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Extensions to the CEGAR Approach on Petri Nets*

Akos Hajdu! Andras Voros! Tamés Barthat! and Zoltdn Mértonkal

Abstract

Formal verification is becoming more prevalent and often compulsory in
the safety-critical system and software development processes. Reachability
analysis can provide information about safety and invariant properties of the
developed system. However, checking the reachability is a computationally
hard problem, especially in the case of asynchronous or infinite state systems.
Petri nets are widely used for the modeling and verification of such systems.
In this paper we examine a recently published approach for the reachability
checking of Petri net markings. We give proofs concerning the completeness
and the correctness properties of the algorithm, and we introduce algorithmic
improvements. We also extend the algorithm to handle new classes of prob-
lems: submarking coverability and reachability of Petri nets with inhibitor
arcs.
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1 Introduction

The development of complex, distributed systems, and safety-critical systems in
particular, requires mathematically precise verification techniques in order to prove
the suitability and faultlessness of the design. Formal modeling and analysis meth-
ods provide such tools. However, one of the major drawbacks of formal methods
is their computation and memory-intensive nature: even for relatively simple dis-
tributed, asynchronous systems the state space and the set of possible behaviors
can become unmanageably large and complex, or even infinite.

This problem also appears in one of the most popular modeling formalisms,
Petri nets. Petri nets have a simple structure, which makes it possible to use
strong structural analysis techniques based on the so-called state equation. As
structural analysis is independent of the initial state, it can handle even infinite

*This work was partially supported by the European Union and the European Social Fund
through the project FuturICT.hu (grant no. TAMOP-4.2.2.C-11/1/KONV-2012-0013) of VIKING
Zrt Balatonfured.

fDepartment of Measurement and Information Systems, Budapest University of Technology
and Economics, Budapest, Hungary. E-mail: vori@mit.bme.hu

HInstitute for Computer Science and Control, MTA SZTAKI, Budapest, Hungary.

DOI: 10.14232/actacyb.21.3.2014.8



402 Akos Hajdu, Andras Véros, Tamas Bartha, and Zoltan Martonka

state problems. Unfortunately, its pertinence to practical problems, such as reach-
ability analysis, has been limited. Recently, a new algorithm [13] using Counter-
Example Guided Abstraction Refinement (CEGAR) extended the applicability of
state equation based reachability analysis.

Our paper improves this new algorithm in several important ways. The authors
of the original CEGAR algorithm have not published proofs for the completeness
of their algorithm and the correctness of a heuristic used in the algorithm. In this
paper we analyze the correctness and completeness of their work as well as our
extensions. We prove the lack of correctness in certain situations by a counterex-
ample, and provide corrections to overcome this problem. We also prove that the
algorithm is incomplete due to its iteration strategy. We describe algorithmic im-
provements that extend the set of decidable problems, and that effectively reduce
the search space. We extend the applicability of the approach even further: we pro-
vide solutions to handle Petri nets with inhibitor arcs, and the so-called submarking
coverability problem. At the end of our paper we demonstrate the efficiency of our
improvements by measurements.

2 Background

In this section we introduce the background of our work. First, we present Petri
nets (Section 2.1) as the modeling formalism used in our work. Then we introduce
the counterexample guided abstraction refinement method and its application for
the Petri net reachability problem (Section 2.2).

2.1 Petri nets

Petri nets are graphical models for concurrent and asynchronous systems, providing
both structural and dynamical analysis. Formally, a Petri net is a tuple PN =
(P, T, E,W), where P is the set of places, T is the set of transitions, with P # () # T
and PNT =0, EC (P xT)U (T x P) is the set of arcs and W : E — ZT is the
weight function assigning weights w™(p;,t;) to the edge (p;,t;) € E and w™ (p;,t;)
to the edge (t;,p;) € E [9].

A marking of a Petri net is a mapping m : P — ZZ. A place p contains k tokens
under a marking m if m(p) = k. The initial marking is usually denoted by my.

A transition t; € T is enabled in a marking m, if m(p;) > w™(p;,t;) holds
for each p; € P with (p;,t;) € E. An enabled transition ¢; can fire, consuming
w™ (pj,t;) tokens from places p; € P with (p;,t;) € E and producing w™ (p;,t;)
tokens in places p; € P with (¢;,p;) € E. The firing of a transition ¢; in a marking
m is denoted by m[t;ym’ where m’ is the marking after firing ¢;.

