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Applications of the Inverse Theta Number

in Stable Set Problems

Miklós Ujvári∗

Abstract

In the paper we introduce a semidefinite upper bound on the square of
the stability number of a graph, the inverse theta number, which is proved
to be multiplicative with respect to the strong graph product, hence to be an
upper bound for the square of the Shannon capacity of the graph. We also
describe a heuristic algorithm for the stable set problem based on semidefinite
programming, Cholesky factorization, and eigenvector computation.

Keywords: Shannon capacity, stability number, inverse theta number

1 Introduction

An algorithm for the stable set problem is useful in many ways, e.g. it can be
used for colouring a graph: find a stable set, remove it from the graph, and iterate
the algorithm. (See [2] for further applications and approximation algorithms for
the stable set problem.) The strength of the semidefinite programming approach
for the stable set and colouring problems is shown by the algorithms of Grötschel–
Lovász–Schrijver, Karger–Motwani–Sudan, and Alon–Kahale, see [5] for a summary
of these results. In this paper we will describe a heuristic algorithm for the stable
set problem based on semidefinite optimization, and the notion of the inverse theta
number.

We start the paper with stating the main results. First we fix some notation.
Let n ∈ N , and let G = (V (G), E(G)) be an undirected graph, with vertex set

V (G) = {1, . . . , n}, and with edge set E(G) ⊆ {{i, j} : i 6= j}. Let A(G) be the 0-1
adjacency matrix of the graph G, that is let

A(G) := (aij) ∈ {0, 1}n×n, where aij :=

{
0, if {i, j} 6∈ E(G),
1, if {i, j} ∈ E(G).

The complementary graph G is the graph with adjacency matrix

A(G) := J − I −A(G),
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where I is the identity matrix, and J denotes the matrix with all elements equal
to one. The disjoint union of the graphs G1 and G2 is the graph G1 + G2 with
adjacency matrix

A(G1 +G2) :=

(
A(G1) 0

0 A(G2)

)
.

We will use the notation Kn for the clique graph, and Ks1,...,sk for the complete
multipartite graph Ks1 + . . .+Ksk . Also, we will denote by Cn the n-cycle, the
polygon graph with n vertices.

Let (δ1, . . . , δn) be the sum of the row vectors of the adjacency matrix A(G).
The elements of this vector are the degrees of the vertices of the graph G. Let
δG,∆G, µG be the minimum, maximum, resp. the arithmetic mean of the degrees
in the graph.

By Rayleigh’s theorem (see [9]) for a symmetric matrix M = MT ∈ Rn×n the
minimum and maximum eigenvalue, λM , resp. ΛM can be expressed as

λM = min
||u||=1

uTMu, ΛM = max
||u||=1

uTMu.

Attainment occurs if and only if u ∈ Rn is a unit eigenvector corresponding to λM
and ΛM , respectively. The minimum and maximum eigenvalue of the adjacency
matrix A(G) will be denoted by λG, resp. ΛG.

The set of the n by n real symmetric positive semidefinite matrices will be
denoted by Sn+, that is

Sn+ :=
{
M ∈ Rn×n : M = MT , uTMu ≥ 0 (u ∈ Rn)

}
.

For example, the Laplacian matrix of the graph G,

L(G) := Dδ1,...,δn −A(G) ∈ Sn+.

(Here Dδ1,...,δn denotes the diagonal matrix with diagonal elements δ1, . . . , δn.)
It is well-known (see [9]), that the following statements are equivalent for a sym-

metric matrix M = (mij) ∈ Rn×n: a) M ∈ Sn+; b) λM ≥ 0; c) M is Gram matrix,
that is mij = vTi vj (i, j = 1, . . . , n) for some vectors v1, . . . , vn. Furthermore, by
Lemma 2.1 in [13], the set Sn+ can be described as

Sn+ =


(

aTi aj
(aiaTj )11

− 1

)n
i,j=1

∣∣∣∣ d ∈ N , ai ∈ Rd (1 ≤ i ≤ n)
aTi ai = 1 (1 ≤ i ≤ n)

 . (1)

The stability number, α(G), is the maximum cardinality of the (so-called stable)
sets S ⊆ V (G) such that {i, j} ⊆ S implies {i, j} 6∈ E(G). The chromatic number,
χ(G), is the minimum number of stable sets covering the vertex set V (G).

