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Quotient Complexity of Bifix-, Factor-, and
Subword-free Regular Languages
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Abstract

A languageL is prefix-free if whenever words andv are inL andw is a prefix
of v, thenu = v. Suffix-, factor-, and subword-free languages are definexdasily,
where by “subword” we mean “subsequence”, and a languagéxsiee if it is both
prefix- and suffix-free. These languages have importaniegifins in coding theory.

The quotient complexity of an operation on regular langsagedefined as the
number of left quotients of the result of the operation asretion of the numbers of
left quotients of the operands. The quotient complexity oégular language is the
same as its state complexity, which is the number of statéiseircomplete minimal
deterministic finite automaton accepting the language.

The state/quotient complexity of operations in the clas$@sefix- and suffix-free
languages has been studied before. Here, we study the ocdtpplé operations in
the classes of bifix-, factor-, and subword-free langua@éssfind tight upper bounds
on the quotient complexity of intersection, union, diffiece, symmetric difference,
concatenation, star, and reversal in these three clastmsgofages.

Keywords: bifix-free, factor-free, finite automaton, quotient conxitig regular lan-
guage, state complexity, subword-free, tight upper bound

1 Introduction

The state complexity of a regular languafjés the number of states in a minimal de-
terministic finite automaton (dfa) acceptirdg[41]. This complexity is the same as the
guotient complexity [5] ofZ., which is the number of distinct left quotients bf We prefer
guotient complexity since it is more closely related to mndies of languages. The quo-
tient complexity of an operation in a cla€0f regular languages is the maximal quotient
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complexity of the language resulting from the operatioketaas a function of the quo-
tient complexities of the operands in classFor more information on state and quotient
complexity see [5, 6, 41].

One of the first results concerning the state complexity af@aration is the 1966 the-
orem by Mirkin [33], who showed that the boud for the reversal of an-state dfa can
be attained. In 1970 Maslov [32] stated without proof thermsion the complexities of
union, concatenation, star, and several other operatiotiei class of regular languages,
and gave languages meeting these bounds. In 1994 thes¢iopgralong with intersec-
tion, reversal, and left and right quotients, were studredetail by Yu, Zhuang and K.
Salomaa [42].

State complexity of operations has also been studied inralepeoper subclasses of
regular languages. Surprisingly, in the class of star{iaguages studied by Brzozowski
and Liu [10], the operations union, intersection, diffexensymmetric difference, con-
catenation and star meet the bounds for arbitrary regutegulages; in the case of re-
versal, the boun@™ cannot be reached [11], b2t — 1 is attainable. In general, how-
ever, the bounds are quite different in different classasaddition to the star-free class,
the following classes have been considered: unary langu@e Zhuang and K. Salo-
maa [42], Pighizzini and Shallit [35]); finite languagesa@eanu, Culik, K. Salomaa
and Yu [12], Yu [41], Han and K. Salomaa [16]); cofinite langea (Bassino, Giambruno
and Nicaud [2]); right-, left-, two-sided and all-sided #@de (Brzozowski, Jiraskova and
Li [7]); prefix-, suffix-, factor- and subword-closed langes (Brzozowski, Jiraskova and
Zou [9]); union-free languages (Jiraskova and Masop22}, [Jiraskova and Nagy [24]);
non-returning languages (Eom, Han and Jiraskova [1dygnsal inR-trivial and 7 -trivial
languages (Jiraskova and Masopust [23]); and operatansrefix- and suffix-free lan-
guages discussed below in more detail.

Languages that are prefix-, suffix-, bifix-, factor- (alsd@alinfix-), and subword-free
will be called xfix-free Xfix-free languages (with the exception §f}, wheree is the
empty word) are codes, which constitute an important claksguages and have applica-
tions in such areas as cryptography, data compressionpfarchiation transmission. They
have been studied extensively; see, for example, [3, 27pahticular, prefix and suffix
codes[3] are prefix-free and suffix-free languages, respectjaljx codeq36, 37] are
factor-free, andhypercode$36, 37] are subword-free, where by subword we mean subse-
quence. Moreover, xfix-free languages are special casemwég languages [1, 38]. We
are interested only in regular xfix-free languages.

The state complexities of intersection, union, concatenatstar, and reversal for
prefix-free languages were first studied by Han, K. Salomda/ood [18]. These results
have been strengthened by Jiraskova and Krausova injBa]provided witnesses over
smaller alphabets. The same operations for suffix-freeliaggs were studied by Han and
K. Salomaa [17]. The upper bounds for suffix-free languaga® {17] have been shown
to be tight in the binary case for union and intersection b&skiova and Olejar [25], and
for star by Cmorik [13]. On the other hand, as shown in [13} tipper bound for rever-
sal of suffix-free languages cannot be met in the binary cas¢l3, 20, 21, 30], some

1A language is prefix-convex if it satisfies the condition tlifza wordw and its prefixu. are in the language,
then so is every prefix ab that hasu as a prefix. In a similar way, we define suffix-, bifix-, fact@nd subword-
convex languages.
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other operations on prefix- and suffix-free languages, ssddifeerence, symmetric dif-
ference, left quotient, and cyclic shift have been studied tight bounds with withesses
over optimal alphabets have been found.

In this paper, we study bifix-, factor- and subword-free laages. In particular, we
obtain tight upper bounds on the complexities of intersegtiinion, difference, symmetric
difference, star, product (concatenation), and revers#hése three classes of xfix-free
languages.

