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On Closedness Conditions, Strong Separation,

and Convex Duality

Miklós Ujvári∗

Abstract

In the paper, we describe various applications of closedness and duality
theorems from previous works of the author. First, the strong separability
of a polyhedron and a linear image of a convex set is characterized. Then,
it is shown how stability conditions (known from the generalized Fenchel-
Rockafellar duality theory) can be reformulated as closedness conditions. Fi-
nally, we present a generalized Lagrangian duality theorem for Lagrangian
programs described with cone-convex/cone-polyhedral mappings.
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1 Introduction

Closedness conditions require the closedness of convex sets of the form

(AC1) + C2 := {Ax+ y : x ∈ C1, y ∈ C2}

or
C1 +A−1(C2) := {x+ v : x ∈ C1, Av ∈ C2},

where A is an m by n real matrix, C1 and C2 are convex sets in Rn and Rm,
respectively. These conditions play an important role in the theory of duality in
convex programming, see [7] and [8]. In this paper our aim is to describe further
applications.

We begin this paper with stating the main results of [7] and [8]. First we fix
some notation.

Let us denote by recC and barC the recession cone and the barrier cone of a
convex set C in Rd, respectively, that is let

recC :=
{
v ∈ Rd : x+ λv ∈ C (x ∈ C, λ ≥ 0)

}
,

barC :=
{
w ∈ Rd : inf {wTx : x ∈ C} > −∞

}
.

Then recC and barC are convex cones.
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Let us denote by riC (resp. clC) the relative interior (resp. closure) of the
convex set C in Rd. The relative interior of a convex set C is convex, and is
nonempty if the convex set C is nonempty. (See [4] for the definition and properties
of the relative interior.)

The main result of [7] and [8] is the following closedness theorem. See [8] for an
extension of Theorem 1.1 with statements concerning the recession cones. See [3],
[7] for further closedness theorems.

Theorem 1.1. Let A be an m by n real matrix. Let C1 be a closed convex set in
Rn, and let P2 be a polyhedron in Rm. Then between the statements

a) (ATbarP2)∩ ri (barC1) 6= ∅,
b) A−1(−recP2) ∩ (recC1) ⊆ −recC1,

c) (AC1) + P2 is closed,

d) C1 +A−1(P2) is closed,

hold the following logical relations: a) is equivalent to b); c) is equivalent to d); a)
or b) implies c) and d).

In [7] two applications of Theorem 1.1 are mentioned. These duality theorems
are stated in Theorems 1.2 and 1.3.

We will use the terminology and notations of [5] here. Let f : Rn → R∪{+∞}
be a convex function, and let g : Rm → R ∪ {−∞} be a concave function. Let
A ∈ Rm×n be a matrix, and let a ∈ Rn, b ∈ Rm be vectors. We will consider the
following pair of programs from [5]:

(P ) : Find inf{f(x)− g(Ax− b) + aTx : x ∈ Rn},
(D) : Find sup{gc(y)− f c(AT y − a) + bT y : y ∈ Rm}.

Here f c and gc denote the convex conjugate function of f and the concave conjugate
function of g, respectively, that is let

f c(w) := sup
{
wTx− f(x) : x ∈ Rn

}
, gc(y) := inf

{
yT z − g(z) : z ∈ Rm

}
.

Let [f ] and [g] denote the epigraph of f and the hypograph of g, respectively, that
is let

[f ] := {(x, µ) ∈ Rn+1 : f(x) ≤ µ}, [g] := {(z, ν) ∈ Rm+1 : g(z) ≥ ν}.

The function f is closed whenever its epigraph [f ] is closed, and f is a polyhedral
convex function when its epigraph [f ] is a polyhedron. Let F (f) and F (g) denote
the domain of finiteness of the functions f and g, respectively, that is let

F (f) := {x ∈ Rn : f(x) < +∞}, F (g) := {z ∈ Rm : g(z) > −∞}.

The points of the set

P := F (f) ∩ {x : Ax− b ∈ F (g)}
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are called the feasible solutions of program (P ). We denote by vP the optimal value
of program (P ), that is let

vP := inf
{
f(x)− g(Ax− b) + aTx : x ∈ P

}
.

For the program (D) the set D and the value vD can be defined similarly.
With this notation the main duality results of [7] can be stated as follows.

