
Acta Cybernetica 21 (2014) 629–653.

Database Slicing on Relational Databases∗

Dávid Tengeri† and Ferenc Havasi‡

Abstract

Many software systems today use databases to permanently store their
data. Testing, bug finding and migration are complex problems in the case
of databases that contain many records. Here, our method can speed up
these processes if we can select a smaller piece of the database (called a
slice) that contains all of the records belonging to the slicing criterion. The
slicing criterion might be, for example, a record which gives rise to a bug in
the program. Database slicing seeks to select all the records belonging to a
specific slicing criterion. Here, we introduce the concept of database slicing
and describe the algorithms and data structures necessary for slicing a given
database. We define the Table-based and the Record-based slicing algorithms
and we empirically evaluate these methods in two scenarios by applying the
slicing to the database of a real-life application and to random generated
database content.

Keywords: database theory, program slicing, database slicing

1 Introduction

Program slicing is an interesting topic in software engineering. This concept was
first introduced by Weiser [12, 13, 14] and it has grown into a respectable area
of research. The technique can be used to select a small part of the program
by choosing the relevant statements from the source code. These statements are
interesting to the developer from some point of view called the slicing criterion.
For example, a variable may contain an incorrect value because of a bug in the
program. We can select those statements which are probably responsible for the
computation of the incorrect value stored in the variable and examine them in more
detail. This type of slicing is called backward slicing. With program slicing, we can
also determine which parts of the program must be retested after the modification

∗This study was supported by the European Union and co-financed by the European Regional
Development Fund within the project TÁMOP-4.2.1/B-09/1/KONV-2010-0005.

†PhD student, Software Engineering Department of the University of Szeged, Hungary, E-mail:
dtengeri@inf.u-szeged.hu

‡Assistant lecturer, Software Engineering Department of the University of Szeged, Hungary,
E-mail: havasi@inf.u-szeged.hu

DOI: 10.14232/actacyb.21.4.2014.6

630 Dávid Tengeri and Ferenc Havasi

of a statement in the program source code. This latter type of slicing is called
forward slicing.

The program slicing of database-driven applications introduces new problems.
The statements responsible for handling data in the database are often not present
in the output of a slicing procedure; however, attempts have been made to extend
program slicing with database support [1].

Our research question was how we could define slicing on relational databases,
and how useful it is in practice.

We defined database slicing, which means selecting a small piece of data from
the records or tables stored in the database, where each element of the slice is
related directly or indirectly to the slicing criterion and this small piece might be
an independent part of the database. The slicing criterion is the Starting Point

of Slicing and the result is a database slice. Database slicing may have other
applications. For instance, the slice can be used for migration between two or more
databases that have the same structure. Slicing can also improve the process of bug
finding and testing by selecting those records which probably give rise to a bug, so
the developers can then focus on the more relevant parts of the database. Database
slicing can also be useful when we wish to understand the structure of the database
or to discover connections between the data stored in separate tables. It can be
especially useful when a relevant change is necessary in the structure of database
(e.g. change the value of the key column) because slicing can help to determine the
impact of this change.

Here, we make the following contributions:

• We define the concept of database slicing and the two different type of slicing
algorithms concerning relational databases.

• We test the new algorithms in two different scenarios. The first one was a
reproducible environment based on the Drupal CMS and the second one was
a real-life application developed at out department and used by more than 40
hospitals daily. We measured the memory consumption and execution time
of the algorithms in addition to the selection capability.

This paper is organized as follows. Section 2 contains the required background
knowledge needed to understand the concepts introduced later like the basic def-
initions of database theory and program slicing. In Section 3, we present our
definitions of database slicing. In Section 4 we provide a detailed description of
slicing algorithms, then to compute a database slice, it is necessary to know the
dependencies among the tables. Section 5 we present results of our implementation
tested on popular PHP-based content management systems, and a real-life appli-
cation. After giving an outline of some related articles in Section 6, we round off
with a brief summary and suggest some possible future directions of study.

Database Slicing on Relational Databases 631

2 Background knowledge

Here, we provide the background knowledge needed to understand the theory of
database slicing.

2.1 Database

A lot of today’s software uses databases to store their data. In most cases, these
databases are relational databases. The general basis of a relational database is the
one defined by E.F. Codd in 1970 [4, 5].

We will now describe the data in the relational model via relations. These
relations store their data in tables that have columns and rows. Moreover, the
model contains relational operators that can be used to handle the data stored in
the tables. The following definitions are needed for the relational model ([5]):

Domain: The set of data values of similar types. Let D1, D2, . . . , Dn ((n > 0))
be domains. Then the D1 ×D2 × . . .×Dn set contains all possible n-tuples
{t1, t2, . . . , tn}, where ti ∈ Di for all i.

Attribute: Instead of indices (1, 2, . . . , n) used in the previous definition, we can
use an unordered set where we store not just the domain, but also the unique
identifier of each ti ∈ Di element. Hence the elements of {t1, t2, . . . , tn} will
be (A : v) pairs, where A is the attribute of the element and v is a value taken
from the domain of A.

