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Abstract

In this paper a novel ranking method which may be useful in sports like tennis,
table tennis or American football, etc. is introduced and analyzed. In order to rank the
players or teams, a time-dependent PageRank based method isapplied on the directed
and weighted graph representing game results in a sport competition. The method was
examined on the results of the table tennis competition of enthusiastic sport-loving
researchers of the Institute of Informatics at the University of Szeged. The results of
our method were compared by several popular ranking techniques. We observed that
our approach works well in general and it has a good predictive power.

Keywords: Colley method, Least squares method, Keener method, Markovchain,
PageRank, ranking algorithms, self-organization

1 Introduction

In the last decade, rating and ranking methods have been studied and applied in a wide
range of different areas. Due to the extraordinary success of Google’s PageRank (PR)
algorithm [7] -originally developed for ranking webpages based on their importance- graph
based algorithms have gained more ground in the topic of ranking problems. Some good
surveys on the PageRank method can be found in [4, 20, 29]. Recently, the dynamic
extensions of the PageRank method have also been discussed,containing the dynamic
aspects of the ‘damping’ factor [28] and the viewpoint of theevolving network [3] and
the time dependency [2]. More recently, a novel dynamic ranking model has also been
proposed for ranking in sports [23].

Ranking athletes in individual sports, or sport teams is important for those who are
interested in the various professional or amateur leagues as a financial investor, a manager
or a fan and it also has a crucial role in sports betting from the point of view of both the
better and the betting agency. In many sports, only the win/loss ratio is considered (e.g.see
the most popular sports in the U.S.) for ranking,i.e.higher value indicates higher position
in the ranking. In the case of equal win/loss rates, the result(s) of the head-to-head matches
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between the players/teams in question and other simple statistics are considered to deter-
mine the ranking positions. In many sports, instead of the round-robin system, the type of
the most relevant competitions is a single-elimination tournament (also called knock-out or
cup) maybe with a preceding group stage. Thus the players play just few matches against
only a small subset of the competitors. The official ranking of the players is usually deter-
mined by a sport specific rating system (e.g.see tennis, table tennis, combat sports, etc.).
In fact, in a tournament, in a regular season or in a given period each player/team plays
with only a subset of the others and a player/team who plays against weaker opponents
have a considerable advantage compared with those, who playagainst stronger ones.

Many approach traces back the ranking problem to the solution of a system of linear
equations, where the entries of the coefficient matrix referin some way to the results of the
games have been played. Due to the study of this pairwise comparison scheme (for early
studies seee.g.[6, 12, 19]), several matrix-based ranking algorithm have been appeared
related to the ranking in sports (seee.g.[10] for chess teams, [11, 26] for tennis players,
[5, 8, 14, 21] for American football teams). For a good mathematical guide to sports, see
e.g.[16], while a useful comprehensive work can be found in [13] and [21].

In this paper, we continue this direction of studies and present a simple, time-dependent
PageRank based method, thetime-dependent PageRank(tdPR), and apply it to the table
tennis competition of the Institute of Informatics at the University of Szeged. In that com-
petition, there is no any regular organization rule: players play against any participant
whenever they want. Not even the number of winning sets needed for a win is stated.
The only restriction is that 7 days must be elapsed between two matches against the same
players. One of the biggest advantage of using this data set is its similarity to the result
database of many professional sports in a given period, due to the large variety of the num-
ber of matches between two players and the elapsed time between the matches. However
most of the (professional) sports have strong conditions for the opponent selection and the
number of matches. It can be assumed that without knowing theorganizational rules, the
‘opponent selection’ in a given period can be regarded as a random process (we note that
this is not holde.g.for a Swiss-system chess tournament). Furthermore, we think that the
importance of a certain result is inversely proportional tothat how old that game is. Thus
considering this time-dependency (i.e. , the latest results are more important than the older
ones) helps to get clearer picture about the actual relativestrengths of the opponents.

Results presented here were compared to other traditional and widely used ranking
methods. We highlight the advantages of the usage of our method and show its higher
predictive power than the other methods. Furthermore, we also suggest a deeper study of a
self-organization mechanism respect to the opponent selection: the players having similar
tdPR values more likely to play with each other in the later part of the competition (without
knowing the scores and ranks of each other). This observation can explain the appearance
of different strength classes and emergence of the elite in several sports.

This paper is organized as follows: in Section 2, we give a brief mathematical descrip-
tion of the methods we used and compared, in Section 3, we apply the methods to the table
tennis competition and highlight the usefulness and advantages of our approach. finally,
in Section 4, we suggest a new type of a self-organization mechanism and a type of graph
regularity for deeper analysis.
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2 Overview of the ranking methods

In this section we introduce some widely used ranking methods and describe the proposed
approach. Hundreds of ranking methods have been appeared inthe long history of ranking
in sports. The selection of the methods we use in this paper based on a few criterion: (1)
the method is based on linear algebra, (2) the method has beenproved to be successful for
real applications, and (3) the method has simple formulation with closed form solution.

