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Quotient Complexity of Bifix-, Factor-, and
Subword-free Regular Languages∗

Janusz Brzozowski†, Galina Jirásková‡, Baiyu Li†, and Joshua Smith†

Abstract

A languageL is prefix-free if whenever wordsu andv are inL andu is a prefix
of v, thenu = v. Suffix-, factor-, and subword-free languages are defined similarly,
where by “subword” we mean “subsequence”, and a language is bifix-free if it is both
prefix- and suffix-free. These languages have important applications in coding theory.

The quotient complexity of an operation on regular languages is defined as the
number of left quotients of the result of the operation as a function of the numbers of
left quotients of the operands. The quotient complexity of aregular language is the
same as its state complexity, which is the number of states inthe complete minimal
deterministic finite automaton accepting the language.

The state/quotient complexity of operations in the classesof prefix- and suffix-free
languages has been studied before. Here, we study the complexity of operations in
the classes of bifix-, factor-, and subword-free languages.We find tight upper bounds
on the quotient complexity of intersection, union, difference, symmetric difference,
concatenation, star, and reversal in these three classes oflanguages.

Keywords: bifix-free, factor-free, finite automaton, quotient complexity, regular lan-
guage, state complexity, subword-free, tight upper bound

1 Introduction

The state complexity of a regular languageL is the number of states in a minimal de-
terministic finite automaton (dfa) acceptingL [41]. This complexity is the same as the
quotient complexity [5] ofL, which is the number of distinct left quotients ofL. We prefer
quotient complexity since it is more closely related to properties of languages. The quo-
tient complexity of an operation in a classC of regular languages is the maximal quotient
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complexity of the language resulting from the operation, taken as a function of the quo-
tient complexities of the operands in classC. For more information on state and quotient
complexity see [5, 6, 41].

One of the first results concerning the state complexity of anoperation is the 1966 the-
orem by Mirkin [33], who showed that the bound2n for the reversal of ann-state dfa can
be attained. In 1970 Maslov [32] stated without proof the bounds on the complexities of
union, concatenation, star, and several other operations in the class of regular languages,
and gave languages meeting these bounds. In 1994 these operations, along with intersec-
tion, reversal, and left and right quotients, were studied in detail by Yu, Zhuang and K.
Salomaa [42].

State complexity of operations has also been studied in several proper subclasses of
regular languages. Surprisingly, in the class of star-freelanguages studied by Brzozowski
and Liu [10], the operations union, intersection, difference, symmetric difference, con-
catenation and star meet the bounds for arbitrary regular languages; in the case of re-
versal, the bound2n cannot be reached [11], but2n − 1 is attainable. In general, how-
ever, the bounds are quite different in different classes. In addition to the star-free class,
the following classes have been considered: unary languages (Yu, Zhuang and K. Salo-
maa [42], Pighizzini and Shallit [35]); finite languages (Cˆampeanu, Culik, K. Salomaa
and Yu [12], Yu [41], Han and K. Salomaa [16]); cofinite languages (Bassino, Giambruno
and Nicaud [2]); right-, left-, two-sided and all-sided ideals (Brzozowski, Jirásková and
Li [7]); prefix-, suffix-, factor- and subword-closed languages (Brzozowski, Jirásková and
Zou [9]); union-free languages (Jirásková and Masopust [22], Jirásková and Nagy [24]);
non-returning languages (Eom, Han and Jirásková [14]); reversal inR-trivial andJ -trivial
languages (Jirásková and Masopust [23]); and operationson prefix- and suffix-free lan-
guages discussed below in more detail.

Languages that are prefix-, suffix-, bifix-, factor- (also called infix-), and subword-free
will be called xfix-free. Xfix-free languages (with the exception of{ε}, whereε is the
empty word) are codes, which constitute an important class of languages and have applica-
tions in such areas as cryptography, data compression, and information transmission. They
have been studied extensively; see, for example, [3, 27]. Inparticular,prefix andsuffix
codes[3] are prefix-free and suffix-free languages, respectively, infix codes[36, 37] are
factor-free, andhypercodes[36, 37] are subword-free, where by subword we mean subse-
quence. Moreover, xfix-free languages are special cases of convex1 languages [1, 38]. We
are interested only in regular xfix-free languages.

The state complexities of intersection, union, concatenation, star, and reversal for
prefix-free languages were first studied by Han, K. Salomaa and Wood [18]. These results
have been strengthened by Jirásková and Krausová in [21]who provided witnesses over
smaller alphabets. The same operations for suffix-free languages were studied by Han and
K. Salomaa [17]. The upper bounds for suffix-free languages from [17] have been shown
to be tight in the binary case for union and intersection by Jirásková and Olejár [25], and
for star by Cmorik [13]. On the other hand, as shown in [13], the upper bound for rever-
sal of suffix-free languages cannot be met in the binary case.In [13, 20, 21, 30], some

1A language is prefix-convex if it satisfies the condition that, if a wordw and its prefixu are in the language,
then so is every prefix ofw that hasu as a prefix. In a similar way, we define suffix-, bifix-, factor-,and subword-
convex languages.
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other operations on prefix- and suffix-free languages, such as difference, symmetric dif-
ference, left quotient, and cyclic shift have been studied,and tight bounds with witnesses
over optimal alphabets have been found.

In this paper, we study bifix-, factor- and subword-free languages. In particular, we
obtain tight upper bounds on the complexities of intersection, union, difference, symmetric
difference, star, product (concatenation), and reversal in these three classes of xfix-free
languages.

A much shorter version of this paper appeared in [8]. In the present paper we have
added several new results on binary bifix- and factor-free languages.

2 Preliminaries

It is assumed that the reader is familiar with finite automataand regular languages as treated
in [34, 40], for example. IfΣ is a finite non-emptyalphabet, thenΣ∗ is the set of all words
over this alphabet, withε as theempty word. For w ∈ Σ∗, let |w| be the length ofw.
A languageis any subset ofΣ∗.

The following set operations are defined on languages:complement(L = Σ∗ \ L),
union(K∪L), intersection(K∩L), difference(K \L), andsymmetric difference(K⊕L).
All four of these Boolean operation with two arguments are denoted byK ◦ L.

