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Realizing Small Tournaments Through

Few Permutations∗

Christian Eggermont†, Cor Hurkens†, and Gerhard J. Woeginger†

Abstract

Every tournament on 7 vertices is the majority relation of a 3-permutation
profile, and there exist tournaments on 8 vertices that do not have this prop-
erty. Furthermore every tournament on 8 or 9 vertices is the majority relation
of a 5-permutation profile.
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1 Introduction

A tournament T = (V,A) is a directed graph on a vertex set V whose arc set A
contains exactly one arc between any pair of distinct vertices. A finite family of (not
necessarily distinct) permutations of V forms a realization of the tournament, if for
every arc uv ∈ A vertex u precedes vertex v in more than half of the permutations.
A realization of the tournament by k permutations is called a k-permutation profile.
McGarvey [2] proved that every tournament has a realization by a finite number of
permutations. Subsequent results by Stearns [6] and Erdős & Moser [1] yield that
every tournament on n vertices can be realized by O(n/ log n) permutations, and
that some tournaments on n vertices cannot be realized by fewer than Ω(n/ log n)
permutations. We define the McGarvey number McG(T ) of a tournament T as
the size of the smallest possible permutation family that realizes the tournament;
note that McG(T ) always is an odd integer.

Shepardson & Tovey [5] analyzed several combinatorial questions on the so-
called predictability number of tournaments, a parameter closely related to realiza-
tions of tournaments. Page 502 of [5] formulates the conjecture that every 7-vertex
tournament T has McG(T ) ≤ 3. In this technical note we confirm this conjec-
ture, and we also discuss a number of related questions. Our results confirm this
conjecture:
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• Every 7-vertex tournament T satisfies McG(T ) ≤ 3.

• Every 8-vertex and every 9-vertex tournament T satisfies McG(T ) ≤ 5.

• There exist 96 non-isomorphic 8-vertex tournaments T with McG(T ) = 5.

• There exist 17.674 non-isomorphic 9-vertex tournaments with McG(T ) = 5.

All our results have been derived with the help of computer programs, and in
particular with the help of the software packages AIMMS and CPLEX.

2 Mathematical model and computational results

We express every permutation of the vertex set V = {1, 2, . . . , n} by a a transitive
tournament, which can be considered as a permutation (total order) of V . It is well-
known (see for instance Moon [4]) that a tournament without directed triangles is
transitive. We use n2 integer variables xuv ∈ {0, 1} with u, v = 1, . . . , n to encode
the arcs of the tournament, and we impose the following two families of linear
inequalities.

xuv + xvu = 1 for all u, v ∈ V

xuv + xvw + xwu ≤ 2 for all u, v, w ∈ V

The first constraint family enforces that for every two vertices u, v there is either
an arc uv or an arc vu but not both. The second constraint family forbids the
occurrence of directed triangles (and thus makes the tournament transitive).

In order to decide whether a given tournament T = (V,A) can be realized by
three permutations, we introduce three such sets of integer variables xuv, x′

uv, x′′
uv

together with the corresponding families of constraints. Furthermore we add the
constraints

xuv + x′
uv + x′′

uv ≥ 2 for all uv ∈ A.

These constraints ensure that vertex u precedes vertex v in more than half of the
three permutations. McKay [3] gives a list that enumerates all 456 non-isomorphic
tournaments on seven vertices. We worked through the tournaments on this list one
by one, and for each of them the software package AIMMS managed to find a feasi-
ble solution to the corresponding linear integer program. We also worked through
the list of 6, 880 non-isomorphic tournaments on eight vertices and through the list
of 191, 536 non-isomorphic tournaments on nine vertices; for all these tournaments
AIMMS found a realization by five permutations.

