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Time-dependent Network Algorithm for
Ranking in Sports

Andras London, Jozsef Németh, and Tamas Néfmeth

Abstract

In this paper a novel ranking method which may be useful intspike tennis,
table tennis or American football, etc. is introduced analyzed. In order to rank the
players or teams, a time-dependent PageRank based metiquuliesd on the directed
and weighted graph representing game results in a sportet@iiop. The method was
examined on the results of the table tennis competition dfwsiastic sport-loving
researchers of the Institute of Informatics at the Uniwgrsf Szeged. The results of
our method were compared by several popular ranking teabrigWe observed that
our approach works well in general and it has a good pre@igiower.

Keywords: Colley method, Least squares method, Keener method, Markain,
PageRank, ranking algorithms, self-organization

1 Introduction

In the last decade, rating and ranking methods have beeredtadd applied in a wide
range of different areas. Due to the extraordinary succé€xogle’s PageRank (PR)
algorithm [7] -originally developed for ranking webpagesbd on their importance- graph
based algorithms have gained more ground in the topic ofimgrgroblems. Some good
surveys on the PageRank method can be found in [4, 20, 29]erffgcthe dynamic
extensions of the PageRank method have also been discussedining the dynamic
aspects of the ‘damping’ factor [28] and the viewpoint of gwlving network [3] and
the time dependency [2]. More recently, a novel dynamic iramknodel has also been
proposed for ranking in sports [23].

Ranking athletes in individual sports, or sport teams isdrtgmt for those who are
interested in the various professional or amateur leagaadiaancial investor, a manager
or a fan and it also has a crucial role in sports betting froengthint of view of both the
better and the betting agency. In many sports, only the @gs/tatio is considereé g.see
the most popular sports in the U.S.) for ranking, higher value indicates higher position
in the ranking. In the case of equal win/loss rates, the tE3uf the head-to-head matches
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between the players/teams in question and other simplst&tatare considered to deter-
mine the ranking positions. In many sports, instead of thiaderobin system, the type of
the most relevant competitions is a single-eliminatiomtament (also called knock-out or
cup) maybe with a preceding group stage. Thus the playeygysafew matches against
only a small subset of the competitors. The official rankifthe players is usually deter-
mined by a sport specific rating systemd.see tennis, table tennis, combat sports, etc.).
In fact, in a tournament, in a regular season or in a giveropgezach player/team plays
with only a subset of the others and a player/team who plaggagweaker opponents
have a considerable advantage compared with those, whagégst stronger ones.

Many approach traces back the ranking problem to the solati@ system of linear
equations, where the entries of the coefficient matrix riefeome way to the results of the
games have been played. Due to the study of this pairwise adsom scheme (for early
studies see.g.[6, 12, 19]), several matrix-based ranking algorithm hagerbappeared
related to the ranking in sports (see.[10] for chess teams, [11, 26] for tennis players,
[5, 8, 14, 21] for American football teams). For a good mathgoal guide to sports, see
e.g.[16], while a useful comprehensive work can be found in [18] §21].

In this paper, we continue this direction of studies andgmea simple, time-dependent
PageRank based method, tirae-dependent PageRaftkiPR), and apply it to the table
tennis competition of the Institute of Informatics at theikémsity of Szeged. In that com-
petition, there is no any regular organization rule: playglay against any participant
whenever they want. Not even the number of winning sets reéatea win is stated.
The only restriction is that 7 days must be elapsed betweemtatches against the same
players. One of the biggest advantage of using this data st $imilarity to the result
database of many professional sports in a given period,ainetiarge variety of the num-
ber of matches between two players and the elapsed time &etive matches. However
most of the (professional) sports have strong conditionthi® opponent selection and the
number of matches. It can be assumed that without knowingrip@nizational rules, the
‘opponent selection’ in a given period can be regarded as@ora process (we note that
this is not holde.g.for a Swiss-system chess tournament). Furthermore, wk that the
importance of a certain result is inversely proportionahtat how old that game is. Thus
considering this time-dependenaéye(, the latest results are more important than the older
ones) helps to get clearer picture about the actual relatremagths of the opponents.

Results presented here were compared to other traditionaividely used ranking
methods. We highlight the advantages of the usage of ouradethd show its higher
predictive power than the other methods. Furthermore, s@slggest a deeper study of a
self-organization mechanism respect to the opponenttgmiethe players having similar
tdPR values more likely to play with each other in the latet pethe competition (without
knowing the scores and ranks of each other). This observe#in explain the appearance
of different strength classes and emergence of the elitevieral sports.