A much shorter version of this paper appeared in [8]. In thes@nt paper we have
added several new results on binary bifix- and factor-freguages.

2 Preliminaries

Itis assumed that the reader is familiar with finite autonaatregular languages as treated
in [34, 40], for example. I& is a finite non-emptwalphabetthenX* is the set of all words
over this alphabet, witlh as theempty word Forw € X*, let |w| be the length ofw.

A languageis any subset ofi*.

The following set operations are defined on languagesnplemen{L = ¥* \ L),
union(K UL), intersection( N L), difference( K \ L), andsymmetric differenc@ @ L).
All four of these Boolean operation with two arguments aneaded byK o L.

We also define thproduct,usually callecconcatenatioror catenation(KL = {w €
Y | w=uv,u € K,v € L}), (Kleene)star (L* = | J,~, L* with L° = {£}), andpositive
closure(L™ = (U, LY).

Thereversew’ of a wordw € ¥* is defined inductively as followsz" = ¢, and
(wa)® = aw’ for every symbok in ¥ and every wordw in X*. Thereverseof a language
L is denoted by and is defined ag* = {w | w € L}.

Regular languagesver ¥ are languages that can be obtained fromdaeof basic
languageq @, {¢}}U{{a} | a € ¥}, using afinite number of operations of union, product,
and star. We use regular expressions to represent languédess a regular expression,
thenL(E) is the language denoted by that expression. For examplesdloéar expression
E = (¢ Ua)*b denotes languagé = L(E) = ({¢} U {a})*{b}. We usually do not
distinguish notationally between regular languages agdlag expressions.

Thee-function® of aregular languagg is L = g if ¢ ¢ L,andLc = {c}if ¢ € L.
We usually write the language } ase. Then the=-function can be computed inductively

as follows:
o= (2 pazzenen
R
(KUL®=K°UL®, (KL*=K°nNL%, (L") =e¢. (3)

Thequotient[4] of a languagd. by a wordw is defined ad.,, = {z € ¥* | wz € L}.
Quotients of regular languages [4, 5] can be computed asAfsll Thequotient by a letter
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a in X is computed by induction:

(4)

b o, ifbe{a,e},orbe Xandb # q;
o g, ifb=a.

(L)oo = Lo, (KUL)y=K,ULy, (KL)y=K,LUK"L,, (L*)y=L,L*. (5)

The quotient by a wora in X* is computed by induction on the lengthof
L.=L, Lys=Luw)a (6)

By convention L, always mean$L,, )©.

A deterministic finite automatofufa) is a quintupled = (Q, X, 0, qo, F'), whereqQ is
a finite non-empty set dftates,. is a finitealphabet,d: Q x X — @Q is thetransition
function,q is theinitial state, andF' C @ is the set ofinal states. As usual, the transition
function is extended t@ x X*. DfaD accepts a worad in X* if (g0, w) € F. The set of
all words accepted b is L(D), the language accepted By By thelanguage of a state
q of D we mean the languade, accepted by the automat6®, X, 4, ¢, F'). Two states of
D areequivalentf their languages are equal. A statesisiptyif its language is empty.

A quotientL,, isfinal if ¢ € L,,; otherwise it isnon-final Thequotient automatonf
a regular languagé is the automaton in which the quotients of the language atest
it is formally defined as the df® = (Q,X, 4, qo, F), where@Q = {L,, | w € X*},
0(Ly,a) = Lya, o = Le, F = {L, | € € L, }. This is a minimal dfa accepting. The
number of distinct quotients of a language is calledjitstient complexitand is denoted
by x(L). Hence the quotient complexity @fis equal to the state complexity &f and we
call it simply complexity Whenever convenient, we derive upper bounds on the quotien
complexity of operations on xfix-free languages followihg &pproach of [5].

A nondeterministic finite automatgnfa) is a quintupleV' = (Q, %, 6, I, F'), whereQ,
¥, andF are asinadfaj: Q x ¥ — 29 is the nondeterministic transition function, ahd
is the set of initial states. We extend the transition fuorctd a functiony: 29 x ©* — 29
as usual. The language accepted\Wys L(N) = {w € ¥* | §(I,w) N F # @}. Two
nfas areequivalentf their languages are equal.

A reverseof a dfaD = (Q, %, 6, qo, F) is an nfaD?® = (Q, %, 0%, F,{q}), where
§(q,a) = {p € Q | §(p, a) = q}. The nfaD® accepts the languagé (D))%.

Every nondeterministic finite automatavi = (Q, %, 4, I, F') can be converted to an
equivalentdfeD = (29,3, 6", I, F’), whereF’ = {R € 29 | RNF # @} andd’ (R, a) =
Urerd(r, a) for eachR in 29 and each: in . We call this dfaD the subset automaton
of nfa /. The subset automaton need not be minimal since some ofisssinay be
unreachable or equivalent.

3 Xfix-Free Languages

If u,v,w,z € ¥* andw = uav, thenu is aprefixof w, x is afactor of w, andv is asuffix
of w. Bothw andv are also factors ab. If w = ugvyiuy - - - v, u,, Whereu;, v; € ¥, then
v = vyvs - - - U, 1S @asubwordof w. Every factor ofw is also a subword of.
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A languagel is prefix-free(respectivelysuffix-, factor- or subword-fregif, whenever
wordsu andwv are inL andu is a prefix (respectively, suffix, factor, or subword)gthen
u = v. Additionally, L is bifix-freeif it is both prefix- and suffix-free. All subword-free
languages are factor-free, and all factor-free languagebifix-free.

