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Abstract

Parallelism and concurrency are one of the most actively researched fields
in Computer Science. Writing concurrent programs is challenging because of
the need for synchronization and solving possible race conditions and dead-
locks while avoiding unnecessary waiting and overhead.

The integrity of the program data can be archived by providing locks for
its data structures or using concurrent data structures. Partial locking allows
threads to lock exactly those parts of the global data they need to read or
update.

This article presents a method that helps the implementation of thread-
safe programs with Algebraic Data Types [1]. By transforming the data
model of the application to thread-safe data structures with a built-in, con-
figurable locking mechanism including partial locking. With this support, the
programmer can focus on the business logic of his application when writing
the program. As part of this article, we prove that the shared version of the
calculation will produce the same result as the original one.

Keywords: concurrency, partial locking, functional programming, Algebraic
Data Type (ADT), representation synthesis, type transformation

1 Introduction

Programming parallel algorithms is complicated when the representation of busi-
ness data is mixed with different synchronization primitives that must be used with
their own separate handling functions.

We offer a solution to transform program data into a representation that is
thread-safe, in the functional language Haskell. Our goals are to enable the pro-
grammer to parallelize a program without having to reimplement parts of the so-
lution, and change how the representation can be used by multiple threads.

The solution is composed of generating the type of the shared representation,
transforming values into the representation, generating accessors for the shared
representation and functions that act like the constructors of the original data
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Figure 1: Sharing version of a program that calculates a single result
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Figure 2: Sharing version of a program that runs continuously

type. Generating constructor functions and references helps the programmer to
adapt his program for concurrent execution.

To be able to quickly change how multiple threads can work on the data struc-
ture. This paper describes a method to control the way program data is shared.
This information is separated from the program logic. This is called the sharing
configuration of the program. The configuration declares how the access to the
program state is controlled.

Every type can be configured independently to define the protection for in-
stances of the given type in the database (the state of the program). In our solu-
tion, the synchronization in shared programs is data-centric. The synchronization
primitives are parts of the data structure. This way, the usage of these primitives
can be guaranteed.

The execution of a program using our sharing method is done in three phases,
as seen on Figure 1.

1. The problem is analyzed and the correct initial state of the program is shared.

2. The problem is solved by a number of threads working on the shared repre-
sentation.

3. The result state is merged.

If the program runs continuously its state can be inspected any time while it is
running, as seen on Figure 2.
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1.1 Background

Hawkins et al. described a system [2] where data structures are synthesised from an
abstract relational specification and a decomposition. A relational specification is
similar to the pure ADT we use and decomposition is similar to our configuration.
They applied the theory to concurrency in a subsequent paper [3].

We emphasize controlling the granularity at which the generated parallel com-
putation locks objects. It can have a significant impact on the overall performance.
This topic is thoroughly inspected at the context of automatically parallelized pro-
grams in [4].

Our method is practice-oriented, and that was inspired by Simon Marlow’s book
on the practical side of parallel programming in Haskell [5]. It has excellent chapters
on MVars and Threads, and parallel programming using threads.

Other technologies exist for parallelizing algorithms. The Java streams [6] and
C# PLINQ [7] can be used to parallelize a collection. Each thread is working on
a separate part of the collection. Our goal is to parallelize heterogeneous data
structures, not just homogeneous collections, and to enable different threads to
access the same data in a thread-safe way.

Combining parallelism with partial locking as a method to enable multiple
threads to access different parts of a data structure is a well known and thoroughly
researched topic in the field of database design [8].

Data structures in Haskell can be defined by Algebraic Data Types. A simple
ADT has the form TCt tv1 . . . tvn = DCt t1 . . . tn. TCt is the type constructor,
tvi are the type variables, DCt is the data constructor and ti are the types of the
arguments of the constructor. The type variables can appear inside the types of
the arguments. On the right side there can be more constructors, separated by |.

From this point, this paper will assume that the reader has some understanding
of concurrency, threads, polymorphism and Algebraic Data Types.

2 Partial locking

Partial locking is a way to share a data structure and enable working threads to
lock parts of it without interfering with each other. This can improve the scalability
and performance of the whole program, because it reduces the time each thread
spends waiting. The resulting data structure still ensures consistent use by multiple
threads.