This paper is organized as follows: in Section 2, we give afltniathematical descrip-
tion of the methods we used and compared, in Section 3, wg #ppmethods to the table
tennis competition and highlight the usefulness and adwms of our approach. finally,
in Section 4, we suggest a new type of a self-organizatiorhar@em and a type of graph
regularity for deeper analysis.
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2 Overview of the ranking methods

In this section we introduce some widely used ranking metteodi describe the proposed
approach. Hundreds of ranking methods have been appeatezliong history of ranking
in sports. The selection of the methods we use in this papsdban a few criterion: (1)
the method is based on linear algebra, (2) the method hagineesd to be successful for
real applications, and (3) the method has simple formutatiibh closed form solution.

In this section the number of players is denoted\byhile we will refer to the players
by1...,N.

2.1 Least squares method

The first method we describe is usually referred as the lepstres (or weighted least
squares) method (Lsm) originated from Smith and GulliksEs) B0]. Kenneth Massey
in his master thesis found wonderful applications of it,ezsally for ranking the collage

football teams in the United States ([21], Chapter 4). Thly atatistics used by this
method are the number of wins and losses of each player. Téntpof the players

comes from the solution of the linear system of equations

MF = p, 1)

wherer = (r1,...,rn) is the unknown rating vector of the playef$= (p1,...,pn) the
vector contains the difference of total number of wins ars$és for the players, whild
(we call it Massey matrixdefined as

A ni, if i= ja
M'J_{ Ty, 0 i) @

wheren; is the total number of matches played by playamdnj is the number of matches

played between playémand playerj. Sincerank(M) = N — 1, the linear system Eq. (1) is

underdetermined. The non-singularity can be guaranteeacifi element of any rowof

M is set to 1 and the correspondipgis set to 0. Obviously, the decreasing order of the

components of the rating vectdgives the ranking of the players.

2.2 Colley matrix method

The Colley matrix mehod was designed by Wesley N. Colley T8je method is a mod-
ification of the Least squares method by using an observatidlad Laplace’s rule of
succession (see [27], page 148) which claims, that if onerebdk successes out af
attempts, thek+1)/(n+1) is better estimation for the next event to be successkjian
The rating vector of the players is the solution of the linear system

Cr=h, (3)

where theith component of the vectdris defined ad; = 1+ (wi —1i)/2, wherew; and
l; are the number of wins and losses of playaespectively, and th€olley matrix Cis
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defined as .
o fm+2 i =],
QJ—{ Thg, if i#] )
ThusC =M +21, wherel is theN x N identity matrix. It can be checked that system Eq. (3)
always has a unique solution and just as before, the ranKittgeglayers is obtained by
the vectorr.

2.3 Keener method

James P. Keener developed his ranking method [17], baseldeathéorem of Frobenius
and Perron (see.g.[22], Chapter 8). Using this method, the ranking of the pfaymmes
from the eigenvalue equation

Kr = AT, (5)
where theKenner matrix Kdefined as
wij+1 . . . .
Kj={ mi2 if playe.r| played against playgr, (©)
0, otherwise

wherew;j is the number of wins of playedragainst playerj while A is the dominant
eigenvalue (the eigenvalue of the largest absolute valsie kaown as thepectral radiu}

of the matrixK. The Frobenius-Perron theorem guarantees the existedognégueness
of the vectorr with strictly positive components. We mention, that the moet has been
originally defined for ranking American football teams arsgd the concrete points that a
teami scored against a teajrand also used a smoothing function to avoid the possilsilitie
for manipulation. For the table tennis competition that hasn examined in this paper,
we do not deal with the points scored in the games played grstider the final result of
each game as win or loss.

2.4 PageRank method

The PageRank algorithm - developed by Sergey Brin and LaageR7] - was originally
designed to rank web pages in order to their importance. dée lbehind the algorithm
came from the basic properties of Markov chains (see e.gh Rhapter 4) as a spe-
cial case of the Frobenius-Perron theory. The ranking paifithe players are iteratively
calculated by the recursion formula

A PR(j)

PRI)=Ha-h) 5 ™)

whereN™ (j) is the set of players defeated by playet least oncew; is the total number
of wins of playerj andA € [0,1] is a free parameter (usuallyl0or 02; the intuitive
meaning ofA is described in Section 2.5).

To see the close relationship between PageRank formulahenthéory of Markov
chains, we write Eq. (7) to the vector equation form

PR= %u —(1-M)AD Y1, (8)
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wherePR PageRank vector contains the PageRank rates of the playéshe matrix
with elementsAj equals to the number of wins of playiemgainst playej, D the diagonal
matrix such thab = diag[(Di = ) ; Aiy)N,)], | is theN x N identity matrix and finallyl
is theN-dimensional vector having each component equals to 1.mssuthatlPR= 1,
Eq. (8) implies, that

PR= MPR (9)

with M = A /ni1T — (1—A)AD%, which shows thaPRis the eigenvector of the matrix
M due to the eigenvalue 1, which is the largest eigenvalud bfy a consequence of the
Frobenius-Perron theorem for row-stochastic matrices.

