
Acta Cybernetica 21 (2014) 291–306.

Lively3D: Building a 3D Desktop Environment as a

Single Page Application

Jari-Pekka Voutilainen∗, Anna-Liisa Mattila∗, and Tommi Mikkonen∗

Abstract

The Web has rapidly evolved from a simple document browsing and dis-
tribution environment into a rich software platform, where desktop-style ap-
plications are treated as first class citizens. Despite the associated technical
complexities and limitations, it is not unusual to find complex applications
that build on the web as their only platform, with no traditional installable
application for the desktop environment – such systems are simply accessed
via a web page that is downloaded inside the browser and once loading is
completed, the application will begin its execution immediately. With the
recent standardization efforts, including HTML5 and WebGL in particular,
compelling, visually rich applications are increasingly supported by the the
browsers. In this paper, we demonstrate the new facilities of the browser as
a visualization tool, going beyond what is expected of traditional web appli-
cations. In particular, we demonstrate that with mashup technologies, which
enable combining already existing content from various sites into an inte-
grated experience, the new graphics facilities unleashes unforeseen potential
for visualizations.

Keywords: web apps, visualization, window management, 3D UI

1 Introduction

Over the few recent years, the Web has evolved from a simple document browsing
and distribution environment into a rich software platform, which is capable of
hosting desktop-style applications. Moreover, these applications are increasingly
often treated as first class citizens.

The document-centric origins of the Web are still visible in many areas. Conse-
quently, it has been traditionally considered difficult to compose truly interactive
web applications. A partial solution has been to use plug-in components or browser
extensions, such as Adobe Flash or Microsoft Silverlight, but such binary or com-
pany specific technologies do not fit well to the ideals of the open web, advocating
web applications that are built using technologies that are open, accessible and as

∗Department of Pervasive Computing, Tampere University of Technology, E-mail:
{jari-pekka.voutilainen, anna-liisa.mattila, tommi.mikkonen}@tut.fi

DOI: 10.14232/actacyb.21.3.2014.2



292 Jari-Pekka Voutilainen, Anna-Liisa Mattila, and Tommi Mikkonen

interoperable as possible to avoid vendor-specific lock-in. As a manifestation of this
attitude, it is not unusual for complex applications to use the web as their only
platform. In other words, despite the technical difficulties and limitations, there is
no traditional installable application for the desktop – the system is simply accessed
via a web page that is downloaded inside the browser, whose runtime resources are
then used by the application. We believe that the transition of applications from
the desktop computer to the web has only started, and the variety, number, and
importance of web applications will be constantly rising during the next several
years to come.

In comparison to desktop applications, the benefits of web applications are
many. Web applications are easy to adopt, because they need neither installation
nor updating – one simply enters the URL into the browser and the latest version
is always run. Furthermore, web applications are easy and cheap to publish and
maintain; there is no need for intermediates like shops or distributors. Furthermore,
in comparison to conventional desktop applications, web applications have a whole
new set of features available, like online collaboration, user created content, shared
data, and distributed workspace. Finally, with the whole content of the web acting
as the data repository, the new application development opportunities, unleashed
by the newly introduced facilities of the web technologies that make the browser
increasingly capable platform for running interactive applications, are increasing
the potential of the web as an application platform.

In this paper, we demonstrate the new facilities of the web as an information
visualization tool, going beyond what is expected of browser based applications.
Moreover, we demonstrate that together with mashup technologies, which enable
combining already existing content from various sites into an integrated, usually
more compelling experience, the new graphics facilities results in unforeseen po-
tential for visualization of context-specific data. Together with data science, the
approach can be generalized to increasingly complex systems, which simplifies data
consumption tremendously.