In this section the number of players is denoted byN while we will refer to the players
by 1, . . . ,N.

2.1 Least squares method

The first method we describe is usually referred as the least squares (or weighted least
squares) method (Lsm) originated from Smith and Gulliksen [15, 30]. Kenneth Massey
in his master thesis found wonderful applications of it, especially for ranking the collage
football teams in the United States ([21], Chapter 4). The only statistics used by this
method are the number of wins and losses of each player. The ranking of the players
comes from the solution of the linear system of equations

M~r = ~p, (1)

where~r = (r1, . . . , rN) is the unknown rating vector of the players,~p = (p1, . . . , pN) the
vector contains the difference of total number of wins and losses for the players, whileM
(we call it Massey matrix) defined as

Mi j =

{

ni, if i = j,
−ni j , if i 6= j,

(2)

whereni is the total number of matches played by playeri andni j is the number of matches
played between playeri and playerj. Sincerank(M) = N−1, the linear system Eq. (1) is
underdetermined. The non-singularity can be guaranteed ifeach element of any rowi of
M is set to 1 and the correspondingpi is set to 0. Obviously, the decreasing order of the
components of the rating vector~r gives the ranking of the players.

2.2 Colley matrix method

The Colley matrix mehod was designed by Wesley N. Colley [8].The method is a mod-
ification of the Least squares method by using an observationcalled Laplace’s rule of
succession (see [27], page 148) which claims, that if one observedk successes out ofn
attempts, then(k+1)/(n+1) is better estimation for the next event to be success thank/n.
The rating vector~r of the players is the solution of the linear system

C~r =~b, (3)

where theith component of the vector~b is defined asbi = 1+(wi − l i)/2, wherewi and
l i are the number of wins and losses of playeri, respectively, and theColley matrix Cis
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defined as

Ci j =

{

ni +2, if i = j,
−ni j , if i 6= j.

(4)

ThusC=M+2I , whereI is theN×N identity matrix. It can be checked that system Eq. (3)
always has a unique solution and just as before, the ranking of the players is obtained by
the vector~r.

2.3 Keener method

James P. Keener developed his ranking method [17], based on the theorem of Frobenius
and Perron (seee.g.[22], Chapter 8). Using this method, the ranking of the players comes
from the eigenvalue equation

K~r = λ~r, (5)

where theKenner matrix Kdefined as

Ki j =

{

wi j+1
ni j+2 , if player i played against playerj ,

0, otherwise,
(6)

wherewi j is the number of wins of playeri against playerj while λ is the dominant
eigenvalue (the eigenvalue of the largest absolute value, also known as thespectral radius)
of the matrixK. The Frobenius-Perron theorem guarantees the existence and uniqueness
of the vector~r with strictly positive components. We mention, that the method has been
originally defined for ranking American football teams and used the concrete points that a
teami scored against a teamj and also used a smoothing function to avoid the possibilities
for manipulation. For the table tennis competition that hasbeen examined in this paper,
we do not deal with the points scored in the games played just consider the final result of
each game as win or loss.

2.4 PageRank method

The PageRank algorithm - developed by Sergey Brin and Larry Page [7] - was originally
designed to rank web pages in order to their importance. The idea behind the algorithm
came from the basic properties of Markov chains (see e.g in [27], Chapter 4) as a spe-
cial case of the Frobenius-Perron theory. The ranking points of the players are iteratively
calculated by the recursion formula

PR(i) =
λ
N
+(1−λ ) ∑

j∈N+(i)

PR( j)
wj

, (7)

whereN+( j) is the set of players defeated by playeri at least once,wj is the total number
of wins of player j and λ ∈ [0,1] is a free parameter (usually 0.1 or 0.2; the intuitive
meaning ofλ is described in Section 2.5).

To see the close relationship between PageRank formula and the theory of Markov
chains, we write Eq. (7) to the vector equation form

~PR=
λ
N
[I − (1−λ )AD−1]−1~

1, (8)
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where ~PR PageRank vector contains the PageRank rates of the players,A is the matrix
with elementsAi j equals to the number of wins of playeri against playerj, D the diagonal
matrix such thatD= diag[(Dii =∑N

ℓ=1Aiℓ)
N
i=1)], I is theN×N identity matrix and finally~1

is theN-dimensional vector having each component equals to 1. Assuming that~1 ~PR= 1,
Eq. (8) implies, that

~PR= M ~PR, (9)

with M = λ/n~1~1T − (1−λ )AD−1, which shows that~PR is the eigenvector of the matrix
M due to the eigenvalue 1, which is the largest eigenvalue ofM by a consequence of the
Frobenius-Perron theorem for row-stochastic matrices.

