemperature()

+changeTemperatureToCelsius()

-temperatureState

TemperatureRegulation

+setHeaterOn()

+setHeaterOff()

-heaterState

HeaterManager

+controller()

MainController

+showMusicList()

+adminMusicList()

+pickMusic()

+musicToSpeakers()

-musicInfo

MusicSystem

+adminMusicFile()

+playChosenMusic()

+stopMusicPlay()

-musicDB

MusicFiles

+chooseSpeaker()

-speakerState

SpeakerManager

Figure 2: Base architecture for ehome
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The base architecture in Figure 2 for the ehome system can be straightforwardly
derived from the sequence diagrams. We depict architecture as a class diagram,
as we consider the architecture to be the classes or components of a system the
interfaces and other communication mechanisms between them. Thus, a class view
is natural for our purposes.

The messages in the sequence diagram become the operations and the ob-
jects/components become the classes. Also, if the need for a data source is detected
or the object clearly has a state, they will become attributes in the classes. For ex-
ample, in Figure 1 both the Temperature Regulation and Heater Manager
have states, such as on or off for the Heater Manager . The base architecture
only contains use relationships, as no more detail is given for the algorithm at this
point. The base architecture represents the basic functional decomposition of the
system. A base architecture for robo (which can be achieved by performing the
same steps as did with ehome) is given in Figure 3.

+main()

MainControl

+provideUI()

UI

+objectControl()

+objectChoice()

-objectStatus

SimulationObject
+simulationControl()

+stopSimulation()

+startSimulation()

-simulationStatus

SimulationEngine

+simulationAreaControl()

SimulationArea

+robotControl()

Robot

+idControl()

-idData

ID +simulationTimer()

Timer

+robotTimer()

-timerStatus

RobotTimer

+turnControl()

-turnData

Turn

+ruleControl()

-ruleData

Rules

+combatAreaControl()

-areaData

CombatArea

+combatEngine()

+combatControl()

CombatEngine

+movementControl()

-movementData

Movement

+appearanceControl()

-appearanceData

Appearance

+energyControl()

+calculateEnergy()

+decreaseEnergy()

+increaseEnergy()

-energyStatus

Energy

+intelligenceControl()

+shootingControl()

+findRobot()

-battleData

Intelligence

+accountControl()

-accountData

Account

+equipmentControl()

+gunControl()

+radarControl()

+motorControl()

+healthControl()

+priceControl()

+weightControl()

-equipmentData

Equipment

+armorControl()

+hitCalculation()

+damageCalculation()

-armorData

Armor

+typeControl()

-typeData

ArmorType

+journeyControl()

+speedControl()

+directionControl()

-journeyData

Journey

Figure 3: Base architecture for robo
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After the operations are derived from the use cases, some properties of the
operations can be estimated to support the synthesis, regarding the amount of
data an operation needs, frequency of calls, and sensitiveness for variation. For
example, it is likely that the coffee machine status can be shown in several different
ways, and thus it is more sensitive to variation (called hereafter the variability of an
operation) than ringing the buzzer when the coffee is done. Measuring the position
of drapes requires more information than running the drape motor (which can be
interpreted as the required parameter size), and playing music quite likely has a
higher usage frequency than changing the password for the system. Relative values
for the chosen properties can similarly be estimated for all operations. Here we have
used the scale of Low (1), Medium (3) and High (5). This optional information,
together with operation call dependencies, is included in the information subjected
to encoding.

4.2 Encoding

Ultimately, there are two kinds of data regarding each operation oi. Firstly,
there is the basic information given as input. This contains the operations Oi =
{oi1, oi2, . . . , oik} depending on oi, its name ni, type di (”f” as in functional for
methods, ”d” as in data for attributes), frequency fi, parameter size pi and vari-
ability vi. Secondly, there is the information regarding oi’s place in the architecture:
the class(es) Ci = {Ci1, Ci2, . . . , Civ} it belongs to, the interface Ii it implements,
the dispatcher Di it uses, the operations ODi ⊆ (Oi) that call it through the
dispatcher, the design patterns Pi = {Pi1, Pi2, . . . , Pim} it is a part of, and the
pre-determined base architecture class MCi. The dispatcher is given a separate
field as opposed to other patterns for efficiency reasons.