Theorem 1.2. Let f be a convex function on Rn, and let −g be a polyhedral convex
function on Rm. Then between the statements

a) the function f is closed, and there exists a strictly feasible solution of the program
(D), that is a point y0 ∈ Rm such that y0 ∈ F (gc) and AT y0 − a ∈ riF (f c),

b) it holds that P ∪D 6= ∅, and the primal closedness assumption is satisfied, that
is the set

CP :=

(
A 0
aT 1

)
[f ] + (−[g])

is closed,

c) the optimal values of programs (P ) and (D) are equal, and the primal optimal
value vP is attained if it is finite,

hold the following logical relations: a) implies b); b) implies c).

The next theorem is a counterpart of Theorem 1.2, as for closed convex functions
f and −g the equations f cc = f and gcc = g hold, so Theorem 1.2 can be dualized.

Theorem 1.3. Let f be a closed convex function on Rn, and let −g be a polyhedral
convex function on Rm. Then between the statements

a) there exists a strictly feasible solution of the program (P ), that is a point x0 ∈ Rn
such that x0 ∈ riF (f) and Ax0 − b ∈ F (g),

b) it holds that P ∪D 6= ∅, and the dual closedness assumption is satisfied, that is
the set

CD :=

(
AT 0
bT 1

)
[gc] + (−[f c])

is closed,

c) the optimal values of programs (P ) and (D) are equal, and the dual optimal value
vD is attained if it is finite,

hold the following logical relations: a) implies b); b) implies c).

In the paper, we describe various applications of these closedness and duality
theorems: Theorems 1.1, 1.2, and 1.3 will be applied in Sections 2, 3, and 4,
respectively. In Section 2 an analogue of Theorem 1.1 is proved, where the property
closedness is replaced by strong separability. In Section 3 we reformulate stability
conditions (known from the generalized Fenchel-Rockafellar duality theory, see [5])
as closedness conditions. Generalized Lagrangian duality (for programs with cone-
convex constraints) is the topic of several papers, see for example [9], [2], and [1].
Our approach is different: in Section 4 we study Lagrangian programs described
with cone-convex/cone-polyhedral mappings.
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2 Strong separation

In this section we will prove an analogue of Theorem 1.1 for strong separation,
where the property “closed” is replaced with the property “the origin is not an
element of the closure”.

Two nonempty convex sets C1 and C2 in Rn are called strongly separable if
there exists a vector a1 ∈ Rn such that

sup{aT1 x1 : x1 ∈ C1} < inf{aT1 x2 : x2 ∈ C2}.

It is well-known (see [4], Theorem 11.4) that the sets C1 and C2 are strongly
separable if and only if 0 6∈ cl (C2 + (−C1)). (Note that the sets C1 and C2 are
disjoint if and only if 0 6∈ C2 + (−C1).) This fact implies the following lemma (see
Corollaries 11.4.2 and 19.3.3 in [4]).

Lemma 2.1. Let C1 be a convex set in Rn, and let P1, P2 be polyhedrons in Rn.
Then, the following statements hold:

a) If 0 6∈ clC1 then the sets {0} and C1 are strongly separable.

b) If P1 ∩ P2 = ∅ then the sets P1 and P2 are strongly separable.

The next theorem is an immediate consequence of Theorem 1.1.

Theorem 2.1. Let A be an m by n real matrix. Let C1 be a convex set in Rn, and
let P2 be a polyhedron in Rm. Then between the statements

a) 0 6∈ (AC1) + P2 (that is the sets AC1 and −P2 are disjoint),

b) 0 6∈ C1 +A−1(P2) (that is the sets −C1 and A−1(P2) are disjoint),

c) 0 6∈ cl ((AC1) + P2) (that is the sets AC1 and −P2 are strongly separable),

d) 0 6∈ cl (C1 +A−1(P2)) (that is the sets −C1 and A−1(P2) are strongly separable),

hold the following logical relations: a) is equivalent to b); a) is equivalent to c) if
the set (AC1)+P2 is closed; b) is equivalent to d) if the set C1 +A−1(P2) is closed.

Specially, all the four statements are equivalent if from Theorem 1.1 statement
a), b), c) or d) holds.

The statements c) and d) in Theorem 2.1 are equivalent in the general case as
well, as the following theorem shows.

