
Acta Cybernetica 21 (2014) 553–583.

Versatile Form Validation using jSRML

Miklós Kálmán
∗

Abstract

Over the years the Internet has spread to most areas of our lives ranging

from reading news, ordering food, streaming music, playing games all the way

to handling our finances online. With this rapid expansion came an increased

need to ensure that the data being transmitted is valid. Validity is impor-

tant not just to avoid data corruption but also to prevent possible security

breaches. Whenever a user wants to interact with a website where information

needs to be shared they usually fill out forms and submit them for server-side

processing. Web forms are very prone to input errors, external exploits like

SQL injection attacks, automated bot submissions and several other secu-

rity circumvention attempts. We will demonstrate our jSRML metalanguage

which provides a way to define more comprehensive and non-obtrusive valida-

tion rules for forms. We used jQuery to allow asynchronous AJAX validation

without posting the page to provide a seamless experience for the user. Our

approach also allows rules to be defined to correct mistakes in user input aside

from performing validation making it a valuable asset in the space of form

validation. We have created a system called jSRMLTool which can perform

hybrid validation methods as well as propose jSRML validation rules using

machine learning.

Introduction

Information exchange has become a vital part of our lives. The Internet is the
key channel to provide the means to digitally exchange data between its users.
The number of users hooked up to the Internet is increasing day by day. Social
networking sites engulf the ether and integrate with our lives. With this growth
comes an ever-increasing amount of data being transmitted. Users perform their
daily tasks online, giving out information, submitting data on sites. Data integrity
and security is a vital concept in this eco-system. The most common form of user
initiated information exchange are web pages. These pages are written in HTML[1]
and may contain web forms that consist of fields. These fields are filled out by the
user, which are then submitted to the server for processing. The server then pro-
cesses this information and returns the results or performs an operation with the

∗University of Szeged, Department of Software Engineering, Dugonics tér 13., H-6720 Szeged,
Hungary, +36 70 3684910, email: mkalman@inf.u-szeged.hu

DOI: 10.14232/actacyb.21.4.2014.3



554 Miklós Kálmán

submitted data. These web forms can range from simple user login forms all the
way to online tax returns containing and exchanging sensitive information. Unfor-
tunately this is one of the weakest links in the whole system as many hackers try to
exploit sites through their forms. The most common form of attacks against web
forms is DoS [2] (Denial of Service), which basically means that small automated
scripts perform constant form posting against sites trying to exploit the data or
cause the service to slow down or even crash. This can potentially compromise the
site granting the malicious script access to protected resources. This type of exploit
is also used to spam forums and news portals. Even if the data transmission itself
is protected using a secure channel (e.g.: SSL) the data entered still needs to be
validated prior to performing the processing. Another common exploit method is
the notorious SQL injection attack [3]. This method is based on the assumption
that the fields of the forms are eventually inserted into the database. If the form
processor does not filter the input (e.g.: by using prepared statements, or by filter-
ing the fields for SQL commands) then it is very possible to issue SQL commands
against the processing database (for example DROP TABLE). Aside from a secu-
rity point, data validity is a crucial aspect as well. Consider a lead generation form
where users need to fill in their contact information in order to receive special offers
from the provider. If the data entered is incorrect then it can cause a potential lead
to be lost causing the owner monetary damage.

One of the most common types of validation scenarios is the user registration
form. Here the user fills in his personal information, along with an email and
password and submits it for processing. The email address has to be valid, otherwise
the provider cannot communicate with the user, the passwords have to conform
to some security restrictions...etc. All these requirements can be handled by using
some kind of form validation method. The most common is asynchronous validation
using JavaScript [4]. Using this approach the author of the page writes JavaScript
code which checks the fields of the form providing visual output to the user (e.g.:
if the email has an invalid format then the field may be highlighted). This type
of validation can be very powerful and is handled on the client side, which means
the user will not experience any lag during the submission. The biggest drawback
however is that by adding more fields to the form the JavaScript code processing
logic becomes more difficult.

The second type of form validation is Server-side validation. This basically
means that the form data is posted to the server, which then processes the content
and returns an error if the form was invalid, or saves the data if it was valid. This
is a good approach, however it will cause an overhead when the user has to re-enter
the form contents due to a mistype in one of the fields unless the owner explicitly
codes the retry logic. The process will not happen asynchronously, meaning the
page will be reloaded during the submission (excluding cases when this is handled
with an AJAX[5] call).

To provide a solution to these issues we have created a jQuery[6] based validator
called jSRMLTool which leverages the SRML[7] language we introduced in one of
our earlier articles. This language was extended to allow form based validation
rules. The original SRML specification targeted XML document compaction and



Versatile Form Validation using jSRML 555

decompaction. With our new jSRML extension users will be able to define SRML
rules for web forms and their fields, describe relationships and requirements for
their content. The engine can be used in any HTML page simply by including the
script file in the document and defining the validation rules. This approach ensures
that the HTML content is not encumbered with JavaScript code. The jSRML rules
need to be placed after each field that is to be validated and the engine will handle
the rest. We will detail how this approach works in a later chapter of this article.

An off-site asynchronous implementation of the jSRML engine was also created
using Servlets capable of validating forms using unique identifiers and jSRML rules.
This is a separate service running on a remote machine using stored rules to validate
the form and return with any potential validation errors. Our approach also allows
another powerful feature: data correction. Thanks to the nature of the jSRML
language, it is possible to define self-correcting form validation rules. These rules
correct the field values based on the rule definitions wherever applicable making the
form submission succeed. The Servlet also has provision to learn potential jSRML
rules using the submitted form data and machine learning.

We will start out by providing some basic background on the technologies used
throughout the article. We then continue on to show the extension made to the
SRML language that allow for the definition of form validation rules. Afterwards
we will demonstrate the potential of learning jSRML rules using the jSRMLTool
servlet and evaluate the results. We end the article by an analysis of related work
in this field finishing off with a summary and our plans for future expansion.

1 Preliminaries

Before we introduce our new method we should cover a few topics in order to make
the article easier to understand. We will not detail each technology too much,
rather just cover the parts that are relevant to the later sections.

1.1 HTML and DOM

Forms are described using the HTML[1] language. These documents have a similar
hierarchic structure to XML where each node can contain attributes or additional
child nodes. This hierarchic tree-like representation is also known as the DOM
model [8] (Document Object Model). Figure 1 shows a simple HTML form source
with a field. The DOM tree representation of Figure 1 is shown in Figure 2.

1.2 Types of form validation

There are four major types of form validation: Client-side, Server-side, Real-time
and Hybrid. The difference between them lies where the data is validated and
processed.The different types of form validation are summarized in Figure 3.



556 Miklós Kálmán

<html>
<head><title>Hello World</title></head>
<body>

<h1>Hello World!</h1>
<form method="post" action="process.php">

<label for="username">Name:</label><input type="text" name="username" />
<input type="submit" value="Submit" />

</form>

</body>
</html>

Figure 1: Simple HTML of form

html

head body

title body

My Title Hello World!

form

label input

input

for="username"

type="text"

type="submit"

name="username"

value="Submit"

Figure 2: DOM tree of the Form Example

Type Trigger Processing Validation logic Advantage Disadvantage

Returned to Validation Validation
Server Form Sequential browser for logic changes
Side Submit display of hidden require

results from server
user updates

Shown in Fast since Validation
Client OnClick Client side browser using no data logic
Side intercept JavaScript is sent visible

to to users
server

Direct call Field values More traffic
Real Field Either to client and/or validated required,

change Server realtime prior harder to
validation to form update

submission
Direct calls Allows two More

Hybrid Field change Either with roundtrip stage validation, complex to
and Submit to server pre-filtering implement

results prior to and
sending to server maintain

Figure 3: Validation types

1.3 SRML

The SRML[9] metalanguage was introduced to allow the description of semantic
rules that can be used to compact and decompact XML[10] documents. The term



Versatile Form Validation using jSRML 557

compaction comes from the fact that it is able to remove specific attributes based
on rules and can recreate the same value (therefore restoring) at any later time.
The original SRML rule engine implementation used the DOM tree of the XML
to perform its operations. Since HTML forms can be considered as DOM[8] trees
it made sense to attempt to apply SRML to this area as well. In this article we
introduce an extension of SRML (called jSRML) which allows its use in the form
validation space. We have created a new rule engine for this purpose using jQuery
where the processing is performed in the browser.