A word o € T* is a firing sequence. A firing sequence is realizable in a marking
m and leads to m’/, (denoted by m[o)m’), if either m = m' and o is an empty
word, or there exists a realizable firing sequence w € T™, a transition ¢; € T, and a
marking m’ such that mw)m'[t;)m’. The Parikh image of a firing sequence o is a
vector p(o) : T — Z , where p(o)(t;) is the number of the occurrences of ¢; in o.
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Petri nets can be extended with inhibitor arcs to become a tuple PN; =
(PN, I), where I C (P x T) is the set of inhibitor arcs. There is an extra con-
dition for a transition ¢; € T' with inhibitor arcs to be enabled: for each p; € P, if
(pj,t;) € I, then m(p;) = 0 must hold. Petri nets extended with inhibitor arcs are
Turing complete [10].

Reachability problem. A marking m’' is reachable from m if there exists a
realizable firing sequence o € T*, for which m[o)m’ holds. The set of all reachable
markings from the initial marking mg of a Petri net PN is denoted by R(PN,my).
The aim of the reachability problem is to check if m’ € R(PN,mg) holds for a given
marking m’.

We define a predicate as a linear inequality on markings of the form Am > b,
where A is a matrix and b is a vector of coefficients [6]. The aim of the submarking
coverability problem is to find a reachable marking m’ € R(PN,my), for which the
given predicate Am’ > b holds.

The reachability problem is decidable [8], but it is at least EXPSPACE-hard
[7]. Using inhibitor arcs, the reachability problem in general is undecidable [3].

State equation. The incidence matriz of a Petri net is a matrix C|p| ||, where
C(i,5) = wt(pi,t;) —w™ (pi,tj). Let m and m’ be markings of the Petri net, then
the state equation takes the form m + Cz = m/. Any vector z € (ZJ)I7! fulfilling
the state equation is called a solution. Note that for any realizable firing sequence
o leading from m to m/, the Parikh image of the firing sequence fulfills the equation
m + Cp(c) = m/. On the other hand, not all solutions of the state equation are
Parikh images of a realizable firing sequence. Therefore, the existence of a solution
for the state equation is a necessary but not sufficient criterion for the reachability.
A solution x is called realizable if a realizable firing sequence o exists with p(o) = z.

T-invariants. A vector 2 € (Z$)T! is called a T-invariant if Cx = 0 holds. A
realizable T-invariant represents the possibility of a cyclic behavior in the modeled
system, since its complete occurrence does not change the marking. However,
during firing the transitions of the invariant, some intermediate markings can be
interesting for us.

Solution space. Each solution z of the state equation m + Cx = m’, can be
written as the sum of a base vector and the linear combination of T-invariants [13],
which can formally be written as © = b+ >, n;y;, where b is a base vector and n;
is the coefficient of the T-invariant y;.

2.2 The CEGAR approach

Counterexample guided abstraction refinement (CEGAR) is a general approach for
analyzing systems with large or infinite state spaces. The CEGAR method works
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on an abstraction of the original model, which has a less detailed state space repre-
sentation. During the iteration steps, the CEGAR method refines the abstraction
using the information from the explored part of the state space. When applying CE-
GAR on the Petri net reachability problem [13], the initial abstraction is the state
equation. Solving the state equation is an integer linear programming problem [5],
for which the ILP solver tool can yield one solution, minimizing a target function
of the variables. Since the algorithm seeks the shortest firing sequences leading to
the target marking, it minimizes the function f(z) =), (). The feasibility of
the state equation is a necessary, but not sufficient criterion for reachability, so the
following situations are possible:

e If the state equation is infeasible, the necessary criterion does not hold, thus
the target marking is not reachable.

e If the state equation has a solution which is realizable by some firing sequence,
the target marking is reachable.

e If the state equation has an unrealizable solution, it is a counterexample and
the abstraction has to be refined.

The purpose of the abstraction refinement is to exclude counterexamples from
the solution space without losing any realizable solutions. For this purpose, the
CEGAR approach uses linear inequalities over transitions, called constraints.

Constraints. Two types of constraints were defined by Wimmel and Wolf [13]:

e Jump constraints have the form |t;| < n, where n € ZF, t;, € T and |t
represents the firing count of the transition ¢;. Jump constraints can be used
to switch between base vectors, exploiting their pairwise incomparability.

e Increment constraints have the form > n;[t;| > n, where n; € Z, n € Z{,
and t; € T. Increment constraints can be used to reach non-base solutions.