The base architecture is encoded as a vector V < ov1, ov2, . . . , ovn > of vectors
ov1, ov2, . . . , ovn for the algorithm. Each vector ovk, in turn, contains all data for a
single operation. Thus, n is the number of operations of a system, and the collection
of these operation defining vectors depicts the entire system when collected into one
vector V . Figure 4 depicts an operation vector ovi. The same encoding works for
both SA and GA. For GA, the chromosome is the vector V , and each vector ovi is
a supergene, which contains the fields described above.

Oi ni di fi pi vi Ci Ii Di ODi MCi Pi

Figure 4: Operation vector ovi

We will give an example from the ehome system of how the given data structure
works. In the base architecture phase, if the TemperatureRegulation class is
given #ID 2 (and the interface #ID 2), for operation measureTemperature (#id
9) the ov9 would have the following values: O9 = {#idSetRoomTemperature}, n9

= measureTemperature, d9 = f, p9 = 3, f9 = 1, v9 = 3, C9 = 2, I9 = 0, D9 = 0,
OD9 = ∅, MC9 = 2, P9 = ∅. The interface has value 0, as measureTemperature
is only required by setRoomTemperature , which is in the same class, and thus
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does need an interface to access this operation. The fields for message dispatcher
and pattern have ∅ values, as no architectural solutions are included in the base
architecture. As the operation is here located in the original base architecture
class, the values for C and MC are the same. Note, that the encoding is indeed
operation-centered. Thus, modifications to the architecture are considered from the
viewpoint of how a particular operation can be accessed, and not how two classes
communicate with each other. In practice, the base architecture is encoded into a
text file, which is given as input for the algorithm, with each operation in its own
line.

4.3 Transformations

An architecture is transformed (i.e., one of its neighbors is found) by implementing
architecture styles and design patterns to a given solution. The patterns we have
chosen include very high-level architectural styles [39] (message dispatcher and
client-server), medium-level design patterns [11] (Façade and Mediator ), and
low-level design patterns [11] (Strategy, Adapter and Template Method ).
This selection of patterns and styles allows us to see how well the algorithm handles
different types of changes. High-level patterns have a larger impact, as they usually
affect large parts of the architecture, while lower level patterns only affect small
parts. The transformations are implemented in pairs of introducing a pattern or
removing a pattern. This ensures a wider traverse through the search space, as
while implementing a pattern might improve the quality of architecture at one
point, it might become redundant over the course of development. The dispatcher
architecture style makes a small exception to this rule: the actual dispatcher must
first be introduced to the system, after which the responsibilities can communicate
through it. The transformations are the following, and each of them has a certain
probability with which it is selected:

• introduce/remove message dispatcher

• communicate/remove communication through dispatcher

• introduce/remove server

• introduce/remove Façade

• introduce/remove Mediator

• introduce/remove Strategy

• introduce/remove Adapter

• introduce/remove Template Method .

The legality of applying a pattern is always checked before transformations by
giving pre-conditions. For example, the structure of the Template Method de-
mands that depending operations are in the same class. In addition, a corrective
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function is added to check that the solution conforms to certain architectural laws,
and that no anomalies are brought to the architecture. These laws demand uniform
calls between two classes (e.g., through an interface or a dispatcher but not both),
and state some basic rules regarding architectures (e.g., no operation can implement
more than one interface). The corrective function, for example, discards interfaces
that are not used by any class, and adds dispatcher connections between opera-
tions in two classes, if such a connection already exists between some operations in
those classes. For example, if the ”add Strategy ” transformation is chosen, it is
checked that the operation oi is called by some other operation in the same class c
and that it is not a part of another pattern already (pattern field is empty). Then,
a Strategy pattern instance spi is created. It contains information of the new
class(es) sci where the different versions of the operation are placed, and the com-
mon interface sii they implement. It also contains information of all the classes and
operations that are dependent on oi, and thus use the Strategy interface. Then,
the value in the class field in the vector ovi (representing oi) would be changed
from c to sci, the interface field would be given value sii and the pattern field the
value spi. Adding other patterns is done similarly. Removing a pattern is done in
reverse: the operation placed in a pattern class would be returned to its original
base architecture class, and the pattern found in the supergenes pattern field would
be deleted, as well as any classes and interfaces related to it.