The rest of the paper is structured as follows. In Section 2, we discuss the
evolution of the web and the main phases that can be identified in the process, and
briefly address two important web standards - HTML5 and WebGL - and their role
in the development of new types of web applications, building on already available
resources. In Section 3, we introduce our technical contribution, Lively3D, which
is a host environment that is capable of integrating multiple applications within
single 3D-scene and visualize the environment in three different ways. In Section 4,
we discuss development issues related to Lively3D’s 3D user interface and introduce
a redesigned version of Lively3D’s UI. In Section 5 final conclusions are drawn.

2 Background

The World Wide Web has undergone a number of evolutionary phases [6]. In the
first phase, web pages were truly pages, and navigation between pages was based
simply on hyperlinks – a new web page was loaded from the web server each time



Lively3D: Building a 3D Desktop Environment as a Single Page Application 293

the user clicked on a link. These pages were truly page-structured documents that
contained primarily text with some interspersed static images, without animation
or any interactive content, which were only introduced in the second phase, as web
pages became increasingly interactive, created by using animated graphics and plug-
in components. In this phase, the JavaScript scripting language enabled building
animated, interactive content with technologies primarily associated with the Web
only. Moreover, as a part of the transition to this phase, the Web started moving
in directions that were unforeseen by its designers. Web sites started behaving
more like multimedia presentations rather than page-structured documents, content
mashups and web site cross-linking became increasingly popular.

Today, the browser is increasingly used as a platform for real applications, with
services such as Google Docs with its desktop-like interactions paving the way
towards more complex systems. We expect that as more and more data becomes
available online, the capabilities of the browser will be increasingly often harnessed
to filter and further process the data into a form that can be more easily consumed.
In this context, two recent initiatives form an important perspective. These are the
open web, perhaps best manifested in Mozilla Manifesto1, which centers around the
idea that the web that is a global public resource that must remain open, accessible,
interoperable and secure, and open data, which according to Wikipedia2, builds on
the idea that certain data should be freely available to everyone to use and republish
as they wish, without restrictions from copyrights, patents, or other mechanisms of
control.

To support the above initiatives, the need to use plugins is being seriously
challenged by two recently introduced technologies, HTML5 and WebGL, as already
pointed out in [5]. These new technologies provide support for creating desktop-
like applications that run inside the browser (HTML5) and enable direct access
to graphics facilities from web pages (WebGL). This, together with already well-
known techniques for mashupping, are paving the way towards the next generation
of web applications, with increasing capabilities for modeling and visualizing data
and conceptual information.

The forthcoming HTML5 standard3 complements the capabilities of the existing
HTML standard with numerous new features. Although HTML5 is a general-
purpose web standard, many of the new features are aimed squarely at making
the Web a better place for desktop-style web applications. There are numerous
additions when compared to the earlier versions of the HTML specification. To
begin with, the new standard will extend the set of available markup tags with
important new elements. These new elements make it possible, e.g., to embed
audio and video directly into web pages. This will eliminate the need to use plug-
in components such as Flash for such types of media. The HTML5 standard will
also introduce various new interfaces and APIs that will be available for JavaScript
applications.

1http://www.mozilla.org/about/manifesto.html
2http://en.wikipedia.org/wiki/Open data
3http://www.w3.org/TR/html5/



294 Jari-Pekka Voutilainen, Anna-Liisa Mattila, and Tommi Mikkonen

WebGL4 is a cross-platform web standard for hardware accelerated 3D graphics
API developed by Mozilla, Khronos Group, and a consortium of additional compa-
nies including Apple, Google and Opera. The main feature that WebGL brings to
the Web is the ability to display 3D graphics natively in the web browser without
any plug-in components. WebGL is based on OpenGL ES 2.05, and it uses the
OpenGL shading language GLSL. WebGL runs in the HTML5’s canvas element,
and WebGL data is generally accessible through the web browser’s Document Ob-
ject Model (DOM) interface. A comprehensive JavaScript API is provided to open
up OpenGL programming capabilities to JavaScript programmers.