As an example, consider the Petri net in Figure 1(a) with the reachability prob-
lem (1,0,1,0) € R(PN,(0,0,1,0)). There are two base vectors for this problem:
(1,0,0) (firing to) and (0,1,1) (firing ¢; and ¢2). The ILP solver yields the solution
(1,0,0) first, which is unrealizable, but using the jump constraint |tg| < 1, the ILP
solver can be forced to produce the realizable solution (0,1,1). Consider now the
Petri net in Figure 1(b) with the reachability problem (1,0,1) € R(PN,(0,0,1)).
The only base vector for this problem is the vector (1,0,0) (firing ¢¢), which is
unrealizable. Using an increment constraint |t;| > 1, the ILP solver can be forced
to add the T-invariant {t1,%2} to the new solution (1,1, 1), which is realizable by
the firing sequence o = (1, tg, t2).

2.2.1 Partial solutions

Given a Petri net PN = (P, T, E, W) and a reachability problem m’ € R(PN,my),
a partial solution is a tuple ps = (C,x, o, r), where:
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(a) Jump constraint example (b) Increment constraint example

Figure 1: Example nets for jump and increment constraints

e C is the set of (jump and increment) constraints, together with the state
equation they define the ILP problem,

e 1 is the minimal solution satisfying the state equation and the constraints in
C,

e 0 € T* is a maximal realizable firing sequence, with p(c) < z, i.e., each
transition can fire as many times as it is included in the solution vector x and
if it is enabled it must fire,

r =z — p(o) is the remainder vector.

Generating partial solutions. Partial solutions can be produced from a solu-
tion vector x (and a constraint set C) by firing as many transitions as possible. For
this purpose, the algorithm uses a “brute force” method. The algorithm builds a
tree with markings as nodes and occurrences of transitions as edges. The root of
the tree is the initial marking mg, and there is an edge labeled by ¢ between nodes
mq and my if mq[t)msg holds. On each path leading from the root of the tree to a
leaf, each transition ¢; can occur at most x(¢;) times. Each path to a leaf represents
a maximal firing sequence, thus a new partial solution. Even though the tree can
be traversed only storing one path in the memory at a time using depth-first search,
the size of the tree can grow exponentially. Some optimizations to reduce the size
of the tree are presented later in this section.

A partial solution is called a full solution if r = 0 holds, thus p(o) = x, which
means that o realizes the solution vector z. For each realizable solution z of the
state equation there exists a full solution [13]. This full solution can be reached by
continuously expanding the minimal solution of the state equation with constraints.

Consider now a partial solution ps = (C,x,0,r), which is not a full solution,
i.e., 7 # 0. This means that some transitions could not fire enough times. There
are three possible situations in this case:

1. & may be realizable by another firing sequence ¢’, thus a full solution ps’ =
(C,z,0',0) exists.

2. By adding jump constraints, greater, but pairwise incomparable solutions can
be obtained.
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3. For transitions ¢t € T with r(¢) > 0 increment constraints can be added to
increase the token count in the input places of ¢, while the final marking m’
must be unchanged. This can be achieved by adding new T-invariants to
the solution. These T-invariants can “borrow” tokens for transitions in the
remainder vector.

2.2.2 Generating constraints

Jump constraints. Each base vector of the solution space can be reached by
continuously adding jump constraints to the minimal solution [13]. In order to
reach non-base solutions, increment constraints are needed, but they might conflict
with previous jump constraints. Jump constraints are only needed to obtain a
different base solution vector. However, after the computation of the base solution,
jump constraints can be transformed into equivalent increment constraints [13].

Increment constraints. Let ps = (C,z,0,7) be a partial solution with r» > 0.
This means that some transitions (in r) could not fire enough times. The algorithm
uses a heuristic to find the places and number of tokens needed to enable these
transitions. If a set of places actually needs n (n > 0) tokens, the heuristic estimates
a number from 1 to n. If the estimate is too low, this method can be applied again,
converging to the actual number of required tokens. The heuristic consists of the
following three steps:

1. First, the algorithm builds a dependency graph [11] to collect the transitions
and places that are of interest. These are transitions that could not fire,
and places that disable these transitions. Each source SCC! of the depen-
dency graph has to be investigated, because it cannot get tokens from other
components. Therefore, an increment constraint is needed.