4.4 Quality Function

In the case of software architecture design, selecting an appropriate evaluation func-
tion is particularly difficult, as there is no clear value to measure in the solutions.
In real world, evaluation of software architecture is almost always done manually
by human designers, and metric calculations are only used as guidelines. Also, two
architects rarely agree on a unique quality for certain architecture, as evaluation
is bound to be subjective, and different values and backgrounds will influence the
outcome of any evaluation process. However, for a search algorithm to be able to
evaluate the architecture, a purely numerical quality value must be calculated.

In a fully automated approach, no human interception is allowed, and the eval-
uation function needs to be based on metrics. The selection of metrics may be
as arguable as the evaluations of two architects on a single software architecture.
The rationale behind the selected metrics in this approach is that they have been
widely used and recognized to accurately measure some quality aspects of software
architecture. Hence, the metrics are chosen so that they measure quality aspects
that can be seen as most agreed upon in the real world, and singular values can
be seen as accurate as possible. However, the combination of metrics and multiple
optimization is another problem entirely. For many metrics, it may be arguable
what quality attribute they measure, and may be seen as measurements for several
different quality attributes. Many of these quality attributes, however, are contro-
versial. A perfect example is the selected quality attribute pair: modifiability and
efficiency. The problem of multiple optimization is a direct result of the contra-
dictive aims of the two quality attributes: when attempting to optimize one, the
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quality will decrease in view of the other. In our GA approach we have imple-
mented Pareto optimality [33] to conquer this problem. However, when evaluating
the applicability of simulated annealing, we found it more practical to use a single
weighted fitness, as we wanted to maintain SA as ”pure” as possible (local and
efficient), even though there are multi-objective versions of SA as well (e.g., [46]).

The chosen quality function is based on well-known software metrics [8]. These
metrics, especially coupling and cohesion, have been used as a starting point for
the quality function, and have been further developed and grouped to achieve clear
sub-functions for modifiability and efficiency, both of which are measured with a
positive and negative metric. The biggest modifications to the basic metrics include
taking into account the positive effect of interfaces and the dispatcher and client-
server architecture styles in terms of modifiability, as well as the negative effect of
the dispatcher and server in terms of efficiency. Choosing and grouping the metrics
this way makes sure that all architectural decisions are always considered from all
viewpoints. Adding a pattern always adds a class or an interface (or both), and
is thus considered by complexity. As the calls to an operation are also affected,
the change is always also considered positive or negative by both modifiability and
efficiency.

Dividing the evaluation function into sub-functions also answers the demands
of the real world. Hardly any architecture can be optimized from all quality view-
points, but some viewpoints are ranked higher than others, depending on the de-
mands regarding the architecture. By separating efficiency and modifiability, which
are especially difficult to optimize simultaneously, we can assign a bigger weight to
the more desired quality aspect, if we want to. When wi is the weight for the respec-
tive sub-function sfi, the evaluation function fc(x) (which should be maximized)
for solution x can be expressed as

fc(x) = w1 × sf1 − w2 × sf2 + w3 × sf3 − w4 × sf4 − w5 × sf5. (1)

Here, sf1 measures positive modifiability, sf2 negative modifiability, sf3 positive
efficiency, sf4 negative efficiency and finally sf5 measures complexity. All the sub-
functions are normalized so that they have the same range. The sub-functions are
defined as follows (|X | denotes the cardinality of X):

sf1 = |calls to interfaces| ×
i∑

k=0

(vk) + |calls through dispatcher|)×
d∑

k=0

(vk),

sf2 = |direct calls between operations in different classes| ×
c∑

k=0

(vk))

+ |calls between operations within same class| ×
s∑

k=0

(vk)× 2,
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sf3 = |operations dependent of each other within same class| ×
w∑

k=0

(pk)+

|used operations in same class| ×
u∑

k=0

(pk)+

|depending operations in same class| ×
e∑

k=0

(pk),

sf4 =
∑
|ClassInstabilities|+ (2× |dispatcherCalls|+ |serverCalls|)×

ds∑

k=0

(fk) + |calls between operations in different classes| , and

sf5 = |classes|+ |interfaces| .