Let us define an orthonormal representation of the graph G (shortly, o.r. of G)
as a system of vectors a1, . . . , an ∈ Rd for some d ∈ N , satisfying

aTi ai = 1 (i = 1, . . . , n), aTi aj = 0 ({i, j} ∈ E(G)).
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In the seminal paper [6] L. Lovász proved the following result, now popularly
called sandwich theorem, see [4]:

α(G) ≤ ϑ(G) ≤ χ(G),

where ϑ(G) is the Lovász number of the graph G, defined as

ϑ(G) := inf

{
max
1≤i≤n

1

(aiaTi )11
: a1, . . . , an o.r. of G

}
.

The Lovász number has several equivalent descriptions, see [6]. For example,
by (1) and standard semidefinite duality theory (see e.g. [12]), it is the common
optimal value of the Slater-regular primal-dual semidefinite programs

(TP ) minλ,


xii = λ− 1 (i ∈ V (G)),
xij = −1 ({i, j} ∈ E(G)),
X = (xij) ∈ Sn+, λ ∈ R

and

(TD) max tr (JY ),

 tr (Y ) = 1,
yij = 0 ({i, j} ∈ E(G)),
Y = (yij) ∈ Sn+.

(Here tr stands for trace.) Reformulating the program (TD), Lovász derived the
following dual description of the theta number (Theorem 5 in [6]):

ϑ(G) = max

{
n∑
i=1

(bib
T
i )11 : b1, . . . , bn o.r. of G

}
. (2)

An important application of the theory of the theta number is described in
Theorem 1 of [6], where it is proved that

Θ(G) ≤ ϑ(G), (3)

with Θ(G) denoting the Shannon capacity of the graph, that is

Θ(G) := sup
k∈N

k

√
α(Gk).

(Here G ·H denotes the strong graph product of the graphs G,H, the graph with
vertex set

V (G ·H) := {(i, j) : i ∈ V (G), j ∈ V (H)}

and edge set

E(G ·H) :=

{
{(i1, j1), (i2, j2)}

∣∣∣∣ i1 = i2 or {i1, i2} ∈ E(G)
j1 = j2 or {j1, j2} ∈ E(H)

}
.

Also, Gk denotes the strong graph product of k copies of the graph G.)
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The proof of (3) relies on the fact that the theta function ϑ(.) is submultiplica-
tive, that is

ϑ(G ·H) ≤ ϑ(G) · ϑ(H)

holds for any graphs G,H. Another two submultiplicative bounds are described in
[6], see Theorems 10 and 11; they turn out to be weaker than the theta number.

In Section 2 we will define the inverse theta number as

ι(G) := inf

{
n∑
i=1

1

(aiaTi )11
: a1, . . . , an o.r. of G

}
,

and derive the inequality
α(G) ≤

√
ι(G),

an analogue of Lovász’s sandwich theorem. In Section 3 we will prove also (as a
consequence of multiplicativity properties) the stronger relation

Θ(G) ≤
√
ι(G). (4)

It is known (see Proposition 2.2) that e.g. for the cycle graphs Cn,
√
ι(Cn) >

ϑ(Cn) holds. Hence, the inverse theta number does not help in determining the
Shannon capacity of the odd cycles C7, C9, . . ., which is still an open problem,
though, using the theta number, Lovász determined the Shannon capacity of the
5-cycle and other graphs in [6]. However, we will see in Section 4, that orthonormal
representations of the complementary graph G of high value in the dual description
(5) of the inverse theta number, can be of use in a heuristic algorithm calculating
large stable sets in any graph G.

2 The inverse theta function

The inverse theta number is defined via optimizing over the inverse of the theta
body.

