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Automatic Checking of the Usage of the
C++11 Move Semantics
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Abstract

The C++ programming language is a favorable choice when implement-
ing high performance applications, like real-time and embedded program-
ming, large telecommunication systems, financial simulations, as well as a
wide range of other speed sensitive programs. While C++ has all the facili-
ties to handle the computer hardware without compromises, the copy based
value semantics of assignment is a common source of performance degrada-
tion. New language features, like the move semantics were introduced recently
to serve an instrument to avoid unnecessary copies. Unfortunately, correct
usage of move semantics is not trivial, and unintentional expensive copies
of C4++ objects — like copying containers instead of using move semantics —
may determine the main (worst-case) time characteristics of the programs. In
this paper we introduce a new approach of investigating performance bottle-
necks for C++ programs, which operates at language source level and targets
the move semantics of the C++ programming language. We detect copies
occurring in operations marked as move operations, i.e. intended not con-
taining expensive copy actions. Move operations are marked with generalized
attributes — a new language feature introduced to C++11 standard. We
implemented a tool prototype to detect such copy/move semantic errors in
C++ programs. Our prototype is using the open source LLVM/Clang parser
infrastructure, therefore highly portable.

Keywords: C++ runtime performance, C++ generalized attributes, C++
move semantics, static analysis

1 Introduction

In this paper we introduce a new approach of automated checking the correct us-
age of the move semantics introduced by the C++11 standard [15]. As copying
objects instead of moving them is considered one of the major performance bottle-
necks in C++, the proper usage of the move semantics may determine the runtime
performance for C++ programs.
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The runtime performance can be estimated in various ways, depending on which
program features should be calculated. The most obvious, but also the most difficult
approach is the quantitative time estimation (e.g. in seconds) [21, 8]. Such analysis
is a complex and difficult area, because of the processor’s cache operations, interrupt
routines and the operating system impact the execution time. Also, it is very
difficult to replicate a specified scenario. Estimating or measuring the execution
time as an absolute quantity therefore is still an unsolved problem for the most
popular programming languages, like C++.

In the same time, performance estimation is also important on the source code
level. When evaluating a library which can be compiled on different platforms with
different compilers we are interested not in absolute or approximated time but
rather the number of certain elementary statements, e.g. number of (expensive)
copy instructions of certain types. This approach allows us to process the code
at the language source level, which is architecture independent. At the language
level the number of assignments, comparisons, and copies can be measured. These
discrete values can be capped by a predefined limit and can be checked by static
analysis tools. Also, using such tools serious programming errors can be detected,
what none of the low-level estimations can reveal.

In this paper, we introduce a method to detect move semantics errors in C++
programs. The method is based on the explicit labeling of those operations that the
designer intended as mowve operations, i.e. not to include expensive copy operations.
The operations excluded can be copy constructor or assignment operator calls as
well as parameter passing or returning by value of complex types. Inside move
operations we allow only the call of other move operations and the manipulation
(copy) of non-aggregated built in types.

In order to test our method we implemented a prototype tool based on the
public domain LLVM/Clang C++ compiler frontend [9, 11]. LLVM/Clang is a
highly portable emerging compiler infrastructure planned explicitly as a reusable
object-oriented library. Using Clang we analyze the abstract syntax tree of the
source and recognize the mistakes committed in move operations and report them
to the user.

This paper is organized as follows: in Section 2 we discuss the necessity of the
move semantics in C++4, and we present use cases for the move semantics and show
possible mistakes related with. In Section 3 we present a new C++11 feature, called
generalized attributes, and we use this mechanism to annotate the source code with
expected semantics information. Also, we introduce our Clang-based tool to check
semantics and display error messages to the mistakes. We evaluate our method
and the prototype tool in Section 4. In Section 5 we briefly present Welltpye, our
prototype language, in which semantic information can be marked explicitly. We
also discuss our future plans to extend our C++ move semantics checker. The
paper concludes in Section 6.
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2 C++ move semantics

Copy semantics play a central role in modern object-oriented languages. Certain
languages have reference semantics. Objects are created in a (possibly managed)
heap, and are referred by unique handlers (pointers, references). When we apply
assignment between such objects the actual operation has effect only on the han-
dlers: the handler of the left side of the assignment will refer the object referred
by the right side. No data is copied between the referred objects. This strategy
is called as shallow copy. For deep copy programmers have to define specific user
operations, like the clone function in Java [5].