We also define theproduct,usually calledconcatenationor catenation,(KL = {w ∈
Σ∗ | w = uv, u ∈ K, v ∈ L}), (Kleene)star (L∗ =

⋃

i≥0 L
i with L0 = {ε}), andpositive

closure(L+ =
⋃

i≥1 L
i).

The reversewR of a wordw ∈ Σ∗ is defined inductively as follows:εR = ε, and
(wa)R = awR for every symbola in Σ and every wordw in Σ∗. Thereverseof a language
L is denoted byLR and is defined asLR = {wR | w ∈ L}.

Regular languagesoverΣ are languages that can be obtained from theset of basic
languages{∅, {ε}}∪{{a} | a ∈ Σ}, using a finite number of operations of union, product,
and star. We use regular expressions to represent languages. If E is a regular expression,
thenL(E) is the language denoted by that expression. For example, theregular expression
E = (ε ∪ a)∗b denotes languageL = L(E) = ({ε} ∪ {a})∗{b}. We usually do not
distinguish notationally between regular languages and regular expressions.

Theε-functionLε of a regular languageL isLε = ∅ if ε 6∈ L, andLε = {ε} if ε ∈ L.
We usually write the language{ε} asε. Then theε-function can be computed inductively
as follows:

aε =

{

∅, if a = ∅, or a ∈ Σ;
ε, if a = ε.

(1)

(L)ε =

{

∅, if Lε = ε;
ε, if Lε = ∅.

(2)

(K ∪ L)ε = Kε ∪ Lε, (KL)ε = Kε ∩ Lε, (L∗)ε = ε. (3)

Thequotient[4] of a languageL by a wordw is defined asLw = {x ∈ Σ∗ | wx ∈ L}.
Quotients of regular languages [4, 5] can be computed as follows. Thequotient by a letter
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a in Σ is computed by induction:

ba =

{

∅, if b ∈ {∅, ε}, or b ∈ Σ andb 6= a;
ε, if b = a.

(4)

(L)a = La, (K ∪ L)a = Ka ∪ La, (KL)a = KaL ∪KεLa, (L∗)a = LaL
∗. (5)

The quotient by a wordw in Σ∗ is computed by induction on the length ofw:

Lε = L, Lwa = (Lw)a. (6)

By convention,Lε
w always means(Lw)

ε.
A deterministic finite automaton(dfa) is a quintupleD = (Q,Σ, δ, q0, F ), whereQ is

a finite non-empty set ofstates,Σ is a finitealphabet,δ : Q × Σ → Q is the transition
function,q0 is theinitial state, andF ⊆ Q is the set offinal states. As usual, the transition
function is extended toQ×Σ∗. DfaD accepts a wordw in Σ∗ if δ(q0, w) ∈ F . The set of
all words accepted byD isL(D), the language accepted byD. By thelanguage of a state
q of D we mean the languageLq accepted by the automaton(Q,Σ, δ, q, F ). Two states of
D areequivalentif their languages are equal. A state isemptyif its language is empty.

A quotientLw is final if ε ∈ Lw; otherwise it isnon-final. Thequotient automatonof
a regular languageL is the automaton in which the quotients of the language are states;
it is formally defined as the dfaD = (Q,Σ, δ, q0, F ), whereQ = {Lw | w ∈ Σ∗},
δ(Lw, a) = Lwa, q0 = Lε, F = {Lw | ε ∈ Lw}. This is a minimal dfa acceptingL. The
number of distinct quotients of a language is called itsquotient complexityand is denoted
by κ(L). Hence the quotient complexity ofL is equal to the state complexity ofL, and we
call it simply complexity. Whenever convenient, we derive upper bounds on the quotient
complexity of operations on xfix-free languages following the approach of [5].

A nondeterministic finite automaton(nfa) is a quintupleN = (Q,Σ, δ, I, F ), whereQ,
Σ, andF are as in a dfa,δ : Q×Σ → 2Q is the nondeterministic transition function, andI
is the set of initial states. We extend the transition function to a functionδ : 2Q×Σ∗ → 2Q

as usual. The language accepted byN is L(N ) = {w ∈ Σ∗ | δ(I, w) ∩ F 6= ∅}. Two
nfas areequivalentif their languages are equal.

A reverseof a dfaD = (Q,Σ, δ, q0, F ) is an nfaDR = (Q,Σ, δR, F, {q0}), where
δR(q, a) = {p ∈ Q | δ(p, a) = q}. The nfaDR accepts the language(L(D))R.

Every nondeterministic finite automatonN = (Q,Σ, δ, I, F ) can be converted to an
equivalent dfaD = (2Q,Σ, δ′, I, F ′), whereF ′ = {R ∈ 2Q | R∩F 6= ∅} andδ′(R, a) =
∪r∈Rδ(r, a) for eachR in 2Q and eacha in Σ. We call this dfaD thesubset automaton
of nfa N . The subset automaton need not be minimal since some of its states may be
unreachable or equivalent.

3 Xfix-Free Languages

If u, v, w, x ∈ Σ∗ andw = uxv, thenu is aprefixof w, x is afactor of w, andv is asuffix
of w. Bothu andv are also factors ofw. If w = u0v1u1 · · · vnun, whereui, vi ∈ Σ∗, then
v = v1v2 · · · vn is asubwordof w. Every factor ofw is also a subword ofw.
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A languageL is prefix-free(respectively,suffix-, factor-,or subword-free) if, whenever
wordsu andv are inL andu is a prefix (respectively, suffix, factor, or subword) ofv, then
u = v. Additionally,L is bifix-freeif it is both prefix- and suffix-free. All subword-free
languages are factor-free, and all factor-free languages are bifix-free.

If ε is a quotient ofL, thenL also has the empty quotient, sinceεa = ∅, for all a in Σ.
We say that a quotientLw is uniquely reachableif Lw = Lx implies thatw = x. We now
restate two results from [17, 18] in our terminology.

Remark 1. A non-empty language is prefix-free if and only if it has exactly one final
quotient and that quotient isε.