The reformulation of ϑ(G) described in (2) can be written concisely, as

ϑ(G) = max

{
n∑
i=1

yi : y = (yi) ∈ TH(G)

}
,

where TH(G) denotes the theta body, that is the set of vectors y = (yi) ∈ Rn such
that yi = (bib

T
i )11 (i = 1, . . . , n) for some orthonormal representation (bi) of the

complementary graph G.
Convexity and compactness of the theta body follows from the fact (see Corol-

lary 29 of [4]), that TH(G) can be described equivalently as the set of vectors
y = (yi) ∈ Rn for which there exists a matrix W = (wij) ∈ Rn×n satisfying both(

1 yT

y W

)
∈ Sn+1

+ ,
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and

yi = wii (i = 1, . . . , n), wij = 0 ({i, j} ∈ E(G)).

Analogously, let us denote by TH−(G) the inverse theta body, that is the set
of vectors x = (xi) ∈ Rn such that xi = 1/(aia

T
i )11 (i = 1, . . . , n) for some

orthonormal representation (ai) of the graph G.
From (1) it follows immediately, that TH−(G) can be described equivalently as

the set of vectors x = (xi) ∈ Rn such that there exists a matrix Z = (zij) ∈ Rn×n
satisfying

zii = xi − 1 (i = 1, . . . , n), zij = −1 ({i, j} ∈ E(G)), Z ∈ Sn+.

This fact implies the convexity of the inverse theta body, and also its monotonicity:
if x̂ ≥ x ∈ TH−(G) then x̂ ∈ TH−(G), too.

Let us define the inverse theta number of a graph G as

ι(G) := inf

{
n∑
i=1

xi : x = (xi) ∈ TH−(G)

}
.

From the above considerations, and standard semidefinite duality theory (see e.g.
[12]) we obtain the following statement, which implies also that the inverse theta
number is efficiently computable using interior-point algorithms (see e.g. [7], [1],
[10]).

Theorem 2.1. The inverse theta number ι(G) equals the common optimal value
of the Slater-regular primal-dual semidefinite programs

(TP−) inf tr (Z) + n, zij = −1 ({i, j} ∈ E(G)), Z = (zij) ∈ Sn+,

(TD−) sup tr (JM),

 mii = 1 (i = 1, . . . , n),
mij = 0 ({i, j} ∈ E(G)),
M = (mij) ∈ Sn+.

The optimal values of the programs (TP−) and (TD−) are attained.

Moreover, rewriting the feasible solution M of the program (TD−) as the Gram
matrix M = (bTi bj) for some vectors b1, . . . , bn ∈ Rd, we obtain the following
analogue of (2):

ι(G) = max


n∑

i,j=1

bTi bj : b1, . . . , bn o.r. of G

 . (5)

Similarly to ϑ(G), the number ι(G) constitutes an upper bound for the stability
number α(G).

Theorem 2.2. For any graph G, α(G) ≤
√
ι(G) holds.
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Proof. We adapt the proof of Lemma 3 in [6].
Let S ⊆ V (G) be a stable set, with cardinality α(G). Then for any (ai) or-

thonormal representation of G, the vectors ai (i ∈ S) are pairwise orthogonal unit
vectors. Therefore ∑

i∈S
(aia

T
i )11 ≤ 1,

which formula, by the arithmetic-harmonic mean inequality, implies that

n∑
i=1

1

(aiaTi )11
≥
∑
i∈S

1

(aiaTi )11
≥ (α(G))2

holds. Taking infimum in (ai), we have the statement.

The next two propositions give in particular the exact value of ι(G) for complete
multipartite graphs and for graphs with vertex-transitive automorphism group.

Proposition 2.1. For any graph G, the inequalities

n

(
1 +

µG
−λG

)
≤ ι(G) ≤ n(µG + 1)

hold, with equality if G is a complete multipartite graph.

Proof. The inequalities are proved by the feasible solutions

Z := L(G), M := I +
1

−λG
A(G),

which matrices have the values

n(µG + 1), n

(
1 +

µG
−λG

)
in (TP−) and (TD−), respectively.