Theorem 2.2. Let A be an m by n real matrix. Let C1 and C2 be convex sets in
Rn and Rm, respectively. Then,

a) if 0 6∈ cl ((AC1) + C2) then 0 6∈ cl (C1 + A−1(C2)) (in other words the strong
separability of the sets AC1 and −C2 implies the strong separability of the sets −C1

and A−1(C2)),

b) the statement a) can be reversed if C2 ⊆ A(Rn),

c) the statement a) can be reversed if the set C2 is a polyhedron.
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Proof. a) The proof is indirect: We will show that 0 ∈ cl (C1 + A−1(C2)) implies
0 ∈ cl ((AC1) + C2). Let xi ∈ C1, vi ∈ A−1(C2) for i = 1, 2, . . ., and suppose that
xi + vi → 0 (i → ∞). Then A(xi + vi) → 0 (i → ∞) also holds. As Avi ∈ C2 for
i = 1, 2, . . . by definition, we can see that 0 ∈ cl ((AC1) + C2); the statement a) is
proved.

b) Let us suppose now that the set C2 is a subset of the image space of the matrix
A. We will show that then 0 6∈ cl (C1 + A−1(C2)) implies 0 6∈ cl ((AC1) + C2). By
Lemma 2.1, the origin can be strongly separated from the convex set C1+A−1(C2),
that is there exists a vector a1 ∈ Rn such that

0 < inf{aT1 x : x ∈ C1 +A−1(C2)}. (1)

As the recession cone of the set A−1(C2) contains the null space of the matrix
A, the inequality (1) implies that the vector a1 is an element of the image space
AT (Rm): there exists a vector z ∈ Rm such that a1 = AT z.

Suppose indirectly, that 0 ∈ cl ((AC1) + C2). Then there exist points xi ∈ C1,
yi ∈ C2 (i = 1, 2, . . .) such that

Axi + yi → 0 (i→∞).

By assumption, the set C2 is a subset of the image space of the matrix A, so for
some vectors vi ∈ Rn (actually, vi ∈ A−1(C2)), the equalities yi = Avi (i = 1, 2, . . .)
hold. But then

aT1 (xi + vi) = zT (Axi + yi)→ 0 (i→∞),

contradicting (1). Hence, 0 6∈ cl ((AC1) + C2); statement b) is proved as well.
c) Let us suppose that the set C2 is a polyhedron. We will show that then the

strong separability of the sets −C1 and A−1(C2) implies the strong separability of
the sets AC1 and −C2. Notice that

A−1(C2) = A−1(C2 ∩A(Rn)).

Here the set C2 ∩ A(Rn) is a subset of the image space of the matrix A, so by
the statement b) the strong separability of the sets −C1 and A−1(C2) implies the
strong separability of the sets AC1 and −C2 ∩ A(Rn). Hence, there exist a vector
b2 ∈ Rm and a constant δ ∈ R such that the set AC1 is a subset of the closed
halfspace H+ := {y : bT2 y ≤ δ}, and the polyhedrons H+ ∩ A(Rn) and −C2 are
disjoint. By Lemma 2.1, two disjoint polyhedrons are strongly separable, so the
strong separability of the sets AC1 and −C2 follows, which finishes the proof of the
theorem.

Finally, we remark that the statement a) in Theorem 2.2 can not be reversed
generally, even if the sets C1 and C2 are supposed to be closed and convex: there
exist closed convex sets C1 and C2 such that

0 ∈ cl ((AC1) + C2), 0 6∈ cl (C1 +A−1(C2))

for some linear mapping A.
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In fact, let

A : (λ, µ) 7→ λ

(
1 1
1 1

)
+ µ

(
1 0
0 −1

)
(λ, µ ∈ R);

C1 := R× {0} ⊆ R2; C2 := PSD2 −
(

1 1/2
1/2 0

)
,

where PSD2 denotes the closed convex cone of the 2 by 2 real symmetric positive
semidefinite matrices, that is (see [6]),

PSD2 =

{(
α β
β γ

)
∈ R2×2 : α, γ, αγ − β2 ≥ 0

}
.

Then,(
1 + i+ 1/i 1/2 + i

1/2 + i i

)
− i ·

(
1 1
1 1

)
→
(

1 1/2
1/2 0

)
(i→∞)

shows that (
1 1/2

1/2 0

)
∈ cl (PSD2 +AC1).

Hence, 0 ∈ cl ((AC1) + C2).
On the other hand, it can be easily verified that

A−1(C2) = {(λ, µ) : λ ≥ −1/2, µ = −1/2} ,

thus indeed 0 6∈ cl (C1 +A−1(C2)); the sets C1 and C2 meet the requirements.