Remark 2. If L is a non-empty suffix-free language, then it has the empty quotient and
Lε = L is uniquely reachable.

Let L be any language. If(Lu)x = Lv for some wordsu, v and a non-empty wordx,
thenLv is positively reachablefrom Lu, and we denote this byLu → Lv. The relation
→ is transitive. The next remark uses this relation to characterize finite languages.

Remark 3. If L is any language with{L1, L2, . . . , Ln} as its set of quotients, andu and
v are words inΣ∗, then the following are equivalent:

1. L is finite.

2. Lu → Lv andLv → Lu if and only if Lu = Lv = ∅.

3. There exists a total orderL = L1 ≺ L2 ≺ · · · ≺ Ln−1 ≺ Ln = ∅, on the set of
quotients such that for anyx ∈ Σ+, (Li)x = Lj impliesLi ≺ Lj orLi = Lj = Ln.

Note that every subword-free language is finite [15]. The next lemma will be used later
to prove that upper bounds on the quotient complexity of someoperations on subword-
free languages cannot be reached if the alphabet of the language does not have sufficiently
many letters.

Remark 4. Let L be a finite language withκ(L), wheren ≥ 4. Let the distinct quotients
L = Lε = L1, L2, . . . , Ln−2, Ln−1 = ε, Ln = ∅ of L be ordered as in Remark 3. If
Lw = L2 for some wordw, then|w| = 1.

Finally, we describe a simple method of constructing xfix-free languages.

Proposition 1. LetL ⊆ Σ∗ be any language, and leta /∈ Σ. Then (1)aL is suffix-free, (2)
La is prefix-free, (3)aLa is factor-free.

4 Boolean Operations

For prefix-free languages, it was shown in [18, 21] that the tight bounds for union, inter-
section, difference, and symmetric difference aremn−2,mn−2(m+n−3),mn− (m+
2n− 4), andmn− 2, respectively. For union and intersection of suffix-free languages, the
tight bounds aremn− (m+n−2) andmn−2(m+n−3), respectively [17]. The bounds
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for difference and symmetric difference aremn− (m+ 2n− 4) andmn− (m+ n− 2),
respectively [25], and the bounds for all four Boolean operations are met by binary suffix-
free languages [13]. The next theorem provides results for Boolean operations on bifix-
and factor-free languages.

Theorem 1(Boolean Operations: Bifix- and Factor-Free Languages).LetK andL be
bifix-free languages over an alphabetΣ with κ(K) = m andκ(L), wherem,n ≥ 4. Then

1. κ(K ∩ L) ≤ mn− 3(m+ n− 4);

2. κ(K \ L) ≤ mn− (2m+ 3n− 9);

3. κ(K ∪ L), κ(K ⊕ L) ≤ mn− (m+ n).

The bounds for intersection and difference can be met by binary factor-free languages, and
the bound for union and symmetric difference can be met by ternary factor-free languages.

Proof. We first derive the upper bound for bifix-free languages; thisbound applies also to
factor-free languages. Since(K ◦ L)w = Kw ◦ Lw, the bound for regular languages is
mn; however, not all pairs(Ki, Lj) of quotients ofK andL can occur if the languages are
xfix-free.

If K andL are bifix-free, by unique reachability we get a reduction ofm−1+n−1 =
m+ n− 2 from the general boundmn, because pairs of the form(Kε, Lw) and(Kw, Lε)
can occur only ifw = ε.

Moreover, both languagesK andL haveε and∅ as quotients. For intersection, we
have∅ ∩ Lw = Kw ∩ ∅ = ∅, and this results in another reduction ofm − 2 + n − 2
quotients. Also, the quotientsε∩Lw andKw ∩ ε are either empty or equal toε; this gives
an additional reduction ofm− 3 + n− 3 states. Altogether, we get the upper bound.

For difference, we eliminatem+n−2 quotients by unique reachability,n−2 quotients
by the fact that∅ \ Lw = ∅ (keeping only one representative∅ \ ∅), m − 2 quotients
by the fact thatKw \ ∅ = Kw \ ε (keepingKw \ ∅ as a representative), andn − 3
more quotients by the ruleε \ Lw = ε, for a total reduction of2m + 3n − 9. For union
we have the unique reachability reduction ofm + n − 2, and a further reduction of 2 by
the ruleε ∪ ε = ε ∪ ∅ = ∅ ∪ ε = ε. For symmetric difference we have the unique
reachability reduction ofm + n − 2, and a further reduction of2 in view of the fact that
ε⊕ ε = ∅ ⊕∅ = ∅ andε⊕∅ = ∅⊕ ε = ε.

For the tightness of the bounds for intersection and difference, letK andL be the
binary factor-free languages accepted by the quotient automata of Figure 1, where missing
transitions in the automaton acceptingK (L) all go to the empty statem (n). In the
corresponding cross-product automaton of Figure 2, no states in row 1 or column 1 are
reachable, except for(1, 1). Also, states(m− 1, 2) and(m, 2) are unreachable, as are the
states in columnn− 1, except(3, n− 1), (m− 1, n− 1), and(m,n− 1). The remaining
states are all reachable.

For intersection, the only final state is(m− 1, n− 1), and all the other states in the last
two rows and columns are empty. We will prove that states(1, 1), (i, j)with 2 ≤ i ≤ m−2
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K

1 2 3a a a a
L

1 2 3 4a b b b b

b

a

a, b

a, b
· · ·

· · ·
a a, b

n − 2

m

n

m − 2 m − 1

n − 1

a

b b b a, b

Figure 1: Binary factor-free witnesses for intersection and difference.

and2 ≤ j ≤ n−2, (m−1, n−1), and(m,n) (which represents all the empty states) are all
distinguishable. Then it follows thatκ(K∩L) ≥ (m−3)(n−3)+3 = mn−3(m+n−4).

