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Abstract

Big data and cloud computing are two phenomena, which have gained sig-
nificant reputation over the last few years. In computer science the approach
shifted towards distributed architectures and high performance computing.
In case of geographical information systems (GIS) and remote sensing im-
age analysis, the new paradigms have already been successfully applied to
several problems, and systems have been developed to support processing
of geographical and remote sensing data in the cloud. However, due to dif-
ferent circumstances many previous workflows have to be reconsidered and
redesigned.

Our goal is to show a way how the existing approaches to remote sensing
image analysis can be advanced to take advantages of these new paradigms.
The task aiming in shifting the algorithms shall require a moderate effort
and must avoid the complete redesign and reimplementation of the existing
approaches. We present the whole journey as a case study using an existing
industrial workflow for demonstration. Nevertheless, we define the rules of
thumb, which can come in hand when shifting any existing GIS workflows.

Our case study is the workflow of waterlogging and flood detection, which
is an operative task at the Institute of Geodesy, Cartography and Remote
Sensing (FOMI) This task in currently operational using a semi-automatic
single machine approach involving multiple software. The workflow is neither
efficient nor scalable, thus it is not applicable in emergency situations where
quick response is required. We present an approach utilizing distributed com-
puting, which enables the automated execution of this task on large input data
with much better response time. The approach is based on the well-known
MapReduce paradigm, its open-source implementation, the Apache Hadoop
framework and the AEGIS geospatial toolkit. This enables the replacement
of multiple software to a single, generic framework. Results show that signif-
icant performance benefits can be achieved at the expense of minor accuracy
loss.
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1 Introduction

In the last decades serious researches were carried out advancing the algorithmic
capabilities resulting in the evolution of parallel and distributed processing. A great
attention has been paid to these improvements leading to the increasing popularity
of distributed and high performance computing (HPC). In parallel, cloud computing
[14] has become a mainstream method. In the field of IT, professionals accepted
the challenge, therefore, nowadays information systems present virtually unlimited
possibilities for data analysis.

Due to data sets becoming increasingly large and complex (usually noted as
big data), these new paradigms cannot be ignored [1]. However, to take advantage
of todays state of the art computing, previous data processing methodologies and
workflows have to be revisited and redesigned. In addition, the overwhelming
amount of data leaves less room for user interaction and requires more automation
on behalf of the processes.

The new paradigms have also reached geographical information systems (GIS)
and remote sensing image analysis leading to the development of spatial cloud
computing [50]. Multiple solutions have been presented in many areas utilizing
cloud technology for processing big spatial and remote sensing data. These solutions
present a dedicated approach to a specific environment [2, 19, 32]. In contrary, most
spatial data analysis processes performed at organizations such as the Institute of
Geodesy, Cartography and Remote Sensing (FOMI) have their evolved workflows
using multiple (proprietary and open-source) software and GIS expertise [13, 34].
Most tasks are semi-automatic, involving some manual adjustments and fine tuning
and rather work with files instead of databases.

To demonstrate the effort required for such advancement, the workflow of flood
and waterlogging detection was chosen as case study. We highlight the main ob-
structions here. First, this process consists of several steps including interaction
from a remote sensing expert. Note that this fact avoids the automation. Second,
as high-resolution satellite imagery is used as input data, in some cases the size of
input is too large to be handled by a single machine. Last, an important aspect
is that sometimes the results are required within a limited time frame. To satisfy
all criteria, a distributed, scalable approach embedding full automation and also
providing high performance is required. Hence, the advancement of the workflow
requires both architectural and algorithmic considerations. In this paper, a solution
that meets the above described criteria is presented.

The main contributions of the paper are

e the study about how our previously researched methodology was put into
practice,

e the introduction of a method for adapting object based thematic classification
in a distributed environment, and
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e the adequate evaluation of the advanced workflow highlighting accuracy and
performance capabilities.

The rest of the paper is arranged as follows. Section 2 presents the case study
by describing the current solution for flood and waterlogging detection, require-
ments and project objectives. Section 3 presents related work and background of
the project. Section 4 details the proposed solution from both algorithmic and
architectural point of view. Section 5 presents performance and accuracy results.
Section 6 concludes the paper.