Relation: This is a subset of D1 × D2 × . . . × Dn, where its elements have the
same attributes. Each relation has a tabular representation with the following
properties:

1. It does not contain duplicate rows (records).

2. The row order is irrelevant.

3. The attribute (column) order is irrelevant.

4. Each element of the table is atomic; that is, the database management
system (DBMS) can store its value directly.

Let R(A : a,B : b, C : c, . . .) be the relation, where A is an attribute whose
domain is a, B is an attribute whose domain is b, etc. Here we can ignore
the domains for the sake of clarity - hence we will just use R(A,B,C, . . .). A
relation is a base relation if its elements cannot be derived from any other
base relation. The base relations will be the data tables in the DBMS.

Relational schema: The description of the database elements via relations.

Key: Let U be a set of relation attributes. The U − component of t ∈ R is the set
of (A : v) pairs obtained by deleting those pairs from t whose attribute is not
in U .

632 Dávid Tengeri and Ferenc Havasi

There is a set of candidate keys for each relation. Let K be a candidate key
of relation R if K is a subset of the attributes of R. Moreover, we will assume
that

1. There are no two rows in R with the same K − component.

2. If any of the attributes have been deleted from K, then the above state-
ment (the uniqueness property) will not hold.

Primary key: For each relation, one of the candidate keys is selected as a primary
key.

Foreign key: Links between tables are not represented by pointers but data val-
ues. The association is a reference to the value of the key.

In [4], a foreign key is an attribute or a set of attributes of R which is not
the primary key of R, but contains the value of the primary key of another
relation S.

Example 1. Let us take a simple example which contains three tables taken from
a website. The users table stores the users of our site. The node table contains the
content sent by the users and the comments table stores the comments written to
the nodes by the users. The relational schema of the database is:

• users(uid, name, pass, mail)

• node(nid, uid, title, body, created)

• comments(cid, nid, uid, comment, timestamp)

The underlined attributes are the primary keys and attributes in Italics are foreign
keys. For example, node.uid and comment.uid reference the value of users.uid .

Example 2. The above-mentioned database in tabular form containing some sam-
ple data:

Table 1: Users of the sample website.

users
uid name pass mail
1 admin 452ce338 admin@localhost
2 shatho ec80ac93 shatho@localhost
3 sleshec 02f27fcf sleshec@localhost

Database Slicing on Relational Databases 633

Table 2: Content sent by users.

node
nid uid title body created
1 2 Zelus Esca Valde roto vicis metuo cau... 2010-01-21
2 3 Hendrerit Capto oppeto letalis incass... 2010-02-14
3 1 Humo Cam... Huic neque tincidunt... 2010-02-17
4 3 Praemitt... Jumentum nobis si loqu... 2010-03-01
5 2 Si Natu D... Hos luctus quadrum. M... 2010-03-23

Table 3: Comments of the users.

comments
cid nid uid comment timestamp
1 1 2 Tego aliquip exerci nimis nunc torq... 2010-02-01
2 1 2 Luctus nisl populus gilvus consequa... 2010-02-02
3 2 1 Inhibeo abbas imputo patria quae. N... 2010-02-14
4 3 3 Jus ibidem roto pertineo lobortis i... 2010-02-21
5 2 3 Qui roto incassum refoveo uxor sing... 2010-03-01
6 2 1 Exputo mauris pertineo vulpes typic... 2010-03-02
7 5 2 Gemino tamen zelus bene quae jus ca... 2010-03-24
8 4 1 Appellatio esca defui abigo suscipi... 2010-03-25

2.2 Program slicing

Finding and fixing bugs in large and complex software systems is not a trivial task.
It is often not easy to determine which parts of the program are affected by a bug.

A program slice, introduced by Weiser [12, 13, 14], contains the relevant parts
of the source code that are important from a slicing point of view. This view is a
statement of the program and this point will be called the slicing criterion. The
process of determining the program slice is called program slicing.

Program slice: The program slice S may be obtained from the program P by
dropping statements, so S reproduces a part of the functionality of P .
Hence, the slice is a subset of statements of a program P . The elements of
this set participate directly or indirectly in computing the value at the slicing
criterion.

Slicing criterion: This is the starting point of slicing. The outcome of program
slicing will contain those statements which participate in the computation of
the value at the slicing criterion. In general, it has the form (line in source

634 Dávid Tengeri and Ferenc Havasi

code,set of variables) or (input values, line in source code,set of variables).
The actual form depends on the type of slicing performed.

There are two types of program slicing, namely static slicing and dynamic slic-
ing. Both slicing methods have two directions - forward and backward slicing -,
but they have different purposes in each case.

Static slicing: In static slicing, the only input is the source code of the program so
we do not have any dynamic information such as the input data of the program
or user events. Weiser generates sets of statements in his algorithm. But
Ottensetin and Ottenstein outlined another approach in [10]. They defined
the program dependence graph (PDG) and the computation of a program
slice is turned into an accessibility problem.