2.5 Time-dependent PageRank method

Intuitively, the basic PageRank algorithm can be consitlassa random walk in the graph
G = (V,E), whereV denotes the set of players and we draw a directed edgge< E each
time when player wins against playej. The walk starts in a random nodef the graph
and steps to a randomly chosen ngdeith uniform probability, for that — j edge exits.
The parametedA can be viewed as a “damping” factor which guarantee thatahdom
walk restarts in a random, uniformly chosen node of the gedtost surely in every A -

th step. The PageRank of a nadean be considered as the the long-term fraction of the
number of visits in nodeduring the random walk.

Following this direction, we modified the PageRank algaritauch that the weight
(i.e the transition probability) of each edge decreasesneVver a new edge appears in
the graph. Formally, after theh match was played in a given period, the weight of the
latest edge become 1, the second latest become 1/&htketest become /i, the oldest
one become k. We normalize the weights such that the obtained matrix inecmw-
stochastic (i.e. each row summing to 1) and we recalcul&eahking every time when a
new result is registered in the database by solving the eguat

PR=M'PR (10)

where the entries df1’ are then the new transition probability values, calculasdve
described.

3 Experimental results

We applied the methods described above to the table tenmipetition of the Institute of
Informatics at the University of Szeged (the dataset we es@dbe found in the website
[1]). In that competition, there is no any rule for the salaebf the opponents or the date
of the match. The only restriction is that 7 days must be eadpetween two matches of
the same players. Without considering the organizatiari@srand by just considering the
list of the results in a given period, it can be observed, these features are occurred in
many sports where the competitions are not round-robin.

In Table 1, we report the scores of the players obtained byifferent ranking meth-
ods. In the case of the PR and the time tdPR algorithms, we Aised.1,0.2,0.3,0.4,
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respectively. Figure 3 shows, that the tdPR score is verystohgainst these variations
of A. The tdPR method was proved to be very effective in findingabst players of the
competition that could ba posteriorijustified by knowing the players skills.

We used Kendall’'st rank correlation method [18] to quantify the rank correlati
between the different methods. The rank correlation caoefftds defined ag = (nc —
nd)/(g), wheren; (ng) is the number of such pairs that have the same (oppositey ord
in both ranking list. However, the tdPR score is positivetyrelated with the win ratio,
differences can be seen by comparing the two methods. Tét@rebetween the tdPR and
the winning ratio is shown in Figure 1(a).

A relevant outlier on the list is player 14 having win ratic%0who precedes player
5, 23, 19 and 21 having better win ratio than himself. He is@that position 4 and this
is consistent with the fact, that he was defeated by justplegters (player 10, player 12;
see the data set and Figure 4) who ranked higher. Figure A@l)ssthe relation between
tdPR and the other ranking methods.

Despite the high correlation between tdPR and the otheradsthve observed, that the
time-dependent method has a better predictive power. Weidered the first half of the
total number matches had been played since the start of thpatdion and calculate the
tdPR values regarding that period. Then we checked thetsesfthe upcoming matches
and the changes in the ranking. It can be observed, that gyensl with much higher
tdPR score after the first half the total matches played, wbigh proportion of their
matches against players with smaller tdPR values in the piaie: of the competition. The
difference between the tdPR values of the players can giwdiable prediction for the
upcoming matches. Figure 2 shows the tdPR ranks of the @afeer 45, 90 and 180
played games. We mention, that Figure 2 only contains tlzgteps, who had already had
at least one played matches after the first 45 played matéiigs competition. Obviously,
at that time we can not predict the results of those playersjoih later to the competition.

20F . 4 20F

tdPR rank
L]
Rank

i Lsm
¥ Colley
- #--Keener

» PageRank
—1tdPR

Figure 1: (a) The scatter plot of the tdPR rank vs. the wie-rank. (b) The results
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Table 1: Scrores obtained by the different methods; therorglef the players are obtained
by the decreasing order of the tdPR values