If ¢ is a quotient ofL, thenL also has the empty quotient, since= @, for all a in 3.
We say that a quotiert,, is uniquely reachablé L,, = L, implies thatw = x. We now
restate two results from [17, 18] in our terminology.

Remark 1. A non-empty language is prefix-free if and only if it has ekacne final
guotient and that quotient is

Remark 2. If L is a non-empty suffix-free language, then it has the emptyieptoand
L. = Lis uniquely reachable.

Let L be any language. (fL,,),, = L, for some words:, v and a non-empty word,
thenL, is positively reachablérom L., and we denote this b¥,, — L,. The relation
— is transitive. The next remark uses this relation to charaz finite languages.

Remark 3. If L is any language wit L1, Lo, ..., L, } as its set of quotients, andand
v are words in%*, then the following are equivalent:

1. L is finite.
2. L,— L,andL, — L, ifandonlyif L, = L, = @.

3. There exists a total ordér= L; < Lo < --- < L,_1 < L,, = &, on the set of
quotients such that foranye X+, (L;), = L; impliesL; < L; or L; = L; = L,,.

Note that every subword-free language is finite [15]. The lerma will be used later
to prove that upper bounds on the quotient complexity of soperations on subword-
free languages cannot be reached if the alphabet of thedaegioes not have sufficiently
many letters.

Remark 4. Let L be a finite language witk(L), wheren > 4. Let the distinct quotients
L=L.=1y,Lo,...,L, _5,L, 1 =c¢,L, =@ of L beordered as in Remark 3. If
L., = L, for some wordw, then|w| = 1.

Finally, we describe a simple method of constructing xfeeftanguages.

Proposition 1. Let . C X* be any language, and let¢ Y. Then (1)L is suffix-free, (2)
La is prefix-free, (3nLa is factor-free.

4 Boolean Operations

For prefix-free languages, it was shown in [18, 21] that thhttbounds for union, inter-
section, difference, and symmetric differencesane— 2, mn — 2(m+n—3),mn— (m+
2n —4), andmn — 2, respectively. For union and intersection of suffix-freggaages, the
tight bounds arenn — (m+n — 2) andmn — 2(m+n — 3), respectively [17]. The bounds
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for difference and symmetric difference arer — (m + 2n — 4) andmn — (m +n — 2),
respectively [25], and the bounds for all four Boolean ofiers are met by binary suffix-
free languages [13]. The next theorem provides results émidan operations on bifix-
and factor-free languages.

Theorem 1(Boolean Operations: Bifix- and Factor-Free Languages)Let K and L be
bifix-free languages over an alphabewith x(K) = m andx(L), wherem,n > 4. Then

1. s(KNL)<mn-—3(m-+n-—4);
2. K(K\ L) <mn— (2m + 3n — 9);
3. k(KUL),k(K® L) <mn— (m+n).

The bounds for intersection and difference can be met byrpfaator-free languages, and
the bound for union and symmetric difference can be met bgpigfactor-free languages.

Proof. We first derive the upper bound for bifix-free languages; lloisnd applies also to
factor-free languages. Sin¢& o L),, = K,, o L, the bound for regular languages is
mmn; however, not all pairéK;, L) of quotients ofK” and L can occur if the languages are
xfix-free.

If K andL are bifix-free, by unique reachability we get a reductiomof 1 +n—1 =
m +n — 2 from the general bounahn, because pairs of the for(é., L.,) and(K,,, L.)
can occur only ifw = e.

Moreover, both languages and L haves and@ as quotients. For intersection, we
haveo N L, = K, N @ = &, and this results in another reductionaf— 2 +n — 2
quotients. Also, the quotientsn L,, and K, N ¢ are either empty or equal g this gives
an additional reduction of: — 3 + n — 3 states. Altogether, we get the upper bound.

For difference, we eliminate: +n — 2 quotients by unique reachability,— 2 quotients
by the fact thaz \ L,, = @ (keeping only one representatige\ &), m — 2 quotients
by the fact thatk,, \ @ = K, \ € (keepingK,, \ @ as a representative), amd— 3
more quotients by the rule\ L., = ¢, for a total reduction ofm + 3n — 9. For union
we have the unique reachability reductionmef+ n — 2, and a further reduction of 2 by
theruleceUe = e U@ = @ Ue = ¢. For symmetric difference we have the unique
reachability reduction ofn + n — 2, and a further reduction &fin view of the fact that
cehe=0hT=Jdande BT =T Pe =c¢.

For the tightness of the bounds for intersection and diffeeg let K and L. be the
binary factor-free languages accepted by the quotientaatimof Figure 1, where missing
transitions in the automaton acceptiag (L) all go to the empty state: (n). In the
corresponding cross-product automaton of Figure 2, nestatrow 1 or column 1 are
reachable, except fdi, 1). Also, stategm — 1,2) and(m, 2) are unreachable, as are the
states in columm — 1, except(3,n — 1), (m — 1,n — 1), and(m,n — 1). The remaining
states are all reachable.