2.5 Time-dependent PageRank method

Intuitively, the basic PageRank algorithm can be considered as a random walk in the graph
G= (V,E), whereV denotes the set of players and we draw a directed edgei → j ∈E each
time when playeri wins against playerj. The walk starts in a random nodei of the graph
and steps to a randomly chosen nodej, with uniform probability, for thati → j edge exits.
The parameterλ can be viewed as a “damping” factor which guarantee that the random
walk restarts in a random, uniformly chosen node of the graphalmost surely in every 1/λ -
th step. The PageRank of a nodei can be considered as the the long-term fraction of the
number of visits in nodei during the random walk.

Following this direction, we modified the PageRank algorithm such that the weight
(i.e the transition probability) of each edge decreases whenever a new edge appears in
the graph. Formally, after thekth match was played in a given period, the weight of the
latest edge become 1, the second latest become 1/2, theith latest become 1/i, the oldest
one become 1/k. We normalize the weights such that the obtained matrix become row-
stochastic (i.e. each row summing to 1) and we recalculate the ranking every time when a
new result is registered in the database by solving the equation

~PR= M′ ~PR, (10)

where the entries ofM′ are then the new transition probability values, calculatedas we
described.

3 Experimental results

We applied the methods described above to the table tennis competition of the Institute of
Informatics at the University of Szeged (the dataset we usedcan be found in the website
[1]). In that competition, there is no any rule for the selection of the opponents or the date
of the match. The only restriction is that 7 days must be elapsed between two matches of
the same players. Without considering the organizational rules and by just considering the
list of the results in a given period, it can be observed, thatthese features are occurred in
many sports where the competitions are not round-robin.

In Table 1, we report the scores of the players obtained by thedifferent ranking meth-
ods. In the case of the PR and the time tdPR algorithms, we usedλ = 0.1,0.2,0.3,0.4,
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respectively. Figure 3 shows, that the tdPR score is very robust against these variations
of λ . The tdPR method was proved to be very effective in finding thebest players of the
competition that could bea posteriorijustified by knowing the players skills.

We used Kendall’sτ rank correlation method [18] to quantify the rank correlation
between the different methods. The rank correlation coefficient is defined asτ = (nc−

nd)/
(n

2

)

, wherenc (nd) is the number of such pairs that have the same (opposite) order
in both ranking list. However, the tdPR score is positively correlated with the win ratio,
differences can be seen by comparing the two methods. The relation between the tdPR and
the winning ratio is shown in Figure 1(a).

A relevant outlier on the list is player 14 having win ratio 50%, who precedes player
5, 23, 19 and 21 having better win ratio than himself. He is placed at position 4 and this
is consistent with the fact, that he was defeated by just thatplayers (player 10, player 12;
see the data set and Figure 4) who ranked higher. Figure 1(b) shows the relation between
tdPR and the other ranking methods.

Despite the high correlation between tdPR and the other methods, we observed, that the
time-dependent method has a better predictive power. We considered the first half of the
total number matches had been played since the start of the competition and calculate the
tdPR values regarding that period. Then we checked the results of the upcoming matches
and the changes in the ranking. It can be observed, that the players with much higher
tdPR score after the first half the total matches played, won ahigh proportion of their
matches against players with smaller tdPR values in the later part of the competition. The
difference between the tdPR values of the players can give a reliable prediction for the
upcoming matches. Figure 2 shows the tdPR ranks of the players after 45, 90 and 180
played games. We mention, that Figure 2 only contains that players, who had already had
at least one played matches after the first 45 played matches of the competition. Obviously,
at that time we can not predict the results of those players who join later to the competition.

(a) (b)

Figure 1: (a) The scatter plot of the tdPR rank vs. the win-rate rank. (b) The results
obtained by the different ranking methods.
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Table 1: Scrores obtained by the different methods; the ordering of the players are obtained
by the decreasing order of the tdPR values