The last assertion follows from the fact that for complete multipartite graphs
λG = −1.

The following proposition implies that for graphs with vertex-transitive auto-
morphism group

√
ι(G) > ϑ(G).

Proposition 2.2. For any graph G, the inequalities

n2

ϑ(G)
≤ ι(G) ≤ nϑ(G)

hold, with equality if the graph G has vertex-transitive automorphism group.
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Proof. First, let (ai) and (bi) be orthonormal representations of G and G, respec-
tively. Then, by Lemma 4 in [6],

n∑
i=1

(aia
T
i )11(bib

T
i )11 ≤ 1

holds, which formula implies, by the arithmetic-harmonic mean inequality, that

n∑
i=1

1

(aiaTi )11(bibTi )11
≥ n2.

Consequently,

max
1≤i≤n

1

(bibTi )11
·
n∑
i=1

1

(aiaTi )11
≥ n2,

and taking infimum in (ai) and (bi) we have the inequality ι(G) ≥ n2/ϑ(G).
On the other hand, if M is feasible in (TD−) then Y = M/n is feasible in (TD),

which proves the inequality ι(G) ≤ nϑ(G), too.
The last assertion follows from the fact that for graphs with vertex-transitive

automorphism group, the equality ϑ(G)ϑ(G) = n holds (see Theorem 8 in [6]).

We conclude this section with an open problem. Closedness of the convex set
TH−(G) follows easily from the fact that TH(G) is a compact set. Hence, the
inverse theta body can be described as

TH−(G) =
⋂
w≥0

{
x ∈ Rn : wTx ≥ ι(G,w)

}
,

where ι(G,w) denotes the weighted version of ι(G), that is

ι(G,w) := inf{wTx : x ∈ TH−(G)} (w ∈ Rn).

For special vectors w ∈ Rn, we have seen in the proof of Proposition 2.2 that

TH−(G) ⊆
⋂
(bi)

{
x = (xi) ∈ Rn :

n∑
i=1

xi
(bibTi )11

≥ n2, x ≥ 0

}
,

where the (bi)s are the orthonormal representations of the complementary graph
G. Does equality hold here? (For the theta body a similar linear description is
known (see [4]):

TH(G) =
⋂
(ai)

{
y = (yi) ∈ Rn :

n∑
i=1

(aia
T
i )11yi ≤ 1, y ≥ 0

}
,

where the (ai)s are the orthonormal representations of the graph G.)
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3 Shannon capacity

In this section we will prove that the inverse theta function has the same multi-
plicativity properties as the theta function, consequently its square root is an upper
bound for the Shannon capacity of the graph.

First, we will verify the submultiplicativity of the inverse theta function, an
analogue of Lemma 2 in [6].

Lemma 3.1. For any graphs G,H, ι(G ·H) ≤ ι(G) · ι(H).

Proof. Let (aGi ) and (aHj ) be orthonormal representations of the graphs G and H,

respectively. Then, by Lemma 1 in [6], (aGi ⊗aHj ) is an orthonormal representation
of the graph G·H. (Here x⊗y denotes Kronecker product of the vectors x = (xi), y,
that is the block vector x⊗ y := (xi · y), see [8].) Thus,

ι(G ·H) ≤
∑
i,j

1/((aGi ⊗ aHj )(aGi ⊗ aHj )T )11

=
∑
i

1/(aGi a
GT
i )11 ·

∑
j

1/(aHj a
HT
j )11,

and, taking infimum in (aGi ) and (aHj ), we have the statement.

Now, we will prove the skew-supermultiplicativity of the inverse theta function.

Lemma 3.2. For any graphs G,H, ι(G ·H) ≥ ι(G) · ι(H).