The shared database supports two kinds of locking: read locks and write locks.
Reader threads can access the same part of the data concurrently. A thread cannot
lock a part of the data for writing if another thread reads or writes the data or
some part of it at that time. If the system is configured right, each thread will only
lock the data part it needs for the computation.

For example, take a list of some type. If different elements of the list should be
operated on independently but elements can only locked by one thread, it can be
manipulated by partial locking.
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2.1 Producing shared representation of a data type

Lets define the following data types for constructing the shared representation.

Definition 1. Elements of the Skeleton representation

• Memn is a simple tuple type for collecting n members of arbitrary types. We
defined a function for constructing them. (In the following definition the left
side is the type declaration and the right side is the constructor definition. In
this case the type name and the constructor name are the same.)

Memn t1 ... tn = Memn t1 ... tn
memn = Memn

• Altn is a union type that can have n states each having a value of possibly
different types. The function altn;i creates the ith alternative of the possible
n.

Altn t1 ... tn = Altn;1 t1 | ... | Altn;n tn
altn;i = Altn;i

• Skeleton is a composition of the Memn and Altn types.

The Skeleton representation is a subset of ADT types.

2.2 Node types

There are five different node types, each representing a unique way to control ac-
cessing the shared representation between threads. As it can be seen on Figure 3,
they can be ordered by how much paralellism they allow. Of course, more power-
ful locking mechanisms have a higher cost in terms of computation and memory
overhead.

• Clean states that the configured data type must not be converted into a
shared representation. Clean data cannot be accessed by multiple threads.
Clean data in itself is immutable, but it can be part of a mutable database.
Clean representation has no additional costs.

• Noth provides no extra protection for the data. It is similar to Clean, but the
parts of the data configured to Noth can have a different configuration.

• Prim guarantees mutual exclusion for a part of the data. At any time of the
execution, only one thread can have access to a part of the database that is
configured to Prim. Threads trying to access the protected data will queue
up, and access the resource in a first-come-first-served (FCFS) order. Prim
is relatively low-cost, it is implemented by one synchronization primitive.
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Clean

Noth

Prim Multi

Fair

Figure 3: Different levels of support for multi-threading

• Multi allows multiple threads to access the data structure if their actions do
not interfere. This applies to multiple reader threads or threads updating
different parts of the data. However, it does not guarantee fairness. If a
thread would like to gain exclusive access to the data, it may have to wait
forever, if threads that can share the data access it frequently. Multi is more
expensive than Prim.

• Fair provides a protection that allows non-interfering threads to work si-
multaneously and guarantees fair FCFS access for all threads. Fair nodes use
concurrency primitives to implement a shared lock [9], but their cost is higher
than that of Multi nodes.

It is clear that a good configuration strategy is needed to reach an optimal
performance. Common sense dictates that nodes on the upper level of the rep-
resentation are configured to high-level types and nodes on the lower level (that
appear in higher numbers) are configured to types with low cost. Typically prede-
fined types like Char, String and Int are configured to Clean.

As it was mentioned, each type can have different configurations. If different
instances of the given type should be given different protection levels, the original
type should be configured to the neutral node type Noth and wrapper data structures
can be introduced with a different configuration. There is no default configuration,
so each type that can be a part of the shared program state must be configured.

3 Context dependent references

References are first-class functional accessors that enable getting, setting and up-
dating the accessed value in a context. They are implemented as a package on
the package repository Hackage [10]. A reference represents a method to access
information from a given object. They are interchangeable when their types are
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the same. So a reference that accesses some information of type A (the accessed
element) through an object of type B (the context) can be replaced by another
reference for A through B.

Definition 2. Reference
Let ref : sw⊲ ar be a reference iff

• s, a are types. s is the type of the context and a is the type of accessed element.

• w and r are type constructors and monads [11]. w is called writer monad, r is
called reader monad.

• get ref :: s → r a

• set ref :: a → s → w s

• update ref :: (a → w a) → s → w s

Definition 3. Composition of references
Lets define the composition of two references marked with the & operator:
& : aw⊲ br → bw⊲ cr → aw⊲ cr

• get (r1 & r2) s ≡ get r1 (get r2 s)

• set (r1 & r2) x s ≡ update r1 (set r2 x) s

• update (r1 & r2) f s ≡ update r1 (update r2 f) s

Definition 4. Member reference
Let the reference m : sw⊲ ar be the jth member reference iff

• s has only one constructor: s ≡ Ctr t1 ... tn

• get m (Ctr t1 ... tj ... tn) ≡ return tj

• set m b (Ctr t1 ... tj ... tn)

≡ return (Ctr t1 ... b ... tn)

• update m f (Ctr t1 ... tj ... tn)

≡ return (Ctr t1 ... (f tj) ... tn)

Member references can have arbitrary w and r parameters, but they cannot
perform actions except for returning the referenced value.