3 Stable points

In this section, after describing a geometric and an equivalent algebraic definition
of stable points, we reformulate the stability condition as a closedness condition.

The following lemma, concerning the programs (P ) and (D), will be used.

Lemma 3.1. Let us suppose that D 6= ∅. Then the primal closedness assumption
is satisfied (that is the set CP is closed) if and only if for every vector b ∈ Rm the
optimal values of programs (P ) and (D) are equal, and the primal optimal value vP
is attained if it is finite.

Proof. As the definition of the set CP does not depend on the vector b, so the “only
if” part of the lemma is a consequence of Theorem 1.2.

On the other hand, with minor modification of the proof of Theorem 4.1 in [7],
it can be shown that:

(b, δ) ∈ CP ⇔ ∃x ∈ Rn : f(x)− g(Ax− b) + aTx ≤ δ;
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and, in case of P ∪D 6= ∅,

(b, δ) 6∈ clCP ⇔ ∃y ∈ Rm : gc(y)− f c(AT y − a) + bT y > δ.

Hence, to prove the “if” part of the lemma, it is enough to verify that for every
vector b ∈ Rm and for every constant δ ∈ R,

∃x ∈ Rn : f(x)− g(Ax− b) + aTx ≤ δ (2)

or

∃y ∈ Rm : gc(y)− f c(AT y − a) + bT y > δ (3)

holds. For a given vector b ∈ Rm two cases are possible:

Case 1: P = ∅. Then vP = vD =∞, and (3) holds for every δ ∈ R.

Case 2: P 6= ∅. Then by assumption vP = vD with primal attainment, so (2) holds
for δ ≥ vP , and (3) holds for δ < vP .

This way we have proved the “if” part of the lemma as well.

The following stability conditions appear in the generalized Fenchel-Rockafel-
lar duality theory concerning programs (P ) and (D), see [5]. First, we recall the
geometric definition of stability.

Let C be a convex set in Rd, and let e ∈ recC. A point x0 ∈ C is called a stable
point of the set C if for every affine set M in Rd satisfying

M ∩ ({x0}+Re) 6= ∅ and M ∩ (C +R++e) = ∅, (4)

there exists a hyperplane H in Rd such that

M ⊆ H and H ∩ (C +R++e) = ∅. (5)

(Here let R++e := {λe : 0 < λ ∈ R}, and let Re := {µe : µ ∈ R}. It can be easily
seen that (4) implies e 6∈ recM , and that (5) implies e 6∈ recH.)

For example, let us define the convex sets

C1 := {(x1, x2) ∈ R2 : x1 ≥ 0, x2 ≥ x21},
C2 := {(x1, x2) ∈ R2 : x1 ≥ 0, x2 ≥ −

√
x1}.

Then, the origin x0 = (0, 0) (with e = (0, 1)) is a stable point of the set C1 but is
not a stable point of the set C2.

For a convex function h defined on Rn the point u0 ∈ F (h) is called a stable
point of the function h, if (u0, µ0) is a stable point of the epigraph [h] (with e1 :=
(0, 1) ∈ rec [h]) for some µ0 ∈ R. In this case the function h is called u0-stable. For
example, it is proved in [5], that for every u0 ∈ riF (h), the function h is u0-stable.

The next lemma, describing an algebraic characterization of u0-stability, can
also be found in [5], see Lemma 5.5.8.
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Lemma 3.2. Let u0 ∈ F (h). A convex function h on Rn is u0-stable if and only
if for every n ×m-matrix B and for every vector w ∈ Rn with u0 = By0 − w for
some y0 ∈ Rm, the relation

ĥc(v) = min{hc(x) + wTx : BTx = v} (6)

holds for all v ∈ Rm. Here ĥ(y) := h(By − w).

Now, we can derive, as an immediate consequence of Lemmas 3.1 and 3.2,

Theorem 3.1. Let u0 ∈ F (h). A closed convex function h on Rn is u0-stable if and
only if for every n×m-matrix B and for every vector w ∈ Rn with u0 = By0 − w
for some y0 ∈ Rm, the set (

BT 0
wT 1

)
[hc] (7)

is closed.