For intersection, the only final state(is: — 1, » — 1), and all the other states in the last
two rows and columns are empty. We will prove that stétes), (i, j) with2 <i < m—2
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Figure 1: Binary factor-free witnesses for intersectiod difference.

and2 < j <n-2,(m—1,n—1),and(m, n) (which represents all the empty states) are all
distinguishable. Thenitfollows tha{ K NL) > (m—3)(n—3)+3 = mn—3(m+n—4).
State(m, n) is the only empty state in our set. We show that for each otber n
final state(z, j), there exists a word;; that is accepted only from staté, j). We have
wm—2n—2 = a because word is accepted only from staten — 2, n — 2). Since only one
transition on letteb goes to statém — 2,n — 2), and it goes from staten — 3,n — 2),
the wordba is accepted only from staten — 3,n — 2). Thereforew,,—3 ,—2 = ba =
bwy,—2.n—2. FOr similar reasons we have

Figure 2: Cross-product automaton for= 6,n = 7. Missing transitions go t¢7, 6).
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Win—2 = bwi+17n,2 fori = 2,3,...,m—3,
W35 = QW3 j+1 forj =23,...,n—3,
Waj = bw3j forj =2.3,...,n—3,
Wm—2,j = b’ng forj =23,...,n—3,
wij:waLj fori:4,5, ., m— 3andj:2,3,...,n73,

w11 = awa2,
which proves thatnn — 3(m + n — 4) states are pairwise distinguishable.

In the case of difference, all the states in row as well as statém — 1,n — 1) are
empty. All the other states in rom — 1 accept, and so are equivalent. For eachith
2 < < m -2, states(i,n — 1) and(i,n) are equivalent. Among the other reachable
states consider two distinct stageandq. If they are in different rows, then by a word in
b* we can seng to a statey’ in row 3, andg to a state;’ that is not in row 3. Now by,
stateq’ goes to the empty state, whiljegoes to stat€3, n) that is not empty. Two distinct
states in the same row go by a wordbinto row 3. Then, by a word ia*, the first goes
to state(3,n — 2) while the second t@3,n), and nowb™~2~3q distinguishes them. In
summaryx(K \ L) > (m—3)(n—3)+m—3+3=mn— (2m+3n—9).

To prove the tightness of the bounds for union and symmieiffierdnce, consider the
languagesk = a(c*(a U b))™ =3, L = a(b*(a U ¢))"~3; see Figure 3, where missing
transitions in the automaton acceptiAg(L) all go to the empty stater (n). If w € K,
thenw = av for some wordv containingm — 3 occurences of symbols frofu, b} and
ending ina or b. Thus no proper factor ab is in K, and soK is factor-free. A similar
proof applies tal..

In the cross-product automaton of Figure 4 for the Boolearatons on languagds
and L, all the states are reached from the initial stdtel) by a word inab*c* U ac*b*,
except for statém — 1,n — 1) which is reached from staten — 2, n — 2) by a.

For union, all the states in romt — 1 and in columm: — 1 are final, and moreover, the
three state$m,n — 1), (m — 1,n — 1), and(m — 1,n) are equivalent. The woreb™ 3 is
accepted only fronfl, 1). Consider two distinct non-final statés j) and(k, ¢). If i < k,
thenc"v™~1~% is accepted froni, j) but not from(k,¢). If j < ¢, thenb™c"~1=J is
accepted froni, j) but not from(k, ¢). Now consider two distinct final states different

OOl 2Bl
YU GRS oS

Figure 3: Ternary factor-free languages witnesses forruaia symmetric difference.
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Figure 4: Cross-product automaton for Boolean operatiaramguages from Figure 3.

from (m,n—1)and(m —1,n). By ¢, the two states either go to two states one of which is
final and the other non-final, or to two distinct non-final, &r@hce distinguishable, states.
This proves distinguishability ofin — (m + n) states.

The proof for symmetric difference is the same as for unioept that now state
(m —1,n — 1) is empty and stategn,n — 1) and(m — 1, n) are equivalent. O

The next proposition gives lower bounds for union and symimdifference of binary
bifix-free languages.

Proposition 2 (Union, Symmetric Difference: Binary Bifix-Free Languages;Lower
Bound). Letm,n > 6. There exist binary bifix-free languagésand L with x(K) = m
andx(L) = nsuchthat(KUL), k(K & L) > mn — (m+mn)—2.

Proof. Consider the binary languages

K = a((ba®)™ b Ua)(b((ba*)™°bUa))*a,
L = a(aubd)" *(blaUb)" *)*a.

Quotient automata fom = 7 andn = 6 are shown in Figure 5. Since both languages
havee as the only final quotient, they are prefix-free. Since theersw automata are
deterministic, the reversed languages also haas the only final quotient, and so are
prefix-free. Thus both languages are bifix-free.

The cross-product automaton is shown in Figure 6. Statesvinlrand column 1
are unreachable, with the exception of the initial staté)(1Also, stateg2,» — 1) and
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K7

Lg

Figure 5: Binary bifix-free languages meeting the bound— (m + n) — 2 for union and
symmetric difference.

Figure 6: Cross-product automaton for automata from Figumehere dashed-transitions
are on inpub, and missing transitions go to state (7,6).
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(m — 1,2) are unreachable. The initial state, 1) goes to staté¢2,2) by a and then to
state(3,3) by b. From(3,3), all the other states in row 3, except f@&; 2) are reached
by a-transitions. Next, staté3,n — 2) goes to staté4,2) by b, and then to(4, j) by
a’~2 (3 < j < n). Inthis way, all the states in rows 5, ..., m — 3 can be reached. State
(m—3,n—2) goes to statém —2, 2) by b, and statesm —2, j) with j > 3, except for state
(m—2,n— 1) thatis reached fron2, n — 2) by a, are reached from statés: — 3, 5 — 1)
by b. Stateg2, j) with j > 3, except for(2,n — 1), are reached frorfm — 2, j — 1) by b.
State(2,n — 2) goes to(3, 2) by b. From states in rown — 2 all reachable states in row
m — 1 are reached by. State(m, 2) is reached by from (m — 1,n — 2); from here, all
the other states is row are reached by words .

