
Acta Cybernetica 21 (2014) 585–607.

Connection Between Version Control Operations

and Quality Change of the Source Code

Csaba Faragó∗, Péter Hegedűs†, Ádám Zoltán Végh∗,
and Rudolf Ferenc∗

Abstract

Software erosion is a well-known phenomena, meaning that software qual-
ity is continuously decreasing due to the ever-ongoing modifications in the
source code. In this research work we investigated this phenomena by study-
ing the impact of version control commit operations (add, update, delete) on
the quality of the code.

We calculated the ISO/IEC 9126 quality attributes for thousands of revi-
sions of an industrial and three open-source software systems with the help of
the Columbus Quality Model. We also collected the cardinality of each ver-
sion control operation type for every investigated revision. We performed Chi-
squared tests on contingency tables with rows of quality change and columns
of version control operation commit types. We compared the results with
random data as well.

We identified that the relationship between the version control operations
and quality change is quite strong. Great maintainability improvements are
mostly caused by commits containing Add operation. Commits containing
file updates only tend to have a negative impact on the quality. Deletions
have a weak connection with quality, and we could not formulate a general
statement.

Keywords: Software Maintainability, Software Erosion, Source Code Version
Control, ISO/IEC 9126, Case Study

1 Introduction

Software quality plays a crucial role in modern development projects. There is
an ever-increasing amount of software systems in maintenance phase, and it is a
well-known fact that software systems are eroding [15], meaning that in general
their quality is continuously decreasing due to the ever-ongoing modifications in its

∗University of Szeged Department of Software Engineering, Árpád tér 2. H-6720 Szeged,
Hungary, E-mail: {farago,azvegh,ferenc}@inf.u-szeged.hu

†MTA-SZTE Research Group on Artificial Intelligence, Szeged, Hungary, E-mail:
hpeter@inf.u-szeged.hu

DOI: 10.14232/actacyb.21.4.2014.4

586 Csaba Faragó et al.

source code, unless explicit efforts are spent on improvements [3]. Figure 1 shows
this phenomena.1

Figure 1: Maintainability values of the Gremon project

Our aim is to check the connection between the developers’ interactions and the
quality change. These interactions can be the following: version control operations,
development-time IDE interactions and interactions in the issue tracking system.
We are motivated to perform this research for several reasons. Determining typical
patters which have significant effect on maintainability could help us better allocate
software developer efforts. For example, a more strict code review is necessary for
those commits which have statistically higher impact on maintainability. On the
other hand, we expect that in longer term we will be able to find typical patters,
which are bad habits of developers, and eliminating these could have a positive
impact on maintainability. We especially expect such findings from the analysis of
IDE interactions.

For this first step, we checked the version control operations only; and within this
set of information we focused exclusively on the mere number of various operations,
i.e. how many files were added, updated and deleted within that commit. Other
commit-related information, like the certain files affected, the change itself, the
comment, the date or the author, are not considered in this research.

Figure 2 illustrates how this step fits into our longer-term research goals. The
general research field is to study how the developer interactions (illustrated with
trapezoids) affect various software characteristics (within the rectangle). We identi-
fied 3 data sources from which data about developer interactions can be extracted:
(1) the version control operations, (2) the IDE micro interactions, and (3) the data
found in issue tracking systems. The version control operations are preceded by
IDE micro interactions, i.e. the developer typically performs several IDE actions

1Gremon is one of the four software systems used in this research. See 4.1 for more details
about this project.

Version Control Operations and Quality Change of the Source Code 587

IDE Micro Interactions

Issue Tracking System

Software

QualityMaintainability

Other measures

Other
attributes

Version Control Operations

Number of Operations

Other Data

Figure 2: Overview

before committing changes. The most exiting area of research would be the IDE
interactions; however, hardly any available data exist, and these are incomplete in
most cases. Furthermore, it is not trivial to assign these interactions to concrete
commits, therefore we decided that in the first period we concentrate on version
control interactions only. Data found in the issue tracking system could be also
interesting in longer term, provided that they contain substantive data about the
reality. From the software attributes we selected software quality as worth for
investigation at first, and among its subcharacteristics, we decided to study main-
tainability. The figure provides an overview about the possible directions of future
investigations.

This and possibly other future results could help identifying the typical patterns
where code erosion occurs. These patterns could be very useful information for
proactive action planning: to find a better distribution of the efforts intended for
code quality improvements.

We were motivated by the question: does the way of introducing code changes
(reflected by version control operations of different commits) have a traceable im-
pact on software quality? Do all types of commit operations contribute to software
erosion, or are there exceptions?

For the definition of software quality we refer to the ISO/IEC 9126 standard [8],
which defines six high-level characteristics that determine the product quality of
software: functionality, reliability, usability, efficiency, portability, and maintain-

588 Csaba Faragó et al.

ability. Due to its direct impact on development costs [3], and being in close relation
with the source code, maintainability is one of the most important quality charac-
teristics.

The types of the version control operations and the maintainability of the code
are at first glance remote concepts, more or less independent from each other.
Furthermore, as no finer grained information is considered at this point (e.g. what
was changed in the file, who made the change, or even on which file the change
was performed), the distance between the maintainability change and the commit
operations is even higher. Therefore, it is a non-trivial question if there is any
connection between the two datasets at all.

Supposed that there is a connection between version control operations and
maintainability changes in case of each examined projects, we are interested in
finding out which are the common patterns, i.e. those connections which are sig-
nificant for every examined project. These can be formed as general statements.