State(m,n) is the only empty state in our set. We show that for each other non-
final state(i, j), there exists a wordwij that is accepted only from state(i, j). We have
wm−2,n−2 = a because worda is accepted only from state(m− 2, n− 2). Since only one
transition on letterb goes to state(m − 2, n− 2), and it goes from state(m − 3, n− 2),
the wordba is accepted only from state(m − 3, n − 2). Thereforewm−3,n−2 = ba =
bwm−2,n−2. For similar reasons we have

1,1

2,2 2,3 2,4 2,6

3,2 3,3 3,4 3,5

4,2

5,2

m− 3

m− 2

m− 1

m

a, b

a

b

b

b

b

aa a

6,3

7,3

a 3,6

7,6

a a a, b

b b a, b

a a a, b

n− 3 n− 2 n− 1 n

a

Figure 2: Cross-product automaton form = 6, n = 7. Missing transitions go to(7, 6).
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wi,n−2 = bwi+1,n−2 for i = 2, 3, . . . ,m− 3,
w3j = aw3,j+1 for j = 2, 3, . . . , n− 3,
w2j = bw3j for j = 2, 3, . . . , n− 3,
wm−2,j = bw2j for j = 2, 3, . . . , n− 3,
wij = bwi+1,j for i = 4, 5, . . . ,m− 3 andj = 2, 3, . . . , n− 3,
w11 = aw22,

which proves thatmn− 3(m+ n− 4) states are pairwise distinguishable.
In the case of difference, all the states in rowm, as well as state(m − 1, n − 1) are

empty. All the other states in rowm − 1 acceptε, and so are equivalent. For eachi with
2 ≤ i ≤ m − 2, states(i, n − 1) and(i, n) are equivalent. Among the other reachable
states consider two distinct statesp andq. If they are in different rows, then by a word in
b∗ we can sendp to a statep′ in row 3, andq to a stateq′ that is not in row 3. Now byan,
stateq′ goes to the empty state, whilep′ goes to state(3, n) that is not empty. Two distinct
states in the same row go by a word inb∗ to row 3. Then, by a word ina∗, the first goes
to state(3, n − 2) while the second to(3, n), and nowbm−2−3a distinguishes them. In
summary,κ(K \ L) ≥ (m− 3)(n− 3) +m− 3 + 3 = mn− (2m+ 3n− 9).

To prove the tightness of the bounds for union and symmetric difference, consider the
languagesK = a(c∗(a ∪ b))m−3, L = a(b∗(a ∪ c))n−3; see Figure 3, where missing
transitions in the automaton acceptingK (L) all go to the empty statem (n). If w ∈ K,
thenw = av for some wordv containingm − 3 occurences of symbols from{a, b} and
ending ina or b. Thus no proper factor ofw is in K, and soK is factor-free. A similar
proof applies toL.

In the cross-product automaton of Figure 4 for the Boolean operations on languagesK
andL, all the states are reached from the initial state(1, 1) by a word inab∗c∗ ∪ ac∗b∗,
except for state(m− 1, n− 1) which is reached from state(m− 2, n− 2) by a.

For union, all the states in rowm− 1 and in columnn− 1 are final, and moreover, the
three states(m,n− 1), (m− 1, n− 1), and(m− 1, n) are equivalent. The wordabm−3 is
accepted only from(1, 1). Consider two distinct non-final states(i, j) and(k, ℓ). If i < k,
thencnbm−1−i is accepted from(i, j) but not from(k, ℓ). If j < ℓ, thenbmcn−1−j is
accepted from(i, j) but not from(k, ℓ). Now consider two distinct final states different

L
· · ·32 n − 2 n − 1 n

a, b, ca, ca, ca, ca, ca

b bb a, b, c

· · ·

c c c

1 32 m − 2 mm − 1

a, b, c

a, b, ca, ba, ba, ba, ba

1

K

Figure 3: Ternary factor-free languages witnesses for union and symmetric difference.
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a, c

2, 2 2, 3 2, 4 2, 5 2, 6

3, 6

4, 4 4, 5 4, 6

5, 65, 55, 45, 3

3, 53, 2

4, 2

5, 2

4, 3

3, 3 3, 4

c

b b b

b b b

bbb

c c

cc c

c

c

1, 1
a

a a a

aaa

Σ

a, b

Σ

Σ

Σ

c

c

bbb

a, b a, b

a, b

a, c a, ca, c

a, c a, c

Figure 4: Cross-product automaton for Boolean operations on languages from Figure 3.

from (m,n−1) and(m−1, n). By c, the two states either go to two states one of which is
final and the other non-final, or to two distinct non-final, andhence distinguishable, states.
This proves distinguishability ofmn− (m+ n) states.

The proof for symmetric difference is the same as for union, except that now state
(m− 1, n− 1) is empty and states(m,n− 1) and(m− 1, n) are equivalent.

The next proposition gives lower bounds for union and symmetric difference of binary
bifix-free languages.

Proposition 2 (Union, Symmetric Difference: Binary Bifix-Free Languages;Lower
Bound). Letm,n ≥ 6. There exist binary bifix-free languagesK andL with κ(K) = m
andκ(L) = n such thatκ(K ∪ L), κ(K ⊕ L) ≥ mn− (m+ n)− 2.

Proof. Consider the binary languages

K = a((ba∗)m−5b ∪ a)(b((ba∗)m−5b ∪ a))∗a,

L = a(a ∪ b)n−4(b(a ∪ b)n−4)∗a.

Quotient automata form = 7 andn = 6 are shown in Figure 5. Since both languages
haveε as the only final quotient, they are prefix-free. Since the reverse automata are
deterministic, the reversed languages also haveε as the only final quotient, and so are
prefix-free. Thus both languages are bifix-free.

The cross-product automaton is shown in Figure 6. States in row 1 and column 1
are unreachable, with the exception of the initial state (1,1). Also, states(2, n − 1) and
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1 2 3 4 5 6a

b

a, b a, b a a, b

b

a, b

1 2 3 4 5 6 7a b b b a

a a

a

b

a, b

b

a, b

K7

L6

Figure 5: Binary bifix-free languages meeting the boundmn− (m+n)− 2 for union and
symmetric difference.