PDG: This is a directed graph where its vertices are the statements of the
program and the edges represent the data and control dependencies be-
tween the statements. The slicing criteria is a vertex of the graph and
the results of slicing contain the vertices that are accessible via the slicing
criterion.

There are two directions of static slicing. The difference between them is the
direction of graph traversal.

Backward slicing: With backward slicing, we start traversing the graph
in a backward direction from the starting point. This slicing method
looks for those statements which take part in computing the value of the
slicing criterion. The results of slicing can later be used to find bugs in
a program.

Forward slicing: The results of a forward slicing will contain those state-
ments that depend on the value of the slicing criterion. This is useful if
we wish to determine which parts of the program will be affected by our
modification, so we know from the results which parts of the modified
program ought to be retested.

Example 3. Static slicing. This example was taken from [6]. It shows a
typical static backward slicing of a program. The slicing criterion was the
pair (10,product).

Dynamic slicing: The second type of slicing is dynamic slicing, which works with
a specific execution of the program, so it depends on the particular input
values and user events. Based on this data we can describe an execution
history of the program. A single program statement may appear many times
in the execution history and in the slice if it is in a loop or in the body of
a function that is called several times. This leads to a more precise solution
than that for static slicing, so the results of slicing here contain only those
dependencies which take part in the computation of the value of the variable
given in the slicing criterion.

Database Slicing on Relational Databases 635

Original program Result of slicing

(1) read(n); read(n);
(2) i := 1; i := 1;
(3) sum := 0;
(4) product := 1; product := 1;
(5) while i <= n do while i <= n do

begin begin
(6) sum := sum + i;
(7) product := product * i; product := product * i;
(8) i := i + 1; i := i + 1;

end; end;
(9) write(sum);
(10) write(product); write(product);

Figure 1: The program dependence graph of the program given in Example 3. The
grey vertices are included in the results of the slicing.

Slicing criterion: The slicing criterion now contains an input of the pro-
gram, so it has the form (x, Iq , V), where x is the input, I in Iq is the
line number in the source code, q in Iq is the number of statement in
the execution history of the program, and V is a subset of variables.

Backward slicing: With Backward slicing the dynamic case is different
from the static case. The direction in the dynamic case will mean the
way of computing the slice, not the direction from the statement loca-
tion. First, we execute and record the execution history. Then we look
for the slicing criteria in the history and start the slice backwards from
that point. This can produce more precise information for debugging
purposes.

Forward slicing: The result can be computed at the time of execution, so
this method can save computer resources, as we don’t have to store
the execution history of the program and start the slicing just after the

636 Dávid Tengeri and Ferenc Havasi

running of the program.

DDG: The Dynamic Dependency Graph is defined by Agrawal and Horgen
in [7]. This graph contains a node for each statement occurrence in the
execution history. The slice will contain the reachable nodes from the
starting point.

Example 4. An example of dynamic slicing is taken from [6]. Here, the
slicing criterion is (n = 2, 914,z).

11 read(n)
(1) read(n); 22 i := 1 read(n);
(2) i := 1; 33 i <= n i := 1;
(3) while i <= n do 44 (i mod 2 = 0) while i <= n do

begin 65 x := 18 begin
(4) if (i mod 2 = 0) 76 z := x if (i mod 2 = 0)
(5) x := 17; 87 i := i + 1 x := 17;

else 38 i <= n else
(6) x := 18; 49 (i mod 2 = 0) ;
(7) z := x; 510 x := 17 z := x;
(8) i := i + 1; 711 z := x i := i + 1;

end; 812 i := i + 1 end;
(9) write(z); 313 i <= n write(z);

914 write(z)
Example program Execution history Result of slicing

for input n = 2

Figure 2: DDG of the program presented in Example 4

Static and dynamic slicing can be combined to compute more relevant slices. For
example, in [17] the authors combined static and dynamic information to compute

Database Slicing on Relational Databases 637

relevant slices. Relevant slices can be used for regression testing. A relevant slice
with respect to a variable occurrence includes all statements that may affect the
value of the variable. The relevant slices can be used to determine the test cases
in a test suite where the modified program may differ from the original one. The
authors in [17] first compute the dynamic slice of the program, then they generate
an extended program dependence graph. They add two new dependences between
statements of the program called conditional dependence and potential dependence.
The relevant slice can be computed by combining information obtained from the
extended PDG and the dynamic slice of the program. Their algorithm can be used
in a variety of real-life applications.

3 Database slicing

Working with large databases and looking for bugs arising from data stored in a
large system or moving data from one database to another raises several issues that
need to be addressed:

• Which parts of the database do we need to reproduce a bug?

• Which is the smallest, but still coherent piece of the database that contains
the relevant data to reproduce a bug? How should we select this part?

• How can we move just a small piece of the data from one database to another
if we want to be sure that each relation of the transported data will exist
in the target database at the end of the process? How should we select the
relevant records from the database?

Consider the following example based on the database defined in Example 1. When
the comments are listed on a page the user name of the second comment has
disappeared. If a developer wants to reproduce this bug, she or he has to access
the complete database. Perhaps the developer has to copy the database to a local
computer. It takes a lot of time if the database contains a lot of data and the
developer does not need everything from the database to reproduce the bug. The
developer needs just one specific comment and all related content.