Proof. Apply Lemma 3.1 to the programs

(P0) : Find inf{f0(x)− g0(A0x− b0) + aT0 x : x ∈ Rn},
(D0) : Find sup{gc0(y)− f c0(AT0 y − a0) + bT0 y : y ∈ Rm},

where

f0 := hc, g0(z) :=

{
0, if z = 0,
−∞ otherwise

(z ∈ Rm),

A0 := BT , b0 := v, a0 := w.

We obtain that the set in (7) is closed if and only if for all b0 ∈ Rm the optimal
values of programs (P0) and (D0) are equal, and the primal optimal value vP0

is
attained if it is finite. This means that the set in (7) is closed if and only if (6) holds

for all v ∈ Rm. (Note that ĥc(v) is the optimal value of the dual program (D0),
while the minimum on the right hand side of the equation in (6) is the optimal
value of the program (P0).) Then, Lemma 3.2 gives the statement.

Specially, let p be a polyhedral convex function on Rn. Then the conjugate
function pc is also a polyhedral convex function. In other words, the epigraph
[pc] and its linear images are polyhedrons. Hence, by Theorem 3.1, for any vector
u0 ∈ F (p), the function p is u0-stable. For another proof of this fact, see [5],
Theorem 5.5.9.

As special polyhedral convex functions, partially linear functions −gM are u0-
stable for every u0 ∈ F (gM ). Here gM : Rn → R∪ {−∞} is defined as follows:

gM (u) :=

{
µ, if (u, µ) ∈M,
−∞ otherwise,

where M ⊆ Rn+1 is an affine set.
The following proposition describes a characterization of stable points in terms

of duality, see Theorems 5.3.12 and 5.3.13 in [5].
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Proposition 3.1. Let f be a convex function on Rn, and let u0 be a point of F (f).
Then, f is u0-stable if and only if

inf
x

(f(x)− gM (x)) = max
y

(gcM (y)− f c(y))

holds for every partially linear convex function −gM with u0 ∈ F (gM ).

We conclude this section with a general duality theorem (Theorem 5.7.5 in [5])
which is based on the notion of stable points. As we will see in the following section,
Theorem 3.2 and Theorem 1.3 have a common special case: a duality theorem for
generalized Lagrangian programs (Theorem 4.1).

We call program (P ) stably consistent if there are feasible points xf and xg
of program (P ) such that the function f is xf -stable and g is zg-stable, where
zg := Axg − b. Stable consistency is similarly defined for program (D).

Theorem 3.2. (Rockafellar) Assume that f is a convex function on Rn and −g
is a convex function on Rm. Then, the following statements hold:

a) If program (P ) is stably consistent (in particular, if it has a strictly feasible
solution), then vP = vD, and the dual optimal value vD is attained if it is finite.

b) Assume that f,−g are both closed functions. If program (D) is stably consistent
(in particular, if it has a strictly feasible solution), then vD = vP , and the primal
optimal value vP is attained if it is finite.

4 Lagrangian duality

In this section a strong duality theorem concerning generalized Lagrangian pro-
grams will be derived from a strengthened version of Theorem 1.3.

Let us begin with describing a well-known property of convex functions, see [4],
Theorem 7.5 and Corollary 7.5.1.

Lemma 4.1. Let f be a convex function on Rn. Then, its closure cl f = (f c)c

satisfies
(cl f)(y) = lim

λ→1
f((1− λ)x+ λy) (8)

for every x ∈ riF (f), y ∈ Rn. Furthermore, if f is a polyhedral convex function,
then cl f = f and formula (8) holds for every x ∈ F (f), y ∈ Rn.

The following lemma shows that the implication “a)⇒c)” in Theorem 1.3 can
also be proved without the assumption that the function f is closed.

Lemma 4.2. Let f be a convex function on Rn, and let −g be a polyhedral convex
function on Rm. Let us suppose that the program (P ) has a strictly feasible solution:
a point x0 ∈ Rn such that x0 ∈ riF (f) and Ax0 − b ∈ F (g). Then, the optimal
values of programs (P ) and (D) are equal. Furthermore, the dual optimal value vD
is attained if it is finite.
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Proof. Let us denote by (P ) the program, which we obtain by replacing the func-
tions f and g with their closures cl f and cl g = g, that is let

(P ) : Find inf{cl f)(x)− g(Ax− b) + aTx : x ∈ Rn}.

