Acta Cybernetica 22 (2015) 259-292.

Methods for Relativizing Properties of Codes

Helmut Jiirgensen, Lila Kari, and Steffen Kopecki*

Abstract

The usual setting for information transmission systems assumes that all
words over the source alphabet need to be encoded. The demands on encod-
ings of messages with respect to decodability, error-detection, etc. are thus
relative to the whole set of words. In reality, depending on the information
source, far fewer messages are transmitted, all belonging to some specific lan-
guage. Hence the original demands on encodings can be weakened, if only the
words in that language are to be considered. This leads one to relativize the
properties of encodings or codes to the language at hand.

We analyse methods of relativization in this sense. It seems there are four
equally convincing notions of relativization. We compare those. Each of them
has their own merits for specific code properties. We clarify the differences
between the four approaches.

We also consider the decidability of relativized properties. If P is a prop-
erty defining a class of codes and L is a language, one asks, for a given language
C, whether C satisfies P relative to L. We show that in the realm of regular
languages this question is mostly decidable.

In memory of Ferenc Gécseg, eminent scientist and dear friend

1 Codes in Information Systems

In an information system, a source S generates messages' which, after some modi-
fications, enter a channel IC. The channel may change a message because of physical
errors or human interference or other reasons. For a given channel K, and an input
message w, let x(w) be the corresponding set of potential output messages. As-
sume the output of the source is a message u and the corresponding input to the
channel is a message y(u); then, as the output of the channel one may observe any
message v in the set x(y(u)). The output of the channel undergoes changes again,
resulting in d(v), with the aim to recover the message originally sent as closely as
possible. The technical details of this model are complicated [14]. Such details are

*Department of Computer Science, The University of Western Ontario, London, Ontario,
N6A 5B7

1On purpose we keep the notion of “message” and much of the other entities involved at an
intuitive level. A formal treatment is found in [14]. Those details would be important for the
detailed picture, but do not help with the main ideas.

DOI: 10.14232/actacyb.22.2.2015.3

260 Helmut Jiirgensen, Lila Kari, and Steffen Kopecki

provided in [14, 22]; instead, we explain the concepts and ideas intuitively only. We
ask the reader not to make any assumptions beyond what is being stated as those
might be quite misleading.

Coding theory in general assumes that a source can generate any sequence of
output symbols, albeit with differing probabilities. In reality, a source may only
generate a subset M of the set of all possible output sequences?. For instance, a
source might generate exactly the grammatically correct sentences of a given natural
language. For coding theory this changes important parts of the task. Instead of
the set of all potential messages one only needs to deal with the messages in M:
encode these messages and decode their channel outputs into messages in M.

Thus, suppose the source generates a message u in the set M. Technical mod-
ifications, which may include compression, encryption, encoding, and even modu-
lation change the message w into the sent message y(u). This is what enters the
channel. As output of the channel one finds a received message v € k(y(uw)) which
may differ from ~y(u) due the physical characteristics of the channel K. From v
one tries to reconstruct a message §(v) = u’ such that v’ € M and, ideally, such
that ' = w. Given the characteristics of S and K, the general goal is to find v and §
such that the whole system works well, whatever this may mean concretely®. The
choice of v and ¢ implicitly depends on the set M.

In general we assume that all entities in the model use discrete signals and
synchronized discrete time*. In particular this means that there are finite non-empty
alphabets © and ¥ such that the messages potentially issued by the source S form
a language M C ©T, where ©7 is the set of all (non-empty, finite) words which
can be formed using the letters in ©. X is the set of input symbols for I such that
v(©T) C ¥, where 2T is the set of all non-empty words over X. Here v need not
be a mapping, but could be a relation vy C ©F x 3 with v(u) = {u’ | (u,u’) € v}.
¥ is also the set of output symbols of the channel®. & is the input-output relation
of the channel. Thus (w,v) € k means that v is a potential output of x for input
w. The set k(w) for w € L1 may contain the empty word A, hence

k(w) = {v | (w,v) €k} CT* =TT U{\}.

In this setting d is a partial mapping of ¥* into ©* such that, ideally, §(x(v(u))) €
M for w € M. In this context, we say that v and § are encodings and decodings,
respectively. In general, C = v(0) C X7 is called the code® of .

2In a probabilistic setting, a threshold for the probability of a source output might determine
the set M.

3For instance, if S and K are defined by probabilities, one may require the following: If S sends
u and v is observed as the corresponding output, then the probability of u having been sent with
v observed exceeds the probability of u’ being sent when v is observed for all output messages
of S different from wu. For details of this probabilistic setting see [22]; for the corresponding
combinatorial setting see [14].

4This latter assumption does not exclude synchronization errors on the logical level.

5To use an output alphabet different from 3 certainly is an option, but is just a nuisance
generalization, which changes little.

6Thus a code is just a subset of 31 without any further requirements; in much, but not all of
the literature, the term ‘code’ implies unique decodability. This issue is dealt with later in this

paper.

Methods for Relativizing Properties of Codes 261

Ignoring many technical issues, v encodes messages potentially sent by & and
d decodes received messages. The basic requirement is that 6(vy(u)) = u for all
messages u. More subtle conditions may have to be satisfied, when errors need to
be taken into account.

The successful functioning of such a system of information transmission depends
very much on the properties of . In general we do not care about what happens to
messages which will never be sent”. Hence, instead of considering the set ©* of all
potential output messages over O, we focus on the set M of all potential (or likely)
outputs of S, but disregarding probabilities.

This simplifies the scenario: We eliminate the source S and the set of potential
messages completely. Instead we consider a language C' C X7 serving as a code.
The set M of potential messages is now replaced by the set L C ¥* of words which
might have to be decoded as outputs of the channel. The precise relation between
C and L will be discussed further below. Intuitively, the set C*T N L is the set of
potential encoded messages, and L is the set potential channel outputs for these.

Finally we consider properties P of codes (or encodings) in this context. In
general such a property would define the performance of an encoding in an infor-
mation transmission setting such that the code itself determines properties of the
encoding, for example: unique decodability; decoding delay; synchronization delay;
error-detection; error-tolerance; error-correction. It turns out that such properties
relativize in unexpected ways.

Obviously, when P contains a proposition of the form

Ve, ..., 0 €C Yyi,...yn €51 ..,

replacing % by the language L will change P. Intuitively, this is meant by rela-
tivizing properties of C' to L.
With these preliminaries collected, we can state the main ideas of the present

paper:

General Question. Let X be a finite non-empty alphabet with at least two el-
ements. Let L and C be non-empty languages over X. Let P be a property of
languages.

1. Define what it means that C' satisfies P relative to L.
2. With P fized, what is the influence of L and vice versa?
3. Given P, C and L, can one decide whether C' satisfies P with respect to L?

To give this question a more concrete meaning, assume that P is the property
of unique decodability: The set C = v(©) is uniquely decodable if and only if every
word in X* has at most one factorization into words in C; equivalently, C' is uniquely

"This is similar to a key argument in the proof of Shannon’s channel theorem (see [22], for
example): Messages with probability 0 contribute errors of probability 0; hence we may ignore
them and concentrate on the likely messages. Of course, messages with probability 0 can occur,
but their influence has probability 0 too; hence, for practical purposes, they are ignored.

262 Helmut Jiirgensen, Lila Kari, and Steffen Kopecki

decodable if and only if every word in CT has exactly one factorization into words
in C. In general one implicitly assumes that L = Y7 or L = C* depending on
the requirement ‘at most one’ versus ‘exactly one’. To adapt the concept of unique
decodability to the information system at hand, one would postulate only that
L C 7 and that each word in L have at most one factorization. In this case, C is
uniquely decodable relative to L.

Example 1.1. Let ¥ = {a,b}, L = (ab)™ and C = {a, ab,aab}. Then every word
in L has a unique decoding with respect to C. On the other hand, the word aab has
two distinct decodings. Hence C' is not uniquely decodable in general, but uniquely
decodable relative to L.

Remark 1.1. Let L and C be non-empty subsets of ¥ 7. Every word in L has at
most one factorization into words in C' if and only if every word in L N CT has
exactly one such factorization.

Indeed, as every word in L N CT has a factorization into words in C' and every
word in L has no more than one such factorization, each word in LNC™ has exactly
one factorization. Conversely, as the words in L \ CT do not have a factorization
at all, when the words in L N C'T have unique factorizations, then each word in L
has at most one factorization.

We now extrapolate from this idea to consider general code properties P as
discussed in [14]. We only consider error-free communication via the channel K.
Thus v = 7(u). The more general situation of errors will require several additional
difficult steps of relativization, for which we do not have a sufficient answer yet.

Earlier work with the intent to relativize various properties of codes includes
papers by Head [9, 10, 11, 12], Mahalingam [23], and by Daley, Jiirgensen, Kari,
and Mahalingam [2]. In the present paper we do not so much consider special cases,
but focus on the relativization technique itself.

To define a class of codes two intuitively different techniques tend to be used: an
essentially combinatorial approach, based mainly on the structure of words in the
language C'; an information theoretical approach, in which the coding and decoding
functions are prevalent. For a example, a prefix code C' over the alphabet 3 can be
defined as a set of words, such that no word in the set is a proper prefix of another
word in that set; this is the combinatorial view. Equivalently, C' is a prefix code
if it is uniquely decodable with decoding delay 0, the information theoretic view.
Each of these definitions may lead to an intuitively convincing relativization. When
these turn out not to be equivalent, which one should one choose? How are they
related?

We focus on this fundamental issue: How to relativize code properties of either
kind? When do revitalizations coincide? When is the relativized property decidable?

For classes of codes we refer primarily to [14]. Further information is found in [1]
and [27, 31].