1,1

2,2 2,3 2,4 2,6

3,2 3,3 3,4 3,5

4,2

5,2

7,2

5,5

3,6

a, b a, b

a, b a, b a, b a, b

m− 3

m− 2

m− 1

m

a, b a, b

b

b

a

b

b

b

b

aa a a

b

b

n− 3 n− 2 n− 1 n

a

Figure 6: Cross-product automaton for automata from Figure5, where dashed-transitions
are on inputb, and missing transitions go to state (7,6).
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(m − 1, 2) are unreachable. The initial state(1, 1) goes to state(2, 2) by a and then to
state(3, 3) by b. From(3, 3), all the other states in row 3, except for(3, 2) are reached
by a-transitions. Next, state(3, n − 2) goes to state(4, 2) by b, and then to(4, j) by
aj−2 (3 ≤ j ≤ n). In this way, all the states in rows4, 5, . . . ,m− 3 can be reached. State
(m−3, n−2) goes to state(m−2, 2) by b, and states(m−2, j) with j ≥ 3, except for state
(m− 2, n− 1) that is reached from(2, n− 2) by a, are reached from states(m− 3, j− 1)
by b. States(2, j) with j ≥ 3, except for(2, n− 1), are reached from(m− 2, j − 1) by b.
State(2, n − 2) goes to(3, 2) by b. From states in rowm − 2 all reachable states in row
m− 1 are reached bya. State(m, 2) is reached byb from (m − 1, n− 2); from here, all
the other states is rowm are reached by words ina∗.

For union, the three final states(m−1, n−1), (m−1, n)and(m,n−1) are equivalent.
Consider the other reachable states. First, letp = (i, j) andq = (k, ℓ) be two non-final
states withi < k. We can useb-transitions to getp into a statep′ in row 3, andq into a
stateq′ in a rowi with i 6= 3. By an, statep′ goes to(3, n), while q′ goes to(i, n). Now
bm−2−3a is accepted from(3, n) but not from(i, n). Next, letp andq be two distinct non-
final states in the same row. If they are in the last row, then a word ina∗ distinguishes them.
Otherwise, we can get them into states(3, j) and(3, ℓ) with j < ℓ, usingb-transitions.
Now (3, j) acceptsan−1−j while (3, ℓ) goes to the non-final state(3, n). Finally, consider
two distinct final states different from(m− 1, n), (m,n− 1). By b, they go to two distinct
non-final, and so distinguishable, states. The proof for symmetric difference is similar,
except that now state(m− 1, n− 1) is empty.

We now show that the upper bound for union and symmetric difference of binary bifix-
free languages is the same as the lower bound in the proposition above.

Proposition 3 (Union, Symmetric Difference: Binary Bifix-Free Languages;Upper
Bound). Letm,n ≥ 4 and letK andL be binary bifix-free languages withκ(K) = m
andκ(L). Thenκ(K ∪ L), κ(K ⊕ L) ≤ mn− (m+ n)− 2.

Proof. Let K be a bifix-free language accepted by the quotient automatonA over{a, b}
with states1, 2, . . . ,m, where 1 is the initial state,m − 1 is the only final state and it
accepts onlyε, andm is the empty state. LetL be a similar language accepted byB with
states1, 2, . . . , n, initial state 1, final staten− 1 acceptingε, and empty staten.

Construct the corresponding cross-product automaton withstates(i, j), wherei is a
state ofA andj is a state ofB. In this cross-product automaton, we cannot go from rows
m− 1 andm to any state(i, j) with i < m− 1, and similarly, we cannot go from columns
n− 1 andn to and state(i, j) with j < n− 1.

If state 1 ofA goes by both inputsa andb to a state in{m − 1,m}, then no rowi
with i < m − 1 can be reached. Therefore, if the bound is to be met, at least one input,
saya, takes state 1 to a statei with i < m − 1. Suppose also thatb takes 1 to a state in
{m− 1,m}. A similar condition applies toL. Suppose that inputb takes state 1 ofB to a
statej with j < n− 1, anda, to a state in{n− 1, n}. Then no state(i, j) with i < m− 1
andj < n− 1 can be reached. It follows that, without loss of generality,each automaton
must take its initial state bya to a state that is neither final nor empty; for convenience, let
this state be 2 in both automata. Then no other transition bya may go to state 2 in the two
automata, otherwise they would not be suffix-free.
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It follows that in the cross-product automaton, all the states in row 2 and column 2,
except for(2, 2), must be reached from some states by inputb. Thus, if all the states are
reachable, there must be an incoming transition byb to each statei with i ≥ 2 in A andj
with j ≥ 2 in B. In particular, if state(m−1, 2) or (2, n−1) is reachable, then some state,
sayp1 (respectivelyq1) different fromm− 1 (respectivelyn− 1) must go to statem− 1
(respectivelyn− 1) in A (respectivelyB). Now sincep1 goes tom− 1 by b, it cannot go
anywhere else byb. Thus there must be some other statep2 not in{p1,m−1,m} that goes
to p1 by b. Then there must be a statep3 not in {p2, p1,m − 1,m} that goes top2 by b,

and so on. Eventually, we havepm−3
b
→ pm−4

b
→ · · ·

b
→ p3

b
→ p2

b
→ p1

b
→ m− 1

b
→ m,

where all the states are pairwise distinct, and no state, except possibly state 1, goes byb to
statepm−3.

First assume state 1 goes to statepm−3 by b. If pm−3 = 2, then 1 goes to 2 bya and
by b. This means that there is no other transition to state 2, and so row 2 is not reachable
in the cross-product automaton. Ifpm−3 > 2 and 1 goes topm−3 by b, then no other state
goes topm−3 by b because of suffix-freeness, and so rowpm−3 may only be reached by
a’s. However, in such a case(pm−3, 2) is unreachable, since it is in rowpm−3 that can be
reached only bya’s and at the same time in column 2 that can be reached only byb’s.

Now assume that there is no transition byb going to statepm−3. If pm−3 ≥ 3, then
(pm−3, 2) is unreachable. Ifpm−3 = 2, then the whole row 2, except for(2, 2) is unreach-
able. The same considerations hold for automatonB. This gives the desired upper bound
mn− (m+ n)− 2.

As a corollary of the two propositions above, we get the tightbound on the complexity
of union and symmetric difference of binary bifix-free languages.

