Acta Cybernetic21 (2014) 383-399.

Service Composition for End-Users

Otto Hylli; Samuel LahtinenAnna Ruokonephand Kari Systa

Abstract

RESTful services are becoming a popular technology forighog and consuming
cloud services. The idea of cloud computing is based on omadd services and
their agile usage. This implies that also personal senacepositions and workflows
should be supported. Some approaches for RESTful serviopasitions have been
proposed. In practice, such compositions typically preseshup applications, which
are composed in an ad-hoc manner. In addition, such apsactd tools are mainly
targeted for programmers rather than end-users. In thisrpapiser-driven approach
for reusable RESTful service compositions is presentecch $ompositions can be
executed once or they can be configured to be executed rdyedde example, to get
newest updates from a service once a week.

Keywords: service composition, REST, web, WADL

1 Introduction

Use of internet-based services is a routine activity folliamk of users. However, the

services are often silos and users do not have means to ep@imanage their content
across the services. Even average PC users can transfentbetween applications, but
nothing similar is possible for the Internet services theg.un this paper we propose an
approach that allows end-users to create compositionbégpiirpose of combing several
internet services or resources.

In service-oriented approaches dominant in the enterpeisgces, the focus is on the
definition of service interfaces and service behavior. Berariented architecture (SOA)
aims at loosely coupled, reusable, and composable sempioggled for a service con-
sumer. SOA can be implemented by Web services, which is atday enabling appli-
cation integration. Web services can be used for composgiglavel composite services
and business processes. Business processes are ofteedeaia service orchestration
implemented, for example, as WS-BPEL based processes [S}BREL is targeted for
composing operation-centric Web services utilizing WSDd SOAP [20,21]. WS-BPEL
is close to a programming language defining the logic for @iseorchestration. Thus, it
is mostly used by IT developers.

“Department of Pervasive = Computing, Tampere University ofechhology, E-mail:
{otto.hylli,samuel.lahtinen,anna.ruokonen,kari.systa}@tut. fi

DOI: 10.14232actacyb.21.3.2014.7

384 Otto Hylli, Samuel Lahtinen, Anna Ruokonen, and Kari Systd

In cloud-based systems, resources are provided to the sisendces via the Internet.
On the other hand, the services are accessible anywherkrangh several devices. Com-
pared to basic Internet-based service delivery, cloud at#dsic provisioning and release
of computing capabilities. Cloud computing and SOA shanglar interests on service
reuse and service composition. Moreover cloud computinghersizes on-demand ser-
vices, which means that services should be ready for useyatraa when needed. This
also applies for service configurations. Thus, service gandition and composition should
be enabled on-line.

Compared to business processes, typical on-demand pesdesend-users are per-
sonal, simpler, and their lifetime is shorter than tragiibbusiness processes. Thus, on-
demand processes are often characterized as instantseovipositions and service con-
figurations. Such processes are typically defined by theusedinstead of the developer
of the cloud services. Due to instant nature of the on-denpaocesses, their usage and
specification should be as simple as possible and requinestallation of process devel-
opment and management tools.

An end-user driven approach for WS-BPEL-based businessepsadevelopment has
been proposed in [18]. The approach is targeted for progidimethod for easy sketching
of service orchestrations. In the proposed approach, afsatemarios, given as UML
sequence diagrams, are synthesized into a process descriptowever, in the context
of cloud computing and on-demand processes, the use of UMlelimy and standalone
tools is not a proper solution.

Usually, software services in the cloud are targeted fortipiel users and they pro-
vide a programmable interface, most often a Representdt®iate Transfer (REST) API.
REST is a resource-oriented architectural style develdpedlistributed environments
such as for Web and HTTP based applications [5]. RESTfulicesyprovide an unified
interface (GET, PUT, POST, DELETE) for data manipulatiohus, composition of such
services often includes combining resources and is creiaetl as mashup-type of devel-
opment. Some guidelines for mashup development have beposed (e.g. [14]). Thus
the WB-BPEL-based approach is not applicable for cloudtagrvices and mashups.
Composing and orchestration of RESTful services is stdkilag tool vendor indepen-
dent practices and description languages. Thus, the dawvelat is often done more in an
ad-hoc manner.

SaaS applications are often targeted for end-users. TheseHrcontained and contain
user-interfaces, business rules, and possibly some ntatada

A recent trend is cloud mashups, which combine resources frultiple services
into a single service or application [19]. The provider aégh service compositions can
enhance the cloud’s capabilities bfering new functionalities, which make use of existing
cloud services, to clients.