Our paper is structured as follows: In the next section we introduce the notation
and basic notions. Most of this is standard, and included only to make the paper
self-contained. Some of the main unrelativized concepts are explained in that part

Methods for Relativizing Properties of Codes 263

of the paper. In Section 3 we introduce and compare relativization methods. We
review: (1) our approach of [2], which is based on a notion of admissibility; (2) the
concepts proposed by Head [11]. This analysis leads to four essentially different,
but equally well motivated, definitions of relativization. They are formally intro-
duced in Section 3.3, where also their relationship, depending on the code property
in question, is determined. Essentially, the four types of relativization arise from
different views of how a code property might be violated when restricted to a set
of messages smaller than ¥ . While each of the four versions may be considered
the “best” one, we only compare them, so as to understand what the respective
strengths are. In Section 4 we consider decidability questions. Typically: Given C,
L, P, and the type of relativization, we ask whether C' is a code relative to L with
property P and the given relativization method. The paper concludes with some
general observations in Section 5.

There is a very important, but different, line of research which focuses on the
relativization or generalization of just unique decodabilty. This traces back to work
by Head and Weber [8, 30| and Harju and Karhumiéki [7]. To our knowledge the most
recent work in this field is a paper by Guzman [6] and the thesis by Giimiigtop [5].

2 Notation and Basic Notions

The sets of positive integers and of non-negative integers are N and Ny, respectively.
An alphabet is a non-empty set. To avoid trivial special cases, we assume that an
alphabet has at least two elements. Throughout this paper ¥ is an arbitrary, but
fixed, alphabet. When required we add the assumption that ¥ is finite. A word over
Y. is a finite sequence of symbols from X; the set ¥* of all words over X, including
the empty word A, is a free monoid generated by Y with concatenation of words
as multiplication. The set of non-empty words is T, that is, ¥+ = ¥* \ {A\}. A
language over X is a subset of ¥*. For a language L C ¥* and n € Ny let

{A\} if n=0,
L"= (1L, if n=1,
{w|IueL3Ivel" ! w=uv}, ifn>1

Moreover, let
L= J r"and Lt = [L™
n€Ny neN

If P is a property of languages, then Lp(X) is the set of languages L over X for
which P(L) = 1, that is, P(L) is true. We write Lp instead of Lp(X) when ¥ is
understood. In the remainder of this paper, unless explicitly stated otherwise, all
languages are assumed to be non-empty.

Many classes of codes and related languages can be defined systematically in
terms of relations on the free monoid ¥ or in terms of abstract dependence sys-
tems. See [14, 16, 28, 31] for details. In the present paper only the following relations

264 Helmut Jiirgensen, Lila Kari, and Steffen Kopecki

between words u,v € ¥ are considered:

Property Definition Notation
u is a prefix of v: v E uX* u<,v
u is a proper prefix of v: veunt u<pv
u is a suffix of v: v E X*u u <, v
u is a proper suffix of v: veyty U <gv
u is an infix of v: v e XruX* u<; v
u is a proper infix of v: (u <o) A (u#w) u<iwv
u is an outfix of v: Fug, ug (U= urus Av € u1 X ug) u w, v
u is a proper outfix of v: (u wo v) A (u # v) uw? v

We say that v is a scattered subword of v, and we write u <}, v, if, for some n € N,
there are uq,ug,...,u, € ¥* and vy,va,...,0,41 € X* such that u = ujus - - u,
and v = V1UVUsg + - - UpVpy1. We write u <p v to denote the fact that u is a proper
scattered subword of v, that is, u <;, v and u # v. We say that u and v overlap,
and we write u wo v, if there is ¢ € X1 such that ¢ <, u and ¢ <s v or vice versa.
The relation w,) is symmetric. Note that a word can overlap itself.

To simplify or unify notation, we sometimes write w;, instead of <, and so on,
for the partial orders above.

A binary relation w on $t defines the property (predicate) P, of languages®
L C ¥7 as follows: P,(L) = 1 if and only if, for all u,v € L, one has u ¢ v and
v ¢ u. Clearly, if P,(L) =1 and L' C L, then P, (L") = 1. Thus P,(L) =1 if and
only if P,,({u,v}) =1 for all u,v € L. Here the words u and v need not be distinct.
This is important for the case of w, for instance. Obviously, when w is reflexive
one has P, (L) = 0 for every non-empty language L.

When w = <, we write P, instead of P . Similarly, when w = wy we write
Py instead of P, . The predicates Ps, P, and P, are defined analogously starting
from <4, <; and w7, respectively.

For a set .S, P(S) is the set of all subsets of S and PBg, (S) is the set of all finite
subsets of S. For n € N, let

%Sn(s) = {T | Te m(s)’ |T| < n}7 PB>n = {T I Te m(s)’ |T| > n}

and
PBn(S) =A{T | T € B(5),[T| = n}.

In [14] the hierarchy of classes of codes is introduced using the systematic frame-
work of abstract dependence systems. For the purposes of the present paper, the
following simplified concepts suffice.

For the remainder of this section, we refer to [14, 31] and to sources cited there.

Let C C ©7. The language C is uniquely decodable if CT is a free subsemigroup
of ¥* which is freely generated by C. A less abstract, but equivalent definition
reads as follows:

8The predicate P,, asserts that L has a certain property, defined by the negation of a relation.
Admittedly, this is awkward, but it is inevitable for reconciling the two different equally convincing
approaches.

Methods for Relativizing Properties of Codes 265

Definition 2.1. Let C C X% be a language over X2, and let w € X7,

1. The word w is C-decodable if there are n € N and words
UL, U, - .., Up € C such that urus -+ - u, = w.
In this case, the pair (n, (ug,us, ..., uy,)) is called a C-decoding of w.

2. The language C is uniquely decodable if every word in X% has at most one
C-decoding.

Thus a language C is uniquely decodable, if and only if every word in Ct has
a unique C-decoding. We omit the reference to C when C' is understood from
the context. In the following we sometimes use parentheses to describe various C-
decodings of a word. For example, if C = {a,ab,ba}, then w = aba = (a)(ba) =
(ab)(a) has two different C-decodings.

As every word in CT involves only finitely many elements of C, the language C
is uniquely decodable if and only if every language in PBgy, (C) is uniquely decodable.

In the literature one finds the term “code” used in two different ways: (1) a non-
empty language not containing the empty word; (2) a uniquely decodable non-empty
language not containing the empty word. For the rest of this paper we adopt the
second meaning. By L..4c we denote the set of codes over . For a regular language
C C X7 it is decidable whether C' € Lcoqge; for linear languages the code property
is undecidable.

We now introduce some important classes of languages or codes. Further classes
will be defined when they are needed. Let C C X+,

For n € N with n > 1, C is an n-code if every language in P<,(C) is a code.
In general, an n-code is not necessarily a code. By L,.code We denote the set of
n-codes over Y. For regular C it is decidable whether C' € Lo code- For L3.code the
corresponding problem is open. The n-codes form an infinite descending hierarchy
with Leoge as its lower bound.

The language C'is a prefiz code if, for all u,v € C, u £, v. It is a suffix code if,
for all u,v € C, u £5 v. It is a bifix code if it is both a prefix code and a suffix code.
It is an infiz code if, for all u,v € C, u £; v. It is an outfiz code if, for all distinct
u,v € C, u ¢y v. It is a solid code if it is an infix code and if, for all u,v € C not
necessarily distinct, v and v do not overlap. The language C' is a hypercode if, for
all distinct u,v € C, u £y v.

By Ly, Ls, Ly, Li, Lo, Ly, and Lgojiqa we denote the sets of prefix codes, suffix
codes, bifix codes, infix codes, outfix codes, hypercodes, and solid codes, respec-
tively. The first six of these classes of codes are defined by predicates P, Fs, P,
P, P, and P;, on P=2(C). For Lyia we need Psglia = P A Py on P<o(C). We
also use the predicates Peoge 0n Pan(C) and Pp_code 0N P<,, (C) defining Looqe and
L-code, Tespectively.

For n € N, the language C is an intercode of index n if, X+C"Y+ N Ot =
(). The class Linter, of intercodes of index n is defined by a predicate Piter, on
P<ont+1(C) derivable from P;. The set Linger, of intercodes of index 1 is exactly

266 Helmut Jiirgensen, Lila Kari, and Steffen Kopecki

the set Lcomma-tree Of comma-free codes. The languages in Linter = J
called intercodes.

neN Linter,, are

Lemma 2.1. (See [14, 31]) The following inclusions hold:

Lo ULy C Leode, LiUL, C Ly, =L, N L,

=

n Eintern - EinternJrl - Einter - Eb; Lh N [-:solid g Lh C Ei N Eo

= = = =

and
Lh N L:solid ,Q Lsolid Q Lcomma—free - Ei-

=

It will simplify the notation significantly and also open the prospects of consid-
ering a different set of problems if we weaken the definitions as follows: For

0 € {p,s, b, 1,0, h,solid, ol, inter,,, n-code, comma-free}

and potentially other types ¢ of language properties, P, is a predicate on PBg,(C)
in the following sense: A language L C C has the property o if and only if P,(L)
holds true, that is, P,(L) = 1; for p € {p,s, b, 1,0, solid, ol} we are mainly interested
in situations when |L| < 2 as this leads to manageable decision properties. As a
warning to the reader — we have seen this misread before — the set {u, v} is equal
to {u} when u = v, that is, {u, v} is not a pair, but a set.

3 Variations of Definitions

The definition of relativized codes given in [2] was phrased so as to capture and
generalize the special definitions proposed by Head in [9, 10, 11, 12] in the more
general framework of relations or predicates described in [14]. As noted in [2] these
definitions differ in a subtle way.

In Sections 3.1 and 3.2, we review two natural proposals for relativizing code
concepts. Abstracting from these, and considering other likely scenarios, it turns
out that one has to consider at least four versions according to the phenomena by
which violations of code properties could manifest themselves, each of them well
motivated. These are investigated in detail in Section 3.3 as violation-freeness or
admissibility of words. In Section 3.4 relativized codes are defined and inclusions
between classes of relativized are proved. We compare the concepts considered in
the earlier work [2, 11] to the ones introduced in the present paper in Section 3.5.

3.1 Admissibility of Words as Defined in [2]

We review the definitions and discussions of [2]. An improved general framework is
proposed in Section 3.3.

Definition 3.1. Let C be a subset of X and let P be a predicate on P<2(C). A
word ¢ € CT is said to be P-admissible for C if the following condition is satisfied:
if ¢ = zuy = vy, with u,v’ € C and x,2',y,y’ € C* then P({u,u'}) = 1.