Database slicing can help the user to address and handle these issues. Here, we
define the key concepts of database slicing.

Database slice: A subset of a database. The slice will contain those database
records that have a direct or indirect relation with a given point, which will be
taken as the starting point of slicing. A slice may contain dangling references
or it may be an independent part of the database.

Database slicing: This is the process of slicing a database. The idea behind
database slicing was naturally inspired by program slicing. We incorporated
the notion of program slicing into the database context.

638 Dávid Tengeri and Ferenc Havasi

Starting point of slicing (SPS): We begin the slicing from this point. The re-
sults will include information about those database records or tables that
have a direct or indirect connection with this point. Inter-table relations are
based on foreign keys in relational databases.

3.1 Types of database slicing

In analogy with program slicing, we will define several kinds of slicing and the
directions for database slicing. The first two types depend on the basic elements of
the slicing.

Table-based slicing: Table-based slicing works with the tables of a database. It
is only aware of the database structure and does not know anything about the
data stored in the tables. SPS will be a set of database tables in this case and
the results will contain those tables whose records have a direct or indirect
relation with each other. Table-based slicing uses only the database schema
(structures of the tables and its connections) and it does not depend on the
actual content of them. Hence we can say it uses only static information, as
is the case with static slicing.

Record-based slicing: Record-based slicing works with records instead of tables.
It is also aware of the stored data as well as the structure of the database,
so its results can be more precise. Here, the SPS is now a set of records.
The results will contain those records (taken from separate tables) which are
referred to directly or indirectly via foreign keys. With this type of slicing we
can select a smaller piece of data from the database. The record-based slicing
generates ”dynamic” information (the actual content of the database) to be
used, just as it does in dynamic program slicing, to produce a more precise
result.

In analogy with program slicing, we can define several directions of slicing.
These directions differ in the way we take into account the inter-table relations:

Forward slicing (FS): This slice only contains those tables or records which are
connected directly or indirectly by foreign keys. The slice starts from the
SPS. This direction tells us the name of each table or records that must be
exported if we would like to have a coherent set of data related to the starting
point.

Backward slicing (BS): Backward slicing can be used for an analysis to find the
potential consequences of a change. A backward slice contains those tables
or records which are influenced by a modification made at the starting point.
This information can be used to check whether this modification harms the
data consistency of the database or not. For example, if we change the date
of a comment before the node submission date. Afterwards the data becomes
inconsistent. The backward slicing can show us the list of tables or records
that are influenced by this change at the comment, so we can modify them too

Database Slicing on Relational Databases 639

if necessary. Another good example is when we have to change the primary
key of a record and we need to know all the places in the database where the
value of the old key is used as a foreign key.

Backward+Forward slicing (B+FS): A B+FS slice is the union of a forward
and a backward slice started from the same SPS. This type of slice computes
the scope of the SPS.

Backward and Backward+Forward slicing may contain dangling references. To
produce an independent piece of the database for these types of slicing too, a
forward slicing must be executed starting from every element in the result set.

Example 5. Table-based database slicing example.
Let us use the database example in Example 2. A database slice in the case of
SPS = node is:

• FS: {node, users}, because the uid column of node table is a foreign key for
the uid column of the users table.

• BS: {node, comment}. nid of comments references the table node, so it has
to be added to the result set.

• B+FS: {node, users, comments}. The unioin of the FS and BS slice.

Figure 3 shows the results of these slicings.

Example 6. Row-based database slicing example.
Let us apply the database example given in Example 2.
Row-based database slice in the case of SPS = node table 1st row:

• FS: {1st row of node, 2nd row of users}

• BS: {1st row of node, 1st and 2nd rows of comments}

• B+FS: {1st row of node, 2nd row of users, 1st and 2nd rows of comments}

Figure 4 shows the results of these slicings.

4 Computing a database slice

We will now define a key component of database slicing, namely the Table Depen-
dence Graph. The slicing algorithms will use this graph as input. The graph can
represent the structure of a database, including the relations between its elements.

640 Dávid Tengeri and Ferenc Havasi

Figure 3: The FS and BS table-based slicing of the database given in Example 5.
The result of FS is represented by the solid line and the one with a dashed line
represents the result of the BS. The B+FS contains both results.

Figure 4: The FS and BS record-based slicing of the database given in Example
6. The solid line represents the results of FS and the dashed lines represent the
results of BS. B+FS is the union of these result sets.

4.1 Table-based slicing - Table Dependence Graph

The key part of a slice is the table dependence graph (TDG). As we mentioned
earlier in the definition of table-based slicing, the results contain the data tables.
Hence, the graph will also contain these tables.

Let T be the set of tables and let Cti be the set of the columns in table ti for

Database Slicing on Relational Databases 641

every ti ∈ T .

TDG: TDG = (V,E), where

• V = T , the set of vertices, the tables in the database.

• E, the set of edges:

– E ⊆ T × T . Let t1, t2 ∈ T . The (t1, t2) is an edge in E if there is a
c ∈ Ct1 which is a foreign key to one of the rows in t2.