In this paper, a novel approach for developing personalicompositions is pre-
sented. The approach is targeted for the end-user and atiomposition of RESTful
cloud services. The approach includes tackling the folhmussues: (1) easy sketching
of service compositions using a simple visual languagea(@)echanism to expgsave
composite descriptions for future usage i.e. reusable ositgpdescriptions, and (3) an
engine for executing the service compositions, once oratepply. The implementation
of the approach called Aino service composer is currentjenilevelopment. The Aino

Service Composition for End-Users 385

service composer includes a web browser based editor, whiclbe used to create sim-
ple on-demand service compositions. An earlier versiomeftbol description has been
published in [9].

The rest of the paper is organized as follows. In Section 2deszribe the overall
approach and related components. In Section 3, two use frasasd-user driven service
composition are presented. Aino service composer is destin Section 4. In Section 5,
related work and topics are discussed. In Section 6, coldsisnd plan for future work
are presented.

2 User-driven approach for service composition

In this paper, an end-user driven approach for defining patsservice compositions is
presented. The main goal of the approach is on easy desigmaés compositions, which
requires minimal technical knowledge. The service contosis created by using GUI
widgets, which are generated based on an imported servieipgon. Widgets present
individual resources and they can be dragged and droppeldeocanvas. The user can
draw dataflow pipes to connect the widgets. Incoming andanggdataflows are mapped
to REST methods (e.g. outgoing dataflow for GETting a resmpresentation).

The implementation of the approach called Aino service aasep consists of two
components, designer limarinen and engine Sampo. limare client side application
for creating and editing compositions and it is run in a watwser. Sampo is a server side
application, which is an engine for running the service cosions. The composition de-
scription is given in XML-based format, called Aino destign. As a service description
format, the approach is based on WADL descriptions [22].efirees the resources, i.e.,
URIs, methods, and parameters. That is, while the Aino detsum specifies the service
logic, the WADL description describes the service integfac

Sampo also plays a role of a service registry. Once a serviggistered in Sampo,
it can be used as a constituent service for future applicati@®ne reason for providing
a centralized registry, instead of letting the user seaimim the web, is that for RESTful
services there is no agreement on one service descriptiamafo In case a third-party
service does not have a compatible WADL description, it carcieated afterwards and
registered to Sampo. Thus, the approach allows using ssrvighich do not natively
provide a WADL description, as reusable constituents.

The approach includes the following steps:

(1) query services from the service registry,

(2) select services to be used as a part of the composition,

(3) composition described as a data flow between servicds, an

(4) send the composition description to the server engife texecuted.

The main steps are shown in Fig. 1. It also shows the relati@hseen the main
components of the system and descriptions, Aino and WADIi¢kvare used for importing
and exporting data (i.e. service and composition desoripji

386 Otto Hylli, Samuel Lahtinen, Anna Ruokonen, and Kari Systd

limarinen (composition designer)

Services (2) create composition
Aino
. | description
A
(1) Search services and | : - Ei?neongzcﬁﬁ)?gg)smon
Service descriptions * : (2) return descriptions fo Sampo
Sampo \J

(5) exectute composition
composition

service

, storage
registry

Figure 1: The main steps of the approach

3 Usecases

The following two use cases illustrate the possibilitigke®d by service compositions
for regular internet users. They show how after encourngesimormally labor intensive
internet based task including multiple services, a userpratty easily create a service
composition that takes care of the task.

3.1 Usecasel: Photosfrom Twitter to Flickr selectively

An avid Twittet user has been sending many photos taken with his smart plirectyd
to Twitter. The user wants a better way to organize and shaghotos so he opens an ac-
count in Flick? which enables him to save photos téfeient albums, associate keywords
to them and decide which photos are public. Uploading alphistos manually to Flickr
would be tedious for the user. He would have to go throughwigtdr time line, download
each photo to his computer and then upload it to Flickr.

To automate the upload process the user wants to create iaeseomposition with
Aino service composer. He opens the composition desigmerihen and chooses that he
wants to get photos. limarinen shows him a list of servicemfivhere he can get photos
and he chooses Twitter. From Twitter he chooses that he ywantss from one user which
in this case is himself. He also indicates that all photosikhtt be fetched, instead he
will select the ones he wants. Then the user tells limarihem he wants to upload the
photos selected in the previous step. From the serviceshiistn by limarinen he chooses
Flickr as the upload target. Additionally he specifies thatants to choose for each photo

Iwww.twitter.com
2www.flickr.com

Service Composition for End-Users 387

whether it is private or public. Lastly, he tells limarindrat he wants to delete photos and
chooses Twitter. He specifies that from Twitter he wants tetdethose photos he has
marked as private for Flickr.