The new jSRML language although being an extension of SRML is not com-
pletely similar to its predecessor as it was rebuilt from ground up taking the positive
traits of the previous language version and molding it to become an ideal candidate
for describing form validation rules. Figure 4 shows the differences between the
different versions of SRML.

Property SRML 1.0 jSRML

Main Focus Compaction Validation/Correction
Reference level Attributes Form Field values

Application Area XML Documents HTML Forms
Rules based on Attribute Grammars XPath and DOM
Rule Definition Complex Simplified
Rule Locations DTD and SRML file Inline, external, server
Rule Processing Application side Client-,Server-side, Mixed

Figure 4: Key differences between SRML versions

2 Extending SRML for form validation

In this section we will present how the SRML language can be extended to aid the
validation process. Most Client-side validators are simplistic and perform format
validation only. If we wanted to create a validation rule that conditionally compared
two fields then it would require a larger block of JavaScript. Trying to achieve this
on the server would require the validation logic to be implemented there. If for
some reason the conditions needed to change then the server code would need to
be updated, which can be difficult in production environments.

We took the positive traits of the original SRML engine and rebuilt it from the
ground up in JavaScript using jQuery to allow exceptional browser performance.
We decided to name the extension jSRML and the new rule engine jSRMLTool
to denote the JavaScript relationship. Previously SRML rules were stored in a
separate file which had its advantages and disadvantages. The advantage was that
all the rules were in one location, however this also meant that it was harder to
understand the rules when trying to find a ruleset for a given node context. In the
jSRML approach we allow the rules to be defined in-line after each field as well as
externally making it easier to define validation rules.

The second advantage of jSRML is that it is non-obtrusive. In order to use
it only a simple script include is required. When the validation rules need to be



558 Miklós Kálmán

updated the rule engine itself will not change, only the rules, reducing the possibility
of error. This is a very large benefit compared to the pure JavaScript approaches.
If the validation rules need to change then only the affected field rules need to
change, no coding experience is needed to perform the update. In case of in-line
jSRML, the rules are defined as jSRML snippets. The full XSD of the new jSRML
language can be found in [11].

The jSRML engine can also correct the field values if the rule definition specifies
it. This is a huge advantage over other rule- or JavaScript-based validators as it
allows the form to correct the errors and still allows the form submission to succeed.
A good example would be spell checking in a form prior to submission which can
be accomplished by the using functions in the rule definition. This makes jSRML
more versatile as more seasoned developers can extend the engine with additional
methods aside from the standard operation set that the engine provides.

We have also created a Server-side implementation of the jSRML engine using
Java Servlets[12] allowing the form to be validated asynchronously against a service.
The service code does not change no matter what the rule definitions are. This is
accomplished by storing the ruleset on the server-side and performing the validation
based on a lookup using a unique form identifier. This Servlet can be used to
validate thousands of different forms spanning multiple domains as long as the
rules were uploaded beforehand. This allows the engine to be leveraged in an on-
demand validation service scenario. The jSRMLTool servlet also has an option
to learn the validation rules based on the form inputs using extendable machine
learning methods. This provides a powerful tool for the owner as it can also ”mine”
the input and gradually adjust the rules based on what users entered.

3 Validation using jSRML

We will show how to define jSRML rules using simple snippets. The current lan-
guage format allows two ways of defining rules : in-line and external. The in-line
mode allows the user to insert the validation rules right below the affected field.
This makes the code more readable as the validation rule follows the field itself.
Figure 5 shows a simple example of providing an email validation rule using in-line
jSRML.

To initialize the engine for in-line (default) validation mode the following steps
would be needed:

• Include the jSRMLTool.js file at the start of the document.

• Augment the fields with their proper in-line rules.

In-line validation rules are contained in a comment block following the field.
The comment starts with the [SRML] tag. The advantage of using comments for
the rule storage is that they are non-obtrusive and can be accessed within the DOM
model using XPath expressions. XPath[13] is a query language allowing the easy
access and manipulation of nodes and their content within a DOM tree.



Versatile Form Validation using jSRML 559

...
<input type="text" id="email" class="row-item" />

<!--[SRML]
<validate-input id="email" form="myform" mode="validate">

<error-text>Invalid email format!</error-text>
<css invalid="inp-form-error" error-class="form_error_message error" />
<action valid="" invalid="error" />

<conditions>
<expr>

<text-format value="email" />
</expr>

</conditions>

</validate-input>
-->

...

Figure 5: jSRML snippet for in-line email validation

For external includes we use jQuery to load an XML document containing the
rules into a DOM object and use that as the source for the engine. As this is not
the default mode that the engine uses there is some extra setup required for this
mode to be used. To use external rules the following steps need to be taken:

• Create a script segment with the following contents :

var external_rule = http://location-of-srml-rules;

• Include the jSRMLTool.js file.

The major difference between external and in-line is that there is an extra step
required. The presence of an external rule variable informs the jSRMLTool engine
to load the rules from that location using AJAX during the page load. The rules
are then pushed into a rule DOM object for easier access. From this point on the
validation process is identical to the in-line approach.

3.1 Defining validation rules

After demonstrating the two ways to define rules we will now describe how a rule
is built up and how to define more complex ones.

Every jSRML rule definition starts with the validate-input tag. This element
specifies what the scope of the given rule is using the id attribute. The form
attribute defines which form the rules belong to. This way the external and in-line
rules can both use the same format making it easy to switch between them. The
third parameter is the mode, which can have a value of ”validate” or ”correct”. The
first mode will validate the rule and return accordingly. The ”correct” mode allows
the form input field to be corrected by the actual rule calculation result. This
means that if the validation fails, then the field value will be replaced by a pre-
defined or calculated value (Expected value) allowing the validation to potentially
finish successfully.

The validate-input element has 4 child nodes. These can be in any order,
but they must exist for the validation to yield proper results. These elements are
as follows:



560 Miklós Kálmán

• error-text: This element contains the validation message that will be dis-
played to the user. This message is put in a dynamic div element that is
created after the field that is being validated. A div is an HTML element
which can have an id, name and class attribute. Divs are used in modern
web pages to provide table-less layouts and define specific regions of the page.
For the scope of this article it is enough to consider them as containers that
can be manipulated similarly to other DOM elements.

• css: The css element allows the author to define what CSS classes should
be amended to the input field in case of an error and what class the newly
created error div should be. CSS[14] stands for Cascading Style Sheets and is
widely used in styling web pages. It defines a set of styles and classes which
can be applied to elements in the document.

• action: This element allows the definition of additional functions that will
be invoked in case of a validation error or success. This allows more exten-
sive callbacks to experienced users who wish to perform custom operations
depending on the output of the form validation results.

• conditions: This element stores all of the validation rules.

The condition tag contains one or more expr tags. The validation succeeds
or fails based on the result of these expressions. It is possible to define more
conditions for the same field using multiple expr nodes. There are several expression
types defined in jSRML. We will detail the most important ones along with a brief
description.

• binary-op: This defines a binary operation. In jSRML we only allow a sub-
set of binary-op types on the top level expression, more specifically ones
that return a true/false value. Currently these are limited to: gte, gt, lte,
lt, date-lte, date-lt, date-equals, date-gt, date-gte, equals, not-equals, contains,
not-contains,begins-with and ends-with. The specification also allows the key-
words and and or to enable proper logical operations. We have introduced
the reg-eval element which allows references to nodes and most binary opera-
tions (+, -, /, *). A binary-op contains two expr expressions. The operation
is performed between the two expressions. The expressions within can also
be other binary-ops or one of the expression types described in this chapter.

• text-length: The text-length element returns the length of the actual field
that the rule is defined for.

• field-length: This element is similar to text-length however it also has an
attribute called id that identifies the specified field whose length needs to be
returned.

• text-value: This expression will return the value of the actual field that the
rule’s definition was for.



Versatile Form Validation using jSRML 561

• field-value: Similar to text-value but allows the reference of another field’s
value by id.

• data: The data element allows literals or constants to take part in an ex-
pression. An example for this would be when the length of a field has to be
larger than 100. In this case the 100 would be added as a data tag.