– Let the label of this (t1, t2) edge be ”t1.c1 : t2.c2”, where c1 ∈ Ct1

and c2 ∈ Ct2 , and c1 is a foreign key to c2. We call t1 the referrer

table, t2 the referred table, c1 the referrer column and c2 the referred
column.

Figure 5: Instance of a table dependence graph based on the database described in
Example 2. The vertices of the graph represent the tables.

4.2 Table-based slicing - computing slices

In essence, the slicing algorithm generates the solution of a reachability problem.
The key part of the algorithm is the breadth-first search on the TDG. The algo-
rithm requires some input parameters:

• TDG: a table dependence graph.

• SPS: a table of the database, represented by a node of the graph.

• D: the direction of slicing (’FS’, ’BS’ or ’B+FS’).

The algorithm itself is quite simple. We just call TSLICE DO with the corre-
sponding parameters, where TSLICE DO uses a modified version of the breadth-
first search.

The methods ENQUEUE, DEQUEUE were taken from [15] and they act on
queue data structure.
Figure 6 shows how the table-based slicing works on the graph shown in Figure 5.

642 Dávid Tengeri and Ferenc Havasi

Algorithm 1 Method used for table-based slicing

// TDG: this table dependence graph will be sliced.
// SPS: starting point of slicing (set of tables)
// D: direction of slicing.
TSLICE(TDG,SPS,D)

1: if D =’B + FS’ then
2: S1← TSLICE DO(TDG,SPS, ’F ’)
3: S2← TSLICE DO(TDG,SPS, ’B’)
4: S ← S1 ∪ S2
5: else if D =′ FS′ then
6: S ← TSLICE DO(TDG,SPS, ’F ’)
7: else
8: S ← TSLICE DO(TDG,SPS, ’B’)
9: return S

4.3 Record-based slicing - computing slices

Record-based slicing takes a slice of the records of a database. SPS is a record
of a table in this case. The result set then contains the corresponding rows. The
algorithm uses the TDG of the database to discover the connections among the
records. The result set contains row references:

Row reference: A (t,K) pair, where

t means the table node that contains the row, and

K means the list of primary key values of the row.

In Algorithm 4, GREYSET and BLACKSET can be stored either in the memory
- as we did in RSLICE DO - or they can be stored in a database as well to avoid
an overly large memory consumption. In both cases it is sufficient to store just the
data present in the row reference - not all the columns of the rows.

5 Experimental results

5.1 Research question to validate

In this section we would like to answer to the following Research Questions:

RQ1 How large is the size of the slice (with respect to the size of the database)?

RQ2 How much resources (memory and runtime) are used for computing the
slices?

The efficiency of our algorithm is database structure- and data-dependent, so
unfortunately we cannot provide a relevant and general answer to these questions.
To estimate its efficiency, we looked at two different test scenarios:

Database Slicing on Relational Databases 643

Algorithm 2 Table-based slicing algorithm. Modified version of breadth-first
search.
// TDG: table dependence graph.
// SPS: starting point of slicing (a table node).
// D: direction: ’F’ in case of forward or ’B’ in case of backward.
TSLICE DO(TDG,SPS,D)

1: for ∀u ∈ V [TDG]− {SPS} node do
2: color[u]←WHITE

3: color[SPS]← GREY

4: BLACKSET ← ∅, GREY SET ← ∅
5: ENQUEUE(GREY SET, SPS)
6: while GREY SET 6= ∅ do
7: u←DEQUEUE(GREY SET)
8: if D = ’F’ then
9: E ← {e ∈ E[TDG]|e is an outgoing edge of u}

10: else
11: E ← {e ∈ E[TDG]|e is an incoming edge of u}
12: for ∀e ∈ E do
13: if D = ’F’ then
14: v ← e.referred table

15: else
16: v ← e.referrer table

17: if color[v] = WHITE then
18: color[v]← GREY

19: ENQUEUE(GREY SET, v)
20: color[u]← BLACK

21: BLACKSET ← BLACKSET ∪ u

22: return BLACKSET

• For the basis of the first scenario, we chose one of the most popular PHP
content management system, namely Drupal, and we generated random data
with its devel module.

• For the basis of the second scenario, we used a real-life Drupal-based ap-
plication, namely an information system that is employed in more than 40
hospitals in Hungary - and debugging this system was one of the strongest
motivations behind our study.

5.2 Main findings of experiments

The implementation of slicing algorithms was written in Java, and tested on a
computer with an Intel Core i5 CPU running at 2.8 GHz and 4GB of RAM.

644 Dávid Tengeri and Ferenc Havasi

Figure 6: The table-based slicing of a database. The grey nodes have to be visited
by the algorithm. The black nodes are those that have been completely processed
by the algorithm and are in the result set.

5.2.1 Experiments on random generated data

In our first scenario, we randomly generated the users, the nodes and the comments
with the help of devel module, which is a powerful helper module for Drupal devel-
opers. We used one of its functions (the content generation) to generate random
content into the test database on Drupal version 7.15 (base installation with all
modules enabled) under the Linux operating system using the Apache Web server
and the PostgreSQL database system.