Theorem 2(Union, Symmetric Difference: Binary Bifix-Free Languages). LetK and
L be binary bifix-free languages withκ(K) = m and κ(L), wherem,n ≥ 6. Then
κ(K ∪ L), κ(K ⊕ L) ≤ mn− (m+ n)− 2, and the bound is tight.

In a recent paper [19] Iván has shown thatf(m,n) = mn−(m+n)−2−⌊min{m,n}−2
2 ⌋

is a lower bound on the union of binary factor-free languages, and thatf(m,n) − 1 is a
lower bound for symmetric difference.

We now turn our attention to subword-free languages. The next theorem gives tight
bounds for all four Boolean operations and shows that the bounds cannot be met using a
fixed alphabet.

Theorem 3 (Boolean Operations: Subword-Free Languages).Suppose thatK andL
are subword-free languages over an alphabetΣ with κ(K) = m andκ(L), wherem,n ≥
4. Then

1. κ(K ∪L), κ(K ⊕L) ≤ mn− (m+ n), and the bound is tight if|Σ| ≥ m+ n− 3;

2. κ(K ∩ L) ≤ mn− 3(m+ n− 4), and the bound is tight if|Σ| ≥ m+ n− 7;

3. κ(K \ L) ≤ mn− (2m+ 3n− 9), and the bound is tight if|Σ| ≥ m+ n− 6.

Moreover, the bounds cannot be met for smaller alphabets.
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Figure 7: Subword-free witness languages for Boolean operations;m = 5, n = 6.

Proof. Since subword-free languages are bifix-free, all the upper bounds apply. To prove
tightness, letΣ = {a, b, c} ∪ {di | 3 ≤ i ≤ m− 1} ∪ {ej | 3 ≤ j ≤ n− 1}. Consider the
languagesK andL defined by the following quotient equations:

K1 = (a ∪ b ∪ e3 ∪ · · · ∪ en−1)K2 ∪
⋃m−1

i=3 diKi,
Ki = aKi+1 ∪ di+1Km−1 i = 2, 3, . . . ,m− 3,
Km−2 = (a ∪ b ∪ dm−1 ∪ e3 ∪ e4 ∪ · · · ∪ en−1)Km−1,
Km−1 = ε,
Km = ∅,

L1 = (a ∪ c ∪ d3 ∪ · · · ∪ dm−1)L2 ∪
⋃n−1

j=3 ejLj,
Lj = aLj+1 ∪ ej+1Ln−1 j = 2, 3, . . . , n− 3,
Ln−2 = (a ∪ c ∪ en−1 ∪ d3 ∪ d4 ∪ · · · ∪ dm−1)Ln−1,
Ln−1 = ε,
Ln = ∅.

The dfa’s (minus empty states) for languagesK andL, wherem = 5 andn = 6, are shown
in Figure 7. We now show that languagesK andL are subword-free. For this purpose, let

Γ = {a, b, e3, e4, . . . , en−1}, and∆ = {d3, d4, . . . , dm−1}.

Notice that no word inΓ∗ of length less thanm − 2 is in K. Now let w be a word in
languageK. Then wordw either contains no letter from∆, or contains at most two such
letters. Ifw contains no letter from∆, thenw is a word inΓ∗ of lengthm−2, and so no its
proper subword is inK. If w contains exactly one letter from∆, then eitherw = udi for
some wordu in Γ∗ of lengthi− 2, orw = div for some wordv in Γ∗ of lengthm− 1− i.
In both cases, no proper subword ofw is in languageK. Finally, if w contains two letters
from∆, thenw = dia

kdi+k+1 wherek ≥ 0 and3 ≤ i < i+ k + 1 ≤ m− 2. No proper
subword of such a word is in languageK. This means that languageK is subword-free.
The proof for languageL is similar.
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Figure 8: Reachability in the cross-product automaton for the union of languages from
Figure 7 and transitions byb andc.

Figure 8 depicts the cross-product automaton of dfa’s from Figure 7, where we show
only the transitions necessary to prove reachability and those caused byb andc. The states
in the first row and the first column, except for the initial state(1, 1), are unreachable. Now
consider the remaining states. All the states in the second row and the second column are
reached from(1, 1) by symbols inΣ. Each other state is reached from a state in the second
row or second column by a word ina∗.

For union, all the states in rowm − 1 and in columnn − 1 are final, and the three
states(m,n − 1), (m − 1, n − 1), and(m − 1, n) accept onlyε, and so are equivalent.
These three states are distinguishable from all other final states, since each of the other final
states accepts at least one non-empty word. Now let(i, j) and(k, ℓ) be two distinct states
other than the three states accepting only wordε. First assume thati < k. If i = m − 1,
then state(i, j) is final while state(k, ℓ) is non-final. If i ≤ m − 2, thenam−2−ib is
accepted from state(i, j), but not from state(k, ℓ). Symmetrically, ifj < ℓ, then eitherε
oran−2−jc distinguishes the two states. Therefore all themn−(m+n) states are pairwise
distinguishable. For symmetric difference,(m − 1, n − 1) is empty; the rest of the proof
is the same as for union.

For intersection, the only final state is(m− 1, n− 1), and all the non-final states in the
last two rows and last two columns are empty. Next, the worda is accepted only from state
(m − 2, n− 2), the worddi (3 ≤ i ≤ m − 2) is accepted only from state(i − 1, n− 2),
while the wordej (3 ≤ i ≤ n − 2), only from state(m − 2, j − 1). This means that for
each state(i, j), there exists a word ina∗(a ∪ d3 ∪ · · · ∪ dm−2 ∪ e3 ∪ · · · ∪ en−2) that is
accepted only from(i, j). So we getmn− 3(m+ n− 4) pairwise distinguishable states.
Notice, that here we do not use transitions by symbolsb, c, dm−1, en−1, and so we can
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simply omit these symbols to get witness languages over an alphabet of sizem+ n− 7.
For difference, all the states in rowm− 1, except for state(m− 1, n− 1), are final and