By performing experiments we tried to find evidences which support or reject
some of our more concrete assumptions based on Figure 1. The beginning of the
time line is very hectic. This is the start of the project with many additions of new
parts. The maintainability becomes smoother later on, and the long-term tendency
is negative. This is the phase when modifications on the existing sources are per-
formed, and less new sources are added. Furthermore, based on our experiences,
developers tend to pay bigger attention on the quality when adding new code than
updating it later due to e.g. bug fixing, and this is especially true for the code
originally developed by someone else. It is a hard task in itself to understand the
code, reproduce the error, debug and find the solution, therefore developers under
time pressure are glad if they find a solution; finding a nice solution is often not
reached.

Based on the above explained expectations we formulated the following research
questions:

• RQ1: Do commits containing file additions to the system have a significant
positive impact on its maintainability? Our assumption is that they have, as
they introduce new, clean, reasoned code.

• RQ2: Is it true that the commits containing source file updates only tend to
significantly decrease the maintainability? Our assumption is that it is, as the
ongoing development activity – without planned improvements in quality –
tends to decrease maintainability, and having only file updates is a sign of
this phase of the software development.

• RQ3: Do commits containing file deletion improve the maintainability of the
system? Our assumption is that they do, as file deletions could be a sign of
refactoring; therefore, better maintainability is expected if there is such an
operation present in the commit.

The paper is organized as follows. Section 2 introduces works that are related
to ours. Then, in Section 3 we present the methodology used to test the under-
lying relationship between version control operations and maintainability changes.

Version Control Operations and Quality Change of the Source Code 589

Section 4 discusses the results of the performed statistical tests and summarizes
our findings. In Section 5 we list the possible threats to the validity of the results,
while Section 6 concludes the paper.

2 Related Work

The version control system and other types of development related repositories
(e.g. bug tracking system) provide a rich source for data mining approaches. These
approaches can be used for collecting different kinds of process metrics, identify
bug introducing or bug fixing changes, create bug prediction models, etc. In the
presented paper we focus on finding traceable evidences of the relationship between
the changes in software maintainability and the different types of version control
operations in developer commits; but first, we collect the works dealing with similar
researches to ours.

There are works which focus on the effect of software processes to the product
quality [10]. Hindle et al. [7] deal with understanding the rationale behind large
commits. They contrast large commits against small commits and show that large
commits are more perfective, while small commits are more corrective. Bachmann
and Bernstein [4] explore among others if the process quality, as measured by the
process data, has an influence on the product quality. They showed that the product
quality – measured by number of bugs reported – is affected by process data quality
measures.

There are also others who utilize process metrics to detect failure-prone compo-
nents of the software [9, 12]. Nagappan et al. show that applying different process
metrics significantly improves the accuracy of the fault-prone class prediction [14].
They also present an empirical case study [13] of two large-scale commercial oper-
ating systems, Windows XP and Windows Server 2003, where they leverage various
historical in-process and product metrics to create statistical predictors to estimate
the post-release failures. We think that the number of defects revealed in the code is
only one aspect of maintainability. Moreover, our aim is not to predict fault-prone
parts of the source code, but to get a general picture about the effect of the way
changes are introduced (i.e. version control operations in the commit) to software
maintainability.

Lots of works build models for predicting refactorings based on version control
history analysis [18,19]. Moser et al. [11] developed an algorithm for distinguishing
commits resulted by refactorings from those of other types of changes. Peters and
Zaidman [16] investigate the lifespan of code smells and the refactoring behavior
of developers by mining the software repository of seven open-source systems. The
results of their study indicate that engineers are aware of code smells, but are not
very concerned by their impact, given the low refactoring activity.

There are also papers that try to reveal the change-proneness of different source
code elements [20, 23] based on version control history. Giger et al. [5] explore
prediction models for whether a source file will be affected by a certain type of
source code change. For that, they use change data of the Eclipse platform and the

590 Csaba Faragó et al.

Azureus 3 project. Ying et al. [21] have developed an approach that applies data
mining techniques to determine change patterns – sets of files that were changed
together frequently in the past – from the change history of the code base. Our focus
is not on introducing a new sophisticated repository mining technique and applying
it for some kind of prediction. We use the number and types of different version
control operations and examine the effect they have on software maintainability.

In this research we analyzed Java source code, as the used quality model handles
that programming language. A quality model for C# was presented by Hegedűs [6].

3 Methodology

This section summarizes the types of collected data during the experiment and
describes the methodology of analyzing them. Particularly, we describe what we
exactly mean under version control operations and maintainability change, and the
methodology used to analyze the data.

3.1 Version Control Operations

In this work we investigated the number of various version control operations of the
examined commits. Only the mere numbers of various operations were considered,
e.g. 2 files were added, 5 files were updated and 1 file was deleted within the
examined commit. We omitted every other version control-related data, e.g. the
date, the names of the affected files, the author of the file, or the comment of the
files. These data will be used for finer-grained analysis in the future.

We analyzed only Java source files, so we skipped all other types of file system
entries like directories or non-Java files (e.g. xml files). We did this because the
current version of the used quality model considers only the Java source files. Be-
sides Add, Update, and Delete, there is a fourth version control operation: Rename.
As there were hardly any Rename operations in the examined data (it occurred
only in one of the analyzed projects with very low cardinality) this operation was
not considered. Therefore, the input data collected from the version control system
was an integer triple for each commit containing at least one Java source file:

• A - the total number of file additions,

• U - the total number of file updates,

• D - the total number of file deletions.