Our test database stored 100 random users and we increased the number of

Database Slicing on Relational Databases 645

Algorithm 3 Method used for record-based slicing.

// TDG: table dependence graph.
// SPS: starting point of slicing (a row reference).
// D: direction of slicing. (Can be ’FS’, ’BS’ or ’B+FS’.)
RSLICE(TDG,SPS,D)

1: if D =’B + FS’ then
2: S1← RSLICE DO(TDG,SPS,’F ’)
3: S2← RSLICE DO(TDG,SPS,’B’)
4: S ← S1 ∪ S2
5: else if D =’F ’ then
6: S ← RSLICE DO(TDG,SPS,’F ’)
7: else
8: S ← RSLICE DO(TDG,SPS,’B’)
9: return S

nodes for each measurement. Each node had a maximum of 15 comments that
were written by randomly chosen users. We selected the central table of Drupal,
the node table, as our SPS and executed record-based slicings from this point. We
measured the execution time and memory consumption of our algorithm.

Table 4 lists the size of each result set for each direction. The minimum number
of nodes in the database was 100 and the maximum was 50,000. We were interested
in how the size of the result set varied if the database contained more or fewer
records. As can be seen in the table, the forward slice always selected 6 records
from the database. The reason is that there are only 6 tables that are reachable
from the node table by forward slicing; so the size of result sets will be the same,
regardless of the number of records in the database. The size of BS and B+FS
increased as the database size got bigger, but the size of the result set was about 1
% or less in every case. In the last scenario, when we generated 50,000 nodes via the
devel module, the database contained 1,825,106 records, but the B+FS algorithm
selected only 9,954 rows. This is only 0.55 % of the database. The result set size
of B+FS slicing is always equal to |FS|+ |BS| − 1, because the SPS is in both the
FS and BS result sets, but it is only counted once for B+FS. The SQL dump of the
full database was 2,284 MB. The dump of the result set was 13 MB. In the case
of Drupal, as the database increased the number of selected rows did not increase
much in terms of the number of records in the database.

Figure 7 shows the execution times and memory consumption for each type
of slicing and for the two different types of storage used during the execution
of the slicing algorithm. Upon examining the diagrams we see that if we use
a database storage, the execution time of the algorithm grows with the size of
the result set, but the memory consumption is nearly constant. When we used
memory storage, the execution time did not change significantly, but the memory
consumption increased dramatically as the result set contains more and more row
references. The memory consumption was 2,235.43 KB in the case of B+FS slicing

646 Dávid Tengeri and Ferenc Havasi

Algorithm 4 Computes record-based slices.

// TDG: table dependence graph.
// SPS: starting point of slicing, a row reference.
// D: direction: ’F’ in case of forward or ’B’ in case of backward.
RSLICE DO(TDG,SPS)

1: BLACKSET ← ∅, GREY SET ← ∅
2: ENQUEUE(GREY SET, SPS)
3: while GREY SET 6= ∅ do
4: rf ← DEQUEUE(GREY SET)
5: t← rf.t // table node belongs to row ref rf
6: // load row from database belongs to rf

7: // value of the columns will be accessible by row[column name]
8: row ← DB LOAD BY ROW REF (rf)
9: if D = ’F’ then

10: E ← {e ∈ E[TDG]|e is an outgoing edge of t}
11: else
12: E ← {e ∈ E[TDG]|e is an incoming edge of t}
13: for ∀e ∈ E do
14: if D = ’F’ then
15: rows ← DB LOAD(e.referred table,

e.referred column,

row[e.referrer column])
16: else
17: rows ← DB LOAD(e.referrer table,

e.referrer column,

row[e.referred column])
18: while ∀r ∈ rows do
19: rowref ← row reference of r
20: if NOT (IS IN(GREY SET ∪BLACKSET, rowref)) then
21: ENQUEUE(GREY SET, rowref)
22: // move rf from GREYSET to BLACKSET
23: MOV E(GREY SET,BLACKSET, rf)
24: return BLACKSET

on the biggest database using memory storage. The algorithm using database
storage required approximately 600 KB to produce the results in each case. As we
can see, the memory consumption can be reduced by using a database as a storage,
but in our measurements we only managed to save 1,600 KB of memory, which is not
so significant. But the execution time of the algorithm that used memory storage,
was much faster. It was only 0.91 second, while the one with database storage was
25.2 seconds. So to slice the Drupal database, the memory-based algorithm is more
useful in practice.

Database Slicing on Relational Databases 647

Results set size
Generated content (number of nodes) FS BS B+FS Records in DB

100 6 55 60 5,846
250 6 113 118 9,260
500 6 140 145 20,031
1,000 6 265 270 36,497
2,500 6 696 701 53,180
5,000 6 1,433 1,438 150,198
10,000 6 2 536 2,541 351,118
50,000 6 9,949 9,954 1,825,106

Table 4: Size of the result set based on the generated content and the type of
slicing. FS: Forward slicing, BS: Backward slicing, B+FS: Backward + Forward
slicing.