The C and C++ languages have value semantics [7, 16]. Objects of C and C++
— either having built-in or user defined types — can exist in the stack, in the static
memory or in the heap. In all cases variables identify the raw set of bits of objects
without immediate handlers. When we apply assignment, we copy raw bytes by
default.

Object-oriented languages are designed to give programmers the possibility of
creating new types in the form of classes. Such types may be constructed from
other complex types in a recursive manner and copying their raw bytes may not be
the proper copy semantics. For such cases programmers in C++ may define copy
constructor for initialization and the operator= for assignment. These operations
usually implemented using the already defined copy operations of subobjects or the
explicit copy instructions decided by the programmer. When no user defined copy
constructor or assignment operator have been provided the default memberwise
copy operations will be applied.

While this behavior is very convenient when we want to encapsulate the im-
plementation of classes and building higher abstractions, it may also be a cause of
serious performance issues. In case of complex classes, like matrices, vectors, lists, a
single assignment may cascading down to a huge number of byte-level copies. This
phenomenon exists for the containers of the C++ standard library too. Temporary
objects created during the evaluation of expressions are also critical performance
bottlenecks. The used new and delete operators, the overhead of the extra loops
and memory access are costly operations.

Todd Veldhuizen investigated this issue, and suggested C++ expression tem-
plates [19] and template metaprogramming [2, 6, 14, 20] as a solution. The basic
idea is to avoid the creation of temporaries, and unnecessary copies, but ”steal”
the resources of the operands, i.e. move the ownership of the data representa-
tion between assigned objects. Such move operations can be implemented library-
based, like the Boost .Move library [1] with overloading the original copy operations.
Library-based solutions, however, lack to distinguish objects which are destroyable,
i.e. their resources can be safely moved out.

To distinguish non-destroyable objects from possible sources of move opera-
tions, i.e. those which can be destroyed language support is required. The C++11
standard has introduced a new reference type: the rvalue reference [15, 17]. In
the source code, the rvalue references have a new syntax && to yield reference to
destroyable objects. Using this syntax, constructors, copy constructors and as-
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class Base

{
public:
Base(const Base& rhs); // copy ctor
Base(Base&& rhs); // move ctor
Base& operator=(const Base& rhs); // copy assignment
Base& operator=(Base&& rhs); // move assignment
/...
3
Figure 1: Copy- and move constructors.
Base f();

void g(Base&& arg_)

{
Base varl = arg_; // applies copy: Base::Base(const Base&)
Base var2 = £Q); // applies move: Base::Base(Base&&)

} // arg_ goes out of scope here

Figure 2: Named rvalue explained.

signment operators can be overloaded with multiple types. Constructors and as-
signment operators with rvalue parameters are called move constructor and move
assignment, as we can see in Figure 1. The move constructor and move assignment
changes the ownership of the data representation of the argument object, and set
it to an empty but valid (destroyable) state.

Note that, the actual parameter passed in the place of an overloaded constructor
may be either an rvalue or an lvalue. When the object passed as parameter is
referred by a name, then it is lvalue, otherwise it may be an rvalue. This rule —
often referred as ”if it has a name” rule — is explained in Figure 2.

Unfortunately, this is one of the situations where C++ programmers can easily
make mistakes, and no errors or warnings will be generated by the compiler. In
Figure 3 we can see a base and a derived class. The Base class has a proper copy
constructor and a move constructor. The implementation of the copy constructor
uses costly copy operations, while the move constructor uses move semantics.