When he executes the composition the execution engine Strsipasks him to autho-
rize Sampo’s use of his Twitter and Flickr accounts. Authation will be done by using
OAuth [10] which means that the user authenticates to bathcgs which then give ac-
cess tokens to Sampo. Sampo will store these access tokdaiefaise if the user wants it
so that next time a service composition using these serisges the user doesn’'t need to
authenticate to the services. He just has to log in to Sampenthe actual execution has
started Sampo will first show the user all his photos from fewiand asks him to choose
those he wants. After that Sampo shows the user his preyichsken photos and asks
which of them he wants to be private in Flickr. After the exému has finished Sampo
shows the user a execution results summary which tells tiea¢xecution was a success
and shows how many photos were processed in each step.

3.2 Usecase2: Affordablereading

An enthusiastic book reader uses the Goodreseis/ice to support her hobby. Goodreads
is an online community for readers where users can searchdoks, rate and review
them. Users can also categorize books in their profile byrapitiem to diferent shelves.
One of these shelves is to-read where the user has been adgiresting books, which
she has found through Goodreads’ recommendation systeenw&tts to buy some new
reading from her to-read shelf but due to her current poonewuc situation she wants it
to be as cheap as possible. Searching for each book’s poigelfer favorite online book
retailer Amazof and then comparing the prices manually would be time consgisd
she decides to create a service composition to make thegzrqoécker.

The user opens the service composition designer limarindclooses that she wants
information about books. Iimarinen gives the user a listesf/&es that deal with books.
The user chooses Goodreads and indicates that she wantsteatoof a particular user’s,
in this case hers, particular shelf. limarinen asks the tes@rput the name of the user
and the name of the shelf which in this case are the user’s Badd user name and to-
read. Next the user tells llmarinen that she wants onlinggimg services. From the
service list she chooses amazon.com. She specifies thatasite product information
about the books from the previous step. Lastly she tellsrilmea that she wants the results
in ascending order by price. When this composition is rurréselt is a table containing
book information from Amazon including the price and a linklte Amazon product page
where the book can be bought.

4 Implementation

The prototype implementation of the Aino service composesists of two main compo-
nents: Designer limarinen and engine Sampo. Sampo exdbetssrvice compositions,

Swww.goodreads.com
4www.amazon.com

388

Otto Hylli, Samuel Lahtinen, Anna Ruokonen, and Kari Systd

Web browser

)

{ - Sampo . - Sampo l
- (service registry) — ~ (execution engine)
—— ——— S~
Service Service = =
description description Composition 1 Composition 2

WADL WADL

Sampo

Execution Ul

(Aino) (Aino)

|

Service composition
In execution

Figure 2: High level architecture of the Aino service congos

stores the service descriptions arfteos limarinen access to the information. The sepa-
ration of the two main componets allows their more indepehdevelopment. Figure 2
illustrates the high-level architecture of the Aino seevitomposer. The user uses browser-
based limarinen to create service compositions. A senaceposition is a service. Its
interface is defined as a WADL document and its executiomuntibns are defined with
the Aino composition description language. Both XML docuseare stored in Sampo.
The user interacts with engine component Sampo which is eserecute the composi-
tions. The execution and possible user interaction rekatélie execution is again done in
a browser based Ul.

4.1 Servicedescription

All the constituent services, as well as the service contiposiare described with WADL
documents. WADL description defines the service, providethads and their parameters,
as well as data types. The data types can also be defined aatseyiL schema files.
An example of a simple service description is shown belovhak a partial definition of
Twitter's get user timeline method which returns a specifiachber of tweets from the
given user.

<?xml version="1.0" encoding="UTF-8"?7>
<application>
<grammars></grammars>
<resources base="https://api.twitter.com/1.1">
<resource path="statuses/user_timeline.json">
<method href="getTimeline"/>
</resource>
</resources>
<method name="GET" id="getTimeline">
<request>
<param name="screen_name" style="query" type="xsd:string" />
<param name="count" style="query" type="xsd:integer" />
</request>
<response>
<representation mediaType="application/json" />
</response>

Service Composition for End-Users 389

</method>
</application>

4.2 Engine Sampo

Engine Sampo is used in two ways, as a service registry and asgine to execute the
service compositions. Services can be added in the seegtstny as WADL descriptions.

It provides the basic functionality for registration of thervices, i.e. API for adding,

removing, and searching the services. When a new WADL isati&o the part of

the categorization of the service and the resources canrieealdomatically based on the
WADL and an expert user, who understands rest services andl\\V@an complete the

information and extend the suggested categorizations.