2 The process of flood and waterlogging detection

Waterlogging and flood detection is an operative task at FOMI [12]. As part of the
disaster recovery project it helps to estimate the measure of logging damage and
foresee the time of water withdrawal.

Sometimes the operation is performed in emergency cases, where quick reaction
is required [8]. Although real-time evaluation is not necessary, to enable decision
makers to react based on up-to-date information the process must be performed in
a limited time frame. Thus, the operation cannot take more than a few minutes,
and should not require user interaction (as an expert may not be available at
the specified time, or cannot respond with the required speed). As both floods
and waterlogging may occur over large areas, multiple high resolution aerial and
satellite imagery must be processed within the time frame, requiring either high
performance or parallel computation.

As it can be seen, the process must satisfy multiple criteria with respect to per-
formance and execution time to be useful in emergency situations. Unfortunately,
the current solution, which relies on supervised classification techniques cannot
satisfy the above mentioned conditions.

2.1 Supervised classification

The currently used flood detection method is based on satellite image analysis
primarily using SPOT 5 and Landsat 8 imagery. The solution program is running
mainly in the FRDAS Imagine environment but additional custom tools are also
required.

The workflow consists of two steps.

1. Preprocessing of satellite images, including: image registration and geometric
corrections (only required on raw images), cloud and cloud shadow filtering
for producing a cloud mask, computation of the Top of the Atmosphere (ToA)
reflectance and spectral indices.

Cloud and cloud shadow masking is an important step in the preprocessing
phase, because cloud shadow and water can be spectrally similar. ToA re-
flectance [18] represents the solar radiation incident on the instrument in stan-
dard unitless terms, independent of the position of the sun with respect to the
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earth. Spectral indices [33] are designed to convert spectral reflectance into
biophysical information that can be interpreted directly by the user. Three
indices are used for the process, namely vegetation (NDVI), soil (NDSI) and
water (NDWI) that can be computed based on the red, near infrared and
short-wave infrared bands of the source image. ToA reflectance and spec-
tral indices can be computed automatically for each pixel if proper satellite
metadata is available.

2. Classification of the images based on multiple input data, namely the cali-
brated (ToA reflectance) image, the spectral indices, the cloud mask and the
mask of natural waters (rivers and lakes).

The classification process uses multiple thresholding operations based on com-
puted parameters (15 threshold values), and other parameters specified by the
remote sensing expert. These values are not predefined and not precomputed,
but adjusted by examining the result of the classification. Also, the parame-
ters have to be re-set for each image, and unique starting values are used for
different satellites. Thus, the processing time of a set of images relies mainly
on the manual recalibration time, and can take multiple hours. The thresh-
olding is also pixel based, without taking any information of neighboring cells
into account.

The process results a thematic map with the following categories: natural wa-
ters, waterlogging, seriously affected soil, moderately affected soil, weakly affected
soil, vegetation in water, dry areas, clouds and not supported areas. Figure 1 shows
an example.
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Figure 1: Flood and waterlogging detection

The final result of the analysis can be ranked as excellent but this quality is
obtained in an elaborated and cumbersome time consuming way. Although utilizing
human expert knowledge has benefits with respect to accuracy, the current solution
relies on manual intervention beyond the optimal measure. The complete algorithm
is presented in Algorithm 1.
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Algorithm 1 Supervised classification algorithm.

Funct Classification(image, metadata, imagepater, th, . . ., thy)
1: ¢mage < Preprocess(image) Perform required preprocessing
2: imagecioud + MaskClouds(image) Compute cloud mask
3: imageiqass < Image(image) Crreate the classified image
4: for all pizel € image do
5. pizelyq + ToARef(pizel, metadata) ToA reflectance using metadata
6:  pirelinder < Splndex(pizelinq) Spectral indices based on reflectance
7. if pizel € imageyqter then
8: pizelogss < 1 Delineate natural waters
9: else

10: if pizel € imagecioua then

11: pizelogss < 9 Delineate clouds

12: else

13: pixelelass < Th(pizelioq, pixelindes, thi, ..., thy)

14: Threshold all categories

15: end if

16:  end if

17: end for

18: return image iqss

2.2 Considerations for enhancement

As seen in Section 2.1 there is much room for improving the current solution to
be usable in all cases, especially in emergency scenarios. At the beginning of the
project, the following considerations were made.

e The solution must handle the analysis targeting large areas within a valid time

frame. The input data may consist of several high-resolution satellite images,
the size of which fall between a hundred megabytes and a few gigabytes. The
entire dataset may have a size up to multiple terabytes. Additional data
may also be provided in the future, such as aerial imagery or digital elevation
models (DEM).