2. The second step is to calculate the minimal number of missing tokens for each
source SCC. There are two sets of transitions, 7; C T and X; C T. If one
transition in 7T; becomes fireable, it may enable all the other transitions of
the SCC, while transitions in X; cannot activate each other, therefore their
token shortage must be fulfilled at once.

3. The third step is to construct an increment constraint ¢ for each source SCC
from the information about the places and their token requirements. These
constraints will force transitions (with 7(¢) = 0) to produce tokens in the given
places. Since the final marking is left unchanged, a T-invariant is added to
the solution vector.

When applying the new constraint ¢, three situations are possible depending on
the T-invariants in the Petri net:

ISource strongly connected component, i.e., one without incoming edges from other compo-
nents.
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e If the state equation and the set of constraints become infeasible, this partial

solution cannot be extended to a full solution, therefore it can be skipped.

If the ILP solver can produce a solution z + y (with y being a T-invariant),
new partial solutions can be found. If none of them helps getting closer to a
full solution, the algorithm can get into an infinite loop, but no full solution is
lost. A method to avoid this non-termination phenomenon will be discussed
later in this section.

If there is a new partial solution ps’ where some transitions in the remainder
vector could fire, this method can be repeated.

Theorem 1. (Reachability of solutions) [13] If the reachability problem has a so-
lution, a realizable solution of the state equation can be reached by continuously
adding constraints, transforming jumps before increments.

2.2.3 Optimizations

Wimmel and Wolf [13] also presented some methods for optimization. The following
are important for our work:

3

e Stubborn set: The stubborn set method [11] investigates conflicts, concur-

rency and dependencies between transitions, and reduces the search space by
filtering the transitions. The stubborn set method usually leads to a search
tree with lower degree.

Subtree omission: When a transition has to fire more than once (z(¢) > 1),
the stubborn set method may not provide an efficient reduction. The same
marking is often reached by firing sequences that are only different in the order
of transitions. During the abstraction refinement, only the final marking of
the firing sequence is important. If a marking m’ is reached by firing the
same transitions as in a previous path, but in a different order, the subtree
after m’ was already processed. Therefore, it is no longer of interest.

Filtering T-invariants: After adding a T-invariant y to the partial solu-
tion ps = (C,x,0,r), all the transitions of y may fire without enabling any
transition in r, yielding a partial solution ps’ = (C’,z + y,c’,r). The final
marking and remainder vector of ps’ is the same as in ps, therefore the same
T-invariant y is added to the solution vector again, which can prevent the
algorithm from terminating. However, during firing the transitions of y, the
algorithm could get closer to enabling a transition in r. These intermediate
markings should be detected, and be used as new partial solutions.

Theoretical results

In this section we present our theoretical results with regard to the correctness and
completeness of the original algorithm.
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3.1 Correctness

Although Theorem 1 states that a realizable solution can be reached using con-
straints, we found that in some special cases the heuristic used for generating
increment constraints can overestimate the required number of tokens for proving
reachability. We prove the incorrectness by a counterexample, for which the original
algorithm [13] gives an incorrect answer.

Consider the Petri net in Figure 2 with the reachability problem (0,1,0,0,1,
0,0,2) € R(PN,(1,0,0,0,0,0,0,2)), i.e., we want to move the token from py to
p1 and py. The example was constructed so that the target marking is reachable
by the firing sequence oy = (t1,to, to, 5, e, t3, t7, t4), realizing the solution vector
zs =(1,1,1,1,1,1,1,1).

Figure 2: Counterexample for correctness

The CEGAR algorithm does the following steps. First, it finds the minimal so-
lution vector xg = (1,0,1,1,1,0,0,0), i.e., it tries to fire the transitions tg, t2, t3, t4.
From these transitions only ¢ is enabled, therefore the only partial solution is
pso = (0, 9,00 = (to),70 = (0,0,1,1,1,0,0,0)). At this point the algorithm looks
for an increment constraint. The dependency graph contains transitions to, t3,t4
(since they could not fire) and places pg, p2, ps (because they disable the previous
transitions). The only source SCC is the set containing one place pp with zero
tokens (because ¢y has consumed one token from there). The algorithm estimates
that three tokens are needed in pg, where only t; can produce tokens. Therefore,
the T-invariant {¢1,s,%s,t7} is added twice to the solution vector. This invari-
ant is constructed so that for each of its firing, a token has to be produced in
places p2, p3, ps, which token can no longer be removed. In the target marking only
one token can be present in these places, therefore the algorithm cannot find any
realizable solution, which yields the incorrect answer “not reachable”.