The given metadata is used tfier limarinen lists of the services. For instance, the user
can ask to get a list of services related to pictures. Thamkiset metadata limarinen only
needs to process WADLS of the services user adds to her cdtiopasstead of processing
every WADL.

The other part of Sampo provides a REST interface for addimjexecuting Aino
descriptions. The service composition execution uses Airbthe corresponding WADL
descriptions for getting the required information on theviees and their API. The engine
uses this information to invoke correct API calls to the 8% and combine the tasks to
create the complete composite service.

Sampo contains a user interface for handling the compasitibhe user can parame-
terize the composition and define time intervals of executin case of a recurring task the
service page can be used to start and stop the compositidrehiange their time intervals.
For instance, one could define a service composition thatiisdhed weekly.

Sampo implements simple basic services, for example, éptalying images and news
feeds. These are available as components in limarinen amde&added to a service
composition in similar fashion as external services.

Sampo is implemented as a Java based web application witBpieg framework
Sampo’s implementation is ongoing work. Features thatirequork include making
Sampo work with a creater number of data types and implemgntietadata editing for
services.

4.3 Designer lImarinen

llmarinen is a client side application, which provides apiniaal interface for creating the
service compositions. The user is provided a simple vismairenment for defining the
service composition. The composition is done partially guaded manner. A screenshot
of an early prototype version of the tool is shown in FigureT®ie user can choose the
services e.g. Twitter, BBC Program guide, Weather) she sMaased on the service cat-
egory (e.g. Social media, file storage, picture, progrardeg)i For the services the user
can define the interaction and the resources related to tir@ation.

In the service composition key elements are the serviceslatedflow between them.
After adding a service one can see the input and output plitss#boffered by it. These

Shttpy/projects.spring.ispring-framework

390 Otto Hylli, Samuel Lahtinen, Anna Ruokonen, and Kari Systé

inputs and outputs are parameterized and services areatedne each other using them.
When the user has finished, limarinen generates the Ainaigden. This is exported
to Sampo engine for execution. The composition is storedaim® and can be accessed
directly using a corresponding link. That allows the useradcess and execute the com-
positions directly without using llmarinen. This also elestsharing service compositions
among diferent users.

Logout (ottohylli)

an operation, select the operation by clicking it,

Method parameters

Figure 3: Screenshot of Prototype of limarinen

4.4 Composite description language Aino

Descriptions written in Aino language define the services @sources involved in the
composition and the dataflow. A dataflow from one service ttlaer means by getting
resource presentation from one service with GET methodsiasimg) it as an input to an-
other service using PUT, POST, or GET methods. Services maride three types of
resources: resource out (for GETting a representatiosguree in (for PUTting or POST-
ing), and resource jout (for PUTting or POSTing and GETting). For data manipolat
control nodes, such as merge and select nodes, are used.

The dataflow can be modeled as an acyclic graph structurehwbisists of resources,
control nodes, and dataflow connections between them. @omdes are used for manip-
ulating resource representations, e.g. transformingterifig data.

In addition to resource, control nodes and dataflow conoestithe dataflow includes
definition of method calls that are executed when the contipass run. These method
calls to the services are presented as GET, PUT, POST, andeDEElelements in the
XML description. In addition, the composite service careiee method calls from other
compositions using this as a service or from user agenaiitti. These are presented as
onPUT, onGET, onPOST, and onDELETE elements. Correspgmdijuest and response
message types (including data types) are described in theessg WADL documents.

Service Composition for End-Users 391

These activities corresponding to REST operations areaime swhich are used in BPEL
for REST [16] proposal.

H doc

" -
H services rf%lr«;»f service
=

H resources oz resource |

=
M variables F‘Ak:r‘»—{ variable !J‘"—‘-ﬁ—{ variable H
T= T
[response

description %4@» «{’ resource_id

" request

Y dataflow %—@—{ onMETHOD Llﬁf/:e;— ‘ DELETE

sequence ol

Figure 4: Aino language structure

To enable importing and exporting of compositions, Ainoaliggions are transformed
in XML format. The structure of Aino language is given in Figud. It is explained
in detail using an example Aino description given below. Then description presents
an example of sending links from Twitter tweets to Instapfpénstapaper is a service
where users can add links to articles they found from the Wwabthey want to read later.
Resources part defines two resources, Twitter’s user timelnd instapaper’s add, which
participate in the composition. User timeline returns tesiced bumber of tweets from
the specified user. Its WADL was an example in section 4.1tapraper’'s add resource
adds the link in the url parameter to the account whose userr@ad password are in the
respective parameters.