acceptε. All the states in the last row, as well as state(m− 1, n− 1), are empty, and states
(i, n− 1) and(i, n) with 2 ≤ i ≤ m− 2 are equivalent. States in different rows (up to row
m−1) are distinguished by a word ina∗b. States in rowm−2 are distinguished by a word
in a∪e3∪e4∪· · ·∪en−2 becausea distinguishes states(m−2, n−2) and(m−2, n−1),
and if2 ≤ j < ℓ ≤ n− 1 andj 6= n− 2, then wordej+1 is not accepted from(m− 2, j)
but is accepted from(m− 2, ℓ). Next, states(i, n− 2) and(i, n− 1) with 2 ≤ i ≤ m− 3
are distinguished bydi+1. Finally, if two distinct states are in the same row, then there is
a word ina∗, by which the two states either go to two distinct states in row m − 2, or to
two states(i, n− 2) and(i, n− 1) with 2 ≤ i ≤ m− 3. In both cases the resulting states
are distinguishable, which proves the distinguishabilityof mn − (2m + 3n − 9) states.
Notice that now we do not use transitions byc, dm−1, en−1, and so the bound is met for an
alphabet of sizem+ n− 6.

We now show that the upper bounds cannot be met using smaller alphabets. Let the
quotients ofK andL beK = K1,K2, . . . ,Km−2,Km−1 = ε,Km = ∅, andL = Lε =
L1, L2, . . . , Ln−2, Ln−1 = ε, Ln = ∅, ordered as in Remark 3. By Remark 4, all the
quotients of the formK2 ∪ Li or Kj ∪ L2 must be reached by letters if the bound is to
hold, and this is impossible if the size of the alphabet is smaller than the number of such
quotients.

5 Product and Star

The complexity of the product of prefix-free languages ism+ n− 2 [18]. For suffix-free
languages, the complexity is(m− 1)2n−1 + 1 [17]. Since bifix-free languages are prefix-
free, and the witness prefix-free languagesam−2 andan−2 are also subword-free, we have
the following result:

Theorem 4(Product). If K andL are bifix-free withκ(K) = m andκ(L), wherem,n ≥
2, thenκ(KL) ≤ m+ n− 2. Furthermore, there are unary subword-free languages that
meet this bound.

The complexity of star isn for prefix-free languages [18], and2n−2 +1 for suffix-free
languages [17]. We now extend these results to bifix-, factor-, and subword-free languages.
The quotient ofL∗ by ε is L∗ = ε ∪ LL∗, and the following formula holds for a quotient
of L∗ by a non-empty wordw [5]:

(L∗)w =
(

Lw ∪
⋃

w=uv
u,v∈Σ+

(L∗)εuLv

)

L∗.

Theorem 5 (Star). If L is bifix-free withκ(L), wheren ≥ 3, thenκ(L∗) ≤ n − 1.
Furthermore, there are binary subword-free languages thatmeet this bound.

Proof. Assume thatL is bifix-free. Then it is prefix-free, has only one final quotient,
namelyε, and has the empty quotient, by Remark 1. Moreover, sinceL is suffix-free, the
quotientL is uniquely reachable byε, by Remark 2.
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Let Lw be a non-empty quotient ofL by a non-empty wordw. Let us show that
(L∗)εu = ∅ for every proper non-empty prefixu of w. Assume for contradiction that
ε ∈ (L∗)u, wherew = uv for some non-empty wordsu andv. Thenu ∈ L∗, and so there
exist wordsx in L andy in L∗ such thatu = xy. This givesLw = Lxyv = εyv = ∅

becausex ∈ L impliesLx = ε. This is a contradiction, and so we must have(L∗)εu = ∅.
Hence, ifLw is non-empty, then(L∗)w = LwL

∗, by the equation above. Now ifLw is
final, thenLw = ε, and so(L∗)w = L∗ = (L∗)ε. There aren − 2 choices for non-final
and non-empty quotientsLw. But, for a non-empty wordw, we haveLw 6= L sinceL is
uniquely reachable byε. This reduces the number of choices ton− 3 sincen ≥ 3.

Now considerLw = ∅ for a non-empty wordw. Let u be the longest proper non-
empty prefix ofw such that(L∗)εu = ε. If no suchu exists, then(L∗)w = ∅. Otherwise,
let us show that for every proper non-empty prefixu′ of u, we must have(L∗)εu′ = ∅.
Assume for a contradiction that(L∗)εu′ 6= ∅. Thenu′ ∈ L∗ and alsou ∈ L∗. So there
existx, x′ ∈ L andy, y′ ∈ L∗ such thatu = xy andu′ = x′y′. Sinceu′ is a proper
prefix of u, one ofx andx′ is a prefix of the other. Ifx 6= x′, thenL is not prefix-free,
which is a contradiction. Ifx = x′, theny 6= y′ andy′ is a proper prefix ofy. By an
induction on the length ofy′ we can derive a contradiction thatL is not prefix-free. So
(L∗)w = (L∗)εuLvL

∗ = LvL
∗, which has already been counted.

In total, there are at mostn − 1 quotients ofL∗. The subword-free languagean−2

over{a, b} meets the bound since the language(an−2)∗ hasn − 2 quotients of the form
an−2−i(an−2)∗ for i = 1, 2, . . . , n− 2, and it has the empty quotient.

6 Reversal

The last operation we consider is reversal. In [17, 18] it wasshown that the complexity of
reversal is2n−2+1 for suffix-free or prefix-free languages. We show that this bound can be
reduced for bifix-free languages. We use the standard methodof reversing the quotient dfa
D of L to obtain an nfaDR for the languageLR, and then we apply the subset construction
to nfaDR to get a dfa forLR.

Theorem 6(Reversal: Bifix- and Factor-Free Languages).If L is a bifix-free language
withκ(L), wheren ≥ 3, thenκ(LR) ≤ 2n−3+2. Moreover, there exist ternary factor-free
languages that meet this bound.

Proof. If L is bifix-free, then so isLR. SinceL is prefix-free, it has exactly one final
quotient,ε, and also has the empty quotient.