In the code snippet in Figure 3, the Derived(Derived &&) move constructor is
intended to use move semantics, and the Base subobject is supposed to be moved
using the base class move constructor. However, because of the if it has a name
rule explained above, the Derived constructor passes the (named) parameter rhs
as an lvalue to the Base (rhs) constructor call, therefore the copy constructor of the
Base subobject will be called. Even if the derived part of the object is moved, the
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class Base

{

public:
Base(const Base& rhs); // copy ctor
Base(Base&& rhs); // move ctor
Base& operator=(const Base& rhs); // copy assignment
Base& operator=(Base&& rhs); // move assignment
/...

s

class Derived : public Base

{

public:
Derived(const Derived& rhs); // copy ctor
Derived(Derived&& rhs); // move ctor
Derived& operator=(const Derived& rhs); // copy assignment
Derived& operator=(Derived&& rhs); // move assignment
/...

3

Derived(Derived&& rhs) : Base(rhs) // wrong: rhs is an lvalue

{ // calls Base(const Base& rhs)
// Derived-specific stuff

}

Figure 3: Derived class from Base. Wrong move constructor.

Derived(Derived&& rhs) : Base(std::move(rhs)) // good: rhs is rvalue

{ // calls Base(Base&& rhs)
// Derived-specific stuff

}

Figure 4: Derived class from Base. Proper move constructor.

base subobject is copied instead of being moved. This is obviously against to the
programmer’s intention. As there is no syntax error in the code — just an unwanted
overload resolution — no diagnostic message will be emitted by the compiler.

The correct solution is given on Figure 4. Here the std: :move call is used to
convert the named rhs variable to right value. We have to mention here, that
std: :move has nothing to do with the moving of the objects, it is merely an lvalue
to rvalue conversion.

The situation in Figure 5 is similar. Here we implemented a templated swap op-
eration, which changes the values of the two parameters using a temporary variable.
In the implementation it is critical to write the std: :move calls for the constructor
and for the assignments, because the variables a, b, tmp all have names. Without
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template<class T>
void swap(T& a, T& b)
{

T tmp(std::move(a));

a = std::move(b);

b = std::move(tmp);
}

Figure 5: swap with move semantics.

int main()

{
std: :set<X> s1;

sl.insert(X(1));
sl.insert(X(2));

std: :vector<X> vi;

v1.push_back(X(1));
v1.push_back(X(2));

std: :vector<X> v2; v2.resize(sl.size());
std: :move(vl.begin(), vi.end(), v2.begin());
std: :move(sl.begin(), sl.end(), v2.begin());

return 0;

Figure 6: Moving objects between containers

the lvalue to rvalue conversion using std: :move all of them would be copied instead
of being moved and the code would likely be executed slower than as assumed. As
functions like swap are usually time critical, such performance degradations are
considered as serious errors.

Given as the move semantic is relatively new in the C++ language, programmers
tend to make similar mistakes. Moreover, there are situations, when mistakes
related to move semantics are hidden deep in the code as we will see in the following
example.

In the sample code on Figure 6 we have filled an std: : vector container v1 and
an std: :set container s1 with moveable and copyable objects from the same class
X. We then apply the std: :move algorithm to move objects from the v1 vector
and from the s1 set into the target container vector v2. The used three parameter
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template<class Inputlt, class OutputIt>
OutputIt move(InputIt first, Inputlt last, OutputIt d_first)
{

while (first != last)

{

*d_first++ = std::move(xfirst++); // (%)
}
return d_first;

}

Figure 7: Implementation of std: :move.

version of the std::move algorithm is a simple loop iteration over the interval
defined by the first two parameters and applying (one parameter) std: :move for
the current element to move it to the target compiler defined by the third parameter
as we seen on Figure 7. This standard algorithm is exactly the suggested tool for
moving instead of copying objects from one container to an other.

Moving objects between the two vectors will work as we expected, using the
implemented move assignment operator of class X. Surprisingly, the same algorithm
will copy the objects from the set container to the vector using the copy assignment
operator of class X.