The example composition consists of a receive message anehéssage invocations.
Execution starts when the client invokes GET method on tineposite resource (onGET
element). Execution continues with a sequence of two inimes. First the composite
service invokes GET method on Twitter and second it invokgSPmethod on Instapaper.

<?xml version="1.0" encoding="UTF-8"?7>

<description name="tweetlinks2instapaper" >

<doc>Send links from the 10 most recent tweets from the specified user to Instapaper.</doc>

<services>
<service name
<service name

</services>

"twitter" id="52d" />
"instapaper" id="52f" />

Swww.instapaper.com

392 Otto Hylli, Samuel Lahtinen, Anna Ruokonen, and Kari Systd

<resources>
<resource uri="https://api.twitter.com/1.1/statuses/user_timeline.json"
resource_id ="r1" service_id = "52d" />
<resource uri="https://www.instapaper.com/api/add" resource_id ="r2" service_id = "52f" />
</resources>
<variables>
<variable name="twitterparams" type="variableset" >
<variable name="screen_name" type="string" open = "true" />
<variable name="count" type="integer" value="10" />
</variable>

<variable name="links" type="linklist" />
<variable name="instapaperparams" type="variableset" >
<variable name="username" type="string" value = "john.smith@gmail.com" />
<variable name="password" type="string" value="password123" />
<variable name="urls" type="variablereference" value="1links" />
</variable>
</variables>

<dataflow>
<OnGET>
<request></request>
<response>links</response>
<resource_id>r_comp</resource_id>
<sequence>
<GET>
<request>twitterparams</request>
<response>links</response>
<resource_id>rl</resource_id>
</GET>
<POST>
<request>instapaperparams</request>
<response></response>
<resource_id>r2</resource_id>
</POST>
</sequence>
</onGET>
</dataflow>
</description>

Variables are used for storing and manipulating messageesal For example, the
given code listing defines three variables, which corredporinput and output message
types of the used GET and POST methods. The variabéter params andinstapaper-
paramsare of the typeariableset which means that they contain multiple variables. These
variables contain the parameters for the requests to th@ssr This is indicated in the
Aino description by putting them into the request elemehti®service call. The member
variables of these sessreen_name, count, username andpassword correspond directly to
parameters defined in services’ WADLs. So for example Twsttaser timeline method
has a parameter namedreen_name. The variable links contains a list of links. Links
from the Twitter method call’s response are saved to thimkr. How this information
is extracted from the response is explained in section 4tte lihks variable is also the
response of the composition which means that it will be shtawthe user. The variable
is also one of the request parameters for Instapaper beoétse variable reference in
the instapaperparams. Because Instapaper’s api doepprisending multiple links in
one request, the execution engine has to make multiple egsests but this detail doesn't
matter to the Aino description.

screen_name is initialized, when the user fills in the required input datden she

Service Composition for End-Users 393

decides to run the composition (see Figure 5). A controkate is used for specifying
process instance specific information, such as initialevaliprocess variables and repeti-
tion information, which is not part of Aino description.

0 Sampo beta = =

tweetlinks2instapaper ‘

Send links from the 10 most recent tweets from the specified user to instapaper.
Twitter account the links are loaded from can be changed by giving screen_name.

shsSoittorasia screen_name

[run only once

Repeat interval: Begin time: Begin date:

weekly v | |16:00:00 732014

Figure 5: A Control User Interface for the service Composisi

45 Data processing

One challenge in combiningfiiérent internet services into compositions are thedént
ways the services represent the same data. Many servicesvitteahe same kind of
data, e.g. photos or status updates. However, these serejmesent this data inftkrent
ways. One uses XML in representing its resources while a@maikes JSON. Even if
both services in a composition use the same format the schemla very probably be
different. Below is an example of how Twitter and Facebook remtea status update.
Both service’s status update contains the name of the pdister of the posting and the
actual content of the status. They hav&atent names for these attributes and they also
have a diferent time format for the posting time. In addition, eaclvieerhas additional
service specific information about the status update wisictot shown here.