• text-format: The text-format expression returns true or false based on
the type of field value it is matched against. The value attribute can be date,
numeric, email or regexp. This allows easier validation against standard field
types used in forms, like emails, dates or numbers. The regexp type allows
the definition of a regular expression defined in the expression attribute. This
allows powerful pattern matching for fields (e.g ISBN number validation).

• reg-eval: This expression type allows operations to be defined on more fields
at the same time. For example if the field value is only valid if it is the sum
of other two fields then a reg-eval expression can be used. To reference the
value of fields in the expression one simply needs to enclose the id of the fields
in brackets (e.g.: [{fieldName}] ).

• if-expr: The if-expr element allows conditional results to be returned. It
takes 3 expr expressions. If the result value of the first expression is true
then the result of the if-expr will be that of the second expr otherwise it
will be the third expr.

• has-value: This element allows a simple check of the field contents. If the
field referenced by id is empty this element will return false, otherwise it will
return true.

The jSRML language allows the form values to be corrected based on the rules.
The engine will find the rules for the actual field and if the value of the field is
different than the expected value defined then it will use the result of the rule as
the actual value. This allows forms to be corrected based on the rule values making
it a very powerful tool in the form validation space.

3.2 A form validation example

After introducing the jSRML language and how powerful it can be for form vali-
dation we will provide a summary example to demonstrate how it can be used for
form validation.

Consider the form in Figure 6. This form has multiple fields to better demon-
strate how jSRMLTool works. The full source of the page can be found in [15]. The
following shows some summarized validation rules for the form:

• Field01 has a minimum length of 5 characters: the text-length ele-
ment is used which returns the length of the actual field (in this case the
length of field01 ). We then compare this to a constant value of 5 defined



562 Miklós Kálmán

in a data element. To perform the comparison logical operator we use a gte
binary op. This will return true if the first expression’s value is larger than
the second.

• Field04 has to be an ISBN number: This is a special text-format case
as it is using the reg-exp type to define a requirement of an ISBN number.
The expression attribute defines the actual regular expression that the field’s
value will be validated against.

• Field06 has to be the sum of Field02 and Field05: For this rule we
use reg-evalwhich is coupled with an ”equals” binary-op against the actual
text value.

• Field11 is ‘‘legs’’ if field10 is ‘‘cat’’, ‘‘wings’’ if field10

has a value of to ‘‘bird’’ and can be anything otherwise :

The validation rule contains an if-expr to match the value of the other field
value against “cat”. If the value was “cat” then the validation result will
return the value “legs” as the required field value. Otherwise the results will
be the text-value of the node and will perform an ”equals” binary-op on
it. This is a simple trick to convert the machining of fields to booleans, since
if the value matched then we return the current field value and compare that
against itself (which will always be true), otherwise we would return “legs”.

The jSRMLTool engine supports all three types of validation described earlier
(Client, Server, Real-time). This provides the most versatile and powerful approach
since the user is not bound to a single solution.

The following summarizes how the different modes operated in jSRMLTool:

• Client-side: In this mode the validation is completed using the included
jSRMLTool.js file. The rules are extracted using XPath conditions. All in-
line rules are contained in comments which start with [SRML]. A hook is
installed on the onClick action of the submit button. When the button is
pressed the engine will validate the fields. If the validation is successful (or
corrected based on the expected values) then the form is submitted to its
original location defined by the “action” attribute of the form. Figure 7
shows the flow of the Client-side validation.

• Server-side: The engine handles the Server-side mode using a separate
servlet (called jSRMLToolServlet). This servlet uses a unique identifier to
associate the rules to each form. This allows multiple forms from different
domains to be submitted/validated against the same servlet. To put the
validation engine into server mode a variable called server validator needs
to be defined with the URL of the servlet. The flow in this case is similar
to the Client-side however all fields are pushed over to the servlet along with
the unique identifier. The servlet then performs the validation/correction and
returns the data back to the client. The Server-side validation flow is shown
in Figure 8.



Versatile Form Validation using jSRML 563

• Real-time and Hybrid: Every rule has a “method” attribute. This is not
a mandatory attribute and has a default value of “standard”. When this
attribute is set to “focus” then a hook is automatically installed on the onBlur
event of every field where this attribute is set. This results in a focus change
validation trigger. The third allowed value for the method attribute is “real-
time”. This installs a keydown listener and performs the validation on every
character input. This mode is useful for example in case of password length
checks.

Figure 6: Input form

Page Load Find All
Forms

Read SRML
rules

Bind to submit
button

Create DOM

HTML Display onClick Submit

Perform Client Side
Validation

More Fields
to validate?

Validate Field Error?

Form
Processor

Store
Results

Display
Error

No

No

Yes

Yes

Figure 7: Client-Side jSRML

4 The jSRMLTool Servlet

After introducing the jSRML language and the jSRMLTool engine we will now
discuss the Server-side validation mode in more detail. The jSRMLTool servlet



564 Miklós Kálmán

Page Load Find All
Forms

Read SRML
rules

Bind to submit
button

Create DOM

Find target
server

HTML Display onClick Submit

Async post to
validation server

Validate all fields

Return JSON
results

Client Parse
JSON

Error?Display
Error

Post to
target server

Form
Processor

Store
Results

NoYes

Find Validation
server

Figure 8: Server Side jSRML

has two major roles: Server-side form validation and learning jSRML rules. The
first role allows a powerful way to provide a service for validating forms across
multiple servers. The jSRML rules are stored in the database and are retrieved
using unique identifiers. The form is passed in to the Servlet which performs the
validation internally and returns the results to the calling client. This approach
hides the rules from the client side, yet still allows powerful validation using jSRML.

4.1 Learning jSRML rules

The second role of the jSRMLTool engine is learning jSRML rules. This is a power-
ful addition since it attempts to learn from the form submissions and can propose
jSRML rules based on machine learning techniques. In order to learn jSRML rules,
the engine has to be put into learning mode using the following steps:

1. Create a JavaScript variable called server mode with a value of ”learn”. This
will put the engine into learning mode. The default value of this variable is
”normal” .

2. Create a variable called server validator with the location of the validation
servlet.

3. Include the jSRMLTool.js file into the header of the form’s file similarly to
the client or server-side modes.

4. Augment the form with a hidden variable called srml unique. The value of
the variable should be the identifier that will be used to group the form
submissions together.

Figure 9 demonstrates how the form is intercepted and analyzed. The initial
steps are similar to how the Server-side validation is handled. A hook will be



Versatile Form Validation using jSRML 565

installed on the form’s submit event and will re-route the call to the jSRML Servlet
location. The major difference here is that there is no actual jSRML ruleset on the
Server-side. It is merely used to intercept any submissions and store the form-value
pairs. These values are then analyzed by the learning module and possible jSRML
rules are generated. The flow is returned to the client and the form data is pushed
to the original target for the form submission. This means that the form operation
is not hindered but the traffic is intercepted, saved and submission relayed to its
original target.

Form Intercept Form Submit
using the installed Hooked

jSRMLTool
servlet

Identify Form
Save Form

Fields
Post to original
Target location

Figure 9: Intercepting form data and learning jSRML rules

The learning module has several plugins that process form submissions and
adjust the proposed rules accordingly making the learning a gradual process. Cur-
rently the engine has the following learning plugins: jpFormat, jpLength, jpCopy-
Content, jpRelationship, jpRange, jpPredefinedName, jpRegExp. We will detail each
learning plugin in this section.

Each plugin has a confidence factor and a target ratio that is set by the admin-
istrator of the system. If a plugin has a high confidence value it means that almost
every time the plugin breaches the target ratio threshold a rule will be generated.
Sometimes it is possible that multiple plugins provide rules for the same field. In
cases like this the system chooses the solution with the highest confidence factor
which surpassed the target ratio. The target ratio denotes what the minimum ex-
pected matching ratio is, which means that if the actual match is lower than this
ratio the rule will not be considered as a match. In practice this means the ratio
of inputs that match the given rule conditions.