For union, the three final statés.— 1,n—1), (m—1,n) and(m, n—1) are equivalent.
Consider the other reachable states. Firstplet (i, ) andg = (k,¢) be two non-final
states with; < k. We can useé-transitions to gep into a statep’ in row 3, andq into a
stateq’ in a rowi with ¢ # 3. By a™, statep’ goes to(3, n), while ¢’ goes to(i, n). Now
b ~273q is accepted froni3, n) but not from(i, n). Next, letp andq be two distinct non-
final states in the same row. If they are in the last row, theom@n o* distinguishes them.
Otherwise, we can get them into stat@sj) and (3, ¢) with j < ¢, usingb-transitions.
Now (3, j) accepts:” 1~/ while (3, ¢) goes to the non-final staf8, n). Finally, consider
two distinct final states different frofm — 1, n), (m,n —1). By b, they go to two distinct
non-final, and so distinguishable, states. The proof forraginic difference is similar,
except that now staten — 1,n — 1) is empty. O

We now show that the upper bound for union and symmetricrdiffee of binary bifix-
free languages is the same as the lower bound in the prapoaiiove.

Proposition 3 (Union, Symmetric Difference: Binary Bifix-Free Languages;Upper
Bound). Letm,n > 4 and letK and L be binary bifix-free languages with( K') = m
andk(L). Thenk(KUL),k(K & L) <mn— (m+n)— 2.

Proof. Let K be a bifix-free language accepted by the quotient automdtower {a, b}
with statesl, 2, ..., m, where 1 is the initial statep — 1 is the only final state and it
accepts only, andm is the empty state. Lat be a similar language accepted Bywith
statesl, 2, ..., n, initial state 1, final state — 1 accepting:, and empty state.

Construct the corresponding cross-product automaton stétes(s, j), wherei is a
state of4 andj is a state of3. In this cross-product automaton, we cannot go from rows
m — 1 andm to any statéi, j) with ¢ < m — 1, and similarly, we cannot go from columns
n — 1 andn to and statéi, j) with j <n — 1.

If state 1 of. A goes by both inputs andb to a state in{m — 1, m}, then no row:
with i < m — 1 can be reached. Therefore, if the bound is to be met, at le&sinput,
saya, takes state 1 to a statevith i« < m — 1. Suppose also thattakes 1 to a state in
{m — 1, m}. A similar condition applies td.. Suppose that inputtakes state 1 df to a
statej with j < n — 1, anda, to a state ifn — 1,n}. Then no statéi, j) withi < m — 1
andj < n — 1 can be reached. It follows that, without loss of generadigch automaton
must take its initial state by to a state that is neither final nor empty; for conveniende, le
this state be 2 in both automata. Then no other transitiomnioay go to state 2 in the two
automata, otherwise they would not be suffix-free.
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It follows that in the cross-product automaton, all theestah row 2 and column 2,
except for(2, 2), must be reached from some states by idputhus, if all the states are
reachable, there must be an incoming transitiol byeach state with ¢ > 2 in .4 andj
with j > 2in B. In particular, if statém — 1,2) or (2,n — 1) is reachable, then some state,
sayp; (respectivelyy;) different fromm — 1 (respectivelyn — 1) must go to staten — 1
(respectivelyn — 1) in A (respectively3). Now sincep; goes tom — 1 by b, it cannot go
anywhere else bl. Thus there must be some other sgat@ot in {p,, m — 1, m} that goes
to p; by b. Then there must be a staig not in {p2, p1, m — 1, m} that goes tg, by b,

and so on. Eventually, we hayg, 3 RN DPm—4 Lo b D3 LN D2 LN p1 Sm-1% m,
where all the states are pairwise distinct, and no statepymossibly state 1, goes byo
statep,,—s.

First assume state 1 goes to state 3 by b. If p,,,_3 = 2, then 1 goes to 2 by and
by b. This means that there is no other transition to state 2, amdvs 2 is not reachable
in the cross-product automatonpif,_s > 2 and 1 goes t@,,,_3 by b, then no other state
goes top,, 3 by b because of suffix-freeness, and so ngyy_3 may only be reached by
a’s. However, in such a cage,,—s, 2) is unreachable, since it is in row, 3 that can be
reached only by:’s and at the same time in column 2 that can be reached onksby

Now assume that there is no transition bgoing to state,,, 3. If p,,_3 > 3, then
(pm-—s3,2) is unreachable. If,,,_s = 2, then the whole row 2, except (2, 2) is unreach-
able. The same considerations hold for autométoihis gives the desired upper bound
mn — (m+n)— 2. O

As a corollary of the two propositions above, we get the tilghind on the complexity
of union and symmetric difference of binary bifix-free laages.

Theorem 2 (Union, Symmetric Difference: Binary Bifix-Free Languages) Let K and
L be binary bifix-free languages with(K) = m and (L), wherem,n > 6. Then
K(KUL),k(K® L) <mn— (m+n)— 2, and the bound is tight.