Then the dual of program (P ) is program (D). The point x0 is also a strictly
feasible solution of program (P ), so by Theorem 1.3 the optimal values of programs
(P ) and (D) are equal, and the optimal value of program (D) is attained if it is
finite.

We will show that the optimal values of programs (P ) and (P ) are equal. It is
obvious, that vP ≤ vP , as cl f ≤ f . On the other hand, for a given µ > vP , let x1
be a feasible solution of program (P ) with corresponding value

µ1 := (cl f)(x1)− g(Ax1 − b) + aTx1 < µ.

Then, for 0 ≤ λ < 1 the point xλ := λx1 + (1 − λ)x0 is a strictly feasible solution
of program (P ). Moreover, by Lemma 4.1,

f(xλ)→ (cl f)(x1), g(Axλ − b)→ g(Ax1 − b) (0 ≤ λ < 1, λ→ 1).

Consequently, we have for all µ > vP ,

vP ≤ vP ≤ f(xλ)− g(Axλ − b) + aTxλ → µ1 < µ (0 ≤ λ < 1, λ→ 1).

Thus vP = vP , which proves the statement.

Now, we describe the definition of the generalized Lagrangian programs.
Let C ⊆ Rn be a convex set, and let P ⊆ Rn be a polyhedron. Let K ⊆ Rm be

a convex cone, and let R ⊆ Rl be a polyhedral cone. Let f̃ : C → R be a convex
function, and let p̃ : P → R be a polyhedral convex function. Let g̃ : C → Rm be a
K-convex mapping, and let h̃ : P → Rl be an R-polyhedral mapping. (A mapping
g̃ : C → Rm is K-convex, if the epigraph

[g̃]K := {(x, y) ∈ Rn ×Rm : x ∈ C, g̃(x) ≤K y}

is convex. A mapping h̃ : P → Rl is R-polyhedral, if the epigraph [h̃]R is a
polyhedron. For example, every affine mapping is R-polyhedral. Here x ≤K y
denotes that y − x ∈ K. Note that if K ⊆ Rm is a closed convex cone, and
pointed also – that is, K ∩ −K = {0} holds –, then x ≤K y is the cone-generated
partial order on Rm. However, in what follows we do not assume closedness and
pointedness of the convex cone K.)

Let us consider the following program pair:

(LP ) : Find inf{f̃(x) + p̃(x) : g̃(x) ≤K 0, h̃(x) ≤R 0, x ∈ C ∩ P},
(LD) : Find sup{inf{(f̃ + p̃+ yT g̃ + zT h̃)(x) : x ∈ C ∩ P} : y ∈ K∗, z ∈ R∗},

where K∗ denotes the dual cone of K, that is K∗ := {y : yTx ≥ 0 (x ∈ K)}.



On Closedness Conditions, Strong Separation, and Convex Duality 283

The program (LP ) is equivalent to the following program (P̂ ):

(P̂ ) : Find inf{f̂(x̂)− ĝ(x̂) : x̂ = (x, b1, b2, b3, b4)}.

Here

f̂(x̂) :=

{
f̃(x), if x̂ ∈ Ĉ1,
∞ otherwise,

ĝ(x̂) :=

{
−p̃(x), if x̂ ∈ Ĉ2,
−∞ otherwise,

where

Ĉ1 := {x̂ : x ∈ C, g̃(x) + b1 ≤K 0, b2 = b4, b3 ∈ K},
Ĉ2 := {x̂ : x ∈ P, h̃(x) + b2 ≤R 0, b1 = b3, b4 ∈ R}.

Note that due to our assumptions on the defining functions and mappings, f̂ is a
convex function, −ĝ is a polyhedral convex function, finite on the convex set Ĉ1

and the polyhedron Ĉ2, respectively.
The dual of the program (P̂ ) is

(D̂) : Find sup{ĝc(ŷ)− f̂ c(ŷ) : ŷ = (a1, y1, y2, y3, y4)}.

It can be easily seen, that

ĝc(ŷ) =

 inf{aT1 x+ p̃(x) + yT2 b2 : x ∈ P, h̃(x) + b2 ≤R 0},
if y1 = −y3, y4 ∈ R∗,

−∞ otherwise,

and similarly

f̂ c(ŷ) =

 sup{aT1 x− f̃(x) + yT1 b1 : x ∈ C, g̃(x) + b1 ≤K 0},
if y2 = −y4, y3 ∈ −K∗,

∞ otherwise.