Definition 5. Structural reference A reference is a structural if it is a member
reference or it can be created by a composition (by the & operator) of member ref-
erences.

A structural reference accesses some information that is inside the object.
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4 Automatic generation of shared references and

constructors

Because of the complexity of the shared representation, it would not be a feasi-
ble solution to burden the programmer with rewriting his code to use the shared
representation. Instead we provided a way to generate constructor functions and
references for the shared representation of the data structure, according to the con-
structors of the original data structure and normal references that can be generated
for accessing its fields. The bodies of these references are generated according to
the configuration of the types that are part of the representation.

For this reason defining a number of simple references for the node types, ac-
cessing the protected data.

The implementation of this automatic generation of references and constructors
is using Template Haskell (TH) [12]. TH is a library for generating and inspecting
the Abstract Syntax Tree (AST) of a Haskell program. It can only add new elements
to the program, but cannot change the already defined parts. Program fragments
can be inspected by looking them up using their names with the reify function,
but the implementation of functions cannot be seen. To access the implementation,
TH can process parts of the AST by receiving them directly as an argument.

We decided to store the configuration as instances of type families, because it
can be queried from TH easily.

4.1 Generating references

The generated references are composed of two parts. The first part is a tuple
reference for the index of the member accessed by the reference. Tuple references
are simple means to access the nth field of a simple data structure parametrized
by the types of it’s members (for example, a pair, triplet, and so on).

The second part is a reference accessing the protected data from a node type.
These references will be generated by inspecting the configuration for a given type,
and can access the data in a protected, thread-safe way, depending on which kind of
protection does the representation offer. These are the _clean, _noth, _prim, _multi
and _fair references.

For example, given a normal representation of a log record with a configuration:

data Log

= Log { _msg :: String

, _loggingDate :: Time

}

type instance Node String = Clean

type instance Node Time = Prim

Calling the generator function makeSharedRefs with the quoted name of the Log

datatype will create the following references:

msg :: Simple IOLens (Shared Log) String
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msg = _1 & _clean

loggingDate :: Simple IOLens (Shared Log) (Shared Time)

loggingDate = _2 & _prim

4.2 Generating constructors

The generated constructors provide a way to build up larger shared data structures
from smaller ones. The alternative method is to build up the data structure in its
original representation and have to share it after that.

The shared constructor takes the shared arguments, creates the protection prim-
itives for thread-safety and builds up the shared structure of the data to contain
these protection primitives.

For example, lets inspect what kind of constructor functions would be generated
from a list of log messages, if [Log] (list of Logs) is configured to Multi and Log

is configured to Prim. First lets take a look on the original definition of the list:
data [a] = [] | a:[a]. The type variable a will be replaced by Log. From [] the
%[] operator will be generated, and from (:) the (%:) operator will be created.
Finally the following functions will be generated after calling makeSharedCons on
the quoted type expression of [Log].

(%[]) :: IO (Shared [Log])

(%[]) = return (Alt2_1 Mem0)

(%:) :: Shared Log→ Shared [Log]→ IO (Shared [Log])

(%:) x xs = do d ← newPrim x

ds ← newFair xs

return (Alt2_2 (Mem2 d ds))

It was an implementation challenge to enable the user to create constructor
functions for concrete types, because the original constructors belong to the general
type. But it was solved by taking the types of the constructors and transforming
them by replacing the type variables with their actual types.

5 Formal definition of transforming types and val-

ues to their shared representation

Lets define a transformation of a type in a general way, according to a given type
mapping C. We will refer to this transformation with TrfC .

Definition 6. Generic transformations of types

TrfC : Raw→ ExtendedSkeletonC

Where Raw is the set of all types, and ExtendedSkeletonC ⊆ Raw is the set of all
types that can be constructed using Altn, Memn applying the type-level function C.
The function C has the type of Raw → ExtendedSkeletonC.