The process must enable fully automated execution of the workflow. Limited
compromise can be made with respect to accuracy for performance benefits.
However, manual corrections and fine-tuning must also be permitted in the
event of more accuracy and less performance is required.

As separate areas (images) can be analyzed individually, the process can be
parallelized to speed up the workflow.

The entire process should be executed by a single software and not multiple
applications. As the current solution relies on different software, data must
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be loaded and saved multiple times causing a performance bottleneck. Also,
proprietary software should be eliminated from the process.

With respect to the execution environment, a widespread cloud computing plat-
form is required due to multiple reasons.

e The platform should scale with the amount of data.

e Available commodity hardware can be integrated into the platform and can
be utilized depending on additional usage.

e External providers (e.g. Amazon S3) can be resorted to if the available hard-
ware is not capable of handling the input data within a valid time frame.

For these reasons, the industry standard Apache Hadoop [6] was chosen as
execution environment. As detailed in Section 3.1 many experiments have been
performed on the Hadoop platform and the project has gained many contributions,
making it the most mature solution. Although there are many popular extensions
to the basic Hadoop environment, such as Spark [52] and Hive [47], these additions
are not specifically designed for image processing, and allow less room for cus-
tomization, thus they are not considered. Hence, the data is stored in the Hadoop
Distributed File System (HDFS) [45] and the algorithms are executed using the
MapReduce model, which can be adapted easier to handle heterogeneous image
data and function with external tools [49]. Certainly, the choice of environment
has its advantages and drawbacks [37, 46], which one must cope with.

Obviously, HPC and GPU acceleration would be alternative approaches, which
have their own history in remote sensing image analysis [36]. However, simply rely-
ing on multiple physical GPGPU machines would not enable scalability. Certainly,
GPU acceleration can also be utilized in combination with cloud computing by
allowing the local processes to run on GPU instead of the CPU [43]. This tech-
nique has been successfully applied in distributed image processing with respectful
performance gains [42]. It requires the proper graphics accelerators to be available,
but it does not influence the architecture of the approach, only the implementation
of the local executables.

3 Background

Many research has been performed on moving geographical information systems
into distributed environment to enable processing of big geospatial data [29, 30].
There are some experiments in distributed remote sensing image analysis, which
is briefly discussed in this section. Moreover, a detailed description of the AEGIS
geospatial framework is presented.
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3.1 Related studies on distributed image processing

Experimentation on distributed image processing has been performed for many
years [23] both in terms of algorithmic solutions [39] and data storage and re-
trieval [26].

When cloud computing and the MapReduce model became prominent, many
fields of computer science started shifting towards the new paradigm [25]. Unfor-
tunately, as MapReduce was primarily developed for processing simple text docu-
ments [15], handling of complex binary structures such as image formats was not
considered in early years. However, due to advancements Hadoop has become a
frequently used image processing platform [4].

Golpayegani and Halem showed that implementing image analysis operations
in Hadoop can be performed in a straightforward way [24]. By using a cell based
allocation of images, the Map phase is used both as a locator and initial proces-
sor, whilst the Reduce phase performs result summation. A different approach to
distributed image processing is presented by Alonso-Calvo et al. [3]. In this study,
images are transformed to region-based graph representation allowing operations
to work on the distributed regions. Although this method enables easy parallel
execution of most image processing operations, the region based transformation
may cause loss of information. Multiple studies also deal with image storage and
retrieval techniques [44, 51, 53]. Stand-alone tools have also been developed in
multiple fields, for example ballistics [31] and medical imaging [5].