3.2 The Applied Quality Model

To calculate the absolute maintainability values for every revision of the systems
we used ColumbusQM, our probabilistic software quality model [2] that is based
on the quality characteristics defined by the ISO/IEC 9126 [8] standard. The
computation of the high-level quality characteristics is based on a directed acyclic

Version Control Operations and Quality Change of the Source Code 591

graph (see Figure 3) whose nodes correspond to quality properties that can either be
internal (low-level) or external (high-level). Internal quality properties characterize
the software product from an internal (developer) view and are usually estimated
by using source code metrics. External quality properties characterize the software
product from an external (end user) view and are usually aggregated somehow
by using internal and other external quality properties. The nodes representing
internal quality properties are called sensor nodes as they measure internal quality
directly (white nodes in Figure 3). The other nodes are called aggregate nodes
as they acquire their measures through aggregation. In addition to the aggregate
nodes defined by the standard (dark gray nodes) we also introduced new ones (light
gray nodes).

Figure 3: ColumbusQM – Java ADG

The current version of the model applies the following source code metrics:

• LLOC (Logical Lines Of Code) – the LLOC metric is the number of non-
comment and non-empty lines of code.

• NOA (Number Of Ancestors) – NOA is the number of classes that a given
class directly or indirectly inherits from.

• NLE (Nesting Level Else-if) – NLE for a method is the maximum of the
control structure depth. Only if, switch, for, foreach, while, and do. . . while
instructions are taken into account and in the if-else-if constructs only the
first if instruction is considered.

• CBO (Coupling Between Object classes) – a class is coupled to another if the
class uses any method or attribute of the other class or directly inherits from
it. CBO is the number of coupled classes.

592 Csaba Faragó et al.

• CC (Clone Coverage) – clone coverage is a real value between 0 and 1 that
expresses what amount of the item is covered by code duplication.

• NUMPAR (NUMber of PARameters) – the number of parameters of the meth-
ods.

• McCC (McCabe’s Cyclomatic Complexity) – the value of the metric is calcu-
lated as the number of the following instructions plus 1: if, for, foreach, while,
do-while, case label (which belongs to a switch instruction), catch, conditional
statement (?:).

• NII (Number of Incoming Invocations) – the number of other methods and
attribute initializations which directly call the method. If a method is invoked
several times from the same method or attribute initialization, it is counted
only once.

• NOI (Number of Outgoing Invocations) – the number of directly called meth-
ods. If a method is invoked several times, it is counted only once.

• WarningP1/P2/P3 (Serious/medium/minor coding rule violations) – the
number of serious/medium/minor PMD (http://pmd.sourceforge.net/)
rule violations in the class.

The edges of the graph represent dependencies between an internal and an ex-
ternal or two external properties. The aim is to evaluate all the external quality
properties by performing an aggregation along the edges of the graph, called At-
tribute Dependency Graph (ADG). We calculate a so called goodness value (from
the [0,1] interval) for each node in the ADG that expresses how good or bad (1 is the
best) is the system regarding that quality attribute. The probabilistic statistical
aggregation algorithm uses a so-called benchmark as the basis of the qualification,
which is a source code metric repository database with 100 open source and indus-
trial software systems. For further details about ColumbusQM, see our previous
work by Bakota et al. [2].

3.3 Contingency Table

The contingency table is a two-dimensional table with the maintainability changes
in the rows and version control operation categories in columns, and the cells con-
taining the total number of commits in the category causing that kind of maintain-
ability change.

The maintainability changes were partitioned into three sets:

• +: positive change,

• 0 : no traceable change,

• −: negative change.

Version Control Operations and Quality Change of the Source Code 593

The maintainability change is positive if the calculated value of the actual com-
mit is higher than the value of the previous commit, negative if it is lower and 0 if
the two values are the same.

The commits were divided into several disjoint categories based on the version
control operations they include. The categories were defined based on intuition
coming from the principal component analysis (PCA) of the industrial project’s
data set. We defined the following categories:

• D: commits containing at least one Delete operation,

• A: commits containing no Delete operation, containing at least one Add
operation,

• U+: commits containing Update operations only; the number of Update op-
erations is at least 2,

• U1: commits consisting of exactly one Update operation.

Please note that the union of these commits is the full set of examined com-
mits. Commits affecting no Java files do not have any effect on the calculated
maintainability, therefore they were omitted from the calculation.

3.4 Bar Plot Diagrams

In order to visualize the data found in the contingency tables we used proportional
bar plot diagrams (see e.g. Figure 5). Each commit category is represented by
a bar, which is divided into 3 parts: the proportion of positive, zero and nega-
tive maintainability changes within that category. For a better comparison the
proportions of the full commit set are also presented.

We can also get intuitions about the answers of the research questions based
on these diagrams. If there are spectacular differences among categories within a
project, and there are similarities in the diagrams among projects, then it suggests
that the connection between the version control operation types and the maintain-
ability is quite strong, and it even adumbrates the answers on some of the research
questions.

3.5 Contingency Chi-squared Test

To give well-grounded answers to our research questions we performed Chi-squared
tests [1] (similarly to the method presented by Ying and Robillard [22]) on the
contingency tables.

This test calculates the expected values based on the sum of rows and columns,
i.e. what were the values if there were no connection between version control
operations and maintainability. Then it determines if the differences between the
actual and the expected values are significant or not. The null-hypothesis is that
these values are the same, and the reason of the differences are random. The final

594 Csaba Faragó et al.

result of this test is practically the p-value, indicating the chance of the result being
at least as extreme as the observed, provided that the null-hypothesis is true.