If T is a scalar type, TrfC T = T
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If T is not a scalar type, then T has n constructors with r1, r2 ... rn fields:
T = Ctr1 m1;1 ... m1;r1 | ... | Ctrn mn;1 ... mn;rn

In this case

TrfC T = Altn (Memr1 (C m1;1) ... (C m1;r1))

... (Memrn (C mn;1) ... (C mn;rn))

Definition 7. Generic transformation of values
We should also define the corresponding transformation of values, according to

a given value-level function c:
trfc :: (t → TrfC t) where c is s → TrfC s

If t is a scalar type, trfc v = v

Otherwise if t has n different constructors,
trfc (Ctri mi1 ... miri) = altni (memri (c mi1) ... (c miri))

Definition 8. Mappings for sharing
And then we can define the mappings that give sharing as our transformation:

Let conf be a configuration given by the user, declaring how much multi-threading
support is needed for the configured types.

Shconf t = t if conf t = Clean

Shconf t = TrfShconf
t if conf t = Noth

Shconf t = Prim (TrfShconf
t) if conf t = Prim

Shconf t = Multi (TrfShconf
t) if conf t = Multi

Shconf t = Fair (TrfShconf
t) if conf t = Fair

shconf :: t → Shconf t

shconf v = v if conf t = Clean

shconf v = trfshconf
v if conf t = Noth

shconf v = newPrim (trfshconf
v) if conf t = Prim

shconf v = newMulti (trfshconf
v) if conf t = Multi

shconf v = newFair (trfshconf
v) if conf t = Fair

Note: use of IO monad and its binding is omitted for the sake of simplicity.

Share = TrfShconf

share = trfshconf

6 Proof of the semantic equivalence between the

original and the shared version

Definition 9. Homomorphism
The function family h is a homomorphism from A to B for references r1, r2 ...

rn iff

• h = (hs, hr), where hs : A → B is the mapping of original values and hr :
A ⊲ a → B ⊲ a is the mapping of references.
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• For every reference ri : A ⊲ a where i ∈ [1, n]

– get ri ≡ get (hr ri) ◦ hs

– hs ◦ set ri x ≡ set (hr ri) x ◦ hs

– hs ◦ update ri g ≡ update (hr ri) g ◦ hs

Theorem 1. Homomorphism and composition

If (hs,1, hr,1) is a homomorphism for a set of references R1 and (hs,2, hr,2) is
a homomorphism for a set of references R2 then (hs, hr) (hs = hs,2 ◦ hs,1, hr =
hr,2 ◦ hr,1) is a homomorphism for references {r : r ∈ R1 and hr,1 r ∈ R2}

Proof. The proofs for the equations of get, set and update:

get (hr r) (hs s)

≡ get ((hr,2 ◦ hr,1) r) ((hs,2 ◦ hs,1) s)

≡ get (hr,2 (hr,1 r)) (hs,2 (hs,1 s))

≡ get (hr,2 r’) (hs,2 s’)

≡ get r’ s’

≡ get (hr,1 r) (hs,1 s)

≡ get r s

set (hr r) x (hs s)

≡ set ((hr,2 ◦ hr,1) r) x ((hs,2 ◦ hs,1) s)

≡ set (hr,2 (hr,1 r)) x (hs,2 (hs,1 s))

≡ set (hr,2 r’) x (hs,2 s’)

≡ hs,2 (set r’ x s’)

≡ hs,2 (set (hr,1 r) x (hs,1 s))

≡ hs,2 (hs,1 (set r x s))

≡ (hs,2 ◦ hs,1) (set r x s)

≡ hs (set r x s)

update (hr r) f (hs s)

≡ update ((hr,2 ◦ hr,1) r) f ((hs,2 ◦ hs,1) s)

≡ update (hr,2 (hr,1 r)) f (hs,2 (hs,1 s))

≡ update (hr,2 r’) f (hs,2 s’)

≡ hs,2 (update r’ f s’)

≡ hs,2 (update (hr,1 r) f (hs,1 s))

≡ hs,2 (hs,1 (update r f s))

≡ (hs,2 ◦ hs,1) (update r f s)

≡ hs (update r f s)

These three equations prove that the composition of homomorphisms is also a
homomorphism.