Methods for Relativizing Properties of Codes 267

This means that a word ¢ € CT is P-admissible if every two words u, v € C
appearing in C-decodings of g, together satisfy the property P. For example, for
P = P,, a word q is prefiz-admissible, if no two words u,u’ € C appearing in C-
decodings of ¢ are strict prefixes of each other. There is a subtle point: Suppose
that u’ is a proper prefix of u. For a word ¢, three different situations need to be
considered:

1. The word g has a C-decoding of the form
) () or e () (U)
2. The word ¢ has two C-decodings of the forms
() and < (u) -

3. The word ¢ has two C-decodings of the form ¢;(u')v'qa and ¢q(u)ge with
u = u'v’ where q1,q02,v'qa € C*, V' € X7

The difference between these situations becomes apparent in our discussion of rela-
tivized solid codes below. Definition 3.1 applies to any occurrences of u and u’, not
just to those situations in which u and v’ start at the same position in ¢, and also
not just to occurrences of u and v’ in the same C-decoding of g. Thus, if u and u’ are
distinct and occur in any C-decodings of a word ¢ € L, which is prefix-admissible
for C, then the set {u, '} must be a prefix code.

Similarly, a word ¢ € C7 is overlap-admissible if no two words u,u’ € C, not
necessarily distinct and appearing in any C-decodings of ¢, overlap. In particular,
if u € C and w occurs in a C-decoding of ¢, then v must not overlap itself.

Definition 3.2. Let C be a subset of X, let L C CF and let P be a predicate on
PB<2(C). Then C is said to satisfy P relative to L if every g € L is P-admissible
for C.

Definition 3.3. When C satisfies P relative to L we say that C is a P-code relative
to L.

As the predicate P is arbitrary, a P-code relative to L need not be uniquely
decodable even when L = CT. The restriction of L being a subset of CT turns
out to be too restrictive in the new context of this paper and is lifted starting in
Section 3.3.

The following trivial observation is used without special mention in the sequel.

Remark 3.1. Let P, P, and P, be predicates on P<o(C) with P = P; A P,. Let g,
C and L be as in Definitions 3.1, 3.3 and 3.2. The following statements hold true:

1. ¢ is P-admissible for C' if and only if ¢ is both P;-admissible and P»-admissible
for C.

2. C satisfies P relative to L if and only if C satisfies P, and P; relative to L.

3. C is a P-code relative to L if and only if C is both a P;-code and a P»-code
relative to L.

268 Helmut Jiirgensen, Lila Kari, and Steffen Kopecki

3.2 Definitions Inspired by Tom Head

In [11] and related papers, Head proposed various relativizations of code concepts.
The most relevant for the present discussion, because it introduces issues not en-
countered in other contexts, is that of relativized solid codes. The formalism used
here leads to a novel general concept of relativization. This section of the paper
summarizes ideas and statements from [2] relevant to the issue at hand.

Definition 3.4. (|9]) Let C and L be non-empty subsets of XT. The set C is a
solid code relative to L if it satisfies the following conditions for all words q € L:

1. if g = xszty with x,y,s,t € ¥* such that z,szt € C, then st = \;
2. if ¢ = zszty with x,y,s,t € X* such that sz,zt € C and z € ¥ T then st = \.

The first condition states that, for u,v € C, if u <; v, then, for all g € L, v £ q.
The second condition states that if u,v € C, and u and v overlap as u = sz and
v = 2zt with z € X7, then, for all ¢ € L, szt %; q.

Definition 3.4 is one possible relativization of the notion of solid code. It differs
from the notion of Pj.jiq-code relative to a language as introduced in Definition 3.3.

Note that, if C is a solid code relative to L then C' is a P;-code relative to
LNCT. Indeed, let ¢ in LN C*. If u € C occurs in a C-decoding of ¢, v € C and
u <; v, then v «£; q. Hence v does not occur in a C-decoding of ¢q. As shown in
Example 3.1 below, C being a solid code relative to L does not imply that C is a
P,-code or a P,giq-code relative to L.

For (unrelativized) solid codes there is also a definition based on decompositions
of messages (see [14]): Let C be a subset of ¥ and ¢ € ¥*. A C-decomposition

of q consists of two sequences ug, U1, ...,u, € X* and vy, vs,...,v, € C for some
n € N, such that ¢ = ugviuivous - - vyu, and v £; u; for all v € C and @ =
0,1,...,n. Every word ¢ € ¥T has at least one C-decomposition. Note that every

C-decomposition of a word in C* can be considered as a C-decoding as follows:
Ug=U] =" = Uy = A

and the C-decoding is

(n, (v1,v2,...,Up)).
The set C is a solid code if and only if every word in % has a unique C-
decomposition. In [13], a relativization of the notion of solid code is proposed,

which is based on the uniqueness of C-decompositions, and this notion turns out
to be equivalent to the one of Definition 3.4.

Proposition 3.1. ([13]) Let L C XF. A language C C X7 is a solid code relative
to L if and only if every word q € L has a unique C-decomposition.

The difference between these equivalent concepts and our approach to relativiz-
ing solid codes is illustrated by the following example.

Methods for Relativizing Properties of Codes 269

Example 3.1. ([11]) Let ¥ = {a,b,¢} and C = {ab,c,ba}. The set C is not
overlap-free, hence not a solid code. By Definition 3.4, C' is a solid code relative to
the language L = ({abc} [J{cba})*. However, the set C' is not a Psoq-code relative
to L, as ¢ = abecba € L has the C-decoding (ab)(c)(c)(ba) and is thus not Piojia-
admissible since ab wy ba.

The main differences between Definitions 3.3 and 3.4 are as follows:

1. According to Definition 3.3, the mere and possibly unrelated existence of
words for which the predicate is false constitutes a violation. According to
Definition 3.4, the words in question must be in a specific violating position.

2. According to Definition 3.3, the words in violation must occur in C-decodings.
According to Definition 3.4, they may appear anywhere.

In the next section, we analyse these differences and provide new definitions ac-
cording to the analysis. Altogether, we have to investigate four different ways in
which code concepts can be relativized.

3.3 Violating Instances

There does not seem to be a unique best scheme for relativizing code properties.
All proposed schemes seem to diverge not only when the language L relativized
to is a subset of ¥* or of CT, but also when the particular types of violations
of the code properties are considered. We now identify four violating scenarios in
very general terms. These seem to be the most common ones in real systems. For
specific natural code properties we state their relativizations. We also determine
the connection between the four notions of violation. Our basic definitions may
seem to be far too general; this permits us to capture most of the interesting cases
and to leave the field open for other cases which might require a relativization as
well.

To clarify the intuition, we start with examples. We consider a language C C T
and a predicate P defining a class of codes.

A violating instance of P, the prefix-freeness predicate, would be the occur-
rence of a word v € C such that there is a word u € C with v <, v, that is,
P,({u,v}) = 0. For Ps, P, P, P, and several other such predicates we have anal-
ogous characterizations. To help the readers’ intuition we switch freely between
predicates and relations whenever one or the other seems easier to understand.

Take P,. One has P,({u,v}) = 0if v <, v or u <g v or vice versa. Thus there
are two potential violating instances of F;,, manifested as violating instances of P,
and P, respectively.

This seems to determine the pattern for predicates defined by conjunctions or
disjunctions of predicates.

Thus a violating instance of the conjunction (intersection) P of two predicates
P, and P; could be a violating instance of P; or a violating instance of P». Dually,
if P is defined as the disjunction (union) of two such predicates, then violating

270 Helmut Jiirgensen, Lila Kari, and Steffen Kopecki

instances of P are exactly the instances which are violating both P, and P». This
idea works well also with Psq = P A Py).
These considerations suggest the following tentative definition:

Let P be an n-ary predicate. A violating instance of P is a set {uy,...,u,}
of words such that P({uy,...,u,}) =0.

This definition is not good enough as it does not capture how the words in question
are actually located with respect to each other; hence, a proper definition needs to
be based on relations or tuples with special properties rather than sets.

We consider a set of more detailed examples in order to detect a pattern. For

0 € {p,s, pi,si, b, 1,0, h,solid, o, inter,,, comma-free}

and potentially other types o of language properties, let w, or <, be the cor-
responding relation or partial order, and P, be the corresponding predicate. Let
cCCcxt.

1. A violating instance of P, is the occurrence of a word v € C such that there
is u € C' with u <, v. Similarly for P, Py, Py, and P.

2. A violating instance of P, is the occurrence of a word v € C' such that there
is u € C' with v wy, v, that is, u <, v or u <g v.

3. A violating instance of P, is the occurrence of a word v € C such that there
is u € C with u w, v and u # v.

4. A violating instance of P, is the occurrence of a word w = wjwsws with
wy, wa, w3 € U1 such that wiwe € C and wows € C; thus, wiws We Waws.

5. A violating instance of Ps,)iq is the occurrence of a word which is a violating
instance of P; or of P,.

6. A violating instance of Piyter, is the occurrence of a word
W = V1Ug -+ Upy1 With vy, v9,...,vp41 € C
such that there are words
UL, U2,y ..., Uy, € C and z,y € LT
with zuius - - - u,y = w.

7. A violating instance of Pomma-free 18 the occurrence of a word w = vivs such
that there are words u € C and z,y € ©* with zuy = w.

8. A violating instance of P, is the occurrence of a word v € C' such that there
is a word v € C with u <y v.

Methods for Relativizing Properties of Codes 271

The cases (1), (2), (3), (6), (7), and (8) above have in common that the (proper)
relation involved has a “direction”: The relations for

0 € {p,s,pi,si,b,i,0,h}

are anti-symmetric. For ¢ € {inter,, comma-free}, that is, cases (6) and (7), one
considers the relations winter, and Weomma-free defined as follows? [14]:

® Winter, 1S & (2n + 1)-ary relation on C such that
(U1, U2y e vy Un,y V1,02, « .+, Upt1) € Winter,,
if and only if there are z,y € X1 such that vive - - Vpy1 = TULU - - - UnY.
® Weomma-free — Winter,, forn=1.