The plugins keep track of their historical form submissions along with their field
values. The learning module goes through all the plugins and collects the partial
jSRML rule proposals. Once all the plugins are executed the weighed results are
analyzed and stored. Figure 10 demonstrates how the learning module works. To
increase the efficiency of the learning process it is usually helpful to start a new
ruleset with a supervised learning scenario. During this the owner of the form
”teaches” the engine by providing valid sample inputs. Sometimes previous valid
form submissions are also available in bulk. The tool also has an import feature
which is able to import a CSV file of valid sample data to prime the initial rules.
Since the learning module is very extensible, new plugins can be added easily. This
can increase the learning efficiency of the system.



566 Miklós Kálmán

Form Read Form UID jSRMLTool
Save Field

Values ForEach Field

ForEach Plugin

more

Build Context Tree

Retrieve Historical
values

Execute on 50% of
historical data

Persist Field Values

Validate against remainder
50% of historical data

Above
Ratio

Store jSRML
proposal

Check Results above
ratio

Check confidence
factor

Persist final jSRML
ruleset

No

Yes

Yes

No

Figure 10: jSRMLTool learning process

4.1.1 jpFormat Plugin

This plugin tries to match the type of a given field. It works on a simple approach
that every field is a string as the weakest type match. It then tries to cast to date,
email and numeric. The matching is done by casting and regular expression pattern
matching. The results are stored on a fieldname level along with the statistics of the
match. The decision adopts over time since it is possible that not all submissions
are valid. The plugin has a high success rate at identifying the formats, since the
more positive/negative examples it receives the higher probability the match will
be.

4.1.2 jpLength and jpRange Plugins

The jpLength plugin matches on the length of the fields. Both minimum and max-
imum lengths are collected and analyzed. The operation is pretty straightforward
thanks to the historical data collected. The jpRange plugin works similarly, how-
ever with the actual numerical value of the fields. The range, min and max values
are adjusted after each positive result. These plugins are dynamic in nature and
adjust their values based on the submissions.

4.1.3 jpCopyContent

This plugin is a simple comparator between two fields. It is mostly used in the
password, email fields when there is a second field which requires the user to re-
type the value to ensure he didn’t make a mistake. The operation of this plugin



Versatile Form Validation using jSRML 567

goes through all (Fj , Fk) field pairs and checks what the matching ratio is between
them.

4.1.4 jpRelationship

The relationship plugin is aimed at finding relationships between fields and their
values. The steps of the plugin are demonstrated in Figure 11. The learning starts
out by extracting the context of the form submissions. Since the context tree has
only two levels (including the root) every field is a sibling. This plugin has two
sub-modes: compositional and conditional.

The compositional mode finds potential compositions between the other sibling
elements. The current version works off sets of two concurrent fields at a time
(using more fields would increase the complexity), each field with a minimum length
of 3. Based on the possible combinations we build a statistical table to show
each field in relation to two other siblings. For composition we check against:
begins-with, ends-with, contains. If field01 is the field the plugin is targeting
and field02 and field03 are in the current context set then the value is compared
against: [field02][field03], [field03][field02], *[field02], *[field03], [field02]*[field03],
[field03]*[field02]. The plugin will go through every field as the target field. It
then takes the remainder (n-1) siblings and splits them into groups of two based
on those fields whose lengths are above 3 characters. These combinations are then
compared to the historical values of the plugin. Based on the confidence factor and
ratio provided a jSRML rule is created. Figure 12 shows the compositional method
of the plugin.

Execute

Compositional
Mode

Above
Ratio?

Conditional
Mode

Above
Ratio?

Propose
jSRML

Propose
jSRML

Return jSRML with
higherRatio

Yes

Yes

Select
sub-mode

Figure 11: jpRelationship Plugin

The second mode of the jpRelationship plugin is the conditional mode (Figure
14). This method finds relationships between field values using conditional logic
and applying statistical machine learning[16]. The plugin uses 50 percent of all
historical data as the learning set. The plugin initially selects the most descriptive
field Fk where k=1,...,n and bags its context (the remainder n-1 fields) clustering
them into groups of three randomly. These clusters will form a set of decision trees



568 Miklós Kálmán

Compositional
Split (n-1) fields into

Groups of two (F2,F3)

ForEach Group (F2,F3)

Compare F1

F1 = [F2]*[F3]

F1 = [F3]*[F2]

F1 = *[F2]* F1 = *[F3]*

more Match against 50%
historical

Above
Ratio?

Propose
jSRML

Yes

Yes

Figure 12: jpRelationship Compositional Method

that are focused on learning Fk using a simplified Random Forest[17] approach. It
should be noted that the size of the clusters is an experimental value based on the
average number of form fields per submission. The term “most descriptive field”
refers to the field with the lowest entropy in the results (the field whose values
are least random across submissions). This is used to better split the values of
the results into smaller chunks which are then used in the later nodes of the tree.
Every tree will have a maximum depth of 3 (as the selected field’s bag has 3 other
fields that have to be analyzed). Each node’s content contains the actual values
of targeted field Fk and its top three values (Fk was selected at the start of the
algorithm). Every node will select the most descriptive field and its value in the
current context. The context is unique to each node and the path that it was
created by. This means that every field’s possible values in the current node are
influenced by the previously selected classifiers leading to the node. We will be
using Xi to denote the filter context of a node in each iteration step whose value
is unique to the node’s path in the tree. Let Xi := Fk[Fr = Vs(Fm[Xi−1] where
Vr(Fs[Xi]) denotes the rth most descriptive value of field Fs filtered by the context
defined in Xi. Let C(Fr [Xi]) mark the classifier that is selected for field Fr whose
values are filtered by the context defined in Xi. During each node the field (Fr)
with the most descriptive trait is selected as the classifier (every level of the tree
reduces the number of fields to chose from by one). This field’s values are then used
to create the nodes children ordered by their descriptiveness. Each child node will
fix the value of Fr based on the branch they are in V1(Fr[Xi]), ..., Vn(Fr[Xi]). The
main Fk field values and their occurrences are recalculated based on the context in
each node. Every node will reduce the possible values of the fields as the context
is generalized more going downward in the tree. It is possible that some field



Versatile Form Validation using jSRML 569

Figure 13: Outdoor Activities Form

values are not discrete, but rather continuous numerical occurrences. To solve this
scenario Wm(Fs[Xi]) marks the weighed values of Fs filtered by Xi with a relation
of m (possible values ≤, >). The algorithm chooses a weighed average of numeric
values (to ensure that they are not offset too much). For these classifiers the values
will partition the results into two sets. The first branch will contain values less than
or equal to the classifier value, the second branch will contain values larger than
the value. This function is analogous to the Vm(Fn[Xi]) value and can be used in
the classifier filtering accordingly, however here the value is not based on the level
of descriptiveness but rather the weighed average of the field and its filter chain.

As mentioned earlier each node contains the top three values of the analyzed field
(Fk) with their occurrence ratio. The possible values of the fields are influenced
by the previously selected classifier values. Before selecting a new classifier the
algorithm checks the values of Fk in the nodes. Any node which does not have at
least one Fk value above the ratio (currently set to 50%) is ignored from then on
and will no longer be processed. The iterations continue until the context bag is not
empty or all nodes have terminated without a possible selection. The algorithm only
works off the top three values of each field classifier which may cause an efficiency
decrease overall, however based on the introduced ratio values the margin for extra
error can be safely ignored.

To demonstrate the algorithm consider the following example: users answer
a set of questions regarding their activities and weather conditions (activity[F1 ],
wind [F2], weather [F3], temperature[F4] where the brackets contain the Field index).



570 Miklós Kálmán

The form data was acquired using an online survey using the help of SurveyMon-
key[18]. The fields wind and weather allow multiple values to be selected (the form
can be seen in Figure 13). When the user selects multiple values for these fields
the form post is handled as multiple submissions to fit the model correctly. The
plugin uses 50 percent of the historical data (in our case 2000 submissions) and
analyses each field one-by-one. We will demonstrate the activity field relationship
learning briefly. Figure 15 shows the resulting tree for activitity (note we only have
4 fields in this form, so it will only need one tree per field, however the algorithm
works on multiple trees as described earlier). The plugin collects the distinct his-
torical values and their counts selecting the top 3 values. In case of activity these
top 3 distinct values are “Swimming” with 610 hits, “Fishing” with 239 hits and
“IceSkating” with 215 hits. The learning set in our example is made up of 2000
form submissions.