The test was performed using the chisq.test() R function [17]. This function
calculates the standard residuals (stdres) as well for each cell, i.e. what would the
value be if the data were of standard normal distribution. E.g. if this value was
-2.0, then it would mean that the number of the observed elements was less than
the expected (see the negative sign), and the difference was as much likely to be
random as a standard normally distributed variable is at least as extreme as 2.0
(i.e. less than -2.0 or greater than 2.0).

Based on these standard residuals the p-value is calculated as follows. The R
function pnorm() calculates the distribution of the given values, i.e. the proportion
of elements less than or equal to the provided one. E.g., this value is 0.5 for 0.0,
0.023 for -2.0, 0.977 for 2.0 etc. Based on the definition of the p-value, the result
for value 0.0 would be 1.0, i.e. there is no deviation from the expected value at all.
To go on with the running example, for -2.0 we need to calculate the proportion
left to -2.0 and right to 2.0, and sum it. As mentioned, the first value is 0.023,
while the second one is also 1.0-0.977=0.023. Therefore the p-value is 0.046.

This process is illustrated on Figure 4. The size of both gray areas is 0.023.
The lower dashed line is at 0.023, while the upper one is at 0.977.

To summarize, we have the following formula for calculation:

2 · pnorm(−abs(x))

where x is the value of standard normal distribution. The cells containing small
p-values can be considered as significant results.

In order to provide a quick and easy overview of the results, one last step
was performed: the number of zeros between the decimal point and the first non-
zero digit of the p-value were calculated, with the appropriate sign, denoting the
direction of the deviation from the expected value (negative if it is less than the
expected, positive if it is greater). More formally, if the canonical form of the
p-value is (a · 10b), the transformed value is the absolute value of the exponent
minus one (i.e. |b| − 1), with the sign of the standard residual. E.g., in the above
example the p-value in canonical form is 4.6 ·10−2, and the sign of −2.0 is negative,
therefore the transformed value is −1. 0 means that the random probability is at
least 10%, 1 and -1 means that it is between 1% and 10% and so on. Formally, this
transformation was calculated by the following function:

f = ⌊log
1

p
⌋ · sign(stdres)

This test also gives a common p-value, i.e. not only cell based p-values. Having
a low enough such p-value (p < 0.01) would answer positively the base question if
there is a connection between version control operations and maintainability.

For answering the research questions formally, we take the last, transformed
table. In case of the cell-based approach we consider those values significant, where
the absolute values are at least 2 (p < 0.01) for all of the checked software systems.

Version Control Operations and Quality Change of the Source Code 595

−4 −3 −2 −1 0 1 2 3 4

0.
0

0.
1

0.
2

0.
3

0.
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4: Standard normal distribution

3.6 Random Checks

To validate the results, a random analysis was performed as well. This was done
in the following way:

• We kept the source control operation data as it was.

• We also kept the values of the quality changes, but we permuted randomly
the order of the revisions it was originally assigned to, just like a pack of
cards. The sample() R function was used to permute the order.

We performed randomization several times, permuting the already permuted
series. We executed the same analysis with the randomized data and checked
the appropriate random results as well to be able to assess the significance of our
results.

596 Csaba Faragó et al.

4 Results

4.1 Examined Software Systems

For the data analysis we used one industrial and three open-source software systems.
For the industrial one we had all the information from the very beginning. For
most of the open-source projects this is not the case; generally the initial source
was merged from another version control system.

In order to gain as adequate results as possible, we considered only those projects
for which we had at least 1,000 commits affecting at least one Java file. Further-
more, the too small code increase could also have significant bias, therefore we
considered only those systems where the ratio of the maximal logical lines of code
(typically the size of the system after the last available commit) and the minimal
one (which was typically the size of the initial commit) was at least 3. We ended
up with three such open-source systems.

Table 1 shows the basic properties of the systems on which the statistical anal-
ysis was performed. These are:

• Gremon – a greenhouse work-flow monitoring system.2 It was developed by
a local company between June 2011 and March 2012.

• Ant – a command line tool for building Java applications.3

• Struts 2 – a framework for creating enterprise-ready java web applications.4

• Tomcat – an implementation of the Java Servlet and Java Server Pages
technologies.5

Table 1: Analyzed systems
Name Min. Max. Total Java Total number of Rev. with 1+ Rev. with only

TLLOC6 Commits A U D A U D A U D

Gremon 23 55,282 1,653 1,158 1,071 4,034 230 304 1,101 89 42 829 8

Ant 2,887 106,413 6,118 6,102 1,062 20,000 204 488 5,878 55 196 5,585 19

Struts 2 39,871 152,081 2,132 1,452 1,273 4,734 308 219 1,386 94 41 1,201 12

Tomcat 13,387 46,606 1,330 1,292 797 3,807 485 104 1,236 77 32 1,141 23

The first commit of the open-source projects started with a great amount of
addition. In order to neutralize this bias we defined the quality change of the first
commit to be 0.0. In case of Gremon, all the commits were analyzed from the very
beginning to the very end.

2http://www.gremonsystems.com
3http://ant.apache.org
4http://struts.apache.org/2.x
5http://tomcat.apache.org
6Total Logical Lines Of Code – Number of non-comment and non-empty lines of code

Version Control Operations and Quality Change of the Source Code 597

4.2 The Input Contingency Tables

The contingency tables created for the examined projects can be found in Ta-
bles 2, 3, 4 and 5.