Hence,

ĝc(ŷ)− f̂ c(ŷ) =

=


inf{aT1 x+ p̃(x) + yT2 b2 : x ∈ P, h̃(x) + b2 ≤R 0}+

+ inf{−aT1 x+ f̃(x) + yT3 b1 : x ∈ C, g̃(x) + b1 ≤K 0},
if − y3 = y1 ∈ K∗, −y2 = y4 ∈ R∗,

−∞ otherwise

=


inf{aT1 x+ p̃(x) + yT4 h̃(x) : x ∈ P}+

+ inf{−aT1 x+ f̃(x) + yT1 g̃(x) : x ∈ C},
if − y3 = y1 ∈ K∗, −y2 = y4 ∈ R∗,

−∞ otherwise.
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We can see that the program (LD) is a relaxation of the program (D̂): if the vector
ŷ is a feasible solution of the program (D̂) then y := y1, z := y4 is a feasible solution
of the program (LD), for which between the corresponding values the inequality

ĝc(ŷ)− f̂ c(ŷ) ≤ inf{(f̃ + p̃+ yT g̃ + zT h̃)(x) : x ∈ C ∩ P}

holds.
From these considerations immediately follows

Lemma 4.3. For the optimal values of the programs (LP ), (LD), (P̂ ), and (D̂)
defined above, the following statements hold:

a) vP̂ = vLP ≥ vLD ≥ vD̂ (weak duality),

b) if vP̂ = vD̂, then vLP = vLD,

c) if vP̂ = vD̂ and the optimal value of the program (D̂) is attained, then the optimal
value of program (LD) is attained as well.

Now, we can state our strong duality result. The program (LP ) is said to satisfy
the weak Slater condition if there exists a point x0 ∈ Rn such that

x0 ∈ P ∩ riC, g̃(x0) <K 0, h̃(x0) ≤R 0.

Then x0 is called a weak Slater point. (Here x <K y denotes that y − x ∈ riK.)

Theorem 4.1. Let us suppose that the program (LP ) satisfies the weak Slater
condition. Then the optimal values of programs (LP ) and (LD) are equal. Fur-
thermore, the dual optimal value vLD is attained if it is finite.

Proof. It is proved in [1] (see Theorem 2.3) that

ri {(x, b1) : x ∈ C, g̃(x) + b1 ≤K 0} = {(x, b1) : x ∈ riC, g̃(x) + b1 <K 0}.

Consequently,

ri Ĉ1 = {x̂ : x ∈ riC, g̃(x) + b1 <K 0, b2 = b4, b3 ∈ riK},

and we can see that

x̂0 := (x0,−g̃(x0)/2,−h̃(x0),−g̃(x0)/2,−h̃(x0)) ∈ (ri Ĉ1) ∩ Ĉ2

for any weak Slater point x0 of the program (LP ). Hence, x̂0 is a strictly feasible
solution of program (P̂ ), and we can apply Lemma 4.2 to the programs (P̂ ) and
(D̂). We obtain that vP̂ = vD̂, and that the optimal value of the program (D̂) is
attained if it is finite. The statement now follows from Lemma 4.3.

We remark that an analogue of Corollary 4.1 in [2], for programs (LP ) and (LD),
can be derived as a consequence of Theorem 4.1: the existence of a weak Slater point
x0 and a primal optimal solution x implies the existence of a saddle point (x, y, z)
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of the Lagrangian function. (The Lagrangian function L : (C ∩P )×K∗×R∗ → R
is defined as

L(x, y, z) := f̃(x) + p̃(x) + yT g̃(x) + zT h̃(x).

A point (x, y, z) ∈ (C ∩ P ) × K∗ × R∗ is called a saddle point of the Lagrangian
function L if

L(x, y, z) ≤ L(x, y, z) ≤ L(x, y, z),

for every x ∈ C ∩ P , y ∈ K∗, z ∈ R∗.) The proof is an adaptation of the proof of
Corollary 4.1 in [2], and is left to the reader.

Finally, we mention an open problem: Similarly as in the case of the weak Slater
condition in Theorem 4.1 (sufficient for the strict solvability condition), find suffi-
cient conditions for the stability and closedness conditions in the duality theorems
1.2, 1.3, and 3.2 for the special case of programs (P̂ ) and (D̂), which are formulated
in terms of the data describing the programs (LP ) and (LD).
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