In sf1, i is the number of operations called through an interface, d is the number
of operations called through dispatcher, and v is the variability value of an operation
(as in Fig. 4). The variability values v of those operations that are involved in
interface or dispatcher calls, respectively, are summed. In sf2, c is the number of
calls from a different class to an operation with no interface and with variability
value vk, sc is the number calls from within the same class to an operation with
variability value vk. The calculation is similar to that in sf1, as variability values of
operations are summed if said operations are called based on given criteria. Calls
within class are given a constant multiplier 2, as it is considered that a call within
class bonds two operations and thus has double the negative effect on modifiability.
The w, u and e in sf3 are the numbers of the types of calls as specified in sf3,
similarly as in sf1 and sf2. In sf3, however, the parameter size values p are
summed instead of variability values. It should also be noted, that in sf1, most
patterns also contain an interface. In sf3, ”used operations in same class” means
a set of operations in class C, which are all used by the same operation from class
D. Similarly, ”depending operations in same class” mean a set of operations in
class K, which all use the same operations in class L. In sf4, ds is the number of
calls through dispatcher or server where the called operation’s frequency value is
fk. The multiplier 2 for calls relayed by the message dispatcher is given as there
are always two calls when the message dispatcher is used - one from the calling
class to the dispatcher and one from the dispatcher to the receiving class.

5 Experiments

In this section we present the results from the preliminary experiments done with
our approach. Tests were made using the ehome and robo example systems (intro-
duced before). The selected two systems are very different in nature and structure,
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which would lead to very different architectures. Choosing these two different sys-
tems shows that the algorithm is not confined to any particular system, but can
be generally used for any type of system. Most of the parameters used in our tests
originate from the previous tests reported in [29, 31, 34], and give promising results
with the GA approach. The implementation was made with Java 1.5. The tests
were run on a DELL laptop with 2,95 GB of RAM and 2,26 GHz processor, running
with Windows XP.

All tests were made with the constant r set to 20, and frozen (final) temperature
tf set to 1. The weights for all sub-functions of the quality evaluation function were
set to the same, i.e., all weights wi were set to 1, as we did not want to favor any
particular quality attribute over another, but aimed for balanced designs. Also,
by setting the weights to 1 we do not need to consider the effect of the weights in
fitness curves.

The GA used in the combination experiments is based on our previous imple-
mentations [29, 31, 34]. The GA uses the same encoding, transformations (mu-
tations) and quality function as defined here for the SA. As stated in Section 3,
the crossover operator is a single-point random crossover and selection is made
with a rank-based roulette wheel method. As this paper concentrates on simulated
annealing, the particularities of the GA implementation are not discussed further
here; details can be found in [29, 31, 34, 27].

5.1 Using SA First

The standard tests were made with 7500 as starting temperature and 0.05 as cool-
ing ratio. A longer annealing was also experimented with by setting the starting
temperature to 10 000 (cooling ratio 0.05), and a faster annealing was tested by
setting the cooling ratio to 0.15 (starting temperature 7500). A lower starting tem-
perature had also been tested previously with no obvious benefits [35]. The values
were selected based on trial-and-error experiments. However, the results were un-
satisfactory for both systems, and there were no significant differences between
the results achieved with different SA parameters. The trend of the quality curve
for the SA was descending, and the end quality value was worse than the initial
value (the initial value is the same as where the GA starts in the curves given in
the following section). The high temperature tests for both systems took approxi-
mately 10 seconds per run and the fast annealing tests less than 5 seconds per run,
standard test runtime is reported in the following. We then tried to build a base
solution with a short and fast annealing (starting temperature 2500 and cooling
ratio 0.15), and then continue the search with a genetic algorithm, which ran for
250 generations and had a population of 100 (combination SAGA). This approach
did not produce much better results: the SA curves were quite similar than with
longer and slower runs, and while the quality curve for the GA portion did increase
for a short while, it began to quickly descend drastically. Also in this case the end
quality value was worse than the value for the initial solution. Again, the runtime
for the SAGA seeded algorithm is reported in the following when compared to other
approached. All experiments were run for 20 times.
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5.2 Using a Combination of GA and SA

As using the SA alone or for producing a seed did not produce good results, we
tried using GA for creating a good base solution (again, with 250 generations and
a population of 100), and then applying SA (starting temperature 2500, cooling
ratio 0.15) for further tuning the solution (combination GASA). The experiments
were run for 20 times and presented fitness curves are the average curves of the 20
runs. We have chosen to show average curves, as we are, after all, interested in
how the algorithms behave in general, not individual runs. In this case, the results
were much better. The GA does a good basic work, and the SA is able to further
improve the solution very quickly.