The plugin creates a statistical analysis of the other (C(F2), C(F3), C(F4)) clas-
sifier values. In our example wind [F2] is chosen as it had the most descriptive
classification (provides the largest separation of results). The top 3 wind [F2] values
are selected and the resultset is filtered on that (V1(F2), V2(F2), V3(F2)). If there
are numeric values (e.g.: temperature) then the weighed average value is taken as
the classifier. This however will only classify into two sets so they are only used in
later levels of the tree.

Conditional
Split (n-1) fields into

sets of Three
Randomly

ForEach Group 
F1, (F2,F3,F4)

more
Filter Historical by

Selected Field
Values

Initialize 
FieldSet={F2,F3,F4}

Insert Filtered F1
statistics in Node

Initialize Tree
Root=F1 Top 3
distinct values

with highest count

Collect Distinct Values
for FieldSet

Select Field(Fx) from FieldSet
with Highest count
and segmentation

Remove Fx
from FieldSet

HasNonNumeric 
Fields in set?

Average Historical
Fx values

If numeric then
left <= Fx and

right>Fx

ForEach Leaf
F1 Node

Split statistics
by Fx values

(Top 3 distinct)

Find all leaves
with Ratio above

threshold and count > 5%

Propose jSRML
results

If Max(count) < %5

Stop processing
branch

Yes No

Figure 14: jpRelationship Conditional Method

The next tree level is created by applying a filter on the classifier results. In the
example this means three nodes. The first node will list all entries where the wind



Versatile Form Validation using jSRML 571

(F2) is “Weak”, the second sibling will list all entries where the wind is “Strong”
and the third node on this level will list all items whose wind attribute is “Breeze”.

Based on the new level we recalculate the top three distinct values of the tar-
get (F1) field for each selected value of Vi(F2). On a database level this basi-
cally means that we select the top 3 distinct values for F1 where value

of F2 IN (V1(F2), V2(F2), V3(F2)) . The statistics are stored on the node level and
are based on the filtered F2 values.

The next step is to examine the remainder fields and create possible classifiers.
The possible values of the fields are reduced by fixing field F2 to the top three
values. Based on the filtering weather (F3) is chosen and the classifiers become:
C(F3[F2 = V1(F2)]), C(F3[F2 = V2(F2)]) and C(F3[F2 = V3(F2)]) respectively.
Taking the first classifier from the left the top three values it generates are “Sunny”,
“Rain” and “Snow”. These values are used to filter all nodes on the level. On each
level the distinct values of the F1 are reduced based on the previous classifiers (e.g.:
on this level only submission items that have the weather and wind values specified
earlier are used to get the distinct values of the target F1 field). The top three
distinct values of the remainder two classifier are also generated and added to the
tree.

The last level has only one field left to use: temperature[F4]. Since this is a nu-
meric value, we take the weighed average of historical values (taking into considera-
tion the field values chosen for F2 and F3). Taking the left node as an example (the
remainder nodes operate similarly) this classifier becomes C(F4[F3 = V1(F3[F2 =
V1(F2)])]). The left branch will be where the value of F4 is less then or equal to
the classifier’s single value of 10 (weighed average of submissions for this field after
applying the previous classifiers) and the right branch contains statistics on field
values larger than this value. Once the tree is built we look at the leaf values. We
select whichever ones breach the ratio provided (in our example we set this to be 50
percent). If more than one leaf on the same node breaches this threshold we select
the largest one. If they are identical then we select the first one from the left. To
avoid too many false positives we also have a concept of coverage ratio. This is set
by default to 5 percent. What this entails is that all result counts below 5 percent
of the learning dataset will be ignored. In the example this comes to 100 elements,
which means that any leaf result below 100 submit matches are ignored. Based on
our example the following jSRML rules are proposed:

1. “Activity” is “Swimming” (64 percent of the cases) when the “wind” is
“Weak” and the “weather” is “Sunny” with a “temperature above 10 de-
grees”

2. “Activity” is “Swimming” (59 percent of the cases) when the “wind” is
“Weak” and the “weather” is “Rainy” with a “temperature above 16 degrees”

Once a proposed prediction is made it is then checked against the remainder
50 percent of historical data to confirm that the matching ratio is kept. If the
ratio is above the target ratio a rule is created. It is important to note that the
validation ratio of this learning algorithm is not 100%. This requires the owner



572 Miklós Kálmán

of the domain or form to set the thresholds accordingly. It may mis-classify valid
inputs as false negatives if the threshold is not set correctly. The purpose of the
learning here is to provide a direction of validation rules that can then be refined by
the domain owner in contrast to the other learning plugins which can classify the
inputs with higher confidence. With more plugins and stronger learning algorithms
(e.g.: neural networks) the system can evolve to better classify harder relationships
as well.

Wind

IceSkating 215 0.100

Fishing 239 0.120

Swimming 610 0.305

Weather

Weak [860]

Swimming 401 0.466

Ski 119 0.138

Fishing 108 0.125

Weather

Strong [442]

HangGliding 105 0.237

Hiking 85 0.192

IceSkating 69 0.156

Weather

Breeze [244]

Swimming 53 0.217

Kayaking 23 0.094

Ski 23 0.094

Temperature

Sunny [360]

Swimming 201 0.558

Ski 68 0.188

Fishing 43 0.119

Temperature

Rain [304]

Swimming 190 0.625

Fishing 52 0.171

Hiking 35 0.115

Temperature

Sunny [213]

Hiking 66 0.309

IceSkating 48 0.205

HangGliding 43 0.201

V (F )21

V (F [F =V (F )])3 2 211 V (F [F =V (F )])3 2 212

V (F [F =V (F )])3 2 213

C(F [F =V (F )])
3 2 21

C(F [F =V (F )])
3 2 22

C(F [F =V (F )])3 2 22

V (F )23

C(F [F =V (F [F =V (F )])]4 3 1 3 2 2 C(F [F =V (F [F =V (F )])]4 3 2 3 2 2

W (F [F =V (F [F =V (F )])]<= 4 3 1 3 2 2 W (F [F =V (F [F =V (F )])]> 4 3 1 3 2 2
W (F [F =V (F [F =V (F )])]
<= 4 3 2 3 2 2

C(F )2

V (F )22

V (F [F =V (F )])
3 2 221

V (F [F =V (F )])3 2 222

Temperature

Cloudy [45]

Fishing 11 0.244

Swimming 10 0.222

IceSkating 7 0.155

V (F [F =V (F )])3 2 223

Temperature

Rain [120]

HangGliding 49 0.408

Fishing 36 0.3

Hiking 11 0.09

Snow [118]

Temperature

IceSkating 56 0.474

Ski 38 0.322

HangGliding 6 0.05

> 16 [181]

Swimming 107 0.591

Fishing 38 0.209

Hiking 25 0.138

>W (F [F =V (F [F =V (F )])]
4 3 2 1

>10 [176]

Swimming 114 0.647

Fishing 30 0.170

Ski 14 0.079

<=10 [184]

Swimming 87 0.473

Ski 54 0.293

Hiking 14 0.074

<= 16 [123]

Swimming 83 0.674

Fishing 14 0.113

Hiking 10 0.08

23

1
1

111 2

Figure 15: Sample tree in the Random Forest

4.1.5 jpPredefinedName

The jpPredefinedName plugin works on the assumption that many forms share field
names and types. For example a field named email usually contains an email ad-
dress which has to be in a valid email format. The plugin contains a list of constant
names and their corresponding formats. This list is maintained and extended by
the administrator of the Servlet.