Player #Plays #Wins Win ratio Lsm Colley Keener PR tdPR
9 13 13 1.000 1.418 1.074 0.229 0.113 0.138
10 29 25 0.862 0.972 0.923 0.238 0.089 0.093
12 30 26 0.867 0.859 0.882 0.245 0.083 0.085
1 63 44 0.698 0.497 0.722 0.233 0.071 0.075
14 6 3 0.500 0.658 0.717 0.198 0.064 0.070
5 38 22 0.579 0.266 0.604 0.200 0.050 0.052
23 5 3 0.600 0.779 0.736 0.199 0.047 0.047
18 16 8 0.500 0.555 0.700 0.192 0.046 0.045
11 24 11 0.458 0.209 0.564 0.193 0.039 0.040
19 10 6 0.600 0.454 0.664 0.200 0.042 0.039
21 13 7 0.538 0.325 0.615 0.199 0.035 0.032
8 19 6 0.316 -0.338 0.354 0.181 0.031 0.032
26 1 0 0.000 -0.503 0.407 0.194 0.031 0.029
4 19 3 0.158 -0.474 0.265 0.172 0.025 0.026
6 10 5 0.500 0.269 0.586 0.194 0.030 0.025
2 17 3 0.176 -0.380 0.307 0.177 0.022 0.024
17 13 2 0.154 -0.437 0.286 0.178 0.019 0.020
3 13 1 0.077 -0.615 0.213 0.171 0.019 0.020
7 12 2 0.167 -0.650 0.219 0.176 0.018 0.018
16 2 0 0.000 -0.322 0.401 0.191 0.024 0.018
13 2 0 0.000 -0.322 0.401 0.191 0.024 0.018
22 14 1 0.071 -0.433 0.277 0.169 0.016 0.016
24 4 1 0.250 -0.507 0.349 0.191 0.023 0.016
15 5 1 0.200 -0.174 0.416 0.188 0.017 0.010
25 3 0 0.000 -1.060 0.186 0.191 0.015 0.007
20 5 0 0.000 -1.047 0.136 0.184 0.010 0.004

Table 2: Kendall’sτ rank correlation between the different methods.
Win/loss Lsm Colley Keener PR tdPR

Win/loss 1.000
MASSEY 0.705 1.000
COLLEY 0.748 0.895 1.000
KEENER 0.655 0.606 0.711 1.000
PR 0.723 0.735 0.803 0.662 1.000
tdPR 0.723 0.674 0.705 0.563 0.902 1.000
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Figure 2: The tdPR ranks of the players after 45, 90 and 180 played games.

(a) (b) (c)

Figure 3: Sensitivity analysis of tdPR for differentλ values after 45, 90 and 180 played
games, from left to right. The figure shows, that the tdPR score is robust against these
variations ofλ .

4 Further ideas and future work

We also ran a clustering algorithm (aiming to maximize modularity [25]) to see whether
there exists a deeper organizational mechanism behind the evolution of such a network.
In Figure 2 the clusters are colored with different colors. Figure 4 illustrates the contact
graph of the players after 90 played matches (left hand side)and the current state of the
championship with more than 180 mathces (right hand side). It is interesting to see the
changes of the clusters of the two graph. First, we observed that most of the new players
wants to play against the actual best players (in tdPR rank) hoping to jump to the top of the
ranking table. Second, it seems that players having closer tdPR values more likely to play
with each other, than players having much less tdPR value andrank. Thus, we conjecture
that the tdPR scores have a good explanatory power for a self-organizing mechanism of
free-time sports and it can explain the appearance of different strength classes in most



Time-dependent Network Algorithm for Ranking in Sports 503

Figure 4: The contact graph of the players after 90 played matches (top) and the current
state of the championship with more than 180 mathces (bottom). Nodes having same colors
belong to the same clusters.
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of the sports, where the results in a class are more difficult to be predicted than results
between different classes. Furthermore, in a graph theoretical point of view, a new type
of ’regulatory’ (for some details, see [9]) can be defined on directed graphs, where the
fraction of in/out edges of a node is around 1/2 in the same class, and tends to 1 (or 0
reversely) between different classes.

5 Conclusions

Graph based algorithms have been proved to be relevant in a wide range of applications.
However there is no perfect algorithm for ranking sport players/teams, we believe that
PageRank based methods are reliable to ranking athletes andthis is even more true for
time-dependent modifications of these stochastic algorithms.

In this work, we defined a time-dependent PageRank based algorithm and applied it for
ranking players in a university table tennis competition. According to our tdPR method, the
ranking of a player is not only determined by the number of hisor her victories, but matters
from how good players he could beat or lose against. It means,that a good player is needed
to beat for higher ranking position, but win many matches against weaker opponents does
not lead anyone to the first positions in the ranking table. The time-dependency of weights
of the matches guarantee that the matches played a long time ago do not count as much
weight in the ranking. Another aim of the time-dependency isto pressure the players to
play regularly or else their results would be out of date, therefore count much less in the
ranking.

We also observed that our method has a good predictive power.This can be interesting
in other aspects of sports, for example estimate the bettingodds for games. Finally, we
think that a self-organization mechanism works in the background of the evolution of the
contact graph. Obviously, players want to enter matches areexpected to be exciting, but
this nature of such competitions can be modeled and measuredmathematically just by
knowing the time-series of the results. That observation gives the idea to define a special
preferential attachment mechanism [24] where players having higher PageRank values
more likely to play (contact) with each other and this is maybe related to the emergence
of an elite in sports. Further research is needed around thishypothesis, and testing our
method for different sports and data sets is also another work for the future.
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