To understand the reasons, first we have to consider that std: :set is an asso-
ciative container, i.e. objects are stored in ordered manner. For sets, the ordering
key is the whole object. Therefore, modification of objects in sets are forbidden
— we don’t want their changed key values be inconsistent to their storing posi-
tion. Thus, objects in sets behave like constants. To ensure that behavior, both
set::iterator and set::const_iterator types refer to constant objects. The ex-
pression *first++ at () on Figure 7 therefore is a reference to a constant object
of type X which is convertible to const X& (copy semantics) but do not convertible
to X&& (move semantics). As their move assignment operator is unavailable, objects
in the set will be copied to the vector.

We want to emphasize, that the same algorithm, std: :move, worked completely
different way when applied to different containers. No diagnostics message was
emitted, the code compiled and worked in an unintentional way. To make the
situation even harder to detect, the actual copy operations happened in a standard
library function.

Our method and prototype tool is analyzing such issues to detect unintentional
copy operations, like those in the mentioned example.

3 Attribute-based annotations and checking

In C++11 a new feature has been introduced to able the programmers to annotate
the code, and to support more sophisticated domain-specific language integration
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template<class T>

void swap(T& a, T& b)

{
[[movel]l T tmp(std::move(a));
[[move]] a = std::move(b);
[[move]] b = std::move(tmp);

Figure 8: The swap function with annotated statements.

template<class T>
[ [move]]
void swap(T& a, T& b)
{
T tmp(std::move(a));
a = std::move(b);
b = std::move(tmp) ;
}

Figure 9: The annotated version of the swap function.

without modifying the C++ compiler [13, 14]. The new feature is called generalized
attributes [10, 12]. Currently this is rarely used, because the lack of standard custom
attributes, but it is a great extension opportunity in the language.

Most important C++ compilers, like GNU g++ and the Clang compiler (which
is a C++ frontend for the LLVM [9, 11]) parse the generalized attributes, binds
to the proper Abstract Syntax Tree (AST) node even if Clang displays a warning,
because all generalized attributes are ignored for code generation. Even if the
attributes are ignored for code generation, they are included in the abstract syntax
tree, and they can be used for extension purposes. In our case, we will annotate
functions and statements about the expected copy/move semantics. For example,
the original code in Figure 5 can be annotated with the [[move]] attribute as can
be seen in Figure 8.

Though, the statements are validated correctly, the annotations are redundant
and every line starts with the same [[move]] attribute. To avoid this, the whole
function can be annotated as can be seen in Figure 9. Annotating the whole
function changes the default semantics of the statements inside the function — the
unannotated functions have copy semantics by default.

Our validator tool use two different annotations: [[movell, and [[copyl]. To
determine the expected semantics of a statement needed the default behavior of the
function (which defaults to [[copyl] in the most cases, but it can be overridden),
and the optional statement annotation. If the statement does not have annotations,
then the semantics of the statement is the same as the semantics of the function.
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expression

Figure 10: Value types of an expression since C++11.

If the statement contains e.g. a constructor call, then the tool checks whether
the proper constructor call is made. When not the proper constructor is called,
then the tool displays a diagnostic message. Furthermore, our tool validates the
implementation of the move constructors. As can be seen in Figure 4, easy to make
mistakes in the move constructor. As to prevent these errors, the tool sets the
default semantics of the move constructors to [[movel] instead of [[copy]].

Note that, the built-in types, like int and long do not have constructors, so the
tool will allow to copy primitive types even if the [[movel] attribute is set. This
decision is based on the fact, that there is no fundamental performance difference
between moving or copying elementary built-in types.

The main algorithm of our prototype tool is based on the AST visitor mechanism
provided by the RecursiveASTVisitor in the Clang. The visitor functions in the
RecursiveASTVisitor class can be overridden to implement custom mechanisms.
Each function in the visitor class is invoked for the specific AST nodes.

The implementation of our tool includes the overriding the specific visitor func-
tions for the following AST nodes:

CXXConstructorDecl: defines a new semantic context, which can be either copy
or move, depending on the constructor type and attribute (constructors are
handled differently than function declarations).