Table 2: Gremon

A D U+ U1
∑

+ 118 43 122 54 337

0 13 3 126 223 365

- 109 43 198 106 456
∑

240 89 446 383 1158

Table 3: Ant

A D U+ U1
∑

+ 277 18 472 715 1482

0 13 12 625 2401 3051

- 172 25 467 905 1569
∑

462 55 1564 4021 6102

Table 4: Struts 2

A D U+ U1
∑

+ 123 43 183 149 498

0 17 25 166 503 711

- 82 46 233 179 540
∑

222 114 582 831 1749

Table 5: Tomcat

A D U+ U1
∑

+ 39 31 91 108 269

0 8 14 159 523 704

- 27 32 100 160 319
∑

74 77 350 791 1292

There are a couple of notable facts about the tables. First of all, the distributions
of the positive, neutral and negative commits within each commit category are
different. Second, these distributions seem to be similar in every project. This is
promising, and worth the effort of the detailed analysis.

A graphical overview of the data is shown in Figure 5, where the proportions of
each commit category are illustrated on bar plot diagrams. The bars with differ-
ent colors indicate the proportions of the positive (light gray), neutral (gray) and
negative commits (dark gray) for each category, and the overall proportion is also
displayed. In order to see the differences between the random and the actual data,
the results of random executions for each project is also included (see Figure 6).

The following can be seen on these diagrams:

• The middle bars (gray) are smaller than expected in case of A, D and U+,
and higher in case of U1.

• The upper bar (light gray) is the tallest in case of A on every diagram.

• In case of U+ and U1 the lower bars (dark gray) are bigger than the upper
ones (light gray) in most of the cases.

The relevance of these results are very spectacular if we compare them to the
bar plots of the randomized data (see Figure 6). In case of randomized data, there
are no obvious differences in any category bar, compared to the bar of all commits
(or with the bar of any other category). Furthermore, even the viewable small
differences in the bars do not tend to be relevant: one difference on one diagram
mostly differs on the other ones.

598 Csaba Faragó et al.

All A D U+ U1

+
0
−

Gremon − Maintainability − proportions

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

All A D U+ U1

+
0
−

Ant − Maintainability − proportions

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

All A D U+ U1

+
0
−

Struts2 − Maintainability − proportions

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

All A D U+ U1

+
0
−

Tomcat − Maintainability − proportions

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 5: Maintainability proportions

4.3 Results of Contingency Chi-Squared Tests

Based on the bar plot diagrams (see Figure 5) we already have an assumption
about the answers to our research questions, but for a more grounded answer let
us check the results of the Chi-squared tests on the contingency tables. In case of
the Gremon project we present all the details. For the open-source systems only
the input and the final results are shown from which the main conclusions can be
drawn.

As already mentioned, Table 2 presents the original contingency table for the
Gremon project on which the test was performed on. For example, the meaning of
the upper left value (118) is the following: the total number of commits containing
no deletion, containing at least one addition (i.e. belongs to category A based on
the definition) and the maintainability change caused by that commit was positive.
The last row and the last column contains the sum of the values of the appropriate

Version Control Operations and Quality Change of the Source Code 599

All A D U+ U1

+
0
−

GremonRnd − Maintainability − proportions

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

All A D U+ U1

+
0
−

AntRnd − Maintainability − proportions

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

All A D U+ U1

+
0
−

Struts2Rnd − Maintainability − proportions

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

All A D U+ U1

+
0
−

TomcatRnd − Maintainability − proportions

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 6: Maintainability proportions in random cases

rows and columns, respectively. This is the consolidated input of the contingency
Chi-squared test.

Table 6 contains the calculated expected values. Practically, this is the null-
hypothesis: if the row and column sums would be the same as in the case of
measured data, then in case of uniform distribution these were the cell values. The
average values of random cases would tend to this matrix. The sums of rows and
columns are the same as in the previous table. The meaning of the upper left value
(69.8) is the following: if there was no connection between version control operations
and maintainability change, and the number of commits in each category would be
the same as in case of the input, furthermore, the total numbers of positive, neutral
and negative maintainability changes were also the same, then this value would be
an integer close to this number. In other words: the average value of this cell in the
random cases would tend to this value. In this case the value 69.8 is much smaller
than the value 118 found in the previous matrix (see Table 2).

600 Csaba Faragó et al.

Table 7 shows the standard residuals. This table illustrates if the previous
difference is significant or not using the well-known standard normal distribution.
The difference between the expected and the measured value is exactly as extreme
as the difference between 0 and the values found in this table assuming a standard
normal distribution. E.g., in the upper left case this is the chance of resulting
in 7.69. Based on this, we already have a feeling that this is a very extreme value;
the probability of resulting such value only by chance is very low.

Table 6: Gremon: expected values

A D U+ U1
∑

+ 69.8 25.9 129.8 111.5 337

0 75.6 28.1 140.6 120.7 365

- 94.5 35.0 175.6 150.8 456
∑

240 89 446 383 1158

Table 7: Gremon: standard residuals

A D U+ U1

+ 7.69 4.15 -1.04 -7.90

0 -9.78 -5.95 -1.89 13.75

- -2.15 1.80 2.77 -5.73

In Table 8 we present the p-values related to the standard normal distribution.
These values answer the question of how low the previously mentioned chances are.
Consider the upper left value again. The difference between the actual value (118)
and the expected value (69.8) is 48.2. The other value with the same difference from
the expected one is 21.6 (=69.8-48.2). The definition of the p-value is the following:
the chance of the value being at least as extreme as measured, provided that the
null-hypothesis is true. Therefore the meaning of the value in the upper left corner
(1.52 · 10−14) is the following: the chance that the measured value is at least 118
or at most 21.6. Taking into consideration that its reciprocal is about 6.58 · 1013

it means that in random case this would statistically happen once in about every
66 trillion cases (and about once in every 132 trillion cases if the direction also
matters).