As a technical detail, it is important to notice that the WebGL API is imple-
mented at a lower level compared to the equivalent OpenGL APIs. This increases
the software developers’ burden as they have to implement some commonly used
OpenGL functionality themselves. To make it easier and faster to use WebGL,
several additional JavaScript frameworks and APIs have been introduced, includ-
ing Three.js6, Copperlicht7, GLGE8, SceneJS9, and SpiderGL10. Such frameworks
introduce their own JavaScript API through which the lower-level WebGL API is
used. The goal of these libraries is to hide the majority of technical details and
thus make it simpler to write applications using the framework APIs. Further-
more, these WebGL frameworks provide functions for performing basic 2D and 3D
rendering operations such as drawing a rotating cube on the canvas. The more
advanced libraries also have functions for performing animations, adding lighting
and shadows, calculating the level of detail, collision detection, object selection,
and so forth.

3 Lively3D: Host environment for web apps

The goal of the Lively 3D proof-of-concept design was to create a 3D environment
in which applications of different kind – including data processing, visualization,
and interactive applications in particular – can be embedded as separate elements
within a single environment running inside the browser. Furthermore, the design is
based on using facilities that are commonly used in the web already, implying that
to a large extent it is possible to immediately reuse already existing content in the
system.

4http://www.khronos.org/webgl/
5http://www.khronos.org/opengles
6http://threejs.org/
7http://www.ambiera.com/copperlicht/
8http://www.glge.org/
9http://scenejs.org/

10http://spidergl.org/



Lively3D: Building a 3D Desktop Environment as a Single Page Application 295

3.1 Overview

Web app, by simple definition11, is an application utilizing web and [web] browser
technologies to accomplish one or more tasks over a network, typically through
[web] browser. Canvas application is a subset of web app, which uses a single
canvas html element12 as its graphical interface.

Lively3D13 is a web application framework, where embedded canvas applica-
tions are displayed inside a three dimensional windowing environment. Individual
applications embedded in the system can thus be composed using the Canvas API,
offered by HTML5. In general, this enables the creation of graphically rich small
apps that are capable of interacting with the user in a desktop like fashion.

The conceptual idea of Lively3D is based on previous project The Lively Ker-
nel [5]. Lively Kernel was 2D window manager and IDE that was executed in the
browser. Similar frameworks and tools have been developed by others like Ventus14

and SproutCore15.
The Lively3D framework itself is implemented with GLGE16, a WebGL library

by Paul Brunt, which abstracts numerous implementation details of WebGL from
the developer. Embedding the applications to the framework was designed in such
a way that the developer of a canvas application needs to implement minimal
interfaces towards the Lively3D system in order to integrate the application within
the environment. Existing canvas applications are easily converted to Lively3D app
by wrapping the existing code to the Lively3D interfaces.

In addition to the applications, the 3D environment that displays the applica-
tions can be redefined using Lively3D interfaces. The applications and different 3D
environments are deployed in a shared Dropbox folder, so that multiple developers
can collaborate in implementing applications and environments without constantly
updating the files on the server hosting Lively3D.

Lively3D is implemented as Single-Page Application (SPA) where the whole
application is loaded with a single page load. This provides the user interface and
the basic mechanics of 3D environments. SPA design was selected, so that appli-
cations can interact with the windowing environment and the whole state of the
environment is stored within the JavaScript namespace. The design of Lively3D
was considerably affected by the browser security model, which limits the possi-
bilities of resource usage. The security model denies access both to the local file
system and external resources in different domain with its Same-origin policy17.
The policy is upheld in Lively3D with server-side proxies, so that the browser sees
all the content in same domain. The main components of the system are illustrated
in Figure 1. All components are designed with easy-to-use interfaces and require
minimal knowledge of inner working of the framework.