Consider the quotient automatonD for L, and remove the empty quotient and all the
transitions to the empty quotient. Reverse this incompletedfa to get an(n − 1)-state nfa
DR for LR. Consider the subset automaton of the nfaDR. The initial state of the subset
automaton is the singleton set{f}, wheref is the quotientε in the quotient automatonD.
No other subset containing statef is reachable in the subset automaton since no transition
goes to statef in nfaDR. This gives at most2n−2+1 reachable states. However, language
LR is prefix-free, and so all the final states of the subset automaton accept only the empty
word, and can be merged into one state. Henceκ(LR) ≤ 2n−3 + 2.

If n = 3 or n = 4, then factor-free languagesa andaa, respectively, meet the bounds.
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Figure 9: The ternary factor-free language meeting the bound 2n−3 + 2 for reversal.

If n ≥ 5, then consider the languageL = cKc, whereK is a regular language over the
alphabet{a, b} with κ(K) − 3 meeting the upper bound2n−3 for reversal [26, 39]. The
quotient automaton ofL without the empty state is shown in Figure 9.

By Proposition 1, languageL is factor-free, andκ(L). Sinceκ(KR) = 2n−3, there
exists a setS of 2n−3 words over{a, b} that define distinct quotients of languageKR.
Then the quotients ofcKRc by 2n−3 +2 wordsε, cw with w ∈ S, andcuc for some word
u in KR, are distinct as well. This givesκ(LR) = 2n−3 + 2.

Theorem 7(Reversal: Subword-Free Languages).If L is a subword-free language over
an alphabetΣ with κ(L), wheren ≥ 3, thenκ(LR) ≤ 2n−3 + 2. The bound is tight if
|Σ| ≥ 2n−3 − 1, but cannot be met for smaller alphabets. The bound cannot bemet ifL
contains a word of length at least 3.

Proof. SupposeL is a subword-free language. LetD = (Q,Σ, δ, s, {f}) be the quotient
dfa ofL with Q = {s, q1, . . . , qn−3, f, e} as the state set, wheree andf correspond to the
quotients∅ andε. Construct an nfaDR for LR, and consider the corresponding subset
automaton.

The initial state of the subset automaton is{f}, and no other state containsf . Next,
all the states containings can be merged. As in Theorem 6, we get at most2n−3 + 2
reachable states. Ifκ(LR) = 2n−3 +2, then the set{q1, q2, . . . , qn−3} must be reachable.
Therefore there must exist a non-empty wordv such that, for allqi, we haveδ(qi, v) = f .
Now suppose there exists a wordw in L such that|w| > 2. Letw = abx wherea, b ∈ Σ
andx ∈ Σ+. Also supposeδ(s, a) = qi andδ(qi, b) = qj . Then we haveav, abv ∈ L,
showing thatL is not subword-free, which is a contradiction. Hence, if anyword in L
has length at least 3, thenκ(LR) < 2n−3 + 2. Now note that, if all the words inL have
length at most 2, the only possible quotients ofLR areLR, (LR)a for all a ∈ Σ, ε, and∅.
Thereforeκ(LR) ≤ |Σ|+ 3, and the second claim follows.

Now consider tightness. Ifn = 3, then the bound is met by the unary subword-free
languagea. Let n ≥ 4 and ℓ = 2n−3 − 1. Also let Σ = {a1, a2, . . . , aℓ}, and let
S1, S2, . . . , Sℓ be all the non-empty subsets of{1, 2, . . . , n− 3}. Now let

LR = a1(
⋃

j∈S1

aj) ∪ a2(
⋃

j∈S2

aj) ∪ · · · ∪ aℓ(
⋃

j∈Sℓ

aj).

SinceLR only contains two-letter words, languagesLR andL are subword-free. The
quotients ofLR areLR, ε, ∅, and(LR)ai

=
⋃

j∈Si
aj for i = 1, 2, . . . , ℓ.
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Thereforeκ(LR) = l + 3 = 2n−3 + 2. But for L, the only possible and distinct
quotients areL, ε, ∅, andLai

for i = 1, 2, . . . , n− 3. Thusκ(L).

7 Conclusions

Our results are summarized in Tables 1 and 2, where “B-, F-free” stands for bifix-free
and factor-free, and “S-free” for subword-free. The boundsfor operations on prefix-free
languages are from [17, 21], on suffix-free languages from [13, 18, 25], and on regular
languages from [31, 33, 32, 42]. For languages over a unary alphabetΣ = {a}, the
concepts prefix-, suffix-, factor-, and subword-free coincide, andL is xfix-free withκ(L)
if and only if L = {an−2}.

In the case of subword-free languages the size of the alphabet cannot be decreased.
In the other cases, whenever the size of the alphabet is greater than 2, we do not know
whether or not the bounds are tight for smaller alphabets.

K ∪ L,K ⊕ L |Σ| K ∩ L |Σ| K \ L |Σ|

free unary max(m,n) m if m, 1 otherwise m if m 6= n, 1 otherwise

prefix mn − 2 2 mn − 2(m + n − 3) 2 mn − (m + 2n − 4) 2

suffix mn − (m + n − 2) 2 mn − 2(m + n − 3) 2 mn − (m + 2n − 4) 2

B-, F-free mn − (m + n) 3 mn − 3(m + n − 4) 2 mn − (2m + 3n − 9) 2

S-free mn − (m + n) s1 mn − 3(m + n − 4) s2 mn − (2m + 3n − 9) s3

regular mn 2 mn 2 mn 2

Table 1: Complexities of Boolean operations on xfix-free languages;s1 = m + n − 3,
s2 = m+ n− 7, s3 = m+ n− 6.

KL |Σ| L∗ |Σ| LR |Σ|

free unary m + n − 2 n − 2 n

prefix-free m + n − 2 1 n 2 2n−2 + 1 3

suffix-free (m − 1)2n−1 + 1 3 2n−2 + 1 2 2n−2 + 1 3

B-, F-free m + n − 2 1 n − 1 2 2n−3 + 2 3

S-free m + n − 2 1 n − 1 2 2n−3 + 2 2n−3 − 1

regular (2m − 1)2n−1 2 2n−1 + 2n−2 2 2n 2

Table 2: Complexities of product, star, and reversal on xfix-free languages.
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