Definition 10. Transformation of references (refShare)

As already seen in Section 4.1, a structural reference ref : sw⊲ ar can be trans-
formed into a distributed representation.
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If the reference ref is a structural reference composed of member references
m1, ..., mn then refShare (m1 & ... & mn) ≡ refShare m1 & ... & refShare mn

If ref is a member reference accessing the jth field of the constructor
refShare ref ≡ _j & protRefconf b.

protRefconf creates the protection primitive generated by share and is defined as
follows:

protRefconf v = _clean if conf t = Clean

protRefconf v = _noth if conf t = Noth

protRefconf v = _prim if conf t = Prim

protRefconf v = _multi if conf t = Multi

protRefconf v = _fair if conf t = Fair

_clean, _noth, _prim, _multi and _fair are references accessing the content of
the protection primitives Clean, Noth, Lock, Multi and Fair. Lets assume that their
implementation is correct, so

• mj ≡ get protRefconf (shconf mj)

• shconf x ≡ set protRefconf x (shconf mj)

• shconf (f mj) ≡ update protRefconf f (shconf mj)

Theorem 2. (share, refShare) is a homomorphism for member references

Proof. Ifm points to the jth field of the n fields of the constructor, the context of the
reference must be a type built by a constructor with n fields: Ctr m1 ... mj ... mn

Needed to prove that each operation keeps the homomorphism:

get m s ≡ get (refShare m) (share s)

⇔ get m s ≡ get (_j & protRefconf) (share s)

⇔ mj ≡ get (_j & protRefconf) (Memn (shconf m1) ...

... (shconf mj) ... (shconf mn))

⇔ mj ≡ get _j (get protRefconf (Memn (shconf m1) ...

... (shconf mj) ... (shconf mn)))

⇔ mj ≡ get protRefconf (shconf mj)

share (set m x s) ≡ set (refShare m) x (share s)

Evaluating the right side:

set (refShare m) x (share s)

≡ set (_j & protRefconf) x (share s)

≡ set (_j & protRefconf) x (Memn (shconf m1) ...

... (shconf mj) ... (shconf mn))

≡ update _j (set protRefconf x) (Memn (shconf m1) ...

... (shconf mj) ... (shconf mn))

≡ Memn (shconf m1 ... (set protRefconf x (shconf mj)) ... (shconf mn))

≡ Memn (shconf m1) ... (shconf x) ...(Memn (shconf mn))

Evaluating the left side:
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share (set m x s)

≡ share (set m x (Ctr m1 ... mj ... mn))

≡ share (Ctr m1 ... x ... mn)

≡ Memn (shconf m1) ... (shconf x) ... (shconf mn)

share (update m f s) ≡ update (refShare m) f (share s)

Evaluating the right side:

update (refShare m) f (share s)

≡ update (_j & protRefconf) f (share s)

≡ update (_j & protRefconf) f (Memn (shconf m1) ...

... (shconf mj) ... (shconf mn))

≡ update _j (update protRefconf f) (Memn (shconf m1) ...

... (shconf mj) ... (shconf mn))

≡ Memn (shconf m1) ... (update protRefconf f (shconf mj)) ...

... (shconf mn)

≡ Memn (shconf m1 ... (shconf (f mj)) ... (shconf mn))

Evaluating the left side:

share (update m f s)

≡ share (update m x (Ctr m1 ... mj ... mn))

≡ share (Ctr m1 ... (f mj) ... mn)

≡ Memn (shconf m1) ... (shconf (f mj)) ... (shconf mn)

Theorem 3. (share, refShare) is a homomorphism for structural references

Proof. If the reference r is a structural reference, then r is a composition of member
references: r ≡ m1 & ... & mn

From Theorem 1 it is clear that the composition of two homomorpisms will be a
homomorphism for references. From Theorem 2 is known that this property holds
for member references. This is generalizable by using the fact that the homomorph
images (transformed by refShare) of structural references will also be structural
references. Thanks to that, this is generalizable Theorem 2 to the composition of
n member references.

Definition 11. Translatable function
A translatable function is a function f of type A → A in which only references

are used to access elements of type A.

A translatable function is nearly polymorphic in its argument type because only
the use of references constrain the input and output types. This is necessary to be
able to change the representation to another form.

Definition 12. Operating reference
Lets call the subexpression s of the body of a function of type A → A operating

references iff
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• s is a reference.

• s has the context type of A.

The operating references have to be changed when the representation of the
transformed element is changed.

Definition 13. Homomorphic translation
h is the homomorphic translation of the function f of type A → A iff

• h = (hs, hr) is a homomorphism from A to B for all operating references of
f. See definitions 9 and 12.