Facebook:
{
"id":"201192066592832",
"from":{
"name":"Otto Hylli",
"id":"10883825396030"
1,
"message":"Hello, world.",
"updated_time":"2012-05-15T20:35:25+0000",
}

Twitter:

{
"text": "Hello, world",
"id": 377326766385573888,

394 Otto Hylli, Samuel Lahtinen, Anna Ruokonen, and Kari Systd

"user": {
"id": 918830997,
"name": "Otto Hylli"

1,
"created_at": "Mon Aug 16 17:45:23 +0000 2013"
}

Our solution for this problem is to define a set of generic dgpas that internet ser-
vices provide and consume. These types include among aitetus update, photo, link,
location and product. For each data type we define a grougrdflges that this kind of
data generally has. For instance, a status update has theeafdhe poster, the content of
the status update, and the time of the posting. For a sehatedturns representations that
correspond to a certain data type the representation nedmsrnapped to the data type.
For example, in Twitter's and Facebook’s cases mappingiimétion tells how to build a
status object from the JSON. For instance, Where in JSONdhtng time of the update
is and what the format of the time information is. This medrad tve need mechanisms to
locate the interesting data from a structured document.

For locating the desired information from the represeatative use XPath [23] for
XML representations and JsonPath [6] for JSON. XPath is g@uage for addressing spe-
cific parts of a XML document. It is based on XPath expressiamish select the specified
nodes from the XML. JsonPath is a similar system for JSON.tiXBad JsonPath based
data processing information can be added by an expert usetlglito a service’s WADL
or to the service’s metadatain the service registry. In lsaies the metadata will contain
the required formatting information such as the time forosgd. For instance, Twitter's
time format can be represented with this pattern string: ENMH:m:s Z y. The pattern
format used is from the standard Java class used in the inapliation to parse dates.

In the WADL XPath or JsonPath information is located inside tepresentation ele-
ment of a resource’s method’s response. The informatieif its contained in the param
elements. The parameter's name is a keyword that tells whetd€ information it con-
tains, e.g. the author of a status update. The path attrdfittee parameter contains the
XPath or JSONPath expression itself. The example below shiog/representation ele-
ments for Twitter's and Facebook’s methods that returnteofistatus updates. A more
refined description of the generic data types and servicadat that uses them will be
published in [8].

Twitter:

<representation mediaType="application/json">
<param name="status_text" type="xsd:string" path="$[*].text" />
<param name="status_creator" type="xsd:string" path="$[*].user.name" />
<param name="status_posted" type="xsd:string" path="$[*].created_at" />
</representation>

Facebook:

<representation mediaType="application/json">
<param name="status_text" type="xsd:string" path="$[*].message" />
<param name="status_creator" type="xsd:string" path="$[*].from.name" />
<param name="status_posted" type="xsd:string" path="$[*].updated_time" />

</representation>

Service Composition for End-Users 395

5 Reated work

The idea of cloud computing is based on on-demand servideshware provided as SaaS
applications. In the cloud, traditional business procegsagement tools are already avail-
able as SaaS. However, they are targeted for design and eraragof structured business
processes. Requirements for on-demand procesesfdom traditional BPM. The ideal
solution is to provide an easy and instant mechanism to stippecution of personal and
dynamic processes, which utilize existing SaaS applinatavailable on the cloud.

5.1 Toolsfor mashup development

Ad-hoc processes are often expected to live only for a shoet tThe lack of documenta-
tion and proper design might make them single-use only. Tiney may not be reusable
and flexible, but they always need to be recomposed.

JOpera [15] is an Eclipse-based tool build for composing B@/SDL and RESTful
Web services. For software developers it provides manyuligeditures such as process
modeling, debugging and execution. For composing RESEiwices JOpera uses BPEL
for REST [16]. BPEL for REST is an extension to WS-BPEL to supgompositions
of RESTful Web services. The approach does not rely on ush@éS®L or other ser-
vice descriptions. Resources are defined in the BPEL for R#3€Tription as a resource
construct, which defines the resource URI and supporteditipes.

In [13], Marino et al. present HTML5-based prototype tool support for mashup de-
velopment. They present a visual language for service caitipo. However, the paper
is missing details on the user interface and tool usage. , Alstails on the composition
description are not given.

In [1], Agheeet al. discuss dierent types of mashups enabled by HTML5. A case
example includes a location sensitive mobile mashup. Thehamruns natively in a mo-
bile device and uses the GPS sensor build-in the device.ditia@d, it uses external Web
APls. Location data is sent to a server, which executes AR t@ external services.
This enables sharing the application between several d&sile mashups enable use of
real-time data gathered from the sensors in a mobile phogereal-time navigation.

Bottaroet al. present a simple visual language for composing locatiethaervices
[4]. The user uses a repository of web widgets. Widgets axggid and dropped to build
Ul for the application. The application logic is defined byawing connections between
data widgets.