11http://web.appstorm.net/general/opinion/what-is-a-web-app-heres-our-definition/
12http://www.w3.org/wiki/HTML/Elements/canvas
13http://lively3d.cs.tut.fi/
14http://www.rlamana.es/ventus/
15http://sproutcore.com/
16http://www.glge.org/
17http://www.w3.org/Security/wiki/Same Origin Policy



296 Jari-Pekka Voutilainen, Anna-Liisa Mattila, and Tommi Mikkonen

Figure 1: Structure of the Lively3D framework

Applications and 3D scenes are developed in JavaScript using Lively3D API, de-
ployed to Dropbox using the official Dropbox client, and downloaded into Lively3D
through PHP or Node.js proxies, depending on the situation. The Lively3D API
provides resource loaders, which enable deployment of application and 3D-scene
specific resources to the Dropbox so that complete applications and 3D scenes can
be downloaded through the server hosting Lively3D, thus in essence circumventing
browser security restrictions.

When a new 3D scene is designed and implemented, the developer has to define
the essential functions that are called by the Lively3D environment, similarly to
many other graphical user interface frameworks. These functions enable redefining
how the system interacts with the user, including mouse interaction, the creation
of 3D objects in the GLGE system that represents the application, and automatic
updates of the scene between frames. Additionally, the initial state of the scene
is defined in GLGE’s XML format, which can be generated with 3D modeling
software, like Blender (http://www.blender.org/) for example.

3.2 Lively3D apps

A Lively3D app consists of canvas application and its data structures in Lively3D
host environment. Usable existing web apps are limited to canvas applications,
because Lively3D is implemented in WebGL and the WebGL specification permits
the use of canvas, image and video html-elements as the only source for textures
within the 3D-environment. Most of the data structures are provided by Lively3D,
but some conventions must be followed when converting existing canvas application
to Lively3D app.

Since web apps are usually developed with expectancy that the app will be the
only app in web page, the app structure can be pretty much anything the developer
desires. But since Lively3D is implemented in Single Page Application paradigm,
Lively3D apps are separated from each other with simulated namespaces as much
as the browser model permits.

To achieve the above goal, each canvas application must have clearly separated
initialization code. Additionally all the browser elements the app uses, must be
created dynamically with a single canvas-element functioning as the only graphical
element of the application. To mitigate these restrictions Lively3D offers API for
canvas applications, which is presented in figure 2. In the following, we briefly list
the most important features of the API.



Lively3D: Building a 3D Desktop Environment as a Single Page Application 297

Figure 2: Lively3D API for applications.

To convert existing application to Lively3D app, the application must implement
mandatory function of the figure. To embed the converted app to environment, the
initialization code of the app must start the embedding process with calling the
AddApplication-function. The process is presented in Figure 3.

Figure 3: Sequence for embedding new Lively3D app.

As illustrated in the above figures, each application must implement a few
mandatory functions and call Lively3D functions in certain order to advance the
integration with the environment. During the integration, the canvas app is created
and hidden with CSS-styling.

The Lively3D framework creates 3D objects representing the app and texturizes



298 Jari-Pekka Voutilainen, Anna-Liisa Mattila, and Tommi Mikkonen

them with the canvas element. Additionally to the mandatory functions, apps can
provide optional functions which react to events like opening and closing the ap-
plication within the environment. These function have default functionalty if they
are unimplemented, but when the developer decides to provide them, they define
what happens to the application status during the different events. Additionally,
the inner state of the application can be serialized and de-serialized to developer’s
desired format.

Since the canvas element is defined as the only graphical element allowed for
Lively3D Apps, the API also provides user interface functions to display messages
and HTML in Lively3D provided dialogs. This provides consistent user interface,
since Lively3D itself is rendered in a full browser window and possibilities of dis-
playing text or other web interface elements within the environment are limited due
to the WebGL specification. Figure 4 illustrates the existing canvas application in
the left and the conversion to Lively3D app in the right with another app in the
same environment.

Figure 4: Conversion of existing application.

3.3 Redefining the 3D environment

As is common in various 3D applications, including in particular the genre of com-
puter games, the visualization in our system is based on so-called scene graph, a
generic tree-like data structure containing a collection of nodes. Nodes in the scene
graph may have many children but most often they only need a single parent. In
this structure, any operation performed to the parent is further propagated to its
children. This flexible data structure enables numerous different visualizations,
where the parent-children role can be benefited from.