Figure 5: GA portion of GASA quality curve for ehome

Figure 5 presents the GA portion and Figure 6 the SA portion of the GASA
quality curve for ehome. Figures 7 and 8 present the respective curves for robo.
The GA curves represent the average of the elite (top 10% of the population) (given
as an average over the 20 runs), and the SA curves are naturally simply the average
of fitness values of the 20 runs. Note that the SA algorithm starts where the GA
ends: the difference in the GA end value and SA start value is due to the fact that
quality values are not recorded until one round of transformations has already been
completed and because the GA curve is the average of elite, while SA handles only
one solution.

As can be seen in Figure 5, the GA begins with a short plummet, after which
the quality (fitness) begins to develop steadily. We expect the plummet to be an
effect of using the message dispatcher very early on. When the message dispatcher
is used sparingly (as is the case after only a few mutations), its penalty is greater
than its reward. After about 100 generations the fitness appears to stabilize, i.e.,
the curve is not increasing, and it does not seem likely to further develop. In Figure
6, the SA begins to develop the solution from where the GA left off, and the curve
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Figure 6: SA portion of GASA quality curve for ehome

develops rapidly until quite near the end of the SA process.
In Figure 7, depicting the GA portion for the robo system, the GA first plum-

mets similarly as in the curve for ehome, but after it starts ascending, the devel-
opment seems more rapid and steady than for the ehome, and it appears as if the
quality could still increase after the GA finishes. The SA portion of the GASA
curve for robo, in Figure 8, appears quite similar to the GA curve at first, but look-
ing at the actual quality values reveals that the SA develops much more quickly
than the GA. In the end the curve has reached a plateau, giving reason to believe
that some optimum has been found.

Figure 7: GA portion of GASA quality curve for robo
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Figure 8: SA portion of GASA quality curve for robo

We have calculated the average fitnesses and standard deviations of GASA runs
in Table 1. The average of the (averages of) elite is naturally the value where GA
fitness curves end (Figures 5 and 7). The average of best (seed) is the average
of the absolute best individuals provided by GA, which are then given as a seed
for SA for further development. For SA we only have one value, as the algorithm
only handles one individual at a time. From Table 1 we can see that the deviation
especially in the case of GA is quite large, and the algorithm is not as stable as
could be hoped. However, the deviation within the solutions after the SA (i.e.,
the final solutions from the seeded algorithm) is much smaller. There was no clear
correlation between the elite fitness after GA and the fitness value after SA.

Table 1: Statistical markers

Finally, we have compared the runtimes of GA and SA and their combinations
to random search (RS) and hill climbing (HC). The runtimes have been collected
in Table 2. RS was run for 3500 iterations (same amount of iterations as SA
with standard parameters) and HC was allowed 150 attemps of finding a neighbor
after each ascent. All algorithms were run 20 times. The average fitness value
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achieved with RS was -1915 for ehome and -4266 for robo. For HC, in 50% of
the cases the algorithm only managed to ascend once, after which the algorithm
terminated as 150 attempts at finding a better neighbor failed. In the rest of
the cases HC was able to ascend 6-12 times. Due to such inconsistent results,
average fitness values do not provide good information. However, HC is clearly
not a suitable algorithm for this problem. As can be seen in Table 2, all local
searches are significantly faster than GA or combinations with GA. It should be
noticed, though, that the GA performs at least 25000 fitness evaluations (100 in
a population times 250 generations and additionally the evaluations of offspring),
while the SA only performs 3500 fitness evaluations (with the selected parameters).
Also, crossover is a very time consuming operation for the GA. As a conclusion,
GA and GASA are clearly the slowest algorithms, but produced just as clearly the
best results.

Table 2: Runtimes for different algorithms

6 Discussion

In Section 5 we discussed the quality curves of the experiments made with the SA
algorithm. Naturally, the UML graphs given as output should also be examined
to get a wholesome idea of whether the results with extreme quality values are
actually good. In addition to discussing the class diagrams related to the test
graphs presented in Section 5 (the GASA tests), we will also discuss the UML
graphs achieved when SA was used primarily. The example solutions are given in
a simplified format high-level where the design solutions are emphasized, rather
than giving the actual class diagrams given by the algorithm, as they would be too
space consuming and difficult to interpret. As the format is free form, we have not
included class relations, but simple use relations only. There are no methods or
attributes present in the solutions that were not there in the base architecture.