Proof. Let (bGi ) and (bHj ) be orthonormal representations of the complementary

graphs G and H, respectively. Then, by Lemma 1 in [6], (bGi ⊗bHj ) is an orthonormal

representation of the graph G ·H. Thus, by (5),

ι(G ·H) ≥
∑

i1,i2,j1,j2

(bGi1 ⊗ b
H
j1)T (bGi2 ⊗ b

H
j2)

=
∑
i1,i2

bGTi1 bGi2 ·
∑
j1,j2

bHTj1 bHj2 ,

and, taking supremum in (bGi ) and (bHj ), the statement is proved.

Summarizing, we obtain the following analogue of Theorem 7 in [6].

Theorem 3.1. The inequalities in Lemmas 3.1 and 3.2 hold with equalities: for
any graphs G,H,

a) ι(G ·H) = ι(G) · ι(H);

b) ι(G ·H) = ι(G) · ι(H).
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Proof. It is enough to notice that the graph G ·H is a subgraph of G ·H, so

ι(G ·H) ≥ ι(G ·H).

Applying Lemmas 3.1 and 3.2, the proof is completed.

We remark that part of Theorem 3.1 holds also with + signs instead of · signs:

ι(G+H) ≥ ι(G) + ι(H) = ι(G+H),

for any graphs G,H. The proof of this statement is immediate from Theorem 2.1,
therefore it is omitted. (For analogous results with the theta function, see [4].)

A submultiplicative upper bound for the stability number of a graph is also
an upper bound for the Shannon capacity of the graph, see Theorem 1 in [6].
Consequently,

Theorem 3.2. For any graph G, Θ(G) ≤
√
ι(G) holds.

Proof. By Theorem 2.2, for any graph H, α(H) ≤
√
ι(H). Hence, from Lemma

3.1,

α(Gk) ≤
√
ι(Gk) ≤

(√
ι(G)

)k
follows for k ∈ N ; the proof is finished.

Summarizing Theorem 1 in [6] and Theorem 3.2 we obtain

Θ(G) ≤ min
{
ϑ(G),

√
ι(G)

}
. (6)

Can
√
ι(G) be less than ϑ(G) for some graph G? Juhász’s theorem (see [3]) states

that ϑ(G) is typically “around” n1/2 in the following sense:

Theorem 3.3. (Juhász) Let G be a random graph with edge probability p = 1/2.
Then, with probability 1− o(1) for n→∞,

1

2

√
n+O(n1/3 log n) ≤ ϑ(G) ≤ 2

√
n+O(n1/3 log n).

Hence, the value
√
ι(G) (which is between n

/√
ϑ(G) and

√
nϑ(G) by Propo-

sition 2.2) is typically “around” n3/4.

Theorem 3.4. Let G be a random graph with edge probability p = 1/2. Then, there
exist positive constants c1, c2 > 0 such that with probability 1− o(1) for n→∞,

c1 · n3/4 ≤
√
ι(G) ≤ c2 · n3/4.

(Any c1, c2 > 0 such that c21 < 1/2 and c22 > 2 meet the requirements.)
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We mention two corollaries: a positive and a negative result with non-construc-
tive proofs.

Corollary 3.1. There exist graphs G such that
√
ι(G) < χ(G).

Proof. The proof is indirect: Let us suppose that the inequality

χ(H) ≤
√
ι(H)

holds for any graph H.
Then, by Theorem 3.4,

α(H) ≥ n

χ(H)
≥ n√

ι(H)
≥ c · n1/4 (7)

would hold, with probability 1 − o(1) as n → ∞, for some appropriate constant
c > 0. On the other hand, it can easily be seen that the probability of α(H) ≥ `,

P (α(H) ≥ `) ≤
(
n
`

)
·
(

1− 1

2

)`(`−1)/2
≤

≤
(
n · 2−(`−1)/2

)`
→ 0 (n→∞),

where ` := c · n1/4. We reached contradiction with (7).
Hence, there exist graphs satisfying√

ι(H) < χ(H),

from which, with G = H, the statement follows.

From Theorems 3.3 and 3.4 immediately follows

Corollary 3.2. Under the assumptions of Theorems 3.3 and 3.4, with probability
1− o(1) for n→∞,

ϑ(G) ≤
√
ι(G).