In arecent paper [19] Ivan has shown tfiéin, n) = mn—(m-+n)—2— |2 =2 |
is a lower bound on the union of binary factor-free languages thatf (m,n) — 1 is a
lower bound for symmetric difference.

We now turn our attention to subword-free languages. The theorem gives tight
bounds for all four Boolean operations and shows that theté®cannot be met using a
fixed alphabet.

Theorem 3 (Boolean Operations: Subword-Free Languages)Suppose thak and L
are subword-free languages over an alphabetith x(K) = m andx(L), wherem, n >
4. Then

1. k(KUL),k(K & L) <mn— (m+n), and the bound is tight it2| > m +n — 3;
2. k(KN L) <mn—3(m+n—4),and the bound is tight i&Z| > m +n — 7;
3. k(K \ L) <mn — (2m + 3n —9), and the bound is tight i3] > m + n — 6.

Moreover, the bounds cannot be met for smaller alphabets.
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€3,€4,€5

ds

Figure 7: Subword-free witness languages for Boolean opesgm = 5, n = 6.

Proof. Since subword-free languages are bifix-free, all the uppants apply. To prove
tightness, leX = {a,b,c} U{d; | 3<i<m—1}U{e; | 3 <j <n—1}. Consider the
languaged< and L defined by the following quotient equations:

Ky = (anUegU"-Uen_l)KQUUZZEIdiKi,
Ki = aKiJrlUdiJrle,l i:2,3,...,m73,
Kpo = (aUbUdp-1UesUesU---Uep_1)Kp-1,
m—1 = €,
K = g,
L1 = (aUCUdgLJ"'Udm,l)LQUU?;; eij,
Lj = aLj+1 U€j+1Ln,1 j = 2,3,...,7173,
L, o = (aUcUep1UdsUdyU---Udp-1)Ln-1,
Ln—l = g,
L = o

The dfa’s (minus empty states) for langua@éandL, wherem = 5 andn = 6, are shown
in Figure 7. We now show that languag&sand L are subword-free. For this purpose, let

I'= {a, b,es,eq,..., enfl}, andA = {dg, dy,. .., dmfl}.

Notice that no word il of length less thamn — 2 is in K. Now letw be a word in
languagell. Then wordw either contains no letter frol, or contains at most two such
letters. Ifw contains no letter from\, thenw is a word in** of lengthm — 2, and so no its
proper subword is ifK. If w contains exactly one letter from, then eithenv = ud; for
some wordu in I'* of lengthi — 2, orw = d;v for some wordy in I'* of lengthm — 1 — 4.

In both cases, no proper subwordwofis in languagéX. Finally, if w contains two letters
from A, thenw = d;a*d; 1 wherek > 0and3 <i < i+ k+ 1 < m — 2. No proper
subword of such a word is in languagé This means that languadé is subword-free.
The proof for languagé is similar.
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Figure 8: Reachability in the cross-product automaton fier union of languages from
Figure 7 and transitions byandc.

Figure 8 depicts the cross-product automaton of dfa’s fragaife 7, where we show
only the transitions necessary to prove reachability andeftaused byandc. The states
in the first row and the first column, except for the initialtetd, 1), are unreachable. Now
consider the remaining states. All the states in the seammndind the second column are
reached fron{1, 1) by symbols inx. Each other state is reached from a state in the second
row or second column by a word iri".

For union, all the states in rom — 1 and in columnn — 1 are final, and the three
states(m,n — 1), (m — 1,n — 1), and(m — 1,n) accept only, and so are equivalent.
These three states are distinguishable from all other fiatds since each of the other final
states accepts at least one non-empty word. No Jg) and(k, £) be two distinct states
other than the three states accepting only wor#irst assume that< k. If i = m — 1,
then state(s, j) is final while state(k, ¢) is non-final. Ifi < m — 2, thena™ 2= is
accepted from stat@, j), but not from staték, ¢). Symmetrically, ifj < ¢, then either
ora™27Jcdistinguishes the two states. Therefore allithe— (m +n) states are pairwise
distinguishable. For symmetric differencde; — 1,n — 1) is empty; the rest of the proof
is the same as for union.

For intersection, the only final state(is — 1, » — 1), and all the non-final states in the
last two rows and last two columns are empty. Next, the wastaccepted only from state
(m —2,n — 2), the wordd; (3 < i < m — 2) is accepted only from stat¢ — 1,n — 2),
while the worde; (3 < ¢ < n — 2), only from state{m — 2, j — 1). This means that for
each statéi, j), there existsaword in*(a Uds U -+~ Ud,,—oUesU---Ue,_o) thatis
accepted only fronfz, j). So we getnn — 3(m + n — 4) pairwise distinguishable states.
Notice, that here we do not use transitions by symboisd,, 1,e,_1, and so we can
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simply omit these symbols to get withess languages overdrabet of sizen +n — 7.