In terms of remote sensing imagery the Hadoop platform has proven to be useful
in case of image classification. Li et al. presented a variant of parallel ISODATA
clustering that is specifically designed for the MapReduce scheme [38]. Maximum
Likelihood classification has also been ported to MapReduce [48] in a two phase
process, in which the Map phase performs sampling, and the Reduce phase is
responsible for classification. Another approach to classification is presented by
Codella et al. by using image matching and machine learning to extract land-
cover information using multiple MapReduce operations [11]. Although working
on satellite imagery, this methodology only utilizes the visible bands of the spectral
data.

It can be seen that the Hadoop framework is a potential execution environment
for many cases of remote sensing image analysis using commodity hardware. Studies
showed that a complete image management and processing framework can be built
on the top of Hadoop platform using standardized technology and open-source
software [9, 27, 40].

However, as a flexible solution is required, the algorithms cannot be directly de-
veloped for Hadoop and MapReduce, but they should follow a more broad approach
to enable their reuse on other platforms. Therefore, a generic framework is required
that offers the possibility to execute operations in Hadoop, but is not specifically de-
signed for the distributed MapReduce model. Such a general approach is presented
by the AEGIS framework.
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3.2 The AEGIS geospatial framework

The AEGIS framework [21] is a geospatial toolkit developed within a running R&D
project at Eotvds Lordnd University, Faculty of Informatics (ELTE IK), which aims
to research new approaches in geospatial data management. It supports several
kinds of geospatial data, including vector datasets, raster imagery and point clouds.
It is a platform independent library, implemented using .NET/Mono Framework
to exploit the wide possibilities and the simple usage of this object-oriented devel-
opment platform.

AEGIS has been developed by taking adaptability and extensibility in mind.
It employs state of the art programming methodologies and contains possible real-
izations of well-known standards of the Open Geospatial Consortium (OGC). The
component-based infrastructure enables the separation of working fields and the
interchangeability of data models, methods and algorithms. The extensibility also
enables marrying AEGIS with existing toolkits after the implementation of the
proper wrappers for processing environment and data model.

All geospatial data, including raster imagery is considered a form of geometry,
as defined by the Simple Feature Access (SFA) standard [28]. Algorithms are also
handled in a uniform manner using metadata for describing operation methods.
The metadata enables AEGIS to validate and optimize execution of methods and
catalog them. New methods may be added, or existing methods can be extended
to support new functionality or input data. Methods can have different repre-
sentation and different restrictions in terms of operations. For example, Lanczos
resampling [41] of an image may be performed using interpolation formula or using
a precomputed table. These two variations can become operations of the Lanczos
method with the latter used in imagery with small radiometric resolution. If not
specified directly, AEGIS is responsible for selecting the appropriate operation for
the specified method and input data.

AEGIS also supports data management and processing within Hadoop [22].
The framework enables the handling of complex binary input data in Hadoop,
such as the GeoTIFF format, including image content and attributes. Input data
may also be partitioned based on multiple properties to enable parallel processing
of a single source on multiple nodes. Operations can be execution as Map or
Reduce functions within the MapReduce process without any alteration. This
approach does not require reimplementation of the operations, it simply relies on
the replacement of the execution environment. However, this approach only applies
to operations, where local computations yield the final result. In case of regional or
global methods, the operation must be properly investigated whether its application
on the individual parts yields the same result. If not, the proper alternative must
be specified and implemented. The alternative may come in the form of the original
operation and some additional post-processing method, thus not requiring major
effort.

For example, histogram equalization is a global operation, which requires the
complete image histogram. Applying equalization over image parts can result to
completely different outcome. Hence, equalization is applied in three steps in the
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MapReduce environment. The first step computes the histogram of the individual
image parts in the Map phase. The second step merges the histograms and com-
putes the mapping of the values in the Reduce phase. The third step applies the
mapping to the image parts in a second Map phase, creating the final result. The
overview of the operation can be seen in Figure 2.

Hadoop execution
environment

Reduce

Figure 2: Histogram equalization performed in MapReduce

In summary it can be said that although moving operations to Hadoop based
execution can be performed easily in many cases using the AEGIS framework, in
some cases it cannot be done automatically. Additionally, the adaptation of the
algorithm may have impact on the allocation of data on the distributed file system,
as it can be seen on the case study, described in Section 4.2.