6.1 Proposed Architectures with GASA

Using the GASA approach produced very similar solutions for both ehome and
robo systems. The solutions were built around the message dispatcher, as nearly all
communication between classes (in different base architecture classes) was handled
through it. The dispatcher makes the system highly modifiable, as classes do not
need to know any details of other classes; they merely send and receive messages
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through the dispatcher. The architecture is also easy to understand quickly, as the
message dispatcher creates a logical center for the system and separates different
model classes. However, the message dispatcher creates huge loss in efficiency, as
the increased message traffic greatly affects the performance of the system. Thus,
it should be used as the primary method for communication or not be used at all,
as in the case where it is only partially used the cost in efficiency is bigger than the
gain in modifiability.

In addition to the message dispatcher, all solutions achieved with the GASA
approach had several instances of the Adapter pattern. The Adapter pattern
is easy to apply, as it has very loose preconditions, but it is more costly in terms
of efficiency than other patterns. There were usually also several instances of the
Template Method pattern, which, in turn, is very low cost in terms of both effi-
ciency (it does not increase the number of calls) and complexity (only one class, no
interface). In some cases, however, the algorithm had preferred the Strategy pat-
tern, and there would be many instances of Strategy , while only a few Template
Method instances.

An example solution for ehome achieved with GASA is presented in Figure 9.
As can be seen, nearly all connections are handled via the message dispatcher, as
only calls from the Main component to Music System and Coffee Machine ,
and from Music System to Music Files are handled directly between the com-
ponents. The example also shows that the Template Method is used very much
to create low-level modifiability. The ehome is particularly suitable for a message
dispatcher architecture style, and achieving a high level of message-based commu-
nication between components is desirable, as the message dispatcher is then used to
its full potential and enables independency between components. The Adapters
for Water Control and Speaker Manager are also particularly well placed, as
these components are intuitively such that they could be replaced with new ones
(in an ehome we may want to change the water faucet or upgrade to better speakers
without changing the underlying kitchen or music systems), and thus the interface
might change. The Template Methods for Coffee Machine, Temperature
Regulation and Music System are also well chosen, as the specialized oper-
ations are such that alternative versions are easily conjured. Other Adapters,
Template Methods and Strategies are acceptable, but a human designer
would probably not apply them.

A similar example solution for robo (also achieved with GASA) is presented
in Figure 10. As can be seen, the message dispatcher is used here even more in-
tensely than in the case of ehome, as only connections between CombatEngine
and Rules and some connections involving the SimulationObject are not us-
ing the message dispatcher, even though the amount of components is larger than
in the case of ehome. However, while using the message dispatcher in these pro-
portions is desirable if it is chosen as the primary architecture style, if we consider
the type of system the robo is (a framework), in real life a message dispatcher
would probably not be the best option. All the components are actually tightly
linked, and the design should concentrate more on extendibility and the actual
functionality of the system. Also, as robo is a gaming application, using the mes-
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Figure 9: Example architecture for ehome, with GASA algorithm combination

sage dispatcher in this extent would probably lead to significant disadvantage in
terms of efficiency, which is particularly undesirable when the system needs to re-
spond quickly. The SA (or GA), however, does not have such high-level knowledge
of the type of system it is dealing with and bases the design simply on the quality
values, which are achieved from general structural decisions only. For robo, there
are also several Adapter, TemplateMethod and Strategy patterns, and the
usage of these different patterns is more balanced than in the case of ehome, where
the Template Method was the dominating pattern. In the proposed solution for
robo, the Template Method and Strategy patterns are all intelligently used,
as they consider operations and classes where the need for specialization is easily
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Figure 10: Example architecture for robo, with GASA algorithm combination
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seen. The Adapters , however, are not used particularly well. To summarize, us-
ing the message dispatcher gives a clear focal point in the solutions, and the full
potential of the message dispatcher is used. It should also be pointed out that
solutions achieved after only running the GA (i.e., the seeds for the SA) often had
the message dispatcher, but its usage was mostly quite minimal, as only a couple of
components were communicating via the dispatcher. Thus, the SA algorithm has a
significant influence in achieving a much better level of usage in the final solution.
In addition, low-level design patterns are used to further fine-tune the solution at
class-level.