In [7], Gronvallet al. present ongoing work on user-centric service composit&iul
elements are prototypes of service invocations, which @eHained to compose data
flows among services. They present a lightweight tool sugfpoicomposing simple dy-
namic workflows, such as for combining SMS, email, and caers@rvices. Instead of
modeling complicated workflows, the emphasis is on the ugsgréence.

In EzZWeb project [11, 12], a service-oriented platform fodeiser mashup develop-
ment has been built. The idea is to provide gadgets (e.g.téiwklickr) the user could
add to her "application page" creating a set dfedent applications and web services.
The user can also define dataflow between the gadgets by ¢omn@vents” the gadgets
could give, e.g., an image url could be connected to anothagé displayer gadget that is

396 Otto Hylli, Samuel Lahtinen, Anna Ruokonen, and Kari Systd

able to show the picture. All these gadgets are implemewteA\Web environment. That
is, implementation of their user interface, the way of cominating with servers, their
events and event slots, are specific for the EzZWeb environrireour approach, the aim
is to provide means to compose existing services togettieexecute these compositions.
Thus, our target is to support composition of any third pagvices by introducing their
service descriptions to our system.

5.2 Describing service compositions

Some approaches for modeling and describing RESTful seoompositions have been
proposed. Guidelines for UML modeling of RESTful servicengmsitions is presented
in [17] by Raufet al. The static resource structure is modeled using class diegrahe
behavioral specification of the composite service is giv@ngistate chart diagrams.

In [24,25], Zhacet al. discuss formal describing of RESTful services and resaase
well as RESTful composite services. Their main interestmisupporting automatic ser-
vice compositions. For service compositions they pres@gia-based synthesis approach
utilizing linear-logic and pii-calculus.

In [2], Alarconet al. state that many of the recent service composition appraaethe
on operation-based models and neglect hypermedia chastickeof REST. As a solution
for composing RESTful services, they present a hypermedien approach realized by
using resource linking language (ReLL) for service desitnip The approach aims to
support machine-clients by enabling automatic retrievohgesources from a web site.
For describing the composite resources PetriNets are ésean example of a composite
resource, a social network application was presented.

6 Conclusions

Cloud computing is based on on-demand services, which dhmibvailable as needed.
Similarly, it should also enable on-demand service comjpos. In this paper, an end-
user driven approach for personal service composition bas presented. The proposed
tool support i.e. Aino service composer includes a commsitiesigner running in a
web browser and a server-side engine for storing and exersgirvice compositions. The
designer is designed for the end-users and it is used fotiggaersonal service compo-
sitions. It focuses on end-user concepts and aims to hidglamated and unnecessary
information, e.g. service descriptions, which are hanthgdhe engine. Instead of han-
dling data types, the user is allowed to use concepts suctp&suse or a photo gallery.
The presented use cases concentrate on combining socie seedices into a composite
service. Also, the user is allowed to define repeatable ¢ixemufor checking updates
from the services.

To characterize the approach, itis designed for cloud enwient providing a browser-
based tool for building service compositions. It is based&DL descriptions, which are
also used for generating GUI widgets for the end-user. Intiadd it enables defining
RESTful workflows as a composite service.

Service Composition for End-Users 397

Our future work includes finalizing the implementation andducting case studies on
applying the approach utilizing the developed tool suppOnir future plans also include
experimenting the tool usage with novice users.

References

[1] Aghaee, S. and Pautasso, C. Mashup development with FSTMh Proceedings
of the 3rd and 4th International Workshop on Web APIs and Services Mashups,
Mashups '0910, pages 10:1-10:8, New York, NY, USA, 2010. ACM.

[2] Alarcon, R., Wilde, E., and Bellido, J. Hypermedia-dnvRESTful service com-
position. InProceedings of the 2010 international conference on Service-oriented
computing, ICSOC’10, pages 111-120, Berlin, Heidelberg, 2011. SanitVerlag.

[3] Andrews, T., Curbera, F., Dholakia, H., Goland, Y., KleiJ., Leymann, F,
Liu, K., Roller, D., Smith, D., Thatte, S., Trickovic, |., dnWeerawarana, S.
Business Process Execution Language for Web Servicesovieisi, May 2003.
httpy/www.ibm.comdeveloperworks

[4] Bottaro, A., Marino, E., Milicchio, F., Paoluzzi, A., Rma, M., and Spini, F. Visual
programming of location-based services. Aroceedings of the 2011 international
conference on Human interface and the management of information - Volume Part I,
HI'11, pages 3-12, Berlin, Heidelberg, 2011. Springerigr

[5] Fielding, R.T.REST: Architectural Styles and the Design of Network-based Software
Architectures. Doctoral dissertation, University of California, Irvin2000.