We interpret winter, as a binary relation between n-tuples and (n + 1)-tuples of
words in C. Let Winter,, be this binary relation, that is,

(u17u2a ceeyUn,V1,02,. .. 7vn+1) € Winter,,

if and only if
((ul, Uy ey Up), (V1,02 ... ,vn+1)) € Winter,, -

Similarly, we obtain Weomma free {TOM Weomma.free- 1 hen, by definition, both Winter,,
and Weomma-free are anti-symmetric binary relations.

For P,, instead of considering a binary relation between code words, it seems
more adequate to consider a binary relation woy between a pair (ug, us) of codewords
and a word w € X7 such that (u1,us) Wo w if and only if there are wy, ws, w3 € LT
such that u; = wyws, us = wows, and wiwsws = w.

One could apply similar modifications to the relations defining the outfix codes,
the hypercodes, and all the codes in the shuffle hierarchy. For example, instead of
<p one could use the relation wy, defined as follows: (uq,us,...,ux) Wy (v) if and
only if

v E X ur X ug - - XrupX* and ujusg - - - ug # 0,

where k € N and uy, us, ..., ug, v € X+, For the present purposes the following, less
intuitive, alternative

(uy,uz,...,ux) wy (v) if and only if uyug - - - ux <p v
would also work. The former captures the idea that u; <; q, us <j q, ..., ux <; ¢ in
the order given by the k-tuple (u1,us,...,ux). The latter is a simple reformulation

of the embedding order. For our purposes, neither modification is needed.

Note that the transition from a relation w, to its overlined version w, is ad
hoc and not claimed to be in any way defined by an operator. We introduce the
latter only for convenience. In the sequel, to keep the notation simple, we drop the
distinction when there is no risk of confusion. For example, a statement of the form

9n [14] the order of the components is different. The change is not essential, but simplifies the
presentation.

272 Helmut Jiirgensen, Lila Kari, and Steffen Kopecki

“For p € {p,...,inter,,...} the relation w, satisfies ...”
refers to wy, for ¢ = p and, depending on the context, to winter, O tO Winger, for
o = inter,,.

To define violating instances in rather general terms, we consider binary rela-
tions on tuples of words and their corresponding binary predicates.

For any set S and any n € N, let n-tuples(S) be the set of n-tuples of elements in
S and let all-tuples(S) = (J,,cy n-tuples(S). We consider binary relations w between
tuples of words over . Typically there is a small upper bound on the arity of the
tuples. Such a relation w would be a subset of

U U k-tuples(X*) x n-tuples(X*)

1<k<m 1<n<m

for some m € N. In some quite natural situations however, like that of hypercodes,
there might not be a prior: bounds on k and n. This concern will be kept in mind as
we propose definitions. As such relations are defined by (disjoint) unions of relations
in a natural way as expressed by the formula above, their respective properties are
conjunctions of the individual properties according to the constituents. The details
are explained by example below.

Definition 3.5. Let n € N and let u = (uy,us,...,u,) be an n-tuple of words in
¥*. Define word(u) as the word uyusg - - - u,. Moreover, for v € £*, let word(u) = u.

The present goal is as follows: Let C C T, C # (). For a word ¢ € ¥ we want
to express that ¢ does not contain words in C' which violate a binary relation w
on all-tuples(X1), the latter defining a class of languages or codes. Additionally, if
u w v, then word(u) and word(v) must appear in some “natural” relationship within
q. A first attempt towards this goal might read as follows:

Let w be a binary relation on all-tuples(X") and let ¢ € ¥ 7. A wiolating
instance of w in g is a pair (u, v) of distinct tuples of words in ¥* such
that u w v and word(v) <; q.

At a first glance this seems to be a clean definition. It only involves the relation w,
but not the set C, and the latter can be built in later as a constraint. The following
example shows that the attempted definition will not work without a connection
to C.

Example 3.2. Let ¥ = {a,b} and w = <;,. Then every word of length at least 2
contains a violating instance of <.

Nevertheless, we work with this intuition. It does not lead to a general definition,
but at least to a usable one for many relevant cases. To simplify terminology,
when (u,v) is a violating instance of w in ¢ in the tentative sense above, we also
say, equivalently, that ¢ contains (u,v) as a violating instance of w — or of the
predicate P,, defining w.

Methods for Relativizing Properties of Codes 273

For ¢ € {p,s, pi,si, b,1,0,h} we just consider the relation w,. Similarly, for the
relations defining the shuffle hierarchy. For ¢ € {inter,,, comma-free, ol}, the rela-
tions Winter,, s Weomma-free, alld Wo] Will serve. Thus, also the solid codes are included.
In each of the cases considered here, word(v) <; ¢ implies that each component of u
is a subword, possibly scattered, of ¢. Our present motivation was to cover as much
as possible of the code hierarchy of [14].

To address the problems with the notion of violating instance of a relation w,
we consider, simultaneously, a relation w, a non-empty set C' of words in X+, and
a word ¢ € ¥ 7. The relation w is meant to describe a class of languages — or codes
— such that C does not contain any words which would lead to a violating instance
in g. Without loss of generality, one can assume that w is irreflexive. We did not find
a satisfactorily simple definition which could be applied to any binary relation on
all-tuples(X7). Especially relations like w, or wey cause difficulties, as the relative
positions of the occurrences of their components in a word are not fixed. Therefore,
from here on we consider only a restricted class of relations:

0 € {p,s,pi,si, b, i,0,h,solid, ol, inter,,, comma-free}.

Definition 3.6. Let C C X% and ¢ € ©T. Let w # wq be an irreflerive, binary
relation on all-tuples(XT) such that, for all u,v € all-tuples(XT), u w v implies
word(u) <, word(v). Let P,, be the predicate defining w.

1. The word q is P,-violation-free for decompositions with respect to C, if there
are no u, v € all-tuples(C) such that uw v and word(v) <; g.

2. The word q is P,-violation-free for decodings with respect to C, if for all
q1,92 € C* and all v € all-tuples(C) with ¢ = qyword(v)ge there is no u €
all-tuples(C) such that u w v.

3. The word q is said to be P,-violation-free for decompositions with respect to
C, if there are no words u,v,w € XV such that wv,vw € C and vvw <; q.

4. The word q is said to be P,)-violation-free for decodings with respect to C, if
there are no words qi1,q2 € C* and u,v,w € X with uwv,vw € C such that
q = quvge with w <, q2 or ¢ = qrvwge with u <, q1.

To explain Definition 3.6, we consider the special cases of prefix codes, outfix
codes, intercodes of some index n, and solid codes defined by the relations <, w7,
wiﬁtern, and wgeliq as characteristic examples. Most other cases in the hierarchy of
codes are analogous. In the definition we attempt to capture an essential idea of
Head’s relativization: the respective code property is violated if and only if the
words involved appear exactly in the relative positions as defined by the code prop-
erty. Beyond that, we distinguish between violating instances for decompositions
and violating instances for decodings. The former may occur anywhere in the word
¢ under consideration — and this is the case of Head’s definition (Definition 3.4);

the latter can only occur at positions defined by a decoding. This distinction turns

274 Helmut Jiirgensen, Lila Kari, and Steffen Kopecki

out to be important, as fewer positions in a word under consideration need to be
examined in the case of decodings compared to the case of decompositions.

Head’s relativization of the condition of overlap-freeness in Definition 3.4 really
applies only to decompositions. In Definition 3.6(4) we propose a possible inter-
pretation of Head’s approach in the context of decompositions. Another possible
interpretation would be as follows.

Let ¢ = quuvwge € C* with wv,ow € C and u,v,w € XT. Then
q1,wq2 € C* or g2, quu € C™.

This is equivalent to Definition 3.6(4).

The first two parts of Definition 3.6 refer to binary relations w on tuples of words
in XF such that u w v implies that word(u) <y, word(v). Thus, if word(v) <; ¢, then
word(u) appears as a possibly scattered subword of that occurrence of word(v) in
g. The relation wy) is an important example of a relation which does not fit into
this pattern. We include w, as a special case in Definition 3.6 to exhibit unsolved
problems in the relativization methods and the need for a more inclusive approach.

Among the cases for illustrating Definition 3.6, a simple one is that of prefix
codes and the like. The class of codes C' is defined by a partial order w?” on X% such
that u, v € C implies that u 7 v. Moreover, u w? v implies u <; v. If ¢ contains a
violation of w, then there are u,v € C such that u w* v and v <; ¢. Thus the mere
occurrence of v as an infix of ¢ results in a violating instance, for decompositions.
For decodings, the word v has to appear at a special spot, determined by a decoding;
but note that the decoding need not be unique.

The case of outfix codes and of all shuffle codes down to the class of hypercodes
requires special consideration as to what we mean by “violation”. The case of outfix
codes is indicative of the issues. Suppose u is a proper outfix of v. Then v = ujvgus
with ujus € X7, u = ujug, and vy € L. If v <; ¢ we have a violating instance
according to the definition, but v %; ¢. Do we want this? We argue as follows:
The intent of using an outfix code could be to detect insertion errors, like the ones
which change u into v. In this, clearly, the occurrence of v in ¢ gives rise to an
ambiguity as to how ¢ should be read (both for decompositions and decodings).
Similar arguments concern the whole shuffle hierarchy and motivate the condition
of word(u) <, word(v) above. In general, the embedding is completely determined
by w.

The case of intercodes of index n is special only in that we deal with tuples of
words. The relation defining the intercodes satisfies the conditions trivially.

Finally, for solid codes we need to consider the relation wgoiq = <; U we1. The
role of <; is similar to that of the prefix order above. The roéle of w, is different.
Regardless of whether we use w,) or Wy, there is a problem which seems to require
special measures.

e Using wol: If u we v with u,v € ¥T then v <; g does not imply that u <y, q.

e Using wor: If (u1,u2) wWo v then v <; ¢ does not imply word((u1,uz2)) =
uius <y, q. However, we have u; <; ¢ and us <; q.

Methods for Relativizing Properties of Codes 275

In either case, the mere occurrence of v does not result in a violating instance in
general.

Example 3.3. Let ¥ = {a, b}.