Thus, the graphs G, with
√
ι(G) < ϑ(G), if they exist at all, are rare. However,

we will see in the following section, that the fact that ι(G) with high probability is
large, can be an advance, too.

We conclude this section with an open problem: With minor modification of
the proof of Theorem 2.2 it can be proved that

α(G)2 ≤ ι(G)− n+ α(G).

From this inequality we obtain the bound

α(G) ≤ 1

2

(
1 +

√
4(ι(G)− n) + 1

)
, (8)

which is tighter than α(G) ≤
√
ι(G). It is an open problem, whether the bound

in (8) is submultiplicative (and, thus, is an upper bound for the Shannon capacity
Θ(G)), or not.
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4 Heuristic algorithm

In this section we will describe a heuristic algorithm for the stable set problem.

The key observation for the algorithm is the following simple

Lemma 4.1. Let the vectors b1, . . . , bn ∈ Rd form an orthonormal representation
of the complementary graph G, and let u ∈ Rd, uTu = 1. Then,

S :=

{
i ∈ {1, . . . , n} : (uT bi)

2 >
1

2

}
(9)

is a stable set in the graph G.

Proof. Let us suppose indirectly that for some i, j ∈ S, {i, j} ∈ E(G). Then, as
(b1, . . . , bn) is an orthonormal representation of G, so bTi bj = 0, and ||bi+bj || =

√
2.

By i, j ∈ S, we have (uT bi)
2 > 1/2 < (uT bj)

2. Let us consider for example the case
when uT bi >

√
2/2 < uT bj . Then,

√
2 < uT (bi + bj) ≤ ||u|| · ||bi + bj || =

√
2,

which is a contradiction. The cases, when uT bi < −
√

2/2 or uT bj < −
√

2/2 can be
dealt with similarly. This completes the proof.

Taking into account Lemma 4.1 we can search for large stable sets as follows:
We compute an orthonormal representation (bi) of the complementary graph G and
a unit vector u so that

∑
i(u

T bi)
2 is maximal, that is, see (2), it equals ϑ(G). (The

solution of this problem is well-known, see Theorem 12 in [5].) The output stable
set S will be the one in (9). The algorithm derived this way is a special case of the
Alon-Kahale algorithm, see Theorem 29 in [5].

To calculate with the inverse theta function ι(G) instead of the theta number
ϑ(G), we take a different approach to the problem. It follows from Rayleigh’s theo-
rem and (2) that finding an orthonormal representation (bi) of the complementary
graph G and unit vector u with value

∑
(uT bi)

2 = ϑ(G) means solving the programs

(Pd) sup ΛBBT ,

{
(BTB)ii = 1 (i = 1, . . . , n)
(BTB)ij = 0 ({i, j} ∈ E(G)),

where B = (b1, . . . , bn) ∈ Rd×n. In other words, using the obvious equality ΛBBT =
ΛBTB and the variable transformation M = BTB, we have to solve the program

(P ) sup ΛM ,

 mii = 1 (i = 1, . . . , n)
mij = 0 ({i, j} ∈ E(G))
M = (mij) ∈ Sn+.

This reformulation with a different proof is due to L. Lovász, who proved also the
equivalence of the programs (P ) and (TD), see [11], Theorems 11.8 and 11.3.
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Algorithm 1 Heuristic algorithm for the stable set problem.

1: Solve to optimality (or with ε > 0 additive error) the program (TD−). Denote
the solution by M∗. (The ε-optimal solution M∗ can be determined in poly-
nomial time using interior-point methods for semidefinite optimization, see e.g.
[7], [1], [10].)

2: Determine a matrix B = (b1, . . . , bn) ∈ Rd×n such that M∗ = BTB. (An
appropriate matrix B can be determined in polynomial time using algorithms
from [9], e.g. Cholesky factorization.)