FunctionDecl: defines a new copy semantic context by default, unless attribute is
set (except when the function declaration is a constructor).

CXXCtorInitializer: used to validate constructor semantics.
CXXOperatorCallExpr: used to validate assignment semantics.
CallExpr: check the usage of the 1-parameter std: :move function.

The role of the semantic context mentioned in at the CXXConstructorDecl
and the FunctionDecl is to set whether validate the constructor initializers and
the assignments or not. In the move the semantic context, our tool checks every
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constructor initializers and the assignments to make sure all of them uses the move
semantics. If not, then it will be reported. In the copy the semantic context no
validation are made.

Furthermore, in the visitor functions we can use the actual AST node to gather
information. The CXXCtorInitializer and the CXXOperatorCallExpr AST
nodes hold information related to the move semantics. For example, starting from
a CXXOperatorCallExpr node, we can get whether the used constructor is move
constructor or not. The CXX0OperatorCallExpr can be tighten to assignments, and
we can get information about the called assignment operator.

The latest development in the tool is the CallExpr validation mechanism. The
idea came from the fact, the 1-parameter std: :move is a function, with a proper
return value. In order to safely move the value, the returned value of the std: :move
must satisfy the following: the returned value must be z-value, but must not be
const qualified. The relationship of the value types can be seen in Figure 10. The
Clang sets the x-value property for all expressions which can be moveable, however,
the Clang handles the const qualifier orthogonally.

The FunctionDecl class provides an attribute enumeration feature via the
attr_begin() and attr_end() functions. The Clang AST does not make a dif-
ference of the 7old” attribute notation and the generalized attributes. This is a
known glitch in the Clang parser.

In order to handle our attributes in a standard way, we had to patch the Clang’s
parser. According to the documentation [18] we added two new attributes called
CopySemaExt and MoveSemaExt to the Attr.td file. The build process generates
C++ classes from the descriptions. The reason to make separate attributes for
copy and move semantics is to check for the attributes easily with hasAttr<T>()
function.

The inserted lines can be seen in Figure 11. Moreover, we placed some ”boil-
erplate” code into the attribute processing mechanism. This is a mandatory code
to tell the Clang how the attributes must be processes during the compilation.
Our new attributes are simple attributes, the only requirement is to appear in the
AST with an individual AST node. The affected lines which are inserted into the
ProcessDeclAttribute() function in the SemaDeclAttr.cpp file can be seen in
Figure 12. In the current implementation we used an additional sem namespace to
separate our attributes from the existing ones.

The constructor type can be determined with the isMoveConstructor () meth-
od in the CXXConstructorDecl class. If the visited constructor is a move construc-
tor, then the move semantic mode is pushed. In case of the visited constructor is
not a move constructor, then the copy semantic mode is pushed.

The only relevant information of the visited CXXCtorInitializer is the initial-
izer. The structure of the initializer expression provides information about the used
semantics. The returned value of the getInit () function is a common expression,
but it can be a CXXConstructExpression, which is a constructor call expression.
The called constructor must be a move constructor for move semantics mode, but
only if the initialized type is not a built-in type.

The tool validates the assignments via the visited CXXOperatorCallExpr nodes.
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def MoveSemaExt : Attr {
let Spellings = [CXX11<"sem", "move">];
let Documentation = [Undocumented];

def CopySemaExt : Attr {
let Spellings = [CXX11<"sem", "copy">];
let Documentation = [Undocumented];

Figure 11: The additional lines at the end of Attr.td.

case AttributeList::AT_MoveSemaExt:
handleSimpleAttribute<MoveSemaExtAttr>(S, D, Attr);
break;

case AttributeList::AT_CopySemaExt:
handleSimpleAttribute<CopySemaExtAttr>(S, D, Attr);
break;

Figure 12: The additional lines in the ProcessDeclAttribute () function.

The assignments can be filtered by checking the return value of the getOperator ()
for the value 00_Equal. After selecting the relevant operators, the algorithm checks
the right-hand side expression of the assignment. In case of move semantics, this
expression must be an x-value and must not be const qualified.