4.1.6 jpRegExp

The regular expression plugin is geared towards learning regular expression values
for fields. The plugin starts out by analyzing the historical values for the (F1) field
in particular its separator sign occurrence (e.g.: −,+,@, (, ), [, ]). This is built up
from the assumption that form fields using regular expressions are usually finite
and pre-defined in format. This means that a field will usually follow the same pat-
tern historically if it belongs to the same form domain (e.g.: ISBN number, phone
number, Social Security Number...etc). A statistical table is built up of these to
determine any potential separator position recurrence. This helps identify possible
separators for the field value’s regular expression. It also lowers the processing time



Versatile Form Validation using jSRML 573

of the algorithm as now only sets of fixed character lengths need to be checked. The
plugin tries to match a separate regular expression for each section. We create a
statistical tree which analyzes each section one character at a time. If there are
no separators the algorithm will treat the complete field values as a single section.
This will however cause uneven length inputs to offset the regular expression result
(e.g.: if most inputs were 5 characters long and some were longer then the output
can be something like [A−Za−z]{5}[1−9ace]∗). If the range could not be merged
into an optimal one then it will contain the subranges per character location (e.g.:
[a− c][f − k][A− Z]{3}). In both section separated and single-section modes each
step will try to optimize the ranges into smaller expressions to conserve space. The
statistical table contains ratios and statistics on all positions and it will split only
when the ratio for the separator is 100%. The separator identification has two
modes: fixed position and floating. In case of the fixed position mode the segments
are fixed in length as well as the position of the separators. The floating position
mode has a dynamic position nature (e.g.: the @ sign in emails) in which case the
only certain information the plugin has is the number of sections in all inputs.

If the separators and sections are identified correctly then each section is ana-
lyzed one position at a time using the similar approach to the above. Depending
on the mode (fixed vs floating) the sections lengths are either constant length or
dynamic. This however will only affect the expression normalization. For each po-
sition the possible values are collected and converted into regular expression ranges.
After the end of each section the ranges in the actual section are compacted into a
potentially shorter representation. This compaction includes replacing a range of
[0−9] to [\d] and ranges like [abcghi] to a range of [a− cg− i]. Multiple occurrence
of similar ranges or types are also checked and introduced (e.g.: [abc][abc][abc] is
converted to [a−c]{3}). Using a sample input of (ab0-8cz,bc1-akm,dtt-d5e,cog-102 )
will generate an output of [a− d][bcopt][01gt][−][18ad][05ck][2emz]. In case of the
floating position mode of the plugin we also utilize the + and ∗ occurrence charac-
ters.

Once all segments have been ”learned” the results are merged into one complete
regular expression and matched against the remainder 50 percent of training data
and if the ratio of the match is higher than the provided threshold then a rule is
proposed. We have also experimented with reversing the logic of regular expres-
sion creation by starting out from the broadest ranges and tightening based on the
results. This was also a good approach, however it provided more false positives
due to the generic nature. The system also has an experimental regular expres-
sion plugin based on block-wise grouping and alignment algorithm coupled with a
simple looping automata based on the concepts outlined in [19]. This algorithm
is simplified by the additional information acquired from the potential separators
acquired in the first pre-check step. We thought it was worth mentioning it in this
section as it can provide a more optimal solution than the statistical approach.



574 Miklós Kálmán

Execute
Find +,-,@,(,),[,],.

positions
in Historical

Select Symbol Combination
with highest Match Ratio

Check Ratio
against Threshold

Above
Ratio?

Propose jSRML

Yes

No

Split String into segments

ForEach segment more

ForEach character
position in segment

Find largest range
in historical distinct values

Compare against
ratio and save range

Try to extend to the n-1
ranges to create a merged

range

Figure 16: jpRegExp Plugin

4.2 Programatically evaluating the jSRML learning plugins

The jSRMLTool learning process uses a gradual approach to create the rules. The
more positive inputs it receives the more effective the rules become. In order to
provide a proper baseline it is advisable to feed in some positive form results. The
results are summarized in Figure 17 where T denotes True classification (including
positive and negative), F+ means False positive and F- marks False negative with
ES and PS marking Empty and Primed initial learning sets. The table includes the
percentage results of the input classification (valid/invalid) for a specified plugin
type. The learning is far from perfect, but with proper training it can aid the
creation of validation rules. The simpler plugins like jpFormat, jpLength, jpRange
are rather effective since they dynamically adjust their limits according to the
inputs. The more complex plugins like the jpRegExp provided solid results, however
it is more resource intensive and would take longer to provide the same success ratio.
The jpRelationship plugin was excluded from the testing scenario as the random
nature of the tests would not provide conclusive results on the efficiency of this
plugin. We will demonstrate the real-life use of this plugin in a later section of this
article.

During our tests we experimented with both empty and primed initial learning
sets. In case of the empty learning set the number of false positives were consider-
ably higher for the more complex plugins since they leveraged the distinct values
and the learning set extensively. We did not run an evaluation on the jpPrede-
finedName plugin since that operates on a set of constant field names (e.g.: email,
ip address, isbn). The jpCopyContent plugin was also ignored for this evaluation
since the results are based on equality between two fields and the random nature
of the experiment offsets the actual findings of the plugin.

To test our plugins we used the following input sources:

• An English dictionary file containing 170,000 words. This is the source of all
word subsets.



Versatile Form Validation using jSRML 575

• A random list of 100,000 words from the dictionary to be used by the jpLength
plugin.

• An email address list of 130,000 items built up from the dictionary with
an added logic to generate valid/invalid emails. The ratio of valid/invalid
emails was set randomly. The invalid emails were generated by adding known
mistakes to words and symbols. The list also marks which are valid/invalid
so that this information can be used in the validation evaluation. This is one
of the sources of jpRegExp.

• A list of 50,000 phone numbers (matching US phone numbers: (CCC) NNN-
MMMM ) as the secondary input of jpRegExp.

• A list of 50,000 ISBN10 and ISBN13 random items as the tertiary input
source for jpRegExp.

• A list of 50,000 IPV4 and IPV6 random items as an additional input for
jpRegExp.

• A list of 250,000 regular expressions based on random expressions (variable in
both format and length using +,−,@, (, ), [, ]. This will provide the additional
learning set for jpRegExp.

• A list of 100,000 items randomly alternating between, string, integer, double
and date for use with the jpFormat plugin.

• A list of 100,000 numbers between 1 and 1 billion. This list is used by the
jpRange plugin.

Using the above sources we created 1,000 separate forms with random fields.
Every form contained multiple fields (one to test each plugin). The jpPredefined-
Name and jpCopyContent plugins were ignored for the experiment. The reason
why we chose to run the results on multiple forms was to ensure that the form
fields and their contents were more random. For every field of the forms the test
randomly selected the “expected” results of the validation. This was used to iden-
tify how successful the learning was. Each form was processed with 30,000 inputs
with both Empty and Primed Set approaches to allow a better picture of the plugin
efficiencies. The main operation flow of each set is as follows:

• Empty Learning Set : For each form randomly select 15,000 values from
the corresponding lists for each field and run the engine on them. It must be
noted that for this mode the engine cannot determine what the “expected”
values are since the inputs are not classified. The engine will try to generate
rules for what the “expected” values are by choosing an initial 15,000 inputs.
These inputs are analyzed and a set of proposed validation rules are created
based on the best fit using the ratios. Following this another 15,000 values are
selected from the learning set and are used to observe the validation results.



576 Miklós Kálmán

Plugin T ES F+ ES F- ES T PS F+ PS F- PS

jpFormat 64.36 % 25.11 % 10.53 % 94.58 % 3.23 % 2.19 %
jpLength 59.65 % 22.18 % 18.17 % 88.09 % 7.17 % 4.74 %
jpRange 26.78 % 44.06 % 29.16 % 66.31 % 25.41 % 8.28 %
jpRegExp 29.59 % 36.17 % 34.24 % 51.57 % 21.12 % 27.31 %

Figure 17: Plugin comparison (ES=Empty Set, PS=Primed Set)

This is not an ideal approach since we cannot ensure that the first batch of
inputs were completely valid therefore it will yield more false positives.

In case of the jpRegExp plugin the learning is not perfect due to the random-
ness of the selection. The remainder 15,000 values are run with each plugin
and their classification is verified based on the expected versus the learned
rules.

• Primed Learning Set : Using this approach the engine randomly selects
15,000 valid inputs for each field of each form based on the expected vali-
dation rules. As mentioned earlier every field has an “expected” validation
requirement that is created during the form setup. The inputs might not
fully overlap the expected target, however will be considered valid based
on its definition. An example for jpRange would be an expected range of
[100,000-200,000]. The random values that fit into the range will be consid-
ered valid and will allow the plugin to create its own jSRML rule suggestion.
Due to the random selection of valid elements a learned range for the pre-
vious criteria might be [125,000-170,000] (which is a subset of the original
“expected” range). In case of the jpFormat plugin items with the expected
format (string, integer, date, double) are selected from the list as the ini-
tial set. This will be the “valid” set of inputs. In case of jpRegExp one of
eight predefined expression formats are selected as the “expected” validation
rule and values that match this format (these formats are: email, ipv4, ipv6,
phone, isbn10, isbn13, webaddress, phone). Afterwards a remainder 15,000
inputs are selected and executed using the rules. During the processing of
the remainder inputs the engine checks the learned rule results with the ex-
pected classification. Using these we are able to measure the efficiency of the
learning.