Notice that the problem is the over-estimation of tokens required in pg. Without
forcing ¢y to fire, the algorithm could get a better estimation. This would imply
that the invariant {t1,t5, ts, t7} is added only once to the solution vector, producing
the realizable solution zs. The problem is that the algorithm always tries to find
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maximal firing sequences, though some transitions would not be practical to fire
(to in the example above). Due to this, the estimated number of tokens needed in
the final marking of the firing sequence may not be correct.

3.1.1 Detecting over-estimation

Our improved algorithm counts the maximal number of tokens in each place during
the firing sequence of the partial solution into a vector my,.,. If the final marking
is not the maximal regarding a SCC, the algorithm might have over-estimated the
required number of tokens. This can be detected by ordering the intermediate
markings. Formally: an over-estimation can occur if a place p exists in a SCC, for
which mya.(p) > m/(p) holds, where m/ is the final marking of the firing sequence.
If such situation occurs and we do not find a full solution, we say that the problem
cannot be decided. Moreover, we also developed a new method that tries to find
solutions in such situations. Our first idea was to forget the original estimation (n)
and estimate one instead. However, we found that over-estimation is not a problem
in most cases: the algorithm still finds a realizable solution, but not the minimal.
Estimating one means a slow convergence to the actual number of missing tokens,
so at first we always try with the estimation n, but if no full solution is found under
that subtree, we backtrack and start a new search with n = 1. This new approach
can handle the counterexample presented in Figure 2. After no full solution is
found by adding the T-invariant {¢;,ts,%,t7} twice, we backtrack to psy and try
to produce only one token in pg. This implies that the {¢1,t5,ts, t7} is added only
once to the solution vector, yielding the realizable solution x,.

This way we can not only detect the possibility of over-estimation, but we
can also find the solution in most cases. However, this method also has some
limitations, which we present with the following example. Consider the Petri net in
Figure 3 with the reachability problem (1,0,1,1) € R(PN,(0,1,0,1)), i.e., moving
the token from p; to ps and producing a token in py. A possible solution is the
vector x5 = (1,1, 1,1), realized by the firing sequence o, = (t3, to,t1,t2).

ta D2 to

O

Po
tq

P1
Figure 3: Example on the limitations of the new approach
The algorithm does the following steps. It finds that the minimal solution is
xo = (1,1,0,0), i.e., firing tg and ¢;. Only ¢; is enabled, thus one partial solution

pso = (0, zg,00 = (t1),70 = (1,0,0,0)) can be found. The marking reached by og
is (0,0,1,1), where n = 1 token is missing from p; (to enable t5). None of the
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transitions can produce tokens in pi, so the algorithm cannot find any constraint.
The algorithm detects over-estimation because p; had one token before firing ¢;.
Even so, a new search cannot be started, since the original estimation is also n = 1.
The problem is that the heuristic tries to produce tokens in a place (p1), which
lacks tokens in the final marking, but had the required number of tokens at some
point of the firing sequence (0p). Without forcing t; to fire, a token would be
missing from po, where the T-invariant {¢o,¢3} could help. Finding the solution in
such situations is an aim of our future work.

3.2 Completeness

To our best knowledge, the completeness of the algorithm has neither been proved
nor disproved yet. When we examined the iteration strategy of the abstraction
loop, we found a whole subclass of nets that cannot be solved with this strategy.
As an example, consider the Petri net in Figure 4 with the reachability problem
(1,1,0,0) € R(PN,(0,1,0,0)), i.e., we want to produce a token in py. We con-
structed the net so that the firing sequence o = (1, t4, ta, ts, ts, to, t1, t2, t5) solves
the problem. The main concept of this example is that we lend an extra token in
p1 indirectly using the T-invariant {t4,t5}.