4 Advancing flood and waterlogging detection

To meet the requirements defined in Section 2.2, both automation and cloud based
distributed execution are required. Automation can be acquired by replacing the
supervised classification procedure (e.g. image thresholding) with unsupervised
classification. This approach is detailed in Section 4.1, whilst the application of the
workflow in cloud environment is described in Section 4.2.

4.1 Shifting to unsupervised classification

Unsupervised classification is performed by providing a reference dataset of manu-
ally classified areas, which are divided into two disjoint parts, namely training areas
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and test areas. Thus, the input image is first clustered (using ISODATA cluster-
ing with Bhattacharyya distance [10]), then spectral properties of the clusters are
matched to the training area.

Sets of reference data are available from previous results obtained by using the
semi-automatic approach presented in Section 2.1. As these results are fine-tuned
manually, they provide a proper set of spectral data to be used by the classifier.
However, not the entire dataset is used as reference data as spectral properties
and environmental conditions of the reference and the current images may vary.
Reference data for the specific input is selected based on image attributes, such as
sensor type, imaging time and geographic location.

With respect to accuracy, previous research [35] has shown that object-based
thematic classification [7] yields better results in most cases than traditional pixel
based methods. Therefore, the process is enhanced by prior segmentation of the
input data. The application of segmentation is not only an option, but a necessity
in the processing of high resolution images, as their pixels usually cannot be in-
terpreted individually. The segmentation results in image objects, representing a
contiguous set of spectrally similar pixels. There is a wide range of segmentation
methods available. The examined methods include sequential linking, best merge,
graph-based merge and quadtree based segmentation. These algorithms were ex-
amined in previous experiments with object based image classification [16]. The
algorithms have multiple parameters, that influence the resulting quality and num-
ber of segments.

The process also includes automatic evaluation of the result based on the test
area, for which a confusion matriz is computed. The number of correctly cat-
egorized pixels with respect to the size of the test area results in the accuracy
percentage.

Certainty, accuracy is significantly affected by parameters of the segmentation
and clustering methods, which may vary for each input image. The adjustment of
parameters can be performed by evaluating the confusion matrix, and re-executing
the algorithms with a different set of parameters. Simulated annealing is used
for fine tuning parameters starting from a set of baseline values. The fine-tuned
parameter values are then stored in a catalog indexed by image properties and
statistics (e.g. location, time, mean and variance of values). When new input data is
processed later on, the process selects fine-tuned parameters from the catalog if the
image properties can be matched. This allows the workflow to use more optimized
parameters without re-execution. Obviously, these values can be optimized even
further.

Unsupervised classification thus replaces the thresholding operations described
in Section 2.1, as the final step(s) of the process. The approach also eliminates cloud
filtering from the process, as it can also be performed within the classification. The
revised workflow can be seen in Figure 3.

Although this attitude removes the possibility of manual corrections from the

process, manual correction of the reference data is still possible, and even the final
step of the operation can be reverted back to threshold based classification if needed.



A Case Study of Advancing Remote Sensing Image Analysis 67

(a) Input image

(d) Clustering (e) Classification

Figure 3: Object based thematic classification applied to the case study

4.2 Workflow execution in Hadoop

In the Hadoop environment, processing is executed as a sequence of MapReduce
operations, consisting of Map and Reduce phases. Both may have multiple instances
executing on different nodes, identified by a key, which is propagated by the data.
Data is shuffled between the phases by Hadoop and cached using a built-in caching
mechanism. Data is allocated in HDFS in blocks, with adjustable maximum size,
and each block is processed in parallel.

The simplest approach to Hadoop is the individual processing of input images
by assigning unique keys to them. Each input image is loaded to HDFS in one
block, and is processed independently. Thus, the execution of the entire workflow
can be performed as a single Map phase. Unfortunately, due to the many transfor-
mation steps applied within the process (e.g. segments and clusters are created),
the analysis of large files may cause performance issues due to memory restrictions.