5.2.2 Experiments on real-life application

In the second scenario, instead of using a randomly generated content, we found a
real-life application and database to test our algorithm. This system evaluated the
blood samples (mb sample) of children (mb child) with measurements (mb result)
got with different instruments (mb machine). Each sample was sampled by a user
(mb employee and users) in an Institute (mb institute). The system stores some
extra information about foreign children (mb child foreign).

Figure 8 shows the TDG of the application and Table 5 shows the size of each
tables. The total number of records stored in the database was 1,270,463.

Table Number of records
mb sample 216,870
mb result 861,027
mb child 191,988

mb employee 260
mb institute 47
mb machine 10

users 261

Table 5: Size of the tables in the real life application

As a starting point, we selected different records from different tables. Table 6
contains the results of set sizes of B+FS slicing starting from different tables.

The results are shown in Figure 9. We got similar results (for the execution
time and memory consumption) to those for randomly generated content. There
is a curious thing in Figure 9a: the execution time of B+FS slicing - with memory
storage - starting from the mb machine table produces the largest result set, but
it is much faster than those having a result set that is ten times smaller. The

648 Dávid Tengeri and Ferenc Havasi

(a) (b)

(c) (d)

(e) (f)

Figure 7: The execution times and memory consumption for the record-based slicing
algorithm in the case of randomly generated contents.

reason for this seems to be that the algorithm has to visit only one table and also
the starting table to collect results. This table is the mb result and the algorithm
cannot step backwards from this point. The maximum selection size was 16.35 %
when the SPS was in the mb machine table. Also, the number of records in the
rest of the result sets was under 1 % compared to the database sizes.

In summary, the result sets of the database slicing contained less than 1% of
the records of the entire database in most of the cases and the maximum selection
size was 16.35%. The resource requirements of the algorithm was sufficient in each

Database Slicing on Relational Databases 649

Figure 8: Table Dependence Graph of our real-life application.

SPS Results set size
mb sample 9
mb result 7
mb child 7

mb employee 9,120
mb institute 12,277
mb machine 207,738

Table 6: The size of the result set based on the different starting tables.

case.

5.3 Threats to validity

Unfortunately, it cannot be guaranteed, that these kinds of good results can be
achieved in our experiments with every application, because the algorithm is
database structure- and data-dependent. Hence precise efficiency can vary in prac-
tice. The random generation of content in our experiments may not represent the
content distribution of a real Drupal-based website, but it involves the most used
parts of the Drupal database structure, so it should provide a good picture of how
the slicing works in this environment.

650 Dávid Tengeri and Ferenc Havasi

(a) (b)

Figure 9: The execution time and memory consumption for the B+FS slicing of
our real-life application.

We investigated only Drupal-based applications in our experiments, but our
slicing method can be used on every type of application that uses a relational
database as its storage because the references among records are defined in the
same way as in the case of Drupal.

6 Related work

In Microsoft’s patent [8], there is a definition of slicing of relational databases, but
here they use this concept only in a specific sense. The method they defined is
equivalent to our forward record slicing algorithm, and they use it for test data
generation. The result of their method is a database that stores a subset of real
data taken from the database. They represent the database as a connected graph,
based on the schema description of the database. This graph is then used to direct
the slicing method and it helps to discover dependencies among records. Their
graph is similar to our TDG. It represents the same information as the TDG in our
definition. Based on this graph, their algorithm copies the corresponding record
from the connected tables too. Their algorithm generates the same results for one
record as our forward record-based slicing.

In [16], the authors process the SQL statements of a program to discover inter-
esting inclusion dependencies in the database. Their method works on the execution
plans of the SQL queries instead of the raw queries. The execution plan of a query
is a description of the steps that the database engine has to perform to retrieve
the selected data from the database. The authors define the NavLog algorithm
which can be used to determine the links between attributes of different relational
schemas. This technique can help one to discover the connections among database
tables, which we treated as an input to our methods, just as [9].

In [9], the authors provide another approach to finding dependencies in
a database. They compare the results of applying reverse engineering techniques to
elicit the dependencies among records. The reverse engineering techniques use the

Database Slicing on Relational Databases 651

source code as input and for handling database-driven applications. This process
is called Database Reverse Engineering (DBRE). One of the main tasks of DBRE
is to find the data dependencies among fields. The authors found that these de-
pendencies can be discovered in the source code by looking for those places where
the records get stored or modified. Program understanding techniques can be used
to find these places in the source code.

Program slicing inspired new techniques in other areas, such as model slicing
and model transformation slicing.

Model slicing tries to solve problems arising from the large size and complexity of
models like UML models of an industrial application. In [11], the authors describe
techniques for the slicing of UML models. The slices are performed using model
transformations. The transformed models contain only those parts which specify
the properties of a subset of the elements of the original model. The authors’ work
is based on the Object Constraint Language (OCL) of UML, which can be used
to describe rules that apply to models. The authors describe how to slice a model
based on the constraints applied to the classes and introduce state machine slicing.