The 3D environments in Lively3D are implemented dynamically, so that user
can load new environments and change between them at will. As default only one
environment is initialized in Lively3D and after adding more environments, the
process of switching between environments is presented in Figure 5. Closing the
applications and rebinding the events is done, so that the environment is in known



Lively3D: Building a 3D Desktop Environment as a Single Page Application 299

Figure 5: Sequence of switching environment.

initial state. Changing of the 3D-objects is required since GLGE allows 3D-object
to be present only in one scene at a time.

In our experiment, we have created three different ways to visualize a scene
graph where the children are applications and the root node is the 3D environment
hosting the children. Example host environments include a conventional desktop, a
planetary system where applications rotate a sun like in a solar system, and a true
3D virtual world, where applications move in a 3D terrain. These are introduced
in the following in more detail, together with a set of screen shots to demonstrate
their visual appearance.

Desktop. The conventional desktop consists of three dimensional room, cubes
that represent closed applications, and planes that act as individual applications,

Figure 6: Visualizing the system as a conventional desktop.



300 Jari-Pekka Voutilainen, Anna-Liisa Mattila, and Tommi Mikkonen

Figure 7: Visualizing the system as a solar system.

with the ability to execute JavaScript code, render to the screen, and so forth. A
screenshot of the desktop environment, with three opened and two closed applica-
tions, is presented in Figure 6. The scene mimics all traditional desktop features,
including dragging applications within the desktop and application interaction with
opening, closing, maximizing and minimizing them with mouse controls.

Solar system. The solar system scene modifies the presentation of applica-
tions. In this scene, applications are presented as spheres that revolve around the
central sun. Each revolving sphere generates a white trace in accordance to its
path, and the trace is removed when the trace reaches maximum length. Each
sphere uses the texture of the application canvas it is representing, and therefore
each sphere has a different look within the scene. An example scene with 4 ap-
plications is demonstrated in Figure 7. Application windows retain their default
functionality with dragging around, maximizing, minimizing, and so on. When an
application that has been moved around is closed, the application returns to its po-
sition revolving around the central sun, in comparison to the conventional desktop
scene where the application simply retains its current position.

Virtual world. The 3D virtual world scene goes even further from the con-
ventional desktop. The only thing retained from the desktop concept are the appli-
cation windows, and the only remaining controls for the windows are opening and
closing the application, which then of course can introduce more controls within the
application. The world itself consists of three dimensional terrain, where the user
can wander around using the keyboard and the mouse. In this setting, applications
are presented as spheres that roam the terrain in random directions, with their
textures simplified to single image for performance reasons - experiences where ap-
plication textures were used quickly showed that the resources of the test computer
would no longer be adequate for such cases. Using this visualization, the 3D terrain
and seven sample application spheres are illustrated in Figure 8. The right side of



Lively3D: Building a 3D Desktop Environment as a Single Page Application 301

Figure 8: Visualizing the system as a 3D virtual world.

the figure illustrates application canvases within the world.
All of the above visualizations are based on the same JavaScript code, with

the only difference being the rendering strategy associated with the scene graph.
Consequently, in all of these systems applications are runnable, and can in fact run
even when they are inactive and being managed by the different host environments,
except when explicitly disabled for performance reasons.

4 Refactoring Lively3D UI

In this section, we introduce some early experiences regarding the relation between
the Lively3D framework and widget libraries commonly used in desktop applica-
tions. To summarize problems, the original implementation was built directly on
primitives emerging from WebGL, whereas the refactored version is geared towards
widget libraries in its architecture.

4.1 Identified Problems

As a part of the process of designing the Lively3D framework, it became obvious
that its architecture would benefit from more abstract programming concepts, in
particular when considering the programming of the 3D UI. WebGL is a low ab-
straction level tool and 3D-engines building upon it only hide the rendering details
from programmer. In particular such libraries lack essential concepts known from
desktop application development.