A more general approach is to partition images into multiple, individually pro-
cessable blocks, which can be performed by AEGIS beforehand. However, in order
to determine the appropriate partitioning methodology, one must examine the prop-
erties (input, working set and output) of the algorithms. Counsider the following.

e ToA reflectance and spectral index computation are local operations, and as
such the partitioning of images does not influence their computation, as long
as each pixel component is available locally. As such, both can be computed
in a single Map phase as part of the preprocessing.
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e Segmentation is a regional image operation, where spatially neighboring pixels
are required for evaluation. The examined regions are of irregular shape,
and may be different for each algorithm and even each configuration of an
algorithm. The result of the segmentation is a segment map, which can be
represented by a set of pixels for each segment.

e Clustering is also a regional operation, but in the multispectral space domain
of the image, where the location of pixels (spectral vectors) is independent of
their spatial location. Either the original image or the segment map can be
specified for input, and the output is a cluster map (similar to the segment
map).

e The reference based classification relies on the matching of the reference image
to the result of the classification. It is also performed on pixel level.

One must observe that for segmentation the image cannot be partitioned to
distinct parts, as neighboring pixels may influence the outcome. To counteract
this, a buffer zone should be created, and data located near tile borders must be
included in both tiles, as illustrated in Figure 4. From the point of segmentation,
the size of the buffer area should be chosen so that generally segments fit into the
buffer zone. This results in duplicate segments for each region within the buffer
zone, which must be eliminated before clustering.

Figure 4: Tiling an image into 4 parts with buffer zones

Elimination of the duplicate segments can be performed using the following
methodology.

e For matching segments (with the same set of pixels) one is removed.

e For segments that are subsets of another segment, there are two options. If
the segment is on the border of the buffer zone, it is removed. If the segment
is inside the buffer zone, it is kept and its pixels are removed from the greater
segment.
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e For segments which partially overlap, the overlapped region is removed from
both to form a new segment.

The presented methodology results in generally more segments, but does not
allow the causeless merging of any segment. As segmentation will be followed
by clustering, the segments will be merged together anyway if spectral properties
are similar. This post-processing of segmentation requires the pixels of the buffer
zone and the segments which are located within the zone, and can be performed
in parallel for each area within the buffer zone. For example in Figure 4 five
buffer zones can be processed in parallel. The process results in the segmentation
performed using both a Map and a Reduce phase.

It can be seen that spatial partitioning with buffering is a good choice for seg-
mentation. The resulting segments can be forwarded to clustering. As the ISO-
DATA method uses statistical properties of the segments (e.g. mean, variance,
covariance) instead of pixel data, the amount of data required for clustering is
generally less, and moving this data between nodes does not yield significant per-
formance issues. Thus, the statistics of the resulting segments are shuffled based
on their location within the multispectral space as key.

Clustering is performed in two steps. First, distinct parts the multispectral
space are processed (using a distance metric, such as Bhattacharya distance). The
number of parts can be the same as the number of tiles within the image. Second,
clusters located near the border of a part are post-processed, and merged when
required (using the same metric). This yields the final clusters, which are forwarded
to each tile of the original image to create the cluster map of the tile. Again, the
algorithm can be performed using a Map and a Reduce phase.

As for classification, the training area is matched against the cluster map. As
the spatial location of the training data varies, the computation of class mapping
is performed on the appropriate tile(s). The mapping is then forwarded to all tiles,
creating the classification map. Classification requires a Map phase for matching, a
Reduce phase for combining the matches, and another Map phase for applying the
matches to all tiles. Hence, the algorithm is finished after five MapReduce processes
(some of which lack the Reduce phase). The complete algorithm is presented in
Algorithm 2.

For accuracy testing, the test area is applied in the same manner, and the
confusion matrices of all tiles are aggregated for accuracy measure. Hence, accuracy
measure requires an additional MapReduce process.

The presented approach is generalizable with respect to multiple input files (e.g.
satellite image strips of an area). Hence, not only the processing of the individual
images can be managed in this manner, but also the combined processing of all
images. Segments can be adjusted on overlapping areas, whilst clusters can be
adjusted uniformly for all images. This approach may also contribute to accuracy.

To summarize, three different workflow concepts are available.

e Individual processing of images and image tiles. Each process can be run in
parallel in a single Map phase, and there is no communication between the
processes.
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Algorithm 2 Distributed unsupervised classification algorithm.