1. Consider the prefix order <, and the language C' = {a, ab}. This language
is not a prefix code. The set of words which are violation-free of <, for
decompositions with respect to C' are the words not containing ab, that is, all
the words in ¥\ ¥*abX* = a™ UbTa*. The set of words which are violation-
free of <, for decodings with respect to C' are the words in X\ C*abC*.

2. For the outfix relation, consider the language C = {aa, aba} which is not an
outfix code. A violation-free word for decompositions must not contain aba as
an infix, that is, must be in X \ X*aba¥*. For decodings, such a word must
not have the form C*abaC™.

3. For the intercode relation of index n, consider, without loss of generality,
n = 1 and the language C' = {ab,bba}. The language C' is not an intercode
of index 1, that is, not a comma-free code, as X+ CX+ N C? # () with ab and
bbabba as witnesses. Note that C is a bifix code. For decompositions, bbabba
must not occur as an infix. For decodings, any word not in C*bbabbaC* is
violation-free.

4. For the solid code relation, the infix part is analogous to <, that has already
been illustrated. The “new” problem is that of overlaps. Consider C' = {ab, ba},
which is an infix code, but not an overlap-free language'®. We focus on the
overlap relation either in the form wy or the form of @wy;. For decompositions
the words which do not contain aba or bab are violation-free. For decodings,
any word not in C*{abab, baba}C* is violation-free.

Note that every non-empty word ¢ ¢ C7 is violation-free for decodings with
respect to C.

In general there is a pattern: For decompositions g ¢ X*word(b)3
free. For decodings ¢ ¢ C*word(v)C* is violation-free.

When two relations interact, as in the case of solid codes, for violation-freeness
the corresponding property seems not to be just a simple Boolean junction of the
basic properties; this seems to require an expression of the co-locality of the re-
spective defining situations. Neither Definition 3.4 based on Head’s work nor our
Definition 3.6 covers this adequately. We hope to look at this issue in a subsequent
study.

Instead of violating instances one can also consider occurrences of words which,
taken together, violate the condition in question although their occurrences may
be “unrelated”. To this end we modify Definition 3.1 following the pattern of Defi-
nition 3.6. In contrast to the violating instances, we consider a property P,, which
is given by an k-ary relation w C k-tuples(XT). For example: for prefix-freeness we

*

is violation-

10Note that overlap-freeness alone does not imply unique decodability.

276 Helmut Jiirgensen, Lila Kari, and Steffen Kopecki

have (u,v) € w? if u <, v; for overlap-freeness we have (u,v) € wer if there exist
wy,wy,ws € X7 such that u = wyws and v = wews; and for the intercode property
of index n, we have

(u17u2a ceeyUn,V1,02,. .. 7vn+1) € Winter,,

if there exist z,y € X7 such that vivy -+ v, 11 = TUIUz - - - uyy. As our definition
covers the overlap relation and a word can have a non-trivial overlap with itself, like
(zyz, zYx) € Wo1, We cannot assume that the relation w is irreflexive — if it is binary
—in general. On the other hand, all binary relations w, with ¢ € {p, s, pi, si, b,i,0,h}
are irreflexive. In order to make the following definition as general as possible, we
let w be an arbitrary subset of all-tuples(3*) rather than a k-ary relation.

Definition 3.7. Let C C Xt , ¢ € T, and w C all-tuples(X7T). Let P, be the
predicate defining w.

1. The word q is said to be P,-admissible for decompositions with respect to C,
if, for all u = (uy,ug,...,u,) € wnNall-tuples(C), there exists (at least) one
index 1 < i <n such that u; 4 q.

2. The word q is said to be P,-admissible for decodings with respect to C, if, for
all u = (uy,us,...,u,) € wnall-tuples(C), there exists (at least) one index
1 <i < n such that there are no C-decodings ¢ = quu;qe with q1,qs € C*.

Remark 3.2. For w, and the relations defining the shuffle hierarchy except <;
the definition of admissibility differs significantly from that of violation-freeness.
Consider u,v € C with (u,v) € wZ. The occurrence of v would be a violating
instance. However, it is no obstacle to admissibility unless also the word u occurs.
This statement holds true for all shuffle relations including <y,, but excluding <;.

For intercodes winter, , as well as comma-free codes and overlap-freeness, a word ¢
is violation-free if the words in u € wipter, do not appear in a particular constellation
in ¢ as defined by the binary relation Wigter, - In contrast, for admissibility each word
in U € winter,, is treated individually and can appear anywhere in g.

Example 3.4. Let ¥ = {a,b}.

1. Consider the prefix order <, and the language C' = {a, ab}. The set of words
which are admissible for decompositions with respect to C are the words
not containing ab, that is, all the words in at U b*a*; in this case violation-
freeness and admissibility coincide because a is an infix of ab. The set of
words which are admissible for decodings with respect to C' are the words in
Y\ (C*abC* N C*aC*) =T\ CT Ua™ U (ab)t.

2. For the outfix relation, consider the language C = {aa, aba} which is not an
outfix code. An admissible word for decompositions must not contain both
aba and aa as infixes, that is, must be in %\ (Z*abaX* N X*aaX*). For
decodings, such a word must be in ¥7 \ (C*abaC* N C*aaC*).

Methods for Relativizing Properties of Codes 277

3. For the comma-free relation, consider the language C' = {ab,bba}. The lan-
guage C is not a comma-free code, as TCLt N C? # () with ab and bbabba
as witnesses. Note that C' is a bifix code. For decompositions, a word is ad-
missible if not both, bba and ab, are infixes of this word. For decodings, any
word not in C*bbaC* N C*abC* is admissible.

4. For solid codes, consider C' = {ab,ba}, which is an infix code, but not an
overlap-free language. We focus on the overlap relation in the form w, rather
than @wg;. For decompositions the words which do not contain ab and ba are
admissible, that is, all words in a™b* U b*a™ U bT. For decodings, any word
not in C*abC* N C*baC* is admissible.

The following two theorems show how the different notions of admissibility and
violation-freeness are related to each other. The set of relations considered can
be divided into two sets with two essentially different behaviours. The first set
contains only binary, asymmetric, irreflexive relations and its properties are stated
in Theorem 3.1; Figure 1 illustrates the relationships. The remaining properties are
covered by Theorem 3.2 below.

for all o (2)

violation-free for » admissible for
decompositions -« —— decompositions
for g e {p7s’ pl’ Sl7 b7 1}7
but not for p € {o,h} (5)
=3 =3
sle sle
]]
Sle Sle
S| = 5| =
g | g |
=~ =~
g|= 6|
< <
Y Y
violation-free for all o (3) admissible for
for decodings not conversely decodings

Figure 1: Relation described in Theorem 3.1: The numbers on the arrows refer to
the statements in Theorem 3.1. This figure is restricted to ¢ € {p,s, pi, si, b,1,0,h}.

Theorem 3.1. Let C C XF, g € ¥ and o € {p,s,pi,si,b,i,o,h}. The following
statements hold true:

1. If the word q is P,-violation-free for decompositions with respect to C, then it
is P,-violation-free for decodings, but not conversely.

2. If the word q is P,-violation-free for decompositions with respect to C, then it
is P,-admissible for decompositions with respect to C.

278 Helmut Jiirgensen, Lila Kari, and Steffen Kopecki

3. If the word q is P,-violation-free for decodings with respect to C, then it is
P,-admissible for decodings with respect to C, but not conversely.

4. If the word q is P,-admissible for decompositions with respect to C, then it is
P,-admissible for decodings with respect to C, but not conversely.

5. For o € {p,s,pi,si,b,i} the converse of (2) holds true. However, for g € {o,h}
the converse of (2) does not hold.

Proof: Since wzf is binary and irreflexive, we consider two distinct words v and v
such that u wa v. The words v and v are fixed throughout this proof.

Assume that the word ¢ is P,-violation-free for decompositions with respect to
C, that is, v £; ¢. In particular, v is not an infix of a decoding of ¢ with respect to
C.

Conversely, consider the language C = {ab, abab, aa,ba} and note that ababd is
the sole violating instance of P, for all relations considered here. The word aababa
with the unique C-decoding (3, (aa, ba, ba)) is P,-violation-free for decodings with
respect to C, but it is not P,-violation-free for decompositions with respect to C'.
This proves (1).

Again, let ¢ be P,-violation-free for decompositions with respect to C. As v %; ¢,
trivially v and u cannot both be infixes of ¢. This proves (2).

Assume that the word ¢ is P,-violation-free for decodings with respect to C.
Then v is not an infix of a decoding of ¢ with respect to C'. Thus, trivially v and u
cannot both be infixes of a decoding of ¢ either.

Conversely, consider the language C' = {ab, abbab} and note that ab wz’é abbab
for all relations considered here. The word abbab with the unique C-decoding
(1, (abbab)) is not P,-violation-free for decodings with respect to C, but it is P,-
admissible for decodings with respect to C. This proves (3).

Assume that the word ¢ is P,-admissible for decompositions with respect to C.
Then u and v are not both infixes of q. Hence, they are not both infixes of decodings
of ¢ with respect to C.

Conversely, consider the language C' = {ab, abbab} again, and note that abbab
is P,-admissible for decodings with respect to C, but it is not P,-admissible for
decompositions with respect to C. This proves (4).

For ¢ € {p,s, pi,si, b, i}, if ¢ is P,-admissible for decompositions with respect to
C, then v £; ¢ because u <; v due to the choice of p. Hence, g is P,-violation-free
for decompositions with respect to C.

Now, consider C' = {aa, aba}, which is not an outfix code. The word aba contains
aba, but not aa. Therefore, aba is P,-admissible and P,-admissible for decomposi-
tions with respect to C. On the other hand, the occurrence of aba is a P,-violating
and Py-violating instance. This proves (5). d

The situation for overlap-free languages, solid codes, intercodes, and comma-
free codes is different from the code properties that are covered by Theorem 3.1;
Figure 2 illustrates the relationships stated in Theorem 3.2.

Methods for Relativizing Properties of Codes 279

Theorem 3.2. Let C C X7, g € % and o € {ol,solid, inter,,, comma-free}. The
following statements hold true:

1.

If the word q is P,-violation-free for decompositions with respect to C, then it
is Py-violation-free for decodings, but not conversely.