For difference, all the states in row — 1, except for statém — 1,n — 1), are final and
accept. All the states in the last row, as well as state— 1, n — 1), are empty, and states
(i,n—1)and(i,n) with 2 < i < m — 2 are equivalent. States in different rows (up to row
m — 1) are distinguished by a word it b. States in rown — 2 are distinguished by a word
inaUezUeysU---Ue,_o because distinguishes statesn — 2, n —2) and(m —2,n —1),
andif2 < j < {¢<n-—1andj#n — 2, then worde;;; is not accepted frorim — 2, j)
but is accepted frorm — 2, ¢). Next, stategi,n — 2) and(i,n — 1) with 2 < i <m — 3
are distinguished by, ;. Finally, if two distinct states are in the same row, therréhe
a word ina*, by which the two states either go to two distinct states i ne — 2, or to
two stateqi,n — 2) and(i,n — 1) with 2 < ¢ < m — 3. In both cases the resulting states
are distinguishable, which proves the distinguishabiitynn — (2m + 3n — 9) states.
Notice that now we do not use transitionsd¥,,, 1, ¢,,_1, and so the bound is met for an
alphabet of sizen +n — 6.

We now show that the upper bounds cannot be met using smhdleazets. Let the
quotients ofK andL be K = K1, Ks,..., Ky 2, K,y 1 = ¢, K, = &,andL = L. =
Ly,Lo,...,L, o, L, 1 = ¢,L, = &, ordered as in Remark 3. By Remark 4, all the
quotients of the form¥, U L; or K; U L, must be reached by letters if the bound is to
hold, and this is impossible if the size of the alphabet islenthan the number of such
guotients. O

5 Product and Star

The complexity of the product of prefix-free languagesiis- n — 2 [18]. For suffix-free
languages, the complexity {& — 1)27~! + 1 [17]. Since bifix-free languages are prefix-
free, and the witness prefix-free languag®s ? anda™~? are also subword-free, we have
the following result:

Theorem 4(Product). If K andL are bifix-free with«(K) = m andx(L), wherem,n >
2, thenk(K L) < m + n — 2. Furthermore, there are unary subword-free languages that
meet this bound.

The complexity of star is for prefix-free languages [18], ared —2 + 1 for suffix-free
languages [17]. We now extend these results to bifix-, facdod subword-free languages.
The quotient ofL* by e is L* = ¢ U LL*, and the following formula holds for a quotient
of L* by a non-empty worav [5]:

(L") = (Lw v U (L*)fLLU)L*.
et
Theorem 5 (Star). If L is bifix-free withx(L), wheren > 3, thenx(L*) < n — 1.
Furthermore, there are binary subword-free languages thaet this bound.

Proof. Assume thatl is bifix-free. Then it is prefix-free, has only one final quatie
namelye, and has the empty quotient, by Remark 1. Moreover, sintesuffix-free, the
guotientL is uniquely reachable by, by Remark 2.
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Let L,, be a non-empty quotient af by a non-empty wordv. Let us show that
(L*);, = o for every proper non-empty prefix of w. Assume for contradiction that
¢ € (L*)y, wherew = wov for some non-empty wordsandv. Thenu € L*, and so there
exist wordsz in L andy in L* such thatu = xy. This givesL, = Lyyy, = €yo = @
becauser € L impliesL, = . This is a contradiction, and so we must h&ié):, = @.
Hence, ifL,, is non-empty, thetL*),, = L, L*, by the equation above. Now if,, is
final, thenL,, = ¢, and so(L*),, = L* = (L*).. There arex — 2 choices for non-final
and non-empty quotients,,. But, for a non-empty wora, we havelL,, # L sincelL is
uniquely reachable by. This reduces the number of choicesite- 3 sincen > 3.

Now considerL,, = @ for a non-empty wordo. Let u be the longest proper non-
empty prefix ofw such that L*)$, = e. If no suchu exists, then(L*),, = &. Otherwise,
let us show that for every proper non-empty prefixof u, we must havéL*)z, = .
Assume for a contradiction thaL*)¢, # @. Thenu’ € L* and alsou € L*. So there
existz,2’ € L andy,y’ € L* such thatu = xy andu’ = 2’y’. Sinceu’ is a proper
prefix of u, one ofx andz’ is a prefix of the other. I # 2/, thenL is not prefix-free,
which is a contradiction. It = 2/, theny # 3’ andy’ is a proper prefix of). By an
induction on the length of’ we can derive a contradiction thatis not prefix-free. So
(L*)y = (L*);, L,L* = L,L*, which has already been counted.

In total, there are at most — 1 quotients ofL*. The subword-free language —2
over{a, b} meets the bound since the langudge—2)* hasn — 2 quotients of the form
a"27(a"=?)* fori = 1,2,...,n — 2, and it has the empty quotient. O

6 Reversal

The last operation we consider is reversal. In [17, 18] it afa@wvn that the complexity of
reversal i2"~2+1 for suffix-free or prefix-free languages. We show that thigrimbcan be
reduced for bifix-free languages. We use the standard methedersing the quotient dfa
D of L to obtain an nfaD* for the languagé. ¥, and then we apply the subset construction
to nfaD” to get a dfa forl. 7.

Theorem 6 (Reversal: Bifix- and Factor-Free Languages).If L is a bifix-free language
with x(L), wheren > 3, thens (L) < 2"~3 4 2. Moreover, there exist ternary factor-free
languages that meet this bound.

Proof. If L is bifix-free, then so id.%. SinceL is prefix-free, it has exactly one final
quotiente, and also has the empty quotient.

Consider the quotient automat@hfor L, and remove the empty quotient and all the

transitions to the empty quotient. Reverse this incomplédeo get ann — 1)-state nfa
DX for LE. Consider the subset automaton of the PfA. The initial state of the subset
automaton is the singleton sgf}, wheref is the quotient in the quotient automatoB.
No other subset containing stafas reachable in the subset automaton since no transition
goes to statg in nfaD%. This gives at mo2”~2 + 1 reachable states. However, language
L% is prefix-free, and so all the final states of the subset autmmeccept only the empty
word, and can be merged into one state. Het(de?) < 273 + 2.