Table 8: Gremon: p-values
A D U+ U1

+ 1.52 · 10−14 3.28 · 10−5 3.00 · 10−1 2.76 · 10−15

0 1.43 · 10−22 2.70 · 10−9 5.81 · 10−2 5.06 · 10−43

- 3.15 · 10−2 7.25 · 10−2 5.69 · 10−3 1.01 · 10−8

Table 9 contains the exponents calculated as described in Section 3.5. Theo-
retically, the previous tables contain everything we need: the standard residuals
provide the directions and the p-values table provide the absolute values; but the
tables containing the exponents are easier to read and comprehend.

Table 9 is composed of the exponents and the directions. Consider the upper
left value (13). The absolute value comes from the exponent (14) minus one (in
order to convert the absolutely not significant results (having p-value > 0.1) to 0
instead of 1). The sign means the direction: the positive in this case means that
the actual value is higher than the expected one. Also note that although this value
is high, it is still far from the highest.

Version Control Operations and Quality Change of the Source Code 601

Tables 10, 11 and 12 show the resulted exponents for the Ant, Struts 2 and
Tomcat projects, respectively.

Table 9: Gremon: exponents

A D U+ U1

+ 13 4 0 -14

0 -22 -8 -1 42

- -1 1 2 -7

Table 10: Ant: exponents

A D U+ U1

+ 76 1 9 -60

0 -98 -4 -19 98

- 8 3 4 -14

Table 11: Struts 2: exponents

A D U+ U1

+ 20 1 1 -19

0 -26 -4 -12 57

- 1 1 8 -15

Table 12: Tomcat: exponents

A D U+ U1

+ 11 4 2 -14

0 -14 -10 -4 25

- 1 3 1 -5

Table 13 summarizes the overall p-values of each contingency Chi-Squared test
(the previous p-values are calculated on a per cell basis).

Table 13: Overall p-values
Project p-value

Gremon 1.19 · 10−52

Ant 1.60 · 10−151

Struts 2 4.47 · 10−64

Tomcat 4.84 · 10−33

Based on these extremely low overall p-values in every case, we can state that
there is a strong connection between the version control operations and the main-
tainability changes.

For getting a better overview, the resulted exponents are summed up and pre-
sented in Table 14, indicating those cells where the results are significantly similar
for the systems. Dark cell means that the absolute value in every case was at least 2
(p < 0.01). The darkness indicates the degree of similarities in the significance. If
there are 2 or 3 significant results and 1 not significant, it is indicated with a lighter
color. 0 or 1 significant result is denoted by an even lighter cell fill. White is re-
served for significant contradictions, i.e. if a cell would contain -2 or less in one
case, and +2 or more in the other.

Table 14: Overview: sum of the exponents
A D U+ U1

+ 120 10 12 -107
0 -160 -26 -36 222
- 9 8 15 -41

602 Csaba Faragó et al.

Half of the cells are dark; these indicate those results which are significant for
every checked project. Please note that the table does not contain any white cells.

4.4 Random Check Result

We were also interested in the random case: does it also result in the same high
numbers as presented previously or not. Based on the definition of the exponent ta-
ble, theoretically, in random case the proportion of 0 should be 90%, the proportion
of absolute values 1 should be 9% (half of them negative and half of them posi-
tive), the proportion of absolute values 2 should be 0.9%, and so on. We received
approximately the same kind of distributions in practice. Table 15 illustrates the
results of one concrete execution with an overall p-value of 0.53. There are hardly
any non-null values in these executions.

Table 15: Random: exponents
A D U+ U1

+ 0 0 0 0
0 0 0 0 0
- 1 0 0 0

4.5 Answers to the Research Questions

The answers to the research questions are primarily based on Table 14.

RQ1: Do commits containing file additions to the system have a significant
positive impact on its maintainability?

The values in the first column are related to these commits. Value 120 and
the dark color cell in the upper left cell indicates that the positive impact on the
maintainability is very high for those commits which do not contain deletion but
contain at least one addition. This supports our assumption that adding new source
files to the system has a significant positive impact on its maintainability.

On the other hand, the lower left cell of the table is also positive (+9), but the
color is lighter. In 3 out of the 4 cases it contained a value close to 0, and one higher
value. If we check the input, we see that the absolute number of commits in the
positive cell is also higher than those in the negative cell in every case. Therefore
we can also say that the overall effect of the add operation is positive.

RQ2: Is it true that the commits containing source file updates only tend to
significantly decrease the maintainability?

The third and fourth columns are related to commits containing updates only.
All the colors of the cells found in the fourth column (commits containing exactly
one update) are dark and the values are negative both in the + and - cells. But
the value found in the + row is much lower than the value found in the - row,
and this is true for every input. We should also take into account that the main-
tainability tends to decrease, therefore if these values were equal, that would also

Version Control Operations and Quality Change of the Source Code 603

mean maintainability decrease as an overall result. Thus in case of commits con-
taining one update our assumption that the source file updates tend to decrease the
maintainability is supported with high significance.