If the word q is P,-admissible for decompositions with respect to C, then it is
P,-violation-free for decompositions with respect to C, but not conversely.

If the word q is P,-admissible for decompositions with respect to C, then it is
P,-admissible for decodings with respect to C, but not conversely.

. If q is P,-asmissible for decodings with respect to C, this does not imply that

q s P,-violation-free for decodings or decompositions with respect to C. If q is
P,-violation-free for decodings or decompositions with respect to C, this does
not imply that q is Py-admissible for decodings with respect to C'.

. If g € CT and q is Psliq-violation-free for decodings with respect to C, then

q s also Psoiq-violation-free for decompositions with respect to C.

violation-free for for all o (2) admissible for
decompositions not conversely decompositions

A

prjos = 0 j1 AJuo
(1) 9 1re 103

A[9SI0ATOD j0oU
(€) 9 1re 103

() +0 2 b pue

A
violation-free incomparable (4) admissible for

for decodings decodings

Figure 2: Relation described in Theorem 3.2: The numbers on the arrows
refer to the statements in Theorem 3.2. This figure is restricted to o €
{ol, solid, inter,,, comma-free}.

Proof: Let ¢ € {ol,inter, } and let u,v be word tuples such that u @, v. For ¢ =
inter,,, we require that u, v € all-tuples(C) and we let v = u-b be the concatenation
of the tuples u and v. For ¢ = ol, we only require that u € all-tuples(C') and we let
w = u. In both cases, we have w € w, N all-tuples(C').

The case Pomma-free 15 covered as a special case of Piyter,, Whereas the case

Pioia = P N Py requires special attention. Note that the positive statements of

280 Helmut Jiirgensen, Lila Kari, and Steffen Kopecki

(1,2,3) follow for Piouq because they hold for Py (proven below) and P, (Theo-
rem 3.1).

If ¢ is P,-violation-free for decompositions with respect to C, then word(v) is
not a proper infix of ¢. In particular, word(b) is not an infix of a decoding of
g as described in Definition 3.6. Hence, g is P,-violation-free for decodings with
respect to C'. The same property holds for P,.;;4 because it holds for P, and P, by
Theorem 3.1.

Conversely, for Pipter, withn > 1, let C' = {ab, ba, a(ab)"*1}. The word a(ab)"*1,
with the unique C-decoding (1, (a(ab)™*!)), is Piyter,-violation-free for decodings
with respect to C, but it is not Piyter, -violation-free for decompositions with respect
to C' as it contains the violating instance (ab)"*!. For P,, let C = {ab, ba, abaa}.
The word abaa, with the unique C-decoding (1, (abaa)), is P,-violation-free for de-
codings with respect to C, but it is not P,-violation-free for decompositions with
respect to C' as it contains the violating instance aba. For Pyo)iq, this result can only
be obtained if ¢ does not have a C-decoding and is, therefore, Ps,jq-violation-free
for decodings with respect to C, but contains a Ps,)q-violating instance as infix;
otherwise, statement (5) would be contradicted. This proves (1).

Assume ¢ is P,-admissible for decompositions with respect to C. Hence, not all
of the words in to appear as infixes of ¢q. Because word(b) contains all words from
1 as infixes, we have word(v) %; g. Hence, g is P,-violation-free for decompositions
with respect to C. This proves the “forward direction” of (2).

If ¢ is P,-admissible for decompositions with respect to C, then not all of the
words from to can be infixes of ¢. In particular, they cannot all be infixes of decod-
ings of ¢. Hence, ¢ is Py,-admissible for decodings with respect to C. This proves
the “forward direction” of (3).

For ¢ = inter, with n > 1, let C = {ab,ba}. The word (ab)"™! is Piyter, -
violation-free for decodings and decompositions with respect C, but it is Piyter,, -
admissible for decodings with respect to C since ba does not appear in the unique
C-decoding (n + 1, (ab, ..., ab)). Furthermore, (ab)"*! is not Piyter,-admissible for
decompositions with respect to C'. On the other hand, the word abba with the unique
decoding (2, (ab, ba) is Pipter, -violation-free for decodings and decompositions with
respect to C, but it is not Pjpter, -admissible for decodings or decompositions with
respect to C. Note that we do not require that ab or ba appears in n or n+1 distinct
positions in abba. This proves (4) and the “converse directions” of (2) and (3) do
not hold for intercodes of index n.

For o € {ol,solid}, let C' = {abb, bab}. The word abbabb is P,-admissible for
decodings with respect to C', because bab does not occur in a decoding of abbabb.
However, abbabb contains the violating instance abbab as described in Definition 3.6.
Therefore, abbabb is not P,-violation-free for decodings or decompositions with
respect to C'. Furthermore, abbabb is not P,-admissible for decompositions with
respect to C. The word abbbab, on the other hand, is P,-violation-free for decodings
or decompositions with respect to C, but it is not F,-admissible for decodings or
decompositions with respect to C. This proves (4) and the “converse directions”
of (2) and (3) do not hold.

Let g = uyus - - - up, with ug, us, ..., un € C be Pyq-violation-free for decodings

Methods for Relativizing Properties of Codes 281

with respect to C'. Suppose ¢ contains a Py,;q-violating instance v as infix If v it
is a violating instance of P, let w = v € C} if v it is a violating instance of P, let
w <p v such that w € C and there exists w’ <g v such that w’ € C' and |ww'| > |v.
We distinguish five cases:

o If w = u;, for some 1 <4 < n, such that v <, wu;tq - - - u, then v would be a
witness that ¢ is not Pjoq-violation-free for decodings with respect to C.

e If w was an infix of any wu;, then w; would be a witness that ¢ is not P;-
violation-free for decodings with respect to C.

o If w = u;u;q1 - - u; for some 4, j with 1 < ¢ < j < n, then w (in the decoding
g =1Uq-- - U—1WUj41 - - - Uy) Would be a witness that ¢ is not P,-violation-free
for decodings with respect to C.

o If there existed 1 < i < n and z,y,z € X7 such that u; = 2y, w = yz and
w <, Uiy1 - Uy, then zyz is a witness that ¢ is not F,j-violation-free for
decodings with respect to C.

o If there existed 1 < ¢ < n and z,y,z € X7 such that w = 2y, u; = yz and
w < up---u;_1, then zryz is a witness that ¢ is not P,-violation-free for
decodings with respect to C.

This covers all possibilities of how w, as prefix of v, can be located in ¢g. This proves
(5). O

One can intuit the relativization of a code property P as follows: If a word
g € CT satisfies the relativized property with respect to C, then the word should be
uniquely decodable over C'. As we show next, this intuition holds true for the notion
of admissibility, but does so only for some special properties when considering
violation-freeness. However, the converse of this statement is not true: If a word
q is uniquely decodable over C', then ¢ is not necessarily P-violation-free or P-
admissible for decompositions or decodings with respect to C'. For example, consider
the prefix-free property and C' = {ab,aba}. The word ¢ = ababa has the unique
C-decoding (2, (ab, aba)); it is, however, neither P,-violation-free nor P,-admissible
for decompositions or decodings with repect to C.

Theorem 3.3. Let w C k-tuples(X7) be a k-ary relation such that if a non-empty
language D satisfies P,,, then D is a code (all words over ¥ have at most one D-
decoding). Let C C X1 be a non-empty language. If q is P,,-admissible for decodings
or decompositions, then q has at most one C-decoding.

Proof: Suppose g € ¥ has two C-decodings and is P, -admissible for decodings or
decompositions relative to C. Let

(m, (u1,uz,...,un)) and (n, (v1,v2,...,0,))

be two distinct C-decodings of ¢. Let C' = {uy,ua,...,Um,v1,02,...,05} C C.
As ¢ is P,-admissible for decodings or decompositions with respect to C, for all

282 Helmut Jiirgensen, Lila Kari, and Steffen Kopecki

1w € k-tuples(C”) we have w ¢ w. Therefore, C’ satisfies the property P, and must
be a code. However, the word ¢ has two C’-decodings — a contradiction! (|

This result easily extends to violation-free words for the properties P, with
0 € {p,s,pi,si, b,i,0,h,solid}, using Theorem 3.1. For Pyyjq we need to observe that
Psolig-violation-freeness with respect to a language C implies P;-violation-freeness
with respect to C.

Corollary 3.1. Let o € {p,s,pi,si, b,i,0,h,so0lid} and C C ¥T be a non-empty
language. If q is P,-violation-free for decodings or decompositions, then q has at
most one C'-decoding.

A similar result cannot be obtained for intercodes or comma-free codes: Let C =
{ab, abab} and n > 1 The word abab clearly has two distinct C-decodings. However,
abab is Pipter, -violation-free for decodings or decompositions with respect to C.
Indeed, for comma-freeness the shortest violating instance over C'is (ab) Weomma-free
(ab, abab) or (ab) Weomma-tree (abab, ab).

3.4 Relativized Codes

We have arrived at four notions of how a word may satisfy the predicate P, for a
given non-empty language C C ©+:

1. vf-decomp: Violation-free for decompositions;
2. vf-decod: Violation-free for decodings;
3. adm-decomp: Admissible for decompositions;
4. adm-decod: Admissible for decodings.

Let 991 be the set of these notions. Each p € 91 gives rise to a definition of a class
of relativized codes as follows:

Definition 3.8. Let C and L be non-empty subsets of X1, let u € M and let
0 € {p,s,pi,si, b, i,0,h,solid, ol, inter,,, comma-free}.

The language C' is a Py-p code relative to L if every word in L has the property
Py-p with respect to C.

Let C4(L) be the class of P,-u codes relative to L. Let L£A(C) be the class
of non-empty languages L C X7 such that C' is a P,-u code relative to L. The
following statements are consequences of the results obtained so far.

Theorem 3.4. In the statements below the symbols p, o, C, and L are defined as
follows: p € 9,

0 € {p, s, pi,si, b, i,0,h,solid, ol, inter,,, comma-free},

C,LCYT,C#0, L#0. The following statements hold true:

Methods for Relativizing Properties of Codes 283

1. For all u, o and C, the set EZ(C') is closed under arbitrary unions. Therefore,
it contains a unique mazimal language denoted MY, o

2. For all p, o and L, the set Ct/(L) is closed under non-empty intersections.

vf-decom vi-deco adm-aecom adam-aeco >
8. Cyfrdecomp (L) C CQfd 4(L) and cadm-decomp () C cadm-decod(L) The inclu-
sions are proper for some L.