3: Compute a vector u ∈ Rd, uTu = 1 such that ΛBBT = uTBBTu holds. In
other words compute a unit eigenvector of the matrix BBT corresponding to
its maximum eigenvalue ΛBBT . (This can be accomplished in polynomial time
using algorithms from [9].)

4: Return the stable set S in (9).

To obtain an algorithm based on the notion of the inverse theta number, instead
of (P ) we solve the program (TD−) for M , and from this matrix we compute B, u
and the stable set S. The algorithm derived this way is as follows:

We have some evidence that our algorithm finds large stable sets. Note that
the following theorem implies, by Juhász’s theorem, that

∑
i(u

T bi)
2 is typically

“around”
√
n for the modified algorithm, similarly as in the case of its original

version, the Alon-Kahale algorithm.

Theorem 4.1. Algorithm 1 computes an orthonormal representation (b1, . . . , bn)
of the complementary graph G, and a unit vector u ∈ Rd such that the inequalities

ϑ(G) ≥
n∑
i=1

(uT bi)
2 ≥ ι(G)

n
≥ n

ϑ(G)

hold.

Proof. The first inequality is the immediate consequence of Theorem 5 in [6]. Let
us prove the second inequality. Obviously,

n∑
i=1

(uT bi)
2 = ΛBBT = ΛBTB = ΛM∗ .

On the other hand, by Rayleigh’s theorem,

ΛM∗ ≥ 1T√
n
M∗

1√
n

=
tr (JM∗)

n
=
ι(G)

n
,

where 1 denotes the n-vector with all elements equal to one. This way we have
verified the inequality

∑
i(u

T bi)
2 ≥ ι(G)/n. Finally, the last inequality follows

from Proposition 2.2.
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Note that the following corollary of Theorem 4.1 implies the relation

α(G) ≥ 2ι(G)

n
− n. (10)

(Similarly,

α(G) ≥ 2ϑ(G)− n,

as the Alon-Kahale algorithm shows.)

Corollary 4.1. Algorithm 1 realizes the bound in (10): finds a stable set S with
cardinality |S| ≥ (2ι(G)/n)− n.

Proof. The statement is an easy consequence of the inequality

∑
i∈S

(uT bi)
2 +

∑
i 6∈S

(uT bi)
2 ≥ ι(G)

n
,

as for i 6∈ S we have (uT bi)
2 ≤ 1/2 by the definition of the stable set S in (9).

Corollary 4.1 implies that |S| > 0 if ι(G) > n2/2. Thus, the output stable set
S is nonempty for example when α(G) > n/

√
2.

We conclude this section with a simple example. Let us consider the graph
G = Ks1,...,sk . Then, the output matrix M∗ (the optimal solution of the program
(TD−)) is the block-diagonal matrix made up of the matrices J ∈ Rs1×s1 , . . . ,
J ∈ Rsk×sk as diagonal blocks, zero otherwise. The matrix B ∈ Rk×n such that
M∗ = BTB is made up of the column vectors of the identity matrix I ∈ Rk×k with
multiplicity s1, . . . , sk, respectively. Then, BBT ∈ Rk×k is the diagonal matrix
with diagonal elements s1, . . . , sk. Let us suppose that s1 ≥ s2, . . . , sk. Then, the
vector u ∈ Rk equals the first column vector of the identity matrix I ∈ Rk×k; and
S = {1, . . . , s1} is the output stable set.

We can see that our heuristic algorithm in the case of the graph G = Ks1,...,sk

finds a maximum stable set (and, iterating the algorithm, we obtain a minimum
colouring). Generally, estimating from below the factor of the algorithm, the infi-
mum ratio of the cardinality of the output stable set and the stability number for
a graph with n vertices, is an unsolved problem.

5 Conclusion

In this paper we studied the multiplicativity properties of the inverse theta function,
and as a consequence we proved that the square root of this function is an upper
bound for the Shannon capacity of the graph. Though the square root of the
inverse theta number, as compared to Lovász’s theta number, is typically a weak
upper bound, this fact could be exploited in a heuristic algorithm for the stable set
problem.
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