If n = 3 orn = 4, then factor-free languagesandaa, respectively, meet the bounds.
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Figure 9: The ternary factor-free language meeting the 8atn3 + 2 for reversal.

If n > 5, then consider the languade= cK ¢, whereK is a regular language over the
alphabet{a, b} with x(K) — 3 meeting the upper bourz: =3 for reversal [26, 39]. The
guotient automaton af without the empty state is shown in Figure 9.

By Proposition 1, languagg is factor-free, andi(L). Sincer (K1) = 2773, there
exists a setS of 2"~3 words over{a, b} that define distinct quotients of language®.
Then the quotients afK #c by 273 + 2 wordse, cw with w € S, andcuc for some word
win K%, are distinct as well. This gives(L?) = 2773 4 2, O

Theorem 7(Reversal: Subword-Free Languages)If L is a subword-free language over
an alphabet: with x(L), wheren > 3, thens(L?) < 27~3 + 2. The bound is tight if
|¥| > 2773 — 1, but cannot be met for smaller alphabets. The bound cannotétsf L
contains a word of length at least 3.

Proof. Supposel is a subword-free language. LBt= (Q, X%, 4, s,{f}) be the quotient
dfaof L with Q = {s,q1,...,q.—3, f, e} as the state set, whetend f correspond to the
quotientsg ande. Construct an nfad* for L%, and consider the corresponding subset
automaton.

The initial state of the subset automator{ &}, and no other state contairfs Next,
all the states containing can be merged. As in Theorem 6, we get at n¥st® + 2
reachable states. ML) = 273 + 2, then the sefq1, ¢2, - - ., ¢,—3} Must be reachable.
Therefore there must exist a non-empty worsuch that, for al;, we haved(¢;, v) = f.
Now suppose there exists a watdin L such thajw| > 2. Letw = abx wherea,b € ¥
andz € Xt. Also supposé(s,a) = ¢; andd(g;,b) = ¢;. Then we havew, abv € L,
showing that is not subword-free, which is a contradiction. Hence, if awyrd in L
has length at least 3, ther{L?) < 2"~3 4 2. Now note that, if all the words i, have
length at most 2, the only possible quotientd.&fare L%, (L), foralla € %, ¢, and@.
Thereforex(L%) < || + 3, and the second claim follows.

Now consider tightness. i = 3, then the bound is met by the unary subword-free
languagea. Letn > 4 and/ = 273 — 1. Also letX = {aj,as,...,a}, and let
S, 53,...,Se be all the non-empty subsetsf, 2, ...,n — 3}. Now let

LR:al(U aj)Uag(U aj)U~~~Uag(U a;).

JES JES2 JESY

Since L only contains two-letter words, languagé$ and L are subword-free. The

quotients of L™ areL", ¢, @, and(L"),, = U;cg, aj fori =1,2,..., L.



524 Brzozowski, Jiraskova, Li, Smith

Thereforex(L%) = 1 + 3 = 27=3 + 2. But for L, the only possible and distinct
quotients ard., ¢, @, andL,, fori = 1,2,...,n — 3. Thusx(L). O

7 Conclusions

Our results are summarized in Tables 1 and 2, where “B-, &-fseéands for bifix-free
and factor-free, and “S-free” for subword-free. The boufwtoperations on prefix-free
languages are from [17, 21], on suffix-free languages fro& B, 25], and on regular
languages from [31, 33, 32, 42]. For languages over a ungtyabet> = {a}, the
concepts prefix-, suffix-, factor-, and subword-free caleciandL is xfix-free with (L)
if and only if L = {a"~2}.

In the case of subword-free languages the size of the alpltalb@ot be decreased.
In the other cases, whenever the size of the alphabet isegrémn 2, we do not know
whether or not the bounds are tight for smaller alphabets.

| | KUL KoL =] ] KNL =] ] K\ L 1= ]
| free unary| max(m, n) | m if m, 1 otherwise | m if m # n, 1 otherwise |
| prefix | mn — 2 2 |mn72(m+n73) 2 | mn — (m + 2n — 4) 2 |
[sufix [ mn—(m+n—-2 2 [mn—-2m+n-3 2 | mn—(m+2n—-4 2 |
[ B- Ffree | mn—(m+n) 3 [mn—3m+n-4 2 [ mn—(2m+3n—-9 2 |
[ sfee | mn—(m+n) s1 | mn—3m+n—4) s | mn—(2m+3n—-9 s |
| regular | mn 2 | mn 2 | mn 2 |

Table 1: Complexities of Boolean operations on xfix-fregylaages;s; = m +n — 3,
so=m+n—"7,s3=m-+n—6.

| | KL = [ L =z [ L® =]
| freeunary| m+mn—2 | n—2 | n |
| prefix-free | m+n—2 1 | n 2 | on—2 4 q 3 |
[ suffixfree [ (m—12'+1 3 | 2241 2 [ 2241 3 |
[ B- F-free | m+n— 2 1] n—1 2 [ 22342 3 |
| S-free | m4n—2 1 | n—1 2 | gn=3 1 9 9gn=3 _q |
[ regular | (2m-—12"t 2 [on1q9n2 o [ v 2 |

Table 2: Complexities of product, star, and reversal on ftie-languages.
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