• f is a translatable function

• An operating reference r in f is replaced by (hr r) inside the translated func-
tion.

It is trivial to prove that the translated function will have the type B → B.
The homomorphic translation is done by the programmer using the automatically
generated constructs we developed.

Theorem 4. The homomorphic translation of a function produces the same result.

a

a’ b’

b

Fhhs

λx→e

Fh (λx→e)

hs h−1
s

Figure 4: Graphical representation of Theorem 4. a represents the input data.
a′ = hs a is the homomorph image of the input data, for example, the shared
version of the input data. b = (λx→e) a is the result of the computation. b′ = Fh

(λx→e) a′.

The result of applying the homomorphic translation of a function to a shared
value is the same as applying the original function and sharing the result afterwards:
Fh (λx → e) ◦ hs ≡ hs ◦ (λx → e).

If hs is invertible (this is true in most cases, for example the distribution map-
ping) also h−1

s ◦ Fh (λx → e) ◦ hs ≡ (λx → e)

Proof. The proof can be easily constructed from the previous theorems.
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1. Because f is a translatable function, expressions of type A are accessed by
references that can be translated.

2. These references could be used with get, set or update, and can be composed
with &.

3. Because the values and references are translated by a homomorphism, the calls
of get function evaluates to the same result, while set and update functions
return the homomorphic image of the original result.

4. Subexpressions of e that are not operating references remain unchanged.

5. By structural recursion, the result will be the homomorphic image of the
original result.

Theorem 4 does not take shared constructors into account. The usage of shared
constructors is more straightforward because there is a more direct equivalence
between the original and shared constructors. So the extension of the theorem to
include shared constructors is left to the reader.

7 Case study

Code listings of the case study can be found in the appendix.

We created a case study for our method. We implemented a small application
that consists of a number of worker threads, producing log messages and sending
them through a channel to a logger thread, or querying log messages, that are sent
back on separate channels.

This case study application is implemented using our library, so the config-
uration that controls the granularity of the paralellization is separated from the
representation and the business logic.

We use a simple database representation shown on Listing 1 for the case study.
The main loop of the original body is on Listing 2. For the original representa-
tion, Feature of the reference package is used to automatically generate structural
references as it can be seen on Listing 5.

For the shared version of the case study two configurations had been written
(one of them is shown on Listing 4) to enable multiple threads to work on the same
database simultaneously. We had to wrap the database into a simple wrapper data
type and an IORef [13]. The simple wrapper is needed to let the configuration of
the outermost database type. The references for this two data types became the
prefixes of our structural references, as it can be seen in the modified main loop on
Listing 3. The code did not have to change in any other way. In the implementation
we used Haskell type families [14] for configuration.
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To measure the overhead caused by the generic definition of the program we
manually implemented the same thread-safe logging application by using the con-
currency primitives manually. To measure the net gain on thread-safe representa-
tion we also implemented the case study with simple central locking.

8 Results

In this paper we demonstrated a method to create a thread-safe representation of
an Algebraic Data Type. We inspected how types and values can be converted to
this representation. We designed how can the transformation can be controlled by
a configuration, and how distributed references and constructor functions can be
generated.

We formalized the general concept of homomorphism for references and used it
to prove that the shared computation on the shared representation yields the same
result.

A simple logging application was implemented as a case study. It had 2 different
implementations, one with using concurrency primitives for thread-safety (Manual
locking) and the other using our library to generate thread-safe representation
(Partial locking). The second approach lets the user to configure the representation
so we measured two versions of the case study. One uses Fair nodes for higher levels
of the data structure (#1), and the other uses the faster Multi nodes (#2).

The abstraction level of the alternative implementations are measured by the
number of effective lines of code, shown on Table 1, and the performance of the
implementations is measured by the number of transitions completed in a 2 second
interval, seen on Figure 5. Each implementation was tested with different number
of read and write operations.

Table 1: Effective lines of code in different implementations of the case study

Implementation Repr. eloc. Logic eloc. Conf. eloc. Sum eloc.
Manual locking 52 57 0 109
Partial locking 33 54 9 96

On Table 1 it is easy to see that partial locking can be implemented in fewer
lines than manual locking. However, the relatively low difference is more important,
because it is present in the innermost loops of the application that only contain a
few lines. As the manual locking example was implemented we needed to write the
functions for handling concurrent lists manually.