The summarized algorithm is the following:

1. For each visited constructor and method: push the current semantic mode,
and set up a new one. The new context can be either copy or move, depending
on the attributes or the default mode.

2. For each constructor initializer: check whether the initializer expression meets
the current semantic mode — in case of move semantics we require a move
constructor call for non built-in types.

3. For each operator call: in case of move semantics we require an x-value for
right-hand side expression. In the current prototype implementation we check
only when getOperator () returns 00_Equal.

In the earlier paper [3] we focused on attribute-based checks, but open source
projects are not using the introduced attributes. We needed an alternate approach
to apply the tool on large code base.

The first remark is related to the move constructors and the move assignments.
Our algorithm handles these functions differently by providing implicit move se-
mantic context. This means, the programmer does not have to explicitly mark
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[[sem: :move]]

void £(Q)
{

std: :vector<X> sv(4); sv.push_back(X());
}

Figure 13: push_back() guarded by the [[movel] attribute

these functions to use the move semantic context. Thus, the number of the po-
tentially required attributes is minimal. In fact, only a few special functions need
the [[move]] attribute — for example the 3-parameter std: :move function which
improper use can been seen in Figure 6.

The second remark is a modification in the algorithm. We noticed that, the
use of the 1l-parameter std::move does the most of the work. We can gather
every meaningless std: :move calls, if the result type of the call is not moveable.
This change does not affect the other parts of the algorithm, because this uses the
CallExpr AST node. Therefore, all call expressions which calls the std: :move, and
the result value is not moveable, are reported by our tool as ”Suspicious move”.

The misuse of the 3-parameter std: :move are reported by the tool, so the usage
of the [[move]l] are not required here. Hence, the usage of the [[move]] attribute
is only needed in very special cases. For example, the usage of the std::vector
requires some attention, because the move constructor and the move assignment
operator will not be used when the noexcept is missing from its declarations.
However, an explicit [[move]] attribute can be useful, for instance the code snippet
in Figure 13.

4 Evaluation

In the sample code in Figure 6 we used an annotated version of std: :move to vali-
date the semantics. To require move semantics in std: :move we used the [[move]]
annotation.

After running the tool on the modified code, the tool detected the misuse of the
std: :move:

Copy assignment found instead of move assignment, xvalue=1, const=1

The error message describes the problem, and the reasons as well. In the exam-
ple above, the problem with the assignment is the fact the right-hand side of the
assignment cannot be moved. Even it is an x-value, but it has a constant qualifier.
Therefore the assignment does not satisfy the required move semantics.

In the sample code in Figure 3 the move constructor of the Derived class is
wrong. Our tool can detect this kind of errors, and gives a message:

Copy constructor found instead of move constructor
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template<class T>
[[sem: :move]l]
void swap(T& a, T& b)

{
T tmp(a)); // (*1)
a = b; /7 (%2)
b = std::move(tmp);
}

Figure 14: swap with wrong move semantics.

A intentionally wrong code can be seen in Figure 14, which is a modified version
of the code seen in Figure 5. If we remove the lvalue to rvalue conversion with
std: :move in the line marked with (*1) in Figure 14, the tool displays the expected
diagnostics message:

Copy constructor found instead of move constructor

If we also remove the lvalue to rvalue conversion with std: :move in the next
line marked with (*2) the tool also detect the error:

Copy assignment found instead of move assignment, xvalue=0, const=1

However, the usage of the [[move]] attribute is decreased since the first version
of out tool. In the current version, the attribute is required only in some special
cases to confirm the move semantics. One of these special cases can be seen in
Figure 13. That small code snippet will copy every elements in the vector, when
the noexcept is not present at the move constructor of the X class. The reason is
clear: the std::vector will not use the move constructor if it is not noexcept —
but the copy constructor will be used instead.

As we added extra functionality to the Clang parser, we have to consider the
possible increasing of parsing time. However, the overhead during the parsing was
not measureable. During the check we have two additional activities: step 1: the
parsing of the generalized attributes, and step 2: evaluating of the copy/move
semantics for a certain operation.