As a concrete example, let us examine Lively3D’s application window. The
application window is a composition of three different 3D objects – title bar, window
content and close button. These 3D objects are grouped together and aligned so
that they appear as a window that is a solid object.

The background is that WebGL provides tools to create the 3D objects, align
and group those, but there is no tools for creating a WIMP18 elements such as
titled window which can be dragged from the title bar and closed from the close

18Windows, Icons, Menus, and Pointer



302 Jari-Pekka Voutilainen, Anna-Liisa Mattila, and Tommi Mikkonen

button. However the natural abstraction of application window is an UI widget
which has predefined look and feel, not a group of geometries which application
logic is responsible for, which was the case in our original implementation.

Most of the 3D engines built for WebGL lack also necessary event handling
capabilities. Using e.g. GLGE there is no way to bind an event listener to a 3D
object. Determining which event happened and which object receives the event
is responsibility of an application developer. In Lively3D the event handling for
3D UI is mixed into Lively3D application logic. In Lively3D there is a main event
handler which catches all events for the Lively3D canvas, determines which object
receives the event and executes functionality related to that object.

For instance, if the user clicks the close button of a window, Lively3D’s main
event handler will receive the event and calculate collision detection based on the
mouse position to determine if the mouse hit any 3D objects. After finding the 3D
object the event handler has to deduce which kind of object was hit and execute
operations related to that object. In the window’s close buttons case the operation
would be to hide the group of 3D objects that forms the window.

In Lively3D there are only two kinds of 3D widgets – application windows and
application icons – which receives only restricted amount of events so Lively3D has
fairly simple 3D UI. However if we wish to add some new interactive 3D content
to Lively3D we would need to refactor quite a lot of Lively3D code to get that
done. Simple 3D UIs can be built using low abstraction level tools however the UI
definition and logic becomes easily a mess of glut and glue solutions which makes
it hard to maintain and develop the application further.

4.2 Revisiting the Design

Motivated by the above observations we created WebWidget3D, a 3D widget library
for WebGL [3]. The idea of the library is to provide some predefined reusable 3D
widgets and tools for building custom 3D widgets. WebWidget3D provides event
system which enables binding mouse and keyboard events directly to 3D widgets.
The framework also introduces predefined controls e.g. drag control and roll control
which can be bind to any widget and fly control for moving camera in the 3D
scene. The current implementation of WebWidget3D uses Three.js 3D engine for
rendering, although 3D engine can be changed due specialized adapter component.

WebWidget3D provides predefined widgets and abstraction for creating widgets
but it does not force the 3D world to consist of only 3D widgets. WebWidget3D
content can be mixed with content (e.g. 3D objects, visual effects, animations,
physics, etc.) provided by the 3D engine used with WebWidget3D.

We redesigned and reimplemented Lively3D’s desktop UI using WebWidget3D
to see how much refactoring would affect to Lively3D’s complexity. The imple-
mentation is divided to two parts, 1) widget building blocks out of which complete
widgets can be built (Table 1), and 2) a reduced set of ready-to-use widgets that
can be used to create complete applications (Table 2). Figure 9 illustrates the
revisited implementation.



Lively3D: Building a 3D Desktop Environment as a Single Page Application 303

Table 1: Building blocks of revised Lively3D design

Component Description
GuiObject Basic event handling capabilities.
Widget Numerous commonly needed facilities for creating

applications. Base class for new widgets.
Text Simple string handling functionality.
Group Abstraction of a container that can have other com-

ponents as its children. Container can also have a
3D object representation.

Application Corresponds to an application; receives events.

Table 2: Widgets used in Lively3D

Widget Description
Grid window Instance of a Group that is represented as a 3D grid

plane. The grid window widget can be rotated in 3D
space with the mouse.

Titled window Instance of class Group. Contains three instances of
Widget class as a title bar, a close button, and for
representing the window content.