Player #Plays #Wins Winratio Lsm Colley Keener PR tdPR

9 13 13 1.000 1418 1.074 0.229 0.113 0.138
10 29 25 0.862 0.972 0.923 0.238 0.089 0.093
12 30 26 0.867 0.859 0.882 0.245 0.083 0.085
1 63 44 0.698 0.497 0.722 0.233 0.071 0.075
14 6 3 0.500 0.658 0.717 0.198 0.064 0.070
5 38 22 0.579 0.266 0.604 0.200 0.050 0.052
23 5 3 0.600 0.779 0.736 0.199 0.047 0.047
18 16 8 0.500 0.555 0.700 0.192 0.046 0.045
11 24 11 0.458 0.209 0.564 0.193 0.039 0.040
19 10 6 0.600 0.454 0.664 0.200 0.042 0.039
21 13 7 0.538 0.325 0.615 0.199 0.035 0.032
8 19 6 0.316 -0.338 0.354 0.181 0.031 0.032
26 1 0 0.000 -0.503 0.407 0.194 0.031 0.029
4 19 3 0.158 -0.474 0.265 0.172 0.025 0.026
6 10 5 0.500 0.269 0.586 0.194 0.030 0.025
2 17 3 0.176 -0.380 0.307 0.177 0.022 0.024
17 13 2 0.154 -0.437 0.286 0.178 0.019 0.020
3 13 1 0.077 -0.615 0.213 0.171 0.019 0.020
7 12 2 0.167 -0.650 0.219 0.176 0.018 0.018
16 2 0 0.000 -0.322 0.401 0.191 0.024 0.018
13 2 0 0.000 -0.322 0401 0.191 0.024 0.018
22 14 1 0.071 -0.433 0.277 0.169 0.016 0.016
24 4 1 0.250 -0.507 0.349 0.191 0.023 0.016
15 5 1 0.200 -0.174 0.416 0.188 0.017 0.010
25 3 0 0.000 -1.060 0.186 0.191 0.015 0.007
20 5 0 0.000 -1.047 0.136 0.184 0.010 0.004

Table 2: Kendall'st rank correlation between the different methods.
Win/loss Lsm  Colley Keener PR tdPR

Win/loss 1.000

MASSEY 0.705 1.000

COLLEY 0.748 0.895 1.000

KEENER 0.655 0.606 0.711 1.000

PR 0.723 0.735 0.803 0.662 1.000

tdPR 0.723 0.674 0.705 0.563 0.902 1.000
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Figure 2: The tdPR ranks of the players after 45, 90 and 18@&dlgames.
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Figure 3: Sensitivity analysis of tdPR for differehtvalues after 45, 90 and 180 played
games, from left to right. The figure shows, that the tdPResd®robust against these
variations ofA.

4 Further ideas and future work

We also ran a clustering algorithm (aiming to maximize madity [25]) to see whether
there exists a deeper organizational mechanism behindvtiietien of such a network.
In Figure 2 the clusters are colored with different colorgyuie 4 illustrates the contact
graph of the players after 90 played matches (left hand sidd)the current state of the
championship with more than 180 mathces (right hand side}k ihteresting to see the
changes of the clusters of the two graph. First, we obsehagdtost of the new players
wants to play against the actual best players (in tdPR rampinig to jump to the top of the
ranking table. Second, it seems that players having cld&R values more likely to play
with each other, than players having much less tdPR valueanid Thus, we conjecture
that the tdPR scores have a good explanatory power for aggdfizing mechanism of
free-time sports and it can explain the appearance of diftestrength classes in most
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Figure 4: The contact graph of the players after 90 playecinest (top) and the current
state of the championship with more than 180 mathces (bgttdodes having same colors
belong to the same clusters.
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of the sports, where the results in a class are more diffioutitet predicted than results
between different classes. Furthermore, in a graph theatgtoint of view, a new type

of 'regulatory’ (for some details, see [9]) can be defined @edaed graphs, where the
fraction of in/out edges of a node is around 1/2 in the samsscland tends to 1 (or 0
reversely) between different classes.

5 Conclusions

Graph based algorithms have been proved to be relevant idernange of applications.
However there is no perfect algorithm for ranking sport ptajteams, we believe that
PageRank based methods are reliable to ranking athletethisnid even more true for
time-dependent modifications of these stochastic algosth

In this work, we defined a time-dependent PageRank basedtalpand applied it for
ranking players in a university table tennis competitioncérding to our tdPR method, the
ranking of a player is not only determined by the number obhiser victories, but matters
from how good players he could beat or lose against. It mehata good player is needed
to beat for higher ranking position, but win many matchesresjaveaker opponents does
not lead anyone to the first positions in the ranking tables fiine-dependency of weights
of the matches guarantee that the matches played a long ¢imdanot count as much
weight in the ranking. Another aim of the time-dependendpipressure the players to
play regularly or else their results would be out of daterdfee count much less in the
ranking.

We also observed that our method has a good predictive pa@lviercan be interesting
in other aspects of sports, for example estimate the bettilts for games. Finally, we
think that a self-organization mechanism works in the baglgd of the evolution of the
contact graph. Obviously, players want to enter matchesxected to be exciting, but
this nature of such competitions can be modeled and measuatitematically just by
knowing the time-series of the results. That observatiorgithe idea to define a special
preferential attachment mechanism [24] where playersngakigher PageRank values
more likely to play (contact) with each other and this is mayblated to the emergence
of an elite in sports. Further research is needed aroundijpisthesis, and testing our
method for different sports and data sets is also anothek fgothe future.
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