The measurements were done on a Lenovo T440p laptop, that has an Intel Core
i7™ processor with 16GB of DDR3 RAM. Each measurement was performed 20
times and the results was averaged.

On Figure 5 we can see that all solution that using primitive concurrency op-
erators (Manual locking) does not increase performance more than 25%. Manual
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Figure 5: Performance of the case study in different implementations

locking is implemented by using the concurrency primitives of GHC. Using it re-
sults a rather complicated and hard-to-maintain code for representation and usage.
The better performance of the edge cases is explained by Haskell’s lazy evaluation.
When the application mostly reads data and never writes, the reads will be much
simpler and can be performed quicker than in a balanced situation.

The results show that the library described in this paper gives a higher level
of abstraction than the concurrency primitives of GHC, its performance is close to
the performance of using the primitives.

8.1 Further work

Our method can be extended by allowing the user to transform bodies of arbi-
trary functions into a shared format, not only constructors. We would also like
to thoroughly investigate properties of references. As part of this we will search
for a solution to manage deadlocks and transactions. We intend to consider the
correctness of this method when it is generalized to arbitrary functions.

Currently our implementation is based on the GHC generics library [15]. This
stops us from using system specific types in shared data types and may cause
some performance problems. We would like to experiment with alternatives to the
generics library.
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Appendix: sample codes from the case study

data LogDB = LogDB

{ _criticalErrors :: LogList

, _errors :: LogList

, _debugInfos :: LogList

, _startDate :: Time

, _lastLogDate :: Time

}

data Log = Log

{ _loggerThread :: String

, _msg :: String

, _loggingDate :: Time

}

data LogList = LogList

{ _logListData :: [Log]

, _logListNum :: Size

}

data Size = Size

{ _sizeInt :: Int

}

data Time = Time

{ _year :: Int

, _month :: Int

, _day :: Int

, _hour :: Int

, _minute :: Int

, _sec :: Int

}

Listing 1: Representation of the case study

case q of

LogThat log→

do time ← getTime

(lastLogDate != time

>=> (debugInfos & logListData !~ (log %:))

>=> (debugInfos & logListNum & sizeInt !- (+1)))
logDB

LogQuery ch→

do n ← logDB ^! debugInfos & logListNum & sizeInt

if n > 0 then do

i ← evalRandIO (fromList (map (,1) [0..n-1]))

logDB ^?! debugInfos

& logListData & distrLogElem (fromIntegral i) & msg

>>= putMVar ch

else putMVar ch Nothing

Listing 2: Original main loop of the case study’s logger
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case q of

LogThat log→

do time ← getTime

(ioref & wrappedDB & lastLogDate != time

>=> (ioref & wrappedDB & debugInfos & logListData !~ (log %:))

>=> (ioref & wrappedDB & debugInfos & logListNum & sizeInt !- (+1)))
logDB

LogQuery ch→

do n ← logDB ^! ioref & wrappedDB & debugInfos & logListNum & sizeInt

if n > 0 then do

i ← evalRandIO (fromList (map (,1) [0..n-1]))

logDB ^?! ioref & wrappedDB & debugInfos

& logListData & distrLogElem (fromIntegral i) & msg

>>= putMVar ch

else putMVar ch Nothing

Listing 3: Main loop of the case study’s logger

type instance Node LogDB = Fair

type instance Node LogList = Fair

type instance Node [Log] = Fair

Listing 4: Configuration of the case
study representation

type instance Node Log = Prim

type instance Node Time = Prim

type instance Node Size = Prim

type instance Node String = Clean

type instance Node Int = Clean

type instance Node Char = Clean

makeReferences ’’Time

makeReferences ’’Log

makeReferences ’’Size

makeReferences ’’LogList

makeReferences ’’LogDB

Listing 5: Generating the original ref-
erences

makeSharedRefs ’’Time

makeSharedRefs ’’Log

makeSharedRefs ’’LogList

makeSharedRefs ’’Size

makeSharedRefs ’’LogDB

makeSharedRefs ’’LogDBWrapper

makeSharedCons [t| [Log] |]

makeSharedCons ’’Log

makeSharedCons ’’LogList

makeSharedCons ’’LogDB

makeSharedCons ’’Time

makeSharedCons ’’LogDBWrapper

Listing 6: Generating shared refer-
ences and constructors