Menu window Menu composed of multiple choice buttons. Individ-
ual choices are represented as cuboids.

Dialog window Dialog composed of title text, multiple text fields and
multiple action buttons.

Figure 9: Reimplemented Lively3D.



304 Jari-Pekka Voutilainen, Anna-Liisa Mattila, and Tommi Mikkonen

4.3 Evaluation

In general, our work supports the conclusions of [2], where architecture related
aspects of traditional applications are used as a driver for the design of apps that
re run inside web pages. The goal of such designs, commonly referred to as single
page web applications, is to support reuse and modifications in the long run, thus
sharing the goals of more traditional software systems. Above, we reuse the design
paradigm that is mature in the field of desktops, but to some extent missing from
web design.

To evaluate the design, using WebWidget3D and its predefined widgets we were
able to reduce the amount of JavaScript code lines by 26% [3]. In addition, using
the library liberates developers to focus on solving application specific problems
by allowing them to overlook numerous details that remain similar in different
applications.

We also replaced Lively3D’s 2D UI (menus and dialogs) with corresponding 3D
UI widgets. This design reduced the number of code lines of HTML and CSS but
on the other hand increased lines of code of JavaScript code.

5 Conclusions

Lively3D framework presents architecture to download and execute different appli-
cations within same environment. Although similar windowing environments have
been developed and studied for years like Compiz/Beryl19, our experiment runs on
top of the browser. This approach has the advantage of the cloud, so that the user
does not need to install anything else except the browser to execute the environ-
ment and the applications. This approach also works in different platforms from
desktop Windows and Linux to mobile phones.

Our prototype demonstrates that integrating individual applications in a single
web page is possible and achievable without complex structures from the application
developer. However, one of the main goals – using existing content, preferably
complete web sites in the system as applications – turned out to be unreachable.
Due to the WebGL specification limitations, the use of existing content as textures
is limited to image, video, and canvas elements, whereas in order to render existing
web pages within 3D environment, the WebGL specification should to support
IFrames as a source for textures. Currently, this option is associated with security
issues - using the WebGL API gives loaded applications a direct access to the
host devices hardware - which must be resolved before extending the rendering
capabilities. Until then, applications are limited to the functionality of canvas
element to produce graphics.

Additional security issues also emerge. Applications share the same JavaScript
namespace which causes problems with variable overwriting. Even though each
application has a simulated private namespace, variables might bleed through to
the global namespace if the variable is missing var keyword. Applications can ac-

19http://www.compiz.org



Lively3D: Building a 3D Desktop Environment as a Single Page Application 305

cess global variables and overwrite them, including Lively3D namespace, other used
JavaScript libraries and even browsers’ default JavaScript functionality. This espe-
cially causes accidental problems with generic JavaScript libraries, since they are
usually bound in $ variable, which is overwritten when new library is loaded and ba-
sic functionality of the environment brakes down as result. These problems could be
fixed with proper process model where each application has its own private names-
pace and rendering context. There has been an emergence of JavaScript frameworks
like Require.js20 and browserify21 that encapsulate parts of the JavaScript code to
separate modules, this could be used as a pattern to fix some of the problems of
Lively3D.

The Single Page Application paradigm has its advantages and disadvantages.
Even though applications are in the same JavaScript namespace, this could be
leveraged so that applications could communicate with each other. To enable this,
the environment would need common JavaScript interfaces for application commu-
nications. Current implementation does not provide documented APIs for this.

One of the goals of Lively3D was minimal overhead code while embedding ex-
isting applications. We consider that this requirement was achieved quite well,
although comprehensive analysis between converted applications is useless since
amount of overhead code depends on coding conventions. In Lively3D most of
the application initialization must be done dynamically in JavaScript code, as op-
posed to convential browser where HTML tags can handle some of the resource
downloading. The minimal overhead code amounts to about 50 lines of extra code.