t1 P2

2
Ot i Y
2
Po ity P1'\

t3 P3 ts

Figure 4: Counterexample of completeness

When applying the algorithm on this problem, the minimal solution vector is
xo = (1,0,0,0,0,0), i.e., firing ty. Since tg is not enabled, the only partial solution is
pso = (0, 29,00 = (), 70 = (1,0,0,0,0,0)). The algorithm finds that an additional
token is required in p; and only t3 can satisfy this need. With an increment
constraint ¢; : |t3| > 1, the T-invariant {t1,to,t3} is added to the new solution
vector 1 = (1,1,1,1,0,0), giving us one partial solution ps; = ({e1}, 21,01 =
(t1,t2,t3),m1 = 10). Firing the invariant {t1,t2,t3} does not help getting closer to
enabling tg, since no extra token can be “borrowed” from the previous T-invariant.
The iteration strategy of the original algorithm does not recognize the fact that an
extra token could be produced in ps (using t4) and then moved in p;, therefore it
cannot decide reachability.
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4 Algorithmic contributions

In this section we present our algorithmic contributions. In Section 4.1 we show
some classes of problems, for which the original algorithm cannot decide reachabil-
ity, but our improved algorithm solves these problems. In Section 4.2 we present two
extensions of the algorithm, solving submarking coverability problems and handling
Petri nets with inhibitor arcs.

4.1 Improvements

In the previous section we proved that the algorithm is incomplete, but during
our work we found some opportunities to extend the set of decidable problems.
Moreover, we developed a new termination criterion, which we prove to be correct,
i.e., no realizable solution is lost using this criterion.

4.1.1 New ordering of the intermediate markings

When a partial solution ps = (C,x,0,r) is skipped using the T-invariant filtering
optimization, the original algorithm checks if it was closer to enabling a transi-
tion t in the remainder during the firing sequence o. This is done by “counting
the minimal number of missing tokens for firing ¢ in the intermediate markings
occurring”[13]. We found that this criterion is not general enough: in some cases
the total number of missing tokens may not be less, but they are missing from
different places, where additional tokens can be produced. In our new approach,
we use the following definition:

Definition 1. An intermediate marking m; is considered to be better than the final
marking m', if there is a transition t € T,r(t) > 0 and place p with (p,t) € E, for
which the following criterion holds:

m/(p) <w™(p,t) A mi(p) >m'(p). (1)

The left inequality in the expression means that in the final marking ¢ is disabled
by the insufficient amount of tokens in p. This condition is important, because we
do not want to consider places that already have enough tokens to enable ¢. The
right inequality means that p has more tokens in the intermediate marking m;
compared to the final marking m’.

Theorem 2. Definition 1 is a total ordering between the intermediate markings
occurring in the firing sequence o of a partial solution and the final marking reached
by o.

Proof. We first show that Definition 1 includes the original ordering of the inter-
mediate markings. When the original criterion holds, the total number of missing
tokens for enabling ¢ at the marking m; is less than at m’. This means that at least
one place p must exist, which disables ¢, but m;(p) > m/(p), thus (1) must hold.
Furthermore, Definition 1 also recognizes markings that are pairwise incomparable,
because if there is at least one place p with lesser tokens missing, (1) holds. O
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Corollary 1. The new ordering of intermediate markings extends the set of decid-
able problems.

Definition 1 is more general than the original criterion, hence it does not reduce
the set of decidable problems. On the other hand, we give an example when the orig-
inal criterion prevents the algorithm from finding the solution. Consider the Petri
net in Figure 5 with the reachability problem (1,0,0,1) € R(PN,(0,1,0,1)), i.e.,
moving the token from p; to pg. The minimal solution vector is z¢ = (1,0,0,0,0),
i.e., firing to, which is disabled by po, therefore the only partial solution is psg =
(0, 20,00 = (),70 = (1,0,0,0,0)). The algorithm looks for increment constraints
and finds that only ¢; can produce tokens in ps. Consequently, the T-invariant
{t1,t2} is added to the solution vector z; = (1,1,1,0,0). There is one partial so-
lution ps; = ({|t1] > 1}, 21,01 = (t1,t2),71 = 7o) for x1, where the T-invariant is
fired, but ¢ still could not fire. This partial solution is skipped by the T-invariant
filtering optimization, and in all of the intermediate markings of ¢y, totally one
token is missing from the input places of ty. By using the original criterion, the
algorithm terminates, leaving the problem as undecided. By using Definition 1, less
tokens are missing from ps after firing ¢; than in the final marking. Continuing from
here, tq is disabled by p;, where t3 can produce tokens, therefore the T-invariant
{ts,t4} is added to the new solution vector zo = (1,1,1,1,1). A full solution is
found for x5 by the realizable firing sequence oo = (t1,ts, to, ta,t4).

p3 i3
D1
t4
to t1
to Do
b2

Figure 5: Example net depicting the usefulness of the new ordering

4.1.2 T-invariant filtering and subtree omission

Using T-invariant filtering and subtree omission optimizations together can prevent
the algorithm from finding realizable solutions. The order of transitions in the firing
sequence of a partial solution does not matter, except in one case. When a partial
solution is skipped, the algorithm checks for an intermediate marking that was
closer to firing a transition in the remainder vector. By using subtree omission,
intermediate markings can be lost.