The results of the forms are averaged and evaluated in Figure 17. Based on
the results it is visible that using Primed Sets yields the most effective results.
From the plugins jpFormat, jpLength and jpRange yield the best results. The
regular expression matching jpRegExp plugin does provide good results, however
the evolution of the format recognition should be tuned in the future. It should be
noted that the current efficiency of the implemented plugins are not at 100%. This
can lead to a valid question: how do we validate a form that is only n% effective?
The short answer is that the acceptance threshold should be set so that the domain
owner can accept the efficiency of the results. Even if the results are not 100% it still



Versatile Form Validation using jSRML 577

provides a direction to better tune the validation requirements. The more examples
the engine can derive decisions and learn from the higher the efficiency becomes. In
a human oriented approach the fields have more relationship and are chosen based
on some expected behavior. One might argue if the whole learning validation rules
has any relevance in the forms nowadays. We believe that the jSRML language
provides a cleaner and more powerful way to define form validation rules. Allowing
the option to intercept and potentially learn validation rules in a non-obtrusive
way not only allows administrators with a powerful tool to create rule but can
also be used to mine the inputs based on the submissions and potentially discover
relationships and visitor decision patterns in the submitted form.

Due to the random nature of the previous experiment we felt it would be worth-
while to demonstrate an incremental approach as well for some of the plugins to
better observe how the ratios change by gradually introducing more and more pos-
itive examples to the experiment. We chose a significantly smaller, more targeted
learning set to better demonstrate how the plugins learn the results. This more
constrained testbed yielded considerably better results.

For the jpRegExp we used a regular expression of [1− 4A− Za− z]{5}[−][1−
6]{5}[−][a−k][A−P ]{8}[−][1−9A−Za−z]{8} as the valid format (example valid in-
puts are: 1QrHk-56566-bPFI1ENNL-TLKir5Qk and h2bwM-61632-fELCGFJEM-
631237Va). This is a simpler regular expression then an email or conditional isbn
number expression (matching both isbn10 and isbn13 formats), but still provides
adequate ground to demonstrate how the plugin’s efficiency evolves in proportion
to the number of positive examples. The input examples for jpRegExp are 30 char-
acters long and randomized on each character so we don’t really need a set of tens
of thousands of positive examples to learn them.

During the experiment the jpRange target range was also reduced to a smaller
magnitude. The experiment sets a random range between 100 and 5,000. The
jpLength target was randomly selected with an upper limit of 400, causing the
experiment to terminate around 400-500 positive examples with a 100% ratio.

We provide 100 valid inputs for each plugin at the start of the test. We then
take 50 positive and 50 negative for each plugin and observe how the rules classify
the results and record the incorrect/missed classification counts. We are able to
ensure that the the training examples are positive and negative since we select them
according to our predefined criteria. We perform this over ten iterations. In each
iteration we increase the positive examples by 100 and regenerate the validation
rules. These rules are then run against 50 more positive and 50 more negative
examples. After the tenth iteration we are priming the experiment with 1,000
positive examples and testing against 500 positive and 500 negative examples.
This is a very controlled experiment but it is useful to demonstrate how the ratios
converge in proportion to the number of training examples. The results of the
experiment can be seen in Figure 18. It can be seen in the figure that with proper
and controlled positive inputs the plugins can provide near 100% ratios as well. In
the next section we will demonstrate a real-life example where these results can be
put into practice.



578 Miklós Kálmán

Analyzed Total Miss Success

Plugin Examples Count Ratio

jpLength 100 17 83.00 %
jpLength 200 7 96.50 %
jpLength 300 2 99.33 %
jpLength 400 0 100.00 %
jpRange 100 72 28.00 %
jpRange 200 85 57.50 %
jpRange 300 97 67.67 %
jpRange 400 81 79.75 %
jpRange 500 63 87.40 %
jpRange 600 59 90.17 %
jpRange 700 45 93.57 %
jpRange 800 34 95.75 %
jpRange 900 28 96.88 %
jpRange 1,000 11 98.90 %
jpRegExp 100 98 2.00 %
jpRegExp 200 186 7.00 %
jpRegExp 300 198 34.00 %
jpRegExp 400 146 63.50 %
jpRegExp 500 90 82.00 %
jpRegExp 600 48 92.00 %
jpRegExp 700 22 96.85 %
jpRegExp 800 12 98.50 %
jpRegExp 900 6 99.33 %
jpRegExp 1,000 2 99.80 %

Figure 18: Plugin Efficiency with gradual positive training examples

4.3 A Real-world example: Dentistry Treatment Enquiry

Form

To evaluate the engine further we have hooked up the jSRMLTool servlet to an
already functioning form to verify what the engine suggested for the validation
rules. This was a more exhaustive test than the previous outdoor activity survey.
In the earlier example we only demonstrated the engine use for the jpRelationship
plugin. During this test more plugins of the engine were verified as a whole. We
chose [20] which is a site targeted at capturing leads for international clients who
are enquiring about dental treatment in Hungary. The booking form contained
several fields providing an ideal fit to test some of the plugins. Using the site’s
form we were tested: jpFormat (Age, Country field), jpRange (Age field), jpRegExp
(Phone field), jpPredefinedName (Email field), jpLength (First name, Last name,
Phone, Treatment, How may we help fields), jpCopyContent(Confirm email). The
Treatment field was used in conjunction with the Age, Gender and Country fields
to perform a jpRelationship conditional learning. The Treatment field had multiple
non-conflicting rules generated using different plugins. The system found the range
of the length used for the input and also used it for the conditional learning.

Our experiment used the site’s historical data for lead submissions and ran
537 leads acquired form the site using Selenium[21] (scriptable automated tester
framework) to emulate the form posting. The results were impressive, since it was
able to provide effective validation rules for most fields. The Phone field had some
weak rule recommendations (e.g.: [0−4][1−5][0−9]+), however the ratios were not



Versatile Form Validation using jSRML 579

Field Validation Results Plugin

Age [35, 70] jpRange

Age integer jpFormat

Country 5 < length < 12 jpLength

First Name 4 < length < 7 jpLength

Last Name 4 < length < 10 jpLength

Email email jpPredefinedName

Confirm Email Email match jpCopyContent

Gender 4 < length < 6 jpLength

Phone string jpFormat

Phone 7 < length < 14 jpLength

Treatment 4 < length < 37 jpLength

Treatment conditional jpRelationship

How may we help? 5 < length < 184 jpLength

Figure 19: Plugin results for Dentistry Contact form

high enough due to entries with hyphens and extension numbers along with entries
starting with + for international exit codes. Since the target ratio was not breached
the plugin’s rule recommendation was ignored. The output of the validation rules
for each plugin can be seen in Figure 19.

The experiment yielded in providing validation rules based on the results vis-
ible in Figure 19. Most of the plugins yielded considerable adaptive results. If
we would run the forms with more training examples then the ranges and results
would improve as well. The experiment also showed that “55% of clients requesting
All-on-four dental as their treatment are Male, over the age of 50 and live in the
UK.” (which is identical to the statement: In 55% of the cases “Treatment” is “All-
on-four-dental” when the client is “Male” is from the “UK” has an age above “50”).
The learning results also showed that “61% of Abutment related requests come from
Female clients from Ireland who are under 60”. This provided a good demographic
analysis of the visitors and helped the site adjust their marketing strategies accord-
ingly. Even though data mining was not the focus of the experiment it did provide
a direction for future study for the jSRML engine. The experiment proved the via-
bility of such a solution in a real world scenario. The learning is not yet perfect, the
rule engine and concept of allowing easier rule definitions substantially outweigh
the performance and efficiency shortcomings (which can be tuned by introducing
better learning plugins into the system).