Step 1 is linearly bounded by the source size. During the evaluation of step
2 we do not descend recursively through the whole call-chain, but evaluate only
on the first level copy/move operations. Therefore, we evaluate all functions only
once. This is also linearly bounded by the source size. Template instantiations are
evaluated for each specializations. However, this is linearly bounded by the normal
template specialization generation activity of the compiler.

We measured the run time of the tool on a small part of the Clang. The
original compilation time was 635,13 seconds. During the second run we inserted
our checker program into the toolchain. The measured time was 637,39 seconds.
The overhead is barely measurable: 2,26 second, which is less than 0,4 percent.

The tool is available as a public domain software, and downloadable from [4].
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5 Future work

An outcome of our research is that, the presence of additional semantic informa-
tion can be useful for the compiler. In this case, the knowledge of which operations
require move semantics can help to prevent the programmer to do mistakes. And
these mistakes lead to huge runtime difference since the overhead of the copy op-
erations.

In other languages, other kind of semantic information can be found. For ex-
ample, our experimental programming language, called Welltype. This language
is an imperative programming language with strict syntax and strong static type-
system. The offered strict syntax is designed to lower the number of errors due to
misspelling, and the semantics can prevent numerous malicious constructions, such
as implicit casts. Thus, the control flow can be easily followed at source level.

Also, the Welltype handles the difference between pure and impure functions.
This information is stored in the compiled binary, and it is used by the dynamic
loader when a program refers to an other function — for example when the program
imports a function.

Furthermore, only pure functions or expressions can be used in some construc-
tions, such as assertions, pre- and post-conditions. The reason is very clear: when
the compiler excludes the assertions, then the behavior of the program could be
different, when the expression has side-effect. However, in Welltype the expressions
used in assertions must be pure expressions — which means, only pure functions can
be called. This restriction can prevent serious vulnerabilities.

We are also plan to extend our automatic checking for C++ move semantics.
Since our method can be integrated into the compiler itself, thus the ”3rd party
tool” problem can be solved. The compiler traverses the whole AST during the
compilation, and can optionally execute the sufficient move semantics checking
when a certain command line parameter is set.

Furthermore, we are investigating the possibilities of the comparison-analysis
at language level. The first approach is to measure the depth of nested loops. The
second step is to identify definite loops — it is hard to detect loops with ”read-only”
loop variable (the variable must be incremented/decremented in the step part of
the loop). Note that, these problems appear in code validation process too, because
the understandable loops are important in programming.

All of the features in this paper will be implemented in our experimental pro-
gramming language, called Welltype. This language supports generalized attributes
as well, and the attributes can be used by the programmer — the attributes are read-
only at runtime, and the dynamic program loader checks their values at link time,
whether are matching with the import- and export specification.

6 Conclusion

In this paper we introduced a new method to reveal the possible misuse of the
C++11 move semantics. As copy operations may determine the runtime perfor-



Automatic Checking of the Usage of the C++11 Move Semantics 19

mance of the C++ programs, unintended use of them may have serious negative
effect on the runtime performance.

We shortly described the C++ move semantics, and their positive effects on
the programs. The C++ move semantic is a relatively new language level enhance-
ment for optimizing the program execution avoiding unnecessary copy operations.
Unfortunately, it is easy to make mistakes when working with move semantics.
Many operations intended to use move semantics, in fact, apply expensive copy
operations instead. Our method targets such mistakes, making operations planned
for move semantic marked explicitly by C++411 annotations and checking their
implementations for unwanted copy actions.

We implemented our method as a prototype tool to detect copy/move semantic
errors in C++ programs. Our tool can deal with both regular operators or func-
tions and constructors. The execution time of our tool is linearly depends on the
size of the source code. We recognized that, the functionality of our tool can be
integrated into the compiler, and the overhead of detecting copy/move semantics
errors can be further decreased. Furthermore, we are intended to implement the
same functionality in our experimental programming language, called Welltype.
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