The cell colors in the third column (commits containing exclusively at least
2 updates) are lighter. Both of the values found in the + and - rows are posi-
tive. However, the value found in the - cell is higher than the value in the + cell.
Therefore in case of more updates our assumption is also supported, but with lower
significance.

RQ3: Do commits containing file deletion improve the maintainability of the
system?

The second column is related to this research question. The values found in
these cells are small in absolute values compared to those found in other columns
and their colors are also not the darkest ones. The number in the + cell (10) is
higher than the number in the - cell (8). Based on this we cannot formulate a
general statement. Seemingly we could say that deletions have no positive effect
on the maintainability as 10 > 8. But that could be a false conclusion, because
in general the number of commits causing negative maintainability change is in
general higher than those causing positive change. Therefore 10 in the + cell does
not necessarily mean higher number of absolute values than 8 in the - cell. And if
we check the inputs, we see that just the opposite is true, i.e. the absolute number
in the - cells in columns D are less than or equal with the values in the + cells. If
we consider the input as well we find that there are more such commits of category
D which resulted in maintainability decrease than those of increase. Therefore the
third assumption that commits containing deletion improve the maintainability of
the system is not supported by the results.

4.6 Other Results

Considering Table 14 other results can also be read out, not covered by the original
research questions.

First of all, the highest absolute value is 222, in row 0, column U1. All the other
values in row 0 are negative. This means that no traceable maintainability changes
are primary related to small updates. This is a trivial statement, of course, and it
rather validates the used quality model than a real usable result of this research.

The second highest value in absolute is -160, also in row 0, but column A.
Therefore adding a new source code almost always has some traceable effect on the
maintainability.

Considering the negative (-) row alone, it would lead the false result that every
commit category have negative effect on the maintainability, except the small up-
dates. This is not true, because the value found in the positive (+) row should also
be considered in case of every category. On the other hand, these values tell us that
with the exception of small updates there are too many maintainability decreases.
Eliminating some of these decreases would result in a well maintainable code, even
without an explicit code quality increase campaign.

604 Csaba Faragó et al.

5 Threats to Validity

In some cases we achieved very convincing results; however, there are some facts
that may threat the validity of some of them.

In case of the open-source projects, the first unknown number of commits are
missing (most probably they were migrated from another version control system).
On the other hand, in the case of Gremon, all the commits were available from the
very beginning. This inconsistency may lead to false results in some cases; however,
it would be interesting to investigate the differences between the commits in the
beginning and commits in a later phase of the development. For that, a much
greater amount of data would be necessary.

There are a few diverging results: in most of these cases there are two or three
similar results, but the other system(s) do(es) not support that. In general it does
not contradict them either so it does not mean necessarily that the results are
invalid. This may be caused by several issues: the divergence may be caused by the
domain differences, technological differences, differences in development processes,
the different phases examined, or simply that there are maybe exceptions under
the general rule, and some of the examined systems fall into these exceptions. This
is by all means worth further investigations.

6 Conclusions and Future Work

In this work we studied the impact of version control commit operations on main-
tainability change. We found that commits containing Update operation only have
negative impact on maintainability, while great maintainability improvements are
mostly caused by those commits which contain Add operations as well. Commits
containing operation Delete have a weak connection with maintainability, and we
could not formulate a general statement. Operation Rename was not investigated
on its own due to the very small number of its occurrences and due to the fact that
this on its own does not have any measurable effect on the maintainability.

Another conclusion is that commits consisting of a single Update tend to have
no traceable impact on maintainability. On the other hand, other types of commits
tend to have significant impact on maintainability.

Based on these results it might make sense for developers to improve the way
they add new features and use the opportunity to also perform refactorings. The
new features should be implemented in new files, containing sound code (adding new
files typically improve maintainability), and the existing code should be refactored
to accept the new code in the proper way (refactorings typically introduce file
deletions and additions). Modifications are of course more expensive in this way,
but the extra investment returns in mid-term.

During the analysis we used only a subset of the available data. Extending
the analysis with other types of commit-related data, like the file name, the date
and time of the commit, the developer, or the comment belongs to our short-term
plans. As already mentioned among the threats to validity, we did not take into

Version Control Operations and Quality Change of the Source Code 605

consideration the domain and other attributes of the software. That could be an
important extension of this work for a mid-term future research. In longer term,
we plan to include non-version control related data into consideration as well. For
instance, useful information may be extracted from the issue tracking systems.
Finally, we have a great expectation from the results of those tests where the
developer interactions collected by the IDE are also considered.

Acknowledgments

This research was supported by the Hungarian national grant GOP-1.1.1-11-2011-
0006, and the European Union and the State of Hungary, co-financed by the Euro-
pean Social Fund in the framework of TÁMOP 4.2.4. A/2-11-1-2012-0001 „National
Excellence Program”.

References

[1] Agresti, Alan. An Introduction to Categorical Data Analysis. Wiley-
Interscience, 2 edition, March 2007.

[2] Bakota, T., Hegedűs, P., Körtvélyesi, P., Ferenc, R., and Gyimóthy, T. A
Probabilistic Software Quality Model. In Proceedings of the 27th IEEE Inter-
national Conference on Software Maintenance (ICSM 2011), pages 368–377,
Williamsburg, VA, USA, 2011. IEEE Computer Society.

[3] Bakota, Tibor, Hegedűs, Péter, Ladányi, Gergely, Körtvélyesi, Péter, Ferenc,
Rudolf, and Gyimóthy, Tibor. A Cost Model Based on Software Maintain-
ability. In Proceedings of the 28th IEEE International Conference on Software
Maintenance (ICSM 2012), pages 316–325, Riva del Garda, Italy, 2012. IEEE
Computer Society.