5 Related Work

There have been several advances and research done in the field of form valida-
tion. In this section we will mention a few along with how the approaches handle
validation. The first paper we would like to mention is [22]. This article proposes
the use of an XML based rule definition to show field validation. They create an
XML file based on the database model itself on both the Client- and Server-side
level. While it is a good approach it still lacks the flexibility of the user overriding
and defining custom conditions. In many cases structural and type validity is not



580 Miklós Kálmán

enough, context validity should also be considered. This means that even though a
field’s value is correct it might have dependencies on other fields which are not vis-
ible on a database schema level. The approach lacks the option to provide custom
hooks and does not provide provisions for data correction.

Another paper that we would like to mention is [23]. This article proposes that
the validation of forms should be part of the model design and handled on the
server-side. They leverage Spring MVC as part of their AC-MDSD (Architecture
Centric Model Driven Software Development). Although a good approach it re-
quires the form validation to be coded as part if the datamodel on the server that
will process the data. Our jSRMLTool’s server mode provides a more comprehen-
sive set of features and does not force the developer to predefine their dataset prior
to deploying the processing application.

The next approach we would like to mention is [24]. This proposes a rule based
field validation using JavaScript. The rules themselves are basic but support the
comparison and aggregation of multiple field values. The validator engine itself does
not have any hooks and does not allow the user to control what should happen if
the validation fails. Our approach offers a solution to both and provides a way to
dynamically correct the field data making it a very powerful tool.

The authors of [25] propose an automatic Server-side validation approach for
HTML forms. It collects the form elements and stores the validation elements in-
side a database and provides an interface for the administrators to go in and specify
how to validate the given fields. Currently they do not offer too complex validation
methods (since the approach is mainly focused on type and format oriented vali-
dation). It does not offer dependency or regular expression definitions for the field
values. It does bare some similarities to what we wish to achieve with the Servlet
mode of our engine. Our library not only offers the forms to be validated using a
centralized server, but also provide the definition of more complex validation rules.

The points discussed in [25] are aimed at server-side validation and are valid
for most web forms. The article does however suggest that people will disable
JavaScript which would render client-side validation useless. This is a long and
heated debate in the web community as most modern web pages utilize JavaScript
and flash excessively. Disabling JavaScript support will not only render the valida-
tion useless but also hinder the usability of the page itself.

We should also mention the approach presented in [26]. This paper introduces a
language called EEL (edit engine language) to provide a common way of describing
field validation rules. This language was applied in the telecommunications area
where several forms were being submitted. Although their approach was aimed at
non-HTML forms, and was written purely in C++ it does have a solid syntax and
could potentially be extended to be used in a modern web solution (after porting
it to JavaScript or a server-side language).

The ideas raised in [27] demonstrate a .NET approach to rule based form val-
idation. It also uses an in-line approach similar to jSRML. The rules can have
conditions and it supports regular expressions as well. The rules are not as read-
able as jSRML and do not provide support for context related rules. For the rule
definition it allows the reference of only one other field rather than providing a



Versatile Form Validation using jSRML 581

complete context based approach. It does provide a solid solution for .NET based
forms which we believe is worth investigating in the future. Our metalanguage is
not limited to one technology stack or implementing language so creating a .NET
library isn’t hard to envision and implement.

6 Summary and future work

In this article we introduced the jSRML metalanguage and engine. This is a major
extension to the SRML language specification to allow it to be used in the form
validation space. After showing the background technologies and demonstrating
how form validation works we provided the jSRMLTool engine. Our engine allows
both Client-side and Server-side validation modes using the jSRML language. The
extension allows non-obtrusive definition of form validation rules. The jSRMLTool
engine can also correct the form values making it extremely useful in situations when
the submission can contain errors that can be corrected based on rules. We also
showed ways to provide real-time validation. Our tool also helps in the generation
of jSRML rules using machine learning. The rules can change over time based on
the form inputs. We believe jSRML is a valuable asset in the ever-growing pursuit
for providing pristine and valid data acquired from web forms.

In the future we plan to simplify the rule definitions simplifying the syntax and
by providing more out of the box types (to avoid longer binary-op conditions). We
also plan to extend the servlet service to allow easier updating and creation of rules
for server-side validation alongside enhancing the learning module to provide more
powerful and efficient rules. We plan to investigate the option to generate test data
based on the rules defined in the form file to help test driven development as well
as exploring other languages aside from Java for the library implementation.

References

[1] Raggett, D., Hors, A. L. and Jacobs, I., 1998, “HTML 4.0 specification,” W3C,
http://www.w3.org/TR/REC-html40/

[2] Handley, M., 2006, Internet Denial-of-Service Considerations, IAB, RFC4732

[3] Boyd, S.W. and Keromytis, A.D., 2004, SQLrand: Preventing SQL injection at-
tacks. International Conference on Applied Cryptography and Network Security
(ACNS), LNCS, volume 2, 2004.

[4] Crockford, D., 2008, Javascript: The Good Parts. O’Reilly, 2008.

[5] Garret, J.J, 2005, Ajax: A New Approach to Web Applications,
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications

[6] Lindley, C., 2009, jQuery Cookbook., O’Reilly Media



582 Miklós Kálmán

[7] Havasi, F., 2002, XML Semantics Extension, Acta Cybernetica Vol 15 No. 2,
pages 509-528

[8] Hégaret, P., 2005, Document Object Model (DOM), W3C,
http://www.w3.org/DOM/

[9] Kálmán, M., and Havasi, F. et al, 2006, Compacting XML documents., Journal
of Information and Software Technology, Volume 48 Issue 2, February 2006, pages
90-106

[10] Bray, T., Paoli, J. and Sperberg-McQueen, C., 1998, Extensible markup lan-
guage, XML 1.0 W3C recommendation, http://www.w3.org/TR/REC-xml

[11] Kálmán, M., 2013, The complete XSD of jSRML
http://www.srml-language.com/jSRML/jSRML.xsd

[12] Hunter, J. and Crawford, W., 2001, Java Servlet Programming. O’Reilly, 2nd
edition edition, 2001.

[13] Clark, J. and DeRose, S., 1999, XML Path Language (XPath) Version 1.0.
http://www.w3.org/TR/xpath

[14] Lie, H.W. and Bos, B., 1999, Cascading Style Sheets, designing for the Web,
Addison Wesley

[15] Kálmán, M., 2013., The complete HTML source of the example
http://www.srml-language.com/jSRML/jSRML-example.txt

[16] Hastie, T., Tibshirani, R. and Friedman, J., 2001, The Elements of Statistical
Learning, Springer. ISBN 0–387–95284–5.

[17] Breiman, L., 2001., Random forests.,Machine Learning, 45:5–32, 2001.

[18] SurveyMonkey Online Surveys, 2013,
http://www.surveymonkey.com

[19] Fernau, H., 2009., Algorithms for learning regular expressions from positive
data,Inf. Comput., Volume 207, Number 4, pages 521–541, Academic Press,
Inc.,Duluth, MN, USA

[20] Beauty and Confidence, 2013, Dental Implant Abroad Booking page
http://www.dental-implantabroad.co.uk/ental-implant-overseas/

[21] SeleniumHQ, 2013, http://docs.seleniumhq.org/

[22] Liang, Z., 2009, A field-oriented approach to web form validation for Database-
Isolated Rule, Man and Cybernetics, SMC 2009. IEEE International Conference
on Systems, 11-14 Oct. 2009, pages 4607–4612



Versatile Form Validation using jSRML 583

[23] Escott, E., Strooper, P., et al, Model-Driven Web Form Validation with UML
and OCL, 2012, Lecture Notes in Computer Science Volume 7059, 2012, pages
223-235

[24] HansMartin, A., 2010, Form validation with Rule Bases
http://blog.mgm-tp.com/2010/10/test-data-generation-part1

[25] Saha, T.K. and Ambia, A., 2013, Code Generation Tools for Automated Server-
side HTML form Validation, International Journal of Computer Science and
Management Research, Volume 2, Issue 1, 2013, pages 1265–1271

[26] Blando, L., 1999., A Framework for a Rule-Based Form Validation Engine
http://wiki.lassy.uni.lu/Special:LassyBibDownload?id=324

[27] Giannoudis, J., 2012., Rule Based Validation for ASP.NET
http://www.codeproject.com/Articles/367214/Rule-Based-Validation-for-ASP-
NET

Received 23rd May 2013