[6] Goessner, S. Jsonpath - xpath for json. Wifjoessner.ngrticlegJsonPath

[7] Gronvall, E., Ingstrup, M., Plgger, M., and RasmussenRést based service compo-
sition: Exemplified in a care network scenario. In Costdg|i., Ko, A.J., Cypher,
A., Nichols, J., Scfiidi, C., Kelleher, C., and Myers, B.A., editorgl/HCC, pages
251-252. IEEE, 2011.

[8] Hylli, O., Lahtinen, S., Ruokonen, A., and Systa, K. Res® description for end-
user driven service compositions. Submitted to 2nd Intesnal Workshop on Per-
sonalized Web Tasking (PWT 2014), 2014.

[9] Hylli, O., Lahtinen, S., Ruokonen, A., and Systa, K. Seevcomposition for
end-users. Inl3th Symposium on Programming Languages and Software Tools
(SPLST" 13), page pp.15, 2013.

[10] Internet Engineering Task Force (IETF), htttwols.ietf.orghtml/rfc6749.The OAuth
2.0 Authorization Framework, 2012.

[11] Lizcano, D., Soriano, J., Reyes, M., and Hierro, J.JWERFAST: Reporting on a
successful mashup-based solution for developing and ieglaomposite applica-
tions in the "upcoming ubiquitous SOA". Mobile Ubiquitous Computing, Systems,

398 Otto Hylli, Samuel Lahtinen, Anna Ruokonen, and Kari Systd

Services and Technologies, 2008. UBICOMM ' 08. The Second International Confer-
ence on, pages 488-495, 2008.

[12] Lizcano, D., Soriano, J., Reyes, M., and Hierro, J.JWERFAST: reporting on
a successful mashup-based solution for developing anayiegl composite appli-
cations in the upcoming web of services. Rroceedings of the 10th International
Conference on Information Integration and Web-based Applications & Services, ii-
WAS '08, pages 15-24, New York, NY, USA, 2008. ACM.

[13] Marino, E., Spini, F., Minuti, F., Rosina, M., Bottara,, and Paoluzzi, A. HTML5
visual composition of rest-like web services. 4t | EEE International Conference
on Software Engineering and Service Science (ICSESS2013), 2013. To appear.

[14] Mikkonen, T. and Salminen, A. Towards a reference dedhiire for mashups. In
Proceedings of the 2011th Confederated international conference on On the move
to meaningful internet systems, OTM’11, pages 647-656, Berlin, Heidelberg, 2011.
Springer-Verlag.

[15] Pautasso, C. Composing RESTful services with JOparantér national Conference
on Software Composition 2009, volume 5634, pages 142-159, Zurich, Switzerland,
July 2009. Springer.

[16] Pautasso, C. RESTful web service composition with BR&LREST. Data Knowl.
Eng., 68(9):851-866, September 2009.

[17] Rauf, I., Ruokonen, A., Systa, T., and Porres, |. Maagh composite RESTful web
service with UML. InProceedings of the Fourth European Conference on Software
Architecture: Companion Volume, ECSA 10, pages 253-260, New York, NY, USA,
2010. ACM.

[18] Ruokonen, A., Pajunen, L., and Systa, T. Scenarioedrigpproach for business
process modeling.Web Services, |IEEE International Conference on, 0:123-130,
20009.

[19] Singhal, M., Chandrasekhar, S., Ge, T., Sandhu, Rshfan, R., Ahn, G-J., and
Bertino, E. Collaboration in multicloud computing enviroants: Framework and
security issuesComputer, 46(2):76—84, 2013.

[20] W3C, httpi/www.w3.0rg TR/wsdl.Web Services Description Language (WSDL) 1.1,
2001.

[21] W3C, httpj/www.w3.org. Smple Object Access Protocol (SOAP) 1.2, 2007. Last
visited December 2011.

[22] W3C, httpj/www.w3.orgSubmissiofwad). Web Application Description Language
(WADL), 2009.

[23] W3C, http//www.w3.org. XML Path Language (XPath) 2.0 (Second Edition), 2010.

Service Composition for End-Users 399

[24] Zhao, H. and Doshi, P. Towards automated RESTful webiceicomposition. In
Web Services, 2009. ICWS 2009. | EEE International Conference on, pages 189-196,
July.

[25] Zhao, X., Liu, E., Clapworthy, G.J., Ye, N., and Lu, Y. BEful web service com-
position: Extracting a process model from linear logic tie@o proving. InNext
Generation Web Services Practices (NWeSP), 2011 7th International Conference on,
pages 398-403, Oct.