Theorem 1. Every tournament on n ≤ 7 vertices has a realization by three per-
mutations. Every tournament on n ≤ 9 vertices has a realization by five permuta-
tions.
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0000110.011000.00010.0001.100.10.1 1001010.110010.11000.0101.001.00.0
0000110.101000.10010.0001.100.10.1 1001100.110010.10010.1010.001.00.1
0001010.011000.00100.0001.110.10.1 1001100.111000.01010.0010.101.10.1
0001100.101000.10010.0001.100.10.1 1010000.000111.01000.1100.101.11.0
0001100.101000.10100.0010.110.11.1 1010000.001101.00010.1100.101.11.0
0010001.010100.00010.0110.000.10.1 1010000.100011.00101.1100.010.01.0
0010001.110000.01010.0110.100.10.1 1010000.100011.10100.1110.100.11.1
0010010.101000.00110.0001.100.10.1 1010000.100101.00011.1100.010.01.0
0010010.101000.10100.1001.110.10.1 1010000.100101.01001.1100.110.11.0
0010100.101000.00011.0001.100.10.0 1010000.100101.10010.1110.100.11.1
0010100.101000.10010.1001.110.10.1 1010000.101001.00101.1100.110.11.0
0011000.000011.00100.1010.101.10.1 1010000.101001.00110.1100.101.11.0
0011000.000110.10000.0111.100.11.1 1010000.101100.10001.1110.110.11.1
0011000.000110.10000.1101.011.10.1 1010000.111000.01100.1110.111.11.1
0011000.000110.10000.1101.110.11.1 1010001.110001.00110.0011.000.00.0
0011000.010010.00100.1110.011.01.1 1010001.110001.00110.1010.010.00.1
0011000.010010.00100.1110.101.11.1 1010001.110001.00110.1010.100.10.1
0011000.100100.01010.0001.110.10.1 1010001.110010.00011.1100.100.01.0
0011000.100100.10100.0011.010.10.1 1010001.110010.00101.0110.000.01.0
0011000.101000.10100.0011.110.10.1 1010001.110010.10100.1011.001.00.0
0011100.110000.00110.1010.001.10.1 1010001.110010.10100.1011.010.00.1
0011100.110000.01010.0110.001.10.1 1010001.110100.00011.1010.001.00.0
0100010.001100.10010.0001.100.10.1 1010001.110100.00011.1010.100.10.1
0100010.011000.10010.0101.100.10.1 1010001.110100.01010.0011.010.00.1
0100010.101000.10101.0001.100.10.0 1010001.110100.01010.0011.100.01.0
0100100.010000.01010.0110.100.11.1 1010010.110001.00011.1100.100.01.0
0100100.010010.00110.0001.000.10.1 1010010.110001.00101.0110.000.01.0
0100100.101000.10011.0001.100.10.0 1010100.101010.01100.0001.001.10.0
0101000.110000.10110.0011.100.10.1 1010100.110001.00011.1010.010.00.1
0101100.010100.01010.0010.001.10.1 1010100.110001.01010.0011.001.00.0
0101100.011000.01010.0010.101.10.1 1010100.111000.01010.0110.001.10.1
0110000.001100.10010.1001.110.10.1 1010100.111000.01010.1010.101.10.1
0110000.101000.10110.0011.100.10.1 1100000.010110.11000.0111.100.11.1
0110010.100001.10101.1001.100.10.0 1100000.011010.00110.0001.100.10.1
0110100.100001.10011.1001.100.10.0 1100000.101010.10110.1000.110.01.1
0110100.101000.11010.0101.001.10.0 1100000.110010.10110.1100.010.01.1
0111000.100100.11010.1010.110.01.1 1100000.110100.10110.0011.000.10.1
1000010.110100.11000.0101.010.10.1 1100000.110100.11010.1001.110.10.1
1000010.111000.00110.0001.100.10.1 1100000.111000.10101.0011.100.10.0
1000100.010110.01000.0010.100.11.1 1100100.110010.11010.1010.001.00.1
1000100.110010.11000.1100.110.11.1 1101000.011100.00110.0010.001.10.1
1000100.110100.10010.1001.010.10.1 1101000.101010.11010.0001.101.00.0
1001000.100100.00011.1000.110.10.1 1101000.110010.11100.0101.001.10.0
1001000.100110.10010.0100.100.11.1 1110000.100110.11001.0011.100.01.0
1001000.101100.00110.0000.110.11.1 1110000.101010.10101.0011.100.01.0
1001000.110010.10001.1100.100.10.1 1110000.101010.11010.0101.001.00.0
1001000.110100.01100.0010.110.11.1 1110000.110001.10011.1110.100.01.0
1001000.110100.11000.0011.110.10.1 1110000.111000.11100.1110.011.10.1

Table 1: The 96 non-isomorphic 8-vertex tournaments T with McG(T ) = 5.
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0 1 2 3 4 5 6 7
0 - ∗ 1 1 0 0 ∗ ∗
1 ∗ - ∗ 1 1 0 0 ∗
2 0 ∗ - ∗ 1 1 0 ∗
3 0 0 ∗ - 1 1 1 0
4 1 0 0 0 - ∗ 1 1
5 1 1 0 0 ∗ - 1 0
6 ∗ 1 1 0 0 0 - 1
7 ∗ ∗ ∗ 1 0 1 0 -

Table 2: The adjacency matrix of the directed graph G8.

In our computational experiments, we detected that 96 of the 6.880 non-
isomorphic 8-vertex tournaments cannot be realized by three permutations. These
tournaments are listed in Table 1. Each tournament is represented as the upper
triangle of the adjacency matrix in row order, and consecutive rows are always
separated by dots (this is the representation used in McKay’s list [3]).

We also took a closer look at these 96 exceptional tournaments, and tried to
understand their common properties. We used CPLEX to analyze their structure,
and to identify minimal infeasible subsystems of the underlying linear integer pro-
grams. It turned out that all 96 tournaments contain the directed subgraph G8

whose adjacency matrix is depicted in Table 2. The arcs marked by ‘∗’ are un-
specified, and their orientation can be set arbitrarily in the tournaments. (Note:
Since there are eight vertex pairs with unspecified arcs, this would yield 256 corre-
sponding 8-vertex tournaments; however symmetries and isomorphisms reduce this
number to 96.)

Observation 2. If a tournament T contains the graph G8 as a subgraph on eight
vertices, then T has no realization by three permutations.

We stress that the copyright on this graph G8 belongs to Shepardson & Tovey [5]
who established that any tournament containing a subgraph G8 has a predictability
number of at most 13/20.

Finally, our programs detected that 17, 674 out of 191, 536 non-isomorphic 9-
vertex tournaments cannot be realized by three permutations.

3 Conclusions

The computational approach described in this note is strong enough to handle all
tournaments with n ≤ 9 vertices. For n = 10 vertices the running times would still
be manageable, but we did not spend much time on McKay’s list [3] with 9, 733, 056
non-isomorphic tournaments on ten vertices: we do not expect any surprises from
them, and we firmly believe that all of them will be realizable by five permutations.
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It might be interesting to determine the smallest tournament that has no re-
alization by five permutations. We randomly explored a (tiny) fraction of the set
of 20-vertex tournaments, but we did not succeed in finding anything (for n > 20
the computation times become prohibitively large). The counting argument of
Stearns [6] yields the existence of a 41-vertex tournament T41 with McG(T41) ≥ 7.
However, for small tournaments the asymptotic bounds implied by [6] seem to be
rather loose: The same counting argument only yields the existence of a 19-vertex
tournament T19 with McG(T19) ≥ 5, whereas we know that there exist 8-vertex
tournaments with that property.
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