[4] Bernstein, A and Bachmann, A. When Process Data Quality Affects the Num-
ber of Bugs: Correlations in Software Engineering Datasets. In Proceedings of
the 7th IEEE Working Conference on Mining Software Repositories, MSR ’10,
pages 62–71, 2010.

[5] Giger, Emanuel, Pinzger, Martin, and Gall, Harald C. Can We Predict Types
of Code Changes? An Empirical Analysis. In Proceedings of the 9th IEEE
Working Conference on Mining Software Repositories (MSR), pages 217–226.
IEEE, 2012.

[6] Hegedűs, Péter. A Probabilistic Quality Model for C# – an Industrial Case
Study. Acta Cybernetica, 21(1):135–147, 2013.

[7] Hindle, Abram, German, Daniel M., and Holt, Ric. What Do Large Commits
Tell Us?: a Taxonomical Study of Large Commits. In Proceedings of the 2008

606 Csaba Faragó et al.

International Working Conference on Mining Software Repositories, MSR ’08,
pages 99–108, New York, NY, USA, 2008. ACM.

[8] ISO/IEC. ISO/IEC 9126. Software Engineering – Product quality 6.5.
ISO/IEC, 2001.

[9] Khoshgoftaar, Taghi M., Allen, Edward B., Halstead, Robert, Trio, Gary P.,
and Flass, Ronald M. Using Process History to Predict Software Quality.
Computer, 31(4):66–72, April 1998.

[10] Koch, S. and Neumann, C. Exploring the Effects of Process Characteristics on
Product Quality in Open Source Software Development. Journal of Database
Management, 19(2):31, 2008.

[11] Moser, Raimund, Pedrycz, Witold, Sillitti, Alberto, and Succi, Giancarlo. A
Model to Identify Refactoring Effort during Maintenance by Mining Source
Code Repositories. In Proceedings of the 9th International Conference on
Product-Focused Software Process Improvement, PROFES ’08, pages 360–370,
Berlin, Heidelberg, 2008. Springer-Verlag.

[12] Moser, Raimund, Pedrycz, Witold, and Succi, Giancarlo. A Comparative
Analysis of the Efficiency of Change Metrics and Static Code Attributes for
Defect Prediction. In Proceedings of the 30th International Conference on
Software Engineering (ICSE ’08), pages 181–190, New York, NY, USA, 2008.
ACM.

[13] Nagappan, Nachiappan, Ball, Thomas, and Murphy, Brendan. Using Historical
In-Process and Product Metrics for Early Estimation of Software Failures.
In Proceedings of the 17th International Symposium on Software Reliability
Engineering (ISSRE ’06), pages 62–74, Washington, DC, USA, 2006. IEEE
Computer Society.

[14] Nagappan, Nachiappan, Ball, Thomas, and Zeller, Andreas. Mining Metrics
to Predict Component Failures. In Proceedings of the 28th International Con-
ference on Software Engineering (ICSE ’06), pages 452–461, New York, NY,
USA, 2006. ACM.

[15] Parnas, David Lorge. Software Aging. In Proceedings of the 16th International
Conference on Software Engineering, ICSE ’94, pages 279–287, Los Alamitos,
CA, USA, 1994. IEEE Computer Society Press.

[16] Peters, Ralph and Zaidman, Andy. Evaluating the Lifespan of Code Smells
using Software Repository Mining. In Proceedings of the 2012 16th European
Conference on Software Maintenance and Reengineering, CSMR ’12, pages
411–416, Washington, DC, USA, 2012. IEEE Computer Society.

[17] R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2013.

Version Control Operations and Quality Change of the Source Code 607

[18] Ratzinger, Jacek, Sigmund, Thomas, Vorburger, Peter, and Gall, Harald. Min-
ing Software Evolution to Predict Refactoring. In Proceedings of the First In-
ternational Symposium on Empirical Software Engineering and Measurement,
ESEM ’07, pages 354–363, Washington, DC, USA, 2007. IEEE Computer So-
ciety.

[19] Schofield, Curtis, Tansey, Brendan, Xing, Zhenchang, and Stroulia, Eleni. Dig-
ging the Development Dust for Refactorings. In Proceedings of the 14th IEEE
International Conference on Program Comprehension, ICPC ’06, pages 23–34,
Washington, DC, USA, 2006. IEEE Computer Society.

[20] van Rysselberghe, F. and Demeyer, S. Mining Version Control Systems for
FACs (frequently Applied changes). In Proceedings of the International Work-
shop on Mining Repositories, Edinburgh, Scotland, UK, 2004.

[21] Ying, Annie T. T., Murphy, Gail C., Ng, Raymond, and Chu-Carroll, Mark C.
Predicting Source Code Changes by Mining Change History. IEEE Transac-
tions on Software Engineering, 30(9):574–586, September 2004.

[22] Ying, Annie T. T. and Robillard, Martin P. The Influence of the Task on
Programmer Behaviour. In Proceedings of the 2011 IEEE 19th International
Conference on Program Comprehension, ICPC ’11, pages 31–40, Washington,
DC, USA, 2011. IEEE Computer Society.

[23] Zimmermann, Thomas, Weissgerber, Peter, Diehl, Stephan, and Zeller, An-
dreas. Mining Version Histories to Guide Software Changes. IEEE Transac-
tions on Software Engineering, 31(6):429–445, June 2005.

Received 20th November 2013