As an example consider the Petri net in Figure 6 with the reachability problem
(1,0,0,0,3) € R(PN,(0,0,0,0,3)), i.e., we want to produce a token in pg. A
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possible solution is the vector z, = (1,1,1,2,2,3,3) realized by the firing sequence
Os = (tﬁvt67t67t4at4at?athtlatSat37t57t57t5)-

Figure 6: An example where the order of transitions matter

Here we present only the interesting points during the execution of the algo-
rithm. As a minimal solution, the algorithm tries to fire ¢g, but it is disabled by the
places p1,p2, p3. The algorithm searches for increment constraints. All the three
places are in different SCCs, so the algorithm first tries to enable ¢y by borrowing
a single token for all three places. By the T-invariant {¢1,t2,...,ts} a token is
carried through places p1, p2, p3, which does not enable ¢y, but there are interme-
diate markings in which the enabling of ¢y is closer. Continuing from any of these
intermediate markings, another token is borrowed in the places p1, p2, ps, but tg is
not enabled yet. Here comes the different order of transitions into view:

e If the two tokens are carried through places pi,p2,ps together, there are
intermediate markings that are closer to firing ty, because previously two
tokens were missing, but now only one. Continuing from these markings a
third token is borrowed in places pi,ps2,p3, enabling ¢, and yielding a full
solution.

e If the two tokens are carried through places py, p2, p3 separately (i.e., a token
is carried through the places, while the other is left in p4, and this procedure is
repeated), there are no intermediate markings of interest, because two tokens
are still missing to enable tg. In this case the algorithm will not find the full
solution.

The order of transitions is non-deterministic, thus it is unknown which order
will be omitted. Therefore, in our approach we reproduce all the possible firing
sequences without subtree omission when a partial solution is skipped, and check
for intermediate markings in the full tree. Although this may yield a computational
overhead in some cases, we might lose full solutions otherwise.

4.1.3 New termination criterion

We have developed a new termination criterion, which can efficiently cut the search
space without losing any full solutions. When generating increment constraints for
a partial solution ps, as a first step the algorithm finds the set of places P’ C P
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where tokens are needed. Then it estimates the number of tokens required (n).
At this point, our new criterion checks if there exists a marking m’, for which the
following inequalities hold:

Z m'(pi) > n
piEP’ (2)
ij € P: m'(pj) > 0.

The first inequality ensures that at least n tokens are present in the places of P/,
while the others guarantee that the number of tokens in each place is non-negative.
These inequalities define a submarking coverability problem. Using the ILP solver,
we can check if the modified form of the state equation (which we discuss in Section
4.2.1) holds for this problem. If the state equation does not hold, it is a proof that
no such marking is reachable where the required number of tokens are present in
the places of P’. Thus, ps can be omitted without losing full solutions.

This approach can also extend the set of decidable problems compared to the
former algorithm. Consider the Petri net in Figure 7 with the reachability problem
(1,1,0) € R(PN, (1,0,0)), i.e., firing ty to produce a token in p;. The algorithm
would add the T-invariant {t1,t2} again and again to enable ty. Using T-invariant
filtering we cannot decide whether there is no full solution or the algorithm lost it.
Using our new approach we can prove that no marking exist, where two tokens are
present in pg, therefore no full solution exists.

tq
b2 9
2 D
Po to b1
to

Figure 7: Example net for the new filtering criterion

4.2 Extensions

In this section we present two extensions of the CEGAR approach: solving sub-
marking coverability problems and handling Petri nets with inhibitor arcs.

4.2.1 Submarking coverability problem

In Section 2 we introduced predicates of the form Am’ > b, where A is a matrix
and b is a vector of coefficients. In order to use the state equation, this condition
on places must be transformed to a condition on transitions.