In the course of the design, we were alarmed by the fact that the circumvention
of security restrictions became one of the key design drivers in the experiment. In
this field, the problems arise from the combination of the current ”one size fits
all” browser security model and the general document-oriented nature of the web
browser. Decisions about security are determined primarily by the site (origin) from
which the web document is loaded, not by the specific needs of the document or
application. Such problems could be alleviated by introducing a more fine-grained
security model, e.g., a model similar to the comprehensive security model of the
Java SE platform [1] or the more lightweight, permission-based, certificate-based
security model introduced by the MIDP 2.0 Specification for the Java Platform,
Micro Edition (Java ME) [4]. As already pointed out in [6], the biggest challenges in
this area are related to standardization, as it is difficult to define a security solution
that would be satisfactory to everybody while retaining backwards compatibility.

Finally, there are numerous new methodological issues associated with the tran-
sition. The transition from conventional applications to web applications will result
in a shift away from static programming languages such as C, C++ or C# towards
dynamic programming languages. Since mainstream software developers are often
unaware of the fundamental development style differences between static and dy-
namic programming languages, they need to be educated about the evolutionary,
exploratory programming style associated with dynamic languages. Furthermore,

20http://requirejs.org/
21http://browserify.org/



306 Jari-Pekka Voutilainen, Anna-Liisa Mattila, and Tommi Mikkonen

techniques associated with dealing with big data – data sets that are too large to
work with using on-hand database management tools – data mining, and mashup
development will be increasingly important.

To conclude, when considering the humble beginnings of the web browser as a
simple document viewing and distribution environment, and the fact that program-
matic capabilities on the Web were largely an afterthought rather than a carefully
designed feature, the transformation of the Web into an extremely popular software
deployment platform is amazing. This transformation is one of the most profound
changes in the modern history of computing and software engineering.

In this paper, we are demonstrating the effect of new ways to visualize content
in a fashion where the browser’s new extensions are based on new web protocols
rather than plugins, which has been the traditional way to create richer media inside
the browser. Since no plugins that commonly introduce restrictions associated with
their proprietary origins, the new technologies are manifesting the open web and
open data. This, together with open data that is be available to everyone to freely
use and republish as they wish without mechanisms of control, in turn liberates the
developers to create increasingly compelling applications, building on the facilities
that already exist in the web as well as their own innovative ideas.

References

[1] Gong, Li and Ellison, Gary. Inside Java(TM) 2 Platform Security: Architecture,
API Design, and Implementation. Pearson Education, 2nd edition, 2003.

[2] Kuuskeri, Janne. Engineering web applications: Architectural principles for web
software. Tampere University of Technology, 2014.

[3] Mattila, Anna-Liisa and Mikkonen, Tommi. Designing a 3d widget library for
webgl enabled browsers. In Proceedings of the 28th Annual ACM Symposium
on Applied Computing, SAC ’13, pages 757–760, New York, NY, USA, 2013.
ACM.

[4] Riggs, Roger, Huopaniemi, Jyri, Taivalsaari, Antero, Patel, Mark, and Uotila,
Aleksi. Programming Wireless Devices with the Java 2 Platform, Micro Edition.
Sun Microsystems, Inc., Mountain View, CA, USA, 2 edition, 2003.

[5] Taivalsaari, Antero, Mikkonen, Tommi, Anttonen, Matti, and Salminen, Arto.
The death of binary software: End user software moves to the web. In Pro-
ceedings of the 2011 Ninth International Conference on Creating, Connecting
and Collaborating Through Computing, C5 ’11, pages 17–23, Washington, DC,
USA, 2011. IEEE Computer Society.

[6] Taivalsaari, Antero, Mikkonen, Tommi, Ingalls, Dan, and Palacz, Krzysztof.
Web browser as an application platform. In Proceedings of the 2008 34th Eu-
romicro Conference Software Engineering and Advanced Applications, SEAA
’08, pages 293–302, Washington, DC, USA, 2008. IEEE Computer Society.