In [18], the author defined a general model-based slicing framework that can
be used to slice models that meet the necessary requirements. In his article, he
demonstrates the framework by slicing a simple UML model. The author introduces
a model definition to describe the meaning of any model and demonstrates slicing
using this new model. He describes four types of slicing; namely, static slicing,
dynamic slicing, conditioned slicing and slicing unions.

In [19], the authors introduce a dynamic backward slicing technique for model
transformation programs and the underlying models of the transformation. Their
technique relies upon an execution trace of the model transformation program and
simultaneously produces slices for the statements of the transformation program
and the model elements which affect the slicing criterion.

7 Summary and Future Work

Our research goal was to find out the applicability and usefulness of defining slicing
on relational databases. In this paper we presented the following contributions. We
introduced the concept of database slicing and its variants: table and record-based
slicing, and forward, backward and forward+backward slicing. We provided table-
based and record-based slicing algorithms and we evaluated the results using Drupal
and a real-life Web-based information system. We learned that it can be useful in
practice to help migration, debugging, testing and understanding the software by
reducing the size of the database when the dependencies are known, but the result
depends on the database structure and the data stored in the tables.

All of the techniques described here just concentrated on the database struc-
tures, connections and the corresponding operations and this introduced limita-
tions. We reached a point where it was impossible to significantly improve these
slicing techniques by just staying in the database.

In the future, we would like to combine database slicing with the results of

652 Dávid Tengeri and Ferenc Havasi

program slicing and analysis, just like those in [9]. Another example is given in [1],
where the classical PDG-based slicing technique was extended with the capability
of handling database operations. However, it should be optimized and could be
made more realistic if the dependencies in the database were properly analysed.

References

[1] David Willmor, Suzanne M. Embury, Jianhua Shao, Program Slicing in the

Presence of Database State. In Proceedings of the 20th International Confer-
ence on Software Maintenance (ICSM 2004), pages 448-452. IEEE Computer
Society, 2004

[2] Devel module, URL: http://drupal.org/project/devel

[3] Drupal, URL: http://drupal.org/ 2002.

[4] E. F. Codd, A Relational Model of Data for Large Shared Data Banks. Com-
munications of the ACM, 13(6):377-387, June, 1970.

[5] E. F. Codd, Extending the Database relational Model to Capture More Mean-

ing. ACM Transactioins on Database Systems, 4(4):397-434, December 1979

[6] Frank Tip, A Survey of Program Slicing Techniques. Journal of Programming
Languages 3, pages 121-189, 1995.

[7] H. Agrawal and J. R. Horgan, Dynamic Program Slicing. In Proceedings of
the ACM SIGPLAN’90 Conference on Programming Language Design and
Implementation, 25(6):246-256, 1990.

[8] Hui Shi, Kenton Gidewall, Marcelo M. De Barros, Chan Chaiyochlarb,
Murali R. Krishnan, Robert Irwin Voightmann, Christina Ruth Dhanaraj,
Slicing of relational databases. Patent. US 7873598. April 2008. URL:
http://www.google.com/patents/US7873598

[9] Jean Henrard, Jean-Luc Hainaut, Database dependency elicitation in database

reverse engineering. In CSMR ’01: Proceedings of the Conference on Software
Maintenance and Reengineering, pages 11-19. IEEE Computer Society, 2002.

[10] K.J. Ottenstein and L.M. Ottenstein, The program dependence graph in a soft-

ware development environment. In Proceedings of the ACM SIGSOFT/SIG-
PLAN Software Engineering Symposium on Practical Software Development
Environments, pages 177-184, 1984.

[11] K. Lano, S. Kolahdouz-Rahimi, Slicing of UML Models

[12] M. Weiser, Program slices: formal, psychological, and practical investigations

of an automatic program abstraction method. PhD thesis, University of Michi-
gen, Ann Arbor, 1979.

Database Slicing on Relational Databases 653

[13] M. Weiser, Programmers use slices when debugging. Communications of the
ACM, 25(7):446-452, 1982.

[14] M. Weiser, Program slicing. IEEE Transactions on Software Engineering,
10(4):352-357, 1984.

[15] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein, Introduction to Algorithms, Second Edition. MIT Press and McGraw-
Hill, 2001.

[16] Stéphane Lopes, Jean-Marc Petit, Farouk Toumani, Discovering interest-

ing inclusion dependencies: application to logical database tuning. Informa-
tion Systems, Volume 27, Issue 1, March 2002, Pages 1-19, ISSN 0306-4379,
10.1016/S0306-4379(01)00027-8.

[17] Tibor Gyimóthy, Árpád Beszédes, and István Forgács, An efficient rele-

vant slicing method for debugging. In Lecture Notes in Computer Science,
1687:303–321. Springer, 1999.

[18] Tony Clark, A general model-based slicing framework. Proceedings of the Work-
shop on Composition and Evolution of Model Transformations, 2011

[19] Z. Ujhely, Á. Horváth, D. Varró, Dynamic Backward Slicing of Model Trans-

formations. International Conference on Software Testing and Validation:1-10
2012.

Received 10th April 2012