4. Cz)lf—decomp(L) — ngrn—decomp(L) fO'f’ 0 € {p,S,pi,SLb, i},’ C;f—decomp(L) C
ngm—decomp(L) fOT‘ 0 € {O,h},’ and Cz}/f—decomp(L) D Czdm—decomp(L) fO’]" 0 €
{solid, o, inter,,, comma-free}. The inclusions are proper for some L.

5. Cgf‘deCOd(L) C ngm‘deCOd(L) for 0 € {p,s,pi,si,b,i,0,h}. The inclusion is
proper for some L.

6. If C" CC, C"#0, then LE(C) € LE(C') for all p and o.
7. If L' C L then Cy(L) C CH(L') for all i and o.

Proof: All statements are easy consequences of the definitions and of Theorems 3.1
and 3.2. (]

Theorem 3.4 summarizes simple aspects of relativizing code properties. More
detailed issues can be learned from Theorems 3.1 and 3.2. In both cases, the state-
ments are limited to specific code properties o. To identify the common scheme for
a wider class of code properties is still an open problem.

3.5 The Old and New Definitions Compared

We outline how the definitions of code relativization given in [2| and [9] compare to
the ones in the present paper. While we attempted to maintain consistency, it was
inevitable that some definitions would change given the fact that a detailed look
prompted by [13] revealed the need for a more general and less uniform approach.
Hence, when reading the older papers together with this one, it is important to
watch for slight, but possibly important, differences in the definitions, before using
the statements of theorems. Particular attention needs to be paid to the issues in
the following remark.

Remark 3.3. Let L,C C X' be non-empty languages.

1. Let P be a predicate on P<2(C). Note that a subset w of 1-tuples(XT) U
2-tuples(X71) describes the predicate P, that is P = P, if and only if

P{z,y}) =0 <= (z,y)€wor(y,z)€wand
P{z})=0 <= (z)€wor (z,2)€w.

Let P = P,, be described by a set of tuples w. A word ¢ € C* is P-admissible
for C' in the sense of Definition 3.1 if and only if it is P-admissible for decodings

284 Helmut Jiirgensen, Lila Kari, and Steffen Kopecki

with respect to C in the sense of Definition 3.7. Furthermore, if L C CT, then
C is a P-code relative to L in the sense of Definition 3.3 if and only if C'is a
P-admissible code for decodings relative to L in the sense of Definition 3.8.

Note that, Definitions 3.1 and 3.3 do not cover the cases when ¢ ¢ C* and L ¢
CT, respectively, while, in this paper, we naturally extend these definitions
to all words ¢ € ¥ and languages L C T,

2. C is a solid code relative to L according to Definition 3.4 if and only if every
word ¢ € L is P,ojq-violation-free for decompositions with respect to C' in the
sense of Definition 3.6 or, equivalently, if C' is a Psojiq-violation-free code for
decompositions relative to L in the sense of Definition 3.8.

We suggest that the framework of this paper supersede those of [2, 9]. The
concepts are still not ideal, but approaching what we consider the right ones.

4 Decidability Questions

In general, given non-empty languages C,L C Xt and a code property P, one
would like to know whether C' is a P-code relative to L. In practical terms, we are
given a language L of messages to be transmitted. We are also given a target for
the transmission quality expressed by the predicate P. We want to know whether a
given candidate code C' serves the purpose. This gives rise to decidability problems
for relativized codes.

For unrelativized codes, that is codes relative to X1, results regarding the decid-
ability of code properties as of 1996 are proved or summarized in [15, 14]. Further
details are found in [3] and [4]. It is known that code properties are usually decid-
able when C' is a regular language, and undecidable when C' is a linear language.
In [4] it is shown that the boundary between decidability and undecidability is sig-
nificantly lower than that of linear languages. For relativized code properties this
implies that one should not expect decidability unless C' is regular. Regarding as-
sumptions about L, we only consider the case of L being regular as well. At present
we do not know to which extent this restriction can be lifted.

We first review two notions which we use in some of the proofs in this section.

1. Let L C ¥T. The syntactic congruence ~y, with respect to L is defined as
follows: For u,v € X%, u ~, v if and only if, for all z,y € X*, either zuy
and zvy are both in L or both not in L. The syntactic semigroup of L is
the quotient semigroup X1 /~y. Each element of the syntactic semigroup of
L is a syntactic class which can be viewed as a language itself. For a word
u we write [u]r, to denote its syntactic class. The syntactic semigroup of a
language L is finite if and only if L is regular. For languages L1 and Lo over
the same alphabet 3, ~(r, ,) denotes the intersection of the congruences
~r, and ~r,. For additional basic information on syntactic semigroups we
refer to [17, 24].

Methods for Relativizing Properties of Codes 285

2. The second notion to consider is that of shuffling on a trajectory. This concept
is widely used in order to describe code properties [29, 18, 19, 20, 21, 14]. A
trajectory t is a word over the alphabet {0,1}. The result of shuffling two
words u and v on the trajectory t is a word w = wu L v that is obtained
by using all letters from u and v where the trajectory ¢ determines in which
places to use letters from w or v. Shuffling is defined recursively by

AULZA=A, aullyv=a(ull;v), ullybv=>b(ullv)

where a,b € X, u,v € X*, and ¢ € {0,1}*. Note that u LU, v is only defined if
|u| = |tlo and |v| = [t|;. This concept is extended to languages L1, Lo and a
set of trajectories t by

Liwg Lo={uw;v|u€Lj,v € Lyt €t}

The shuffle of two regular languages on a regular set of trajectories yields a
regular language.

Let P, be a code property and C C T be a non-empty language. For each of
the four notions of relativized codes p € 9 there is a maximal language M, g » such
that a language L is a P,-pt code relative to C if and only if L C M(’ig, as stated
in Theorem 3.4.

We show that M Qdecomp and MyFdecod are effectively constructible regular
languages for all P, con51dered in this paper. Thus, to decide whether or not a
given regular language is a P,-violation-free code for decompositions or decodings
relative to another regular language, one can test for inclusion of regular languages.
Let Vo, = {v € C' | vis a violating instance of P, in C'}. Here, a violating instance is
a word(v) as used in Definition 3.6. Since Pyj-violation-freeness and Pyo)iq-violation-
freeness, do not follow the general definition, these properties are treated separately.

Lemma 4.1. Let C C XF be a non-empty language and let
o0 € {p,s,pi,si, b,i,0,h, inter,,, comma-free}.
We have MEFIO™ = S\ 5*Ve ,5* and MEEdeod = 5+ \ C* Ve, ,C*.

Proof: The languages M, vi- dccomp and M deCOd contain precisely those words which

are violation-free for decomposmons or decodlngs respectively, with respect to C.
This is a direct consequence of Definition 3.6. O

Theorem 4.1. For

0 € {p,s, pi,si, b, 1,0, h,ol solid, inter,,, comma-free}

va decomp

and are effectively reqular.

and regular C C XV the languages Mg,f—gdecod

286 Helmut Jiirgensen, Lila Kari, and Steffen Kopecki

Proof: The sets of violations can be expressed as Vo, = CNCELH, Vo g = CNEHC,
qui = CQE*CEJF, Veosi = Cﬂ2+02*, Ve = Vc,p UVes, Vei=C0nN (E+CE* U
CEY), Vointer, = C"1 N IXTCO"ST, Vo commatree = CC N ITCELT, which are
all regular languages. The sets of violations for outfix-codes and hypercodes can
be expressed using shuffling on a trajectory: we have Vo, = C'N (C Wy, ¥1) for
th = {0,1}" and Vo, = C'N (C wy, IF) for t, = 0*170*; both sets of violations
are regular.

Using Lemma 4.1, we obtain that M, g:'gdccomp and Mgf'gdemd are regular because
Ve,o is regular for o € {p,s,pi,si,b,i,o,h,inter,, comma-free}. All steps in these
constructions are effective.

For ¢ = ol, the set of violations can be written as

Voo = {zyz | 2,y,2 € ST 2y, yz € C} = U XYZ

X,Y,zexst /~e
XYCC,YZCC

which is an effectively regular language. As before, we obtain Méf‘ocliccomp =T\
Ve, X*.

The set Mgfﬁewd cannot be expressed in a similar manner as above; neverthe-
less, it is effectively regular, given as

Mgt =\ (CXY(ZETnChu(CT e)Y ZCT).
XY, ZexT /~c
XYCcc,yzcc

. vi-decomp _ vf-decomp vi-decomp
Finally, we have Mg iy = Mc; n Mc, and
vi-decod _ vf-decod vi-decod
MEora® = M5 N Mg 5. U

Since the constructions of the regular languages in both Lemma 4.1 and Theo-
rem 4.1 are effective, one concludes:

Corollary 4.1. Let
0 € {p,s, pi,si, b,1,0,h,ol solid, inter,,, comma-free}.
For given regular languages C' and L it is decidable

1. whether or not C is a P,-violation-free code for decompositions relative to L,
and

2. whether or not C is a P,-violation-free code for decodings relative to L.

This result can be extended to P,-admissible codes for decompositions for those
properties for which P,-admissibility and P,-violation-freeness coincide — see The-
orem 3.1.

Methods for Relativizing Properties of Codes 287

Corollary 4.2. Let
0 € {p,s,pi,si, b, i}.

For given regular languages C and L it is decidable whether or not C is an P,-
admissible code for decompositions relative to L.

The situation changes when considering admissibility for decodings. Decidability
cannot be expressed as an inclusion test of two regular languages as before.

Proposition 4.1. For a given regular C C X* the language Mg‘?;n'd“‘)d 15 not
necessarily reqular.