Funct Classification(image, metadata, re ferenceirqin)

1: for all tile € image do

2 tile + map(Preprocess, tile) Perform required preprocessing
3:  tile + map(Segmentation, tile) Perform segmentation of tiles
4: end for

5: for all zone € Bufferzone(image) do

6: segments < reduce(Eliminate, zone, SegmentsOfZone(segments))

7 Perform elimination of duplicate segments
8: end for

9: for all tile € image do

10:  clusters + map(Clustering, SegmentsOfTile(segments))

11: Perform clustering of tiles
12: end for

13: for all nearClusters € NearClusters(clusters) do

14:  clusters + reduce(MergeClusters, nearClusters)

15: Merge clusters near tile borders
16: end for

17: for all tile € image do

18:  classMatch < map(Classify, tile, referenceirqin, clusters)

19: Perform classification based on training data
20: end for

21: classification + reduce(Combine, classMatch)

22: Combination of the matches

23: for all tile € image do
24:  tilecass < map(Apply, classification)

25: Apply the classification to the image
26: end for

27: return imagecigss

28: The classified image is the combination of classified tiles

e Individual processing of images, but joint processing of image tiles of a single
image. This results in communication between the corresponding processes
in case one or more images are tiled.

e Joint processing of all images. This results to wide range communication
between the individual MapReduce processes independently of image tiling.

5 Evaluation
The advanced flood and waterlogging classification method is evaluated based on

both algorithmic and architectural aspects. First, accuracy is measured with re-
spect to results of the supervised classification method presented in Section 2.1.
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Then, performance of the implementation is measured in cloud environment.

5.1 Algorithmic accuracy

As described in Section 4.1, the revised workflow relies on unsupervised object
based thematic classification. First, segmentation is performed on the image using
one of the specified algorithms, the are clustered (using the ISODATA method),
and finally, classification is performed based on the chosen training areas.

Accuracy of the results is measured by evaluating the categories on the test
area using the confusion matrix. Multiple factors are involved that influence the
accuracy of the algorithm, such as the selection of segmentation method, the opti-
mization of parameters (using simulated annealing) and the selection of reference
areas. The reference area is selected from the classification result of the supervised
classification. As the supervised result is fine tuned for accuracy, it is a proper
choice for evaluation.

As described in Section 4.1, parameters are set to a baseline value, that was
determined by experimentation with multiple datasets. The baseline parameters
can be seen in Table 1. Later, parameters are fine tuned for each image, resulting
in near optimal values.

Method | Parameter | Value
Homogeneity criteria (Cpr) 0.03

Sequential linking segmentation | First ANOVA threshold (Cy) 0.005
Second ANOVA threshold (C3) | 0.01

Best merge segmentation Number of iterations 15
Merging threshold (T') 10

Graph-based merge segmentation | Scale of observation (k) 250
Minimum object size (mos) 0.015

Quadtree based segmentation Minimum quad size (mgs) 2
Homogeneity threshold (ht) 0.2

. Initial number of cluster 1000

ISODATA clustering Maximum distance from center 0.8

Table 1: Baseline parameters for the individual methods.

A total of 30 Spot 5 images were tested in different scenarios with over 80 test
runs. All images were classified beforehand using the supervised workflow. The
results are visible in Table 2. Accuracy is presented with respect to baseline values
for all images and the best result gained by optimizing parameter values for a single
image. In the baseline case minimum, maximum and mean values are listed.

Previous experiments showed that there is no segmentation algorithm that per-
forms best in all scenarios [17]. This was reflected in the current test as well. The
accuracy of the segmentation method is highly influenced by the optimization of
the parameters. Based on the mean and variance of the results, graph-based seg-
mentation [20] performed best in most cases. Also, this method seemed to be less
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. Baseline Optimized
Segmentation method Mean | Min | Max Max
Sequential linking 79.6 | 53.2 | 88.9 94.3
Best merge 819 | 714 | 87.1 88.5
Graph-based merge 87.7 | 81.3 | 91.2 93.8
Quadtree based 84.5 | 66.9 | 91.9 92.3

Table 2: Accuracy results (in percentages) with respect to parameter optimization.

effected by the individual image conditions.

It must also be noted that some differences were found depending on the tiling
of the image. Executing the workflow on the tiled image without any buffer area
resulted up to 13.2% less accuracy than processing with 200 pixels of buffer area.