At first we substitute m’ in the predicate Am’ > b with the state equation
mo + Cx = m/, which results inequalities of the form (AC)x > b — Amy. This set
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of inequalities can be solved as an ILP problem for transitions. The extended algo-
rithm uses this modified form of the state equation, and expands it with additional
(jump or increment) constraints.

4.2.2 Petri nets with inhibitor arcs

The main problem with inhibitor arcs is that they do not appear in any form in
the state equation, which is used as an abstraction. Therefore, a solution vector
may be unrealizable because inhibitor arcs disable some transitions. In this case
tokens must be removed from some places. Our strategy is to add transitions to
the solution vector, which consume tokens from such places. Increment constraints
are suitable for this purpose, but they have to be generated in a different way:

1. The first step is to construct a dependency graph similar to the original one.
The graph consists of transitions that could not fire due to inhibitor arcs and
places that disable these transitions. The arcs of the graph have an opposite
meaning: an arc from a place to a transition means that the place disables the
transition, while the other direction means that firing the transition would
decrease the number of tokens in the place. Each source SCC of the graph is
interesting, because tokens cannot be consumed from them by another SCC.

2. The second step is to estimate the minimal number of tokens to be removed
from each source SCC. There are two sets of transitions as well, T; C T and
X; CT. If one transition in T; becomes fireable, it may enable all the others
in the SCC, while the needs of transitions in X; must be fulfilled at once.

3. The third step is to construct an increment constraint for each source SCC,
by firing transitions (with (¢) = 0) to consume the required number of tokens
from the place of the SCC.

When a partial solution is not a full solution, and there are transitions disabled
by inhibitor arcs, the previous algorithm is used to generate the constraint. If there
are transitions disabled by normal arcs as well, both the original algorithm and the
modified version must be used, taking the union of the generated constraints.

Inhibitor arcs also affect some of the optimization methods:

e Stubborn sets currently do not support inhibitor arcs.

e Using T-invariant filtering, an intermediate marking is now of interest when
it has less tokens in a place, which is connected by inhibitor arc to a transition
that cannot fire.

o Our new termination criterion is extended to check whether a reachable mark-
ing exists where the required number of tokens are removed.

5 Evaluation

We implemented our algorithm in the PetriDotNet [1] framework to evaluate its
performance. The run-time results can be seen in Table 1, where TO refers to
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Table 1: Measurement results for well-known benchmark problems

Model SARA | Saturation | Our algorithm
CP_NR 10 0,25 - 0,55
CP_NR 25 111s - 2s
CP_NR 50 TO - 16s
MAPK 0,2s - 1s
Kanban 1000 0,2s TO 1s

FMS 1500 0,55 TO 58
SlottedRing 50 - 4s 433s
DPhil 50 - 0,55 455

an unacceptable run-time (> 600seconds). The measured models are published
in [4, 12, 13]. The numbers in the model names represent the parameters. We
also measured a highly asynchronous, infinite state space consumer-producer model
constructed by us (CP_NR in the table).

We compared our solution to the original algorithm, which is implemented in
the SARA tool [2]. Our implementation is developed in the C# programming
language, while the original is in C/C++. This causes a constant speed penalty
for our algorithm. Moreover, our algorithm examines more partial solutions, which
also yields computational overhead. However, the algorithmic improvements we
introduced in this paper significantly reduce the computational effort for certain
models (see the consumer-producer model). In addition, our algorithm can in many
cases decide a problem that the original one cannot.

We also compared our algorithm to the well-known saturation-based model
checking algorithm [4], implemented in our framework [12]. The lesson learned is
that if the ILP solver can produce results efficiently (Kanban and FMS models), the
CEGAR approach is faster by an order of magnitude than the saturation algorithm.
When the size of the model makes the integer linear programming task difficult, it
dominates the run-time, and saturation wins the comparison.

6 Conclusions

The theoretical results presented in this paper are twofold. On one hand, we proved
the incompleteness of the iteration strategy of the original CEGAR approach by
constructing a counterexample. We also presented a counterexample that proved
the incorrectness of a heuristic used in the original algorithm. We corrected this
deficiency by improving the algorithm to detect such situations. On the other hand,
our algorithmic improvements reduce the search space, and enable the algorithm to
solve the reachability problem for certain, previously unsupported classes of Petri
nets. In addition, we extended the algorithm to solve two new types of problems,
namely submarking coverability and handling Petri nets with inhibitor arcs. We
demonstrated the efficiency of our improvements with measurements.
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