6.2 Proposed Architectures Based on SA

As mentioned, we also performed tests with only SA and by combining SA to GA
by using the SA produced solution as a seed for the GA. The produced solutions
were very similar for all cases of the SA (high temperature, standard, and fast
annealing) and the SAGA approach.

In these cases, the message dispatcher architecture style did not appear in any
of the solutions for either system. As for the patterns, the Adapter pattern was
clearly the most popular in all the solutions for both systems. For the robo sys-
tem, there were very few instances of other patterns; only a couple of Template
Method or Strategy patterns could be found in the solutions. The solutions for
robo seemed quite difficult to understand at a glance; the structure depends greatly
on the base architecture, and as all classes are ”by default” given an interface, the
minimum amount of classes/interfaces is 44 for the robo system. When the pat-
terns are added (even if only a few) the architecture easily becomes quite complex.
The solutions for ehome were significantly easier to understand, as the amount of
classes/interfaces that appear by default is roughly half the amount of classes for
robo system. Curiously enough, there seemed to also be slightly more appearances
of the Strategy and Template Method patterns in the ehome solutions than
in robo, but the ehome solutions still seemed more understandable.

It appears that the SA by itself is incapable of introducing solutions that produce
delayed reward, such as the message dispatcher architecture style. Also, even if the
GA is able to introduce such solutions after being given the seed from the SA, it
will take exceptionally long before the reward will overcome the cost, as the SA has
already developed the solutions a great deal, and the GA may have to reverse the
design process (i.e., apply the remove-transformations) in order to apply needed
changes. The results of merely SA based systems are, thus, unsatisfactory.

7 Conclusions and Future Work

We have presented an approach that uses SA in software architecture synthesis. A
base architecture is given as input and architecture styles and design patterns are
used as transformations when searching for a better solution in the neighborhood.
The solution is evaluated with regard to modifiability, efficiency and complexity.
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The experimental results achieved with this approach show that SA on its own is
not able to produce good quality solutions in terms of quality values or the re-
sulting UML class diagrams. Attempts of improving the SA based solution with
GA were also unsuccessful in increasing the quality values. However, when com-
bining GA and SA so that the SA fine-tunes a basic solution achieved with the
GA, both the quality values and the class diagrams are very good. Moreover, as
SA is significantly faster than the GA, the result was obtained much quicker than
would have been possible by using only GA. Thus, it is concluded that while SA is
not sophisticated enough to be able to introduce complex alterations that require
several transformations and produce delayed reward, it is able to quickly improve
solutions where the base for such alteration has already been made.

It should be noted though, that SA seems to act very ”single-mindedly”. When
SA was used on its own, no solutions contained the message dispatcher architecture
style. When SA was used after the GA, all the solutions used the message dispatcher
architecture style very heavily, whether it was actually desired or not. Thus, it
appears that the mechanism in SA that should prevent it from being stuck to a local
optimum is not sufficient to divert the search in the case of software architecture
synthesis.

When compared to the manual process, any of the presented algorithms (GA,
SA, GASA or SAGA) performs significantly faster than a human designer. A
human designer would need several hours to peform the design task, while our
algorithms manage in mere minutes. In terms of quality, the GA and GASA come
quite close to results from a human designer. Previous studies have shown that GA
is at a level of a college student [28], and GASA manages to produce better quality
and faster results. Thus, in relation to the ultimate goal of automating software
engineering, this paper brings us closer to that goal by providing a more efficient
way of automating software architecture design while also producing better quality
results than what have been previously achieved with GA alone.

In our future work we will concentrate on practical issues, and improve our basic
implementation so that patterns (which are currently hardcoded), could be added
at will. This will significantly increase the search space, but will also make the need
for an algorithm to handle a large amount of patterns even greater. Moreover, the
larger the system is and the more computation is required, the more there will also
be need for a way to quicken the evolutionary process. Thus, we will also be doing
experiments on very large systems to further see how much the seeded algorithm
can outperform the GA in terms of time.
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[26] Räihä, O. A survey on search-based software design. Computer Science Review,
4(4):203–249, 2010.



264 Outi Sievi-Korte, Erkki Mäkinen, and Timo Poranen
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