Finally, the workflow using graph-based merge segmentation was selected for
evaluation in joint processing of the entire dataset. Using this approach the average
accuracy for baseline parameter values was raised to 90.2%, over 2% more than by
separate processing of images. Although this value is still less than the accuracy in
case of optimized parameters, the workflow executed much faster, as no multiple
iterations are required for fine tuning of parameters.

5.2 Performance in the cloud

The performance of the revised workflow was measured in a Hadoop cloud consist-
ing of 16 virtual machines. The configuration of the machines included a single
thread 3 GHz processor and 8 GB system memory. Although the number of ma-
chines is far less than the size of a common computational cloud, this set of nodes
enables the examination of system behavior in processing a single high resolution
remote sensing image partitioned into multiple tiles. As each image is processed
individually (when not performing joint processing of all images), the combined
performance of the entire cloud will not differ greatly from the case of processing
a single image. Naturally, when working with a large collection of source images a
greater cloud is required.

The processing time of a single image is dependent on multiple factors, including
the segmentation method and parameter fine tuning. Images of three different size
have been tested to evaluate the behavior of individual methods with respect to
image size. The dataset includes small (1920 x 1780), medium (3940 x 3690) and
large (7880 x 7380) size SPOT 5 satellite imagery. Also, images are partitioned
up to 16 tiles. Thus, the workflow of an image partitioned into n tiles is different
than the workflow for processing n individual images, as it is performed in multiple
MapReduce functions.

Figures 5, 6 and 7 contain the results of performance evaluation of execution
with different image size and number of tiles. Note, that these results only contain
the execution time of classification (e.g. MapReduce jobs), and do not contain the
time of Hadoop job initialization and the partitioning of images. As partitioning
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is performed during the allocation of the image in HDF'S, the additional execution
time is only marginal in comparison with the uploading of the image using the
standard HDF'S access channels.

T T I
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24 - —+— Best merge -
29 | —— Graph-based merge | |

21 Quadtree based |

18 -
16 -
14 -
12 -
10 -

Time (seconds)

N = O 00
T

L
1 2 4 8 16

Number of tiles

Figure 5: Average execution time on small images

As expected, the selection of segmentation method greatly influences execution
time of the algorithm. Generally sequential linking performs the fastest, whilst
graph-based merge segmentation is the mostly influenced by image size, and it
takes the most time win case of large images.

Naturally, partitioning the image into multiple tiles greatly improves perfor-
mance. The additional processing time required for post-processing (e.g. elimi-
nation of duplicate segments, data shuffling) is more noticeable in case of small
images, and with larger imagery, the overhead can be reduced to 10% of processing
time.

Based on the experimental results, object based classification has proven to be
a valid choice both in terms of accuracy and performance. For segmentation the
graph-based method is suggested. The tiling of images comes with great perfor-
mance benefit.

6 Conclusion and future work

The paradigm shift to cloud computing can be a tough challenge, and usually
requires a great deal of effort, because data management has to be reconsidered,
algorithms have to be redesigned.
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Figure 6: Average execution time on medium images
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Figure 7: Average execution time on large images
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In this paper, flood and waterlogging detection was presented as a case study.
The algorithm is a good candidate for advancement, as the current solution does not
satisfy all requirements and cannot be applied in all scenarios. The workflow was
enhanced both in terms of architecture and algorithm — enabling quick automated
response using unsupervised classification. The complete reimplementation was
avoided, as algorithms developed for single machine environment can be applied in
the distributed environment by following our methodology. Usually, the application
of the methodology requires the introduction of additional post-processing opera-
tions, however, the cost of implementing these operations is far less than starting
from scratch.

Experiments showed that the automated workflow provides over 90% accuracy
with respect to the original algorithm, which is more than enough in most cases.
The results can be computed within a matter of minutes if the cloud environment
is large enough. Although this process does not involve user interaction, expert
knowledge is built into the system as the reference areas are selected from the
supervised classification results.

In its current form, the process is already applicable, but further study will be
performed to enable more accuracy and better responsiveness. To aid in special-
izing the process for performing well even in any edge cases further clustering and
segmentation algorithms will be added. To wider the set of usable execution envi-
ronments shifting local processing to utilize GPGPU computing will be examined
as well.
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