Proof: Let X = {0,1} and C' = 10*. Obviously, a word w € 10107 € C? belongs
to Mg"l;“'de“’d if and only if ¢ = j. Therefore, the language Mg(};“'de“’d cannot be

regular as its intersection with the regular language C? is not regular. (I

Deciding whether or not a regular language C' is an P,-admissible code for
decodings relative to a regular language L works in two stages: first, decide whether
or not C is a code relative to L, that is, every word in L has at most one C-decoding;
then, verify that every decoding of a word in L is P,-admissible. We focus only on
code properties P, defined by irreflexive binary relations; this excludes solid codes,
intercodes, comma-free codes and overlap-free languages.

The next lemma forms the basis for deciding whether or not a regular language
C is a code relative to a regular language L. The lemma itself does not require that
the languages L and C' be regular.

Lemma 4.2. Let L,C C X% be non-empty languages. The language C is a code
relative to L if and only if, for all syntactic classes Y € X /~¢ contained in C,
one has

(C*Y)'LnCcrn (Y te\ {\pHCr = 0.

Proof: Suppose C' is not a code relative to L. There exists a word w = uy -+ - u, =
v1 Uy € L such that uy,...,un,v1,...,0y, € C and u; # v; for some 1 < i <
min{n, m}. Let ¢ be minimal such that u; # v; and, by symmetry, assume that u; <,
v;. Let Y = [u;]c and observe that z = u;41 - u, belongs to (C*Y)~1L as well
as C*; furthermore, since ui_lvi € Y~1C\ {\}, we obtain z = (u;lvi)viﬂ cee Uy €
(Y=1C\ {\})C*. Therefore,

Cc*Y)'Lncrny~tc\ {\Her

is not empty.
Conversely, suppose that

2 e (CY)ILNCr N (Yo (A

exists for some Y € ¥t /~¢ with Y C C. Let z1,...,2; € C* and y € Y such that
w=xy---x;yz € L. There are uq, ..., u, € C such that z = u; - - - u,,. Furthermore,

288 Helmut Jiirgensen, Lila Kari, and Steffen Kopecki

we let vg € y(Y 1O\ {A\}) and vy, ..., v,, € C such that yz = vg, ..., v,,; note that
vg € C. Thus, we found two factorizations

w:xl...xiyul...un:l‘l...xivo...fvm

of a word that belongs to L where all factors belong to C' and y # vy. We conclude
that C is not a code relative to L.]

Theorem 3.3 and Lemma 4.2 lead to a general method for deciding whether
a regular language C' is an P,-admissible code for decodings relative to a regular
language L provided the relation w, is binary and recognizable in a transducer
model with a decidable emptiness or membership problem. This applies to

o € {p,s,pi,si,b,i,0,h}.

In [15] it is shown that the emptiness problem for a transducer model is decidable
if and only if its membership problem is decidable. Furthermore, if the emptiness
problem of a transducer machine recognizing w, is decidable, then for regular X,Y
it is decidable whether or not € X and y € Y exists such that z w, .

Theorem 4.2. Let C,L C X" be non-empty regular languages and let P, be a code
property such that w, is irreflexive and recognizable by a transducer machine with
decidable emptiness problem. It is decidable whether or not C is a P,-admissible
code for decodings relative to L.

Proof: According to Theorem 3.3, for C' to be an P,-admissible code for decodings
relative to L, it is necessary that C is a code relative to L. By Lemma 4.2, we can
decide whether or not C' is a code relative to L by performing a series of emptiness
test of regular languages. Henceforth, we assume that we have preformed this test
and that C' is a code relative to L.

We will show that, under the premise that C' is a code relative to L, C is a
P,-admissible code for decodings relative to L if and only if for all syntactic classes
XY € E*/N(QL) such that X,Y C C and there exist x € X and y € Y with
T W,y Or Yy w, T, we have

C*XCryCc*nL=0.

Recall that one can decide whether or not there are x € X and y € Y such that
T W, Y Or Y W, x because w, is recognizable by a transducer machine with decidable
emptiness problem [15].

Now, suppose that w € C*XC*YC* N L exists for a pair X,Y € X%/~ 1)
such that X,Y C C and there exist x € X and y € Y with 2z w, y or y w, x.
Let w € ui XusYus for uy,us,us € C*. One obtains that u; XusYus C L and,
therefore, ujzusyus € C*XC*YC* N L with z w, y or y w, =. Hence C is not a
P,-admissible code for decodings relative to L.

Conversely, let w € L be a witness for the fact that C is not a P,-admissible
code for decodings relative to L; that is, two words z,y € C' such that z w, y or
Yy w, x appear in decodings of w over C'; note that we cannot have x = y since w, is

Methods for Relativizing Properties of Codes 289

irreflexive. As C'is a code relative to L, and y appear in the same decoding; thus,
without loss of generality, we can factorize w = ujzrusyus with uq, us, uzg € C* and
C*[z](c,1)C*[y](c,1)C* N L cannot be empty. O

With the tools used in this section we cannot answer the following questions:

1. For g € {o,h, ol solid, inter,,, comma-free} and given regular languages C, L,
is it decidable whether or not C' is a P,-admissible code for decompositions
relative to L?

2. For p € {ol,solid, inter,, comma-free} and given regular languages C, L, is it
decidable whether or not C'is a P,-admissible code for decodings relative to
L?

5 Final Remarks

In information processing, coding serves several purposes. These are expressed by
code properties. In a real information transmission system, messages arrive with
different probabilities including many with probability 0. Unless data ideal compres-
sion is applied, which would essentially eliminate the latter and make all messages
equally likely, coding should take into account which messages are likely to be
encoded. This idea is modelled by relativized codes. Thus the standard code prop-
erties, both information theoretically and in terms of combinatorics, have their
relativized counterparts, relativized to the language of likely messages to be en-
coded. This is very much in the spirit of Shannon’s channel coding theorem [26]
where messages of probability 0 are practically ignored.

Contrary to what was envisaged in [2], no uniformly acceptable relativization
seems possible. Instead, examining various potential models, we arrived at four
definitions, each of which seems to be equally well motivated.

We compare these models both among each other and to intuitive expecta-
tions. We also consider their decidability properties. We have indicated a few open
questions. Many more could have been mentioned.

Acknowledgement: Research reported in this paper was supported by grants
from the Natural Sciences and Engineering Council of Canada.

References

[1] J. Berstel, D. Perrin, C. Reutenauer: Codes and Automata. Encyclopedia
of Mathematics and Its Applications 129. Cambridge University Press, Cam-
bridge, 2010, xiv + 620 pp.

[2] M. Daley, H. Jiirgensen, L. Kari, K. Mahalingam: Relativized codes. Theoret.
Comput. Sci. 429 (2012), 54-64.

290

13l

4]

[5]

[6]

7]

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Helmut Jiirgensen, Lila Kari, and Steffen Kopecki

K. Dudzinski, S. Konstantinidis: Formal descriptions of code properties: De-
cidability, complexity, implementation. Internat. J. Foundations Comput. Sci.
23(1) (2012), 67-85.

H. Fernau, K. Reinhardt, L. Staiger: Decidability of code properties. RAIRO
Inform. Théor. Appl. 41(3) (2007), 243-259.

E. R. Giimiistop: Varieties of Codes and Codifiable Varieties of Monoids. PhD
Dissertation, Binghampton University, State University of New York, 1997.

F. Guzman: Decipherability of codes. J. Pure Appl. Algebra 141 (1999),
13-35.

T. Harju, J. Karhuméki: On the defect theorem and simplifiability. Semigroup
Forum 33 (1986), 199-217.

T. Head, A. Weber: Deciding multiset decipherability. IEEE Trans. Inform.
Theory 41 (1995), 291-297.

T. Head: Unique decipherability relative to a language. Tamkang J. Math. 11
(1980), 59-66.

T. Head: Deciding the immutability of regular codes and languages und finite
transductions. Inform. Process. Lett. 31 (1989), 239-241.

T. Head: Relativized code concepts and multi-tube DNA dictionaries. In C. S.
Calude, G. Paun (editors): Finite versus Infinite — Contributions to an Eternal
Dilemma. 175-186. Springer-Verlag, London, 2000.

T. Head. Draft of notes for Form. Lang. Sem. Thurs. Sept. 12, 2002, 2002,
3 pp. Personal Communication.

H. Jiirgensen: Markers and deterministic acceptors for non-deterministic lan-
guages. J. of Automata, Languages and Combinatorics 14 (2009), 33-62. Spe-
cial issue on the occasion of D. Wotschke’s sixtieth birthday.

H. Jiirgensen, S. Konstantinidis: Codes. In Rozenberg and Salomaa [25], 1,
511-607.

H. Jiirgensen, K. Salomaa, S. Yu: Transducers and the decidability of inde-
pendence in free monoids. Theoret. Comput. Sci. 134 (1994), 107-117.

H. Jiirgensen, S. S. Yu: Relations on free monoids, their independent sets, and
codes. Internat. J. Comput. Math. 40 (1991), 17-46.

G. Lallement: Semigroups and Combinatorial Applications. John Wiley &
Sons, New York, 1979.

D. Y. Long: k-Outfix codes. Chinese Ann. Math. Ser. A 10 (1989), 94-99, in
Chinese.

Methods for Relativizing Properties of Codes 291

[19] D. Y. Long: k-Prefix codes and k-infix codes. Acta Math. Sinica 33 (1990),
414-421, in Chinese.

[20] D. Y. Long: On the structure of some group codes. Semigroup Forum 45
(1992), 38-44.

[21] D. Y. Long: k-Bifix codes. Riv. Mat. Pura Appl. 15 (1994), 33-55.

[22] D. J. C. MacKay: Information Theory, Inference, and Learning Algorithms.
Cambridge University Press, Cambridge, 6th ed., 2007.

[23] K. Mahalingam: Involution Codes: with Application to DNA Strand Design.
PhD thesis, University of South Florida, 2004, (3)-+ii+70 pp.

[24] J.-E. Pin: Syntactic semigroups. In Rozenberg and Salomaa [25], 1, 679-746.

[25] G. Rozenberg, A. Salomaa (editors): Handbook of Formal Languages. Sprin-
ger-Verlag, Berlin, 1997.

[26] C. E. Shannon: A mathematical theory of communication. Bell System Tech.
J. 27 (1948), 379-423, 623-656.

[27] H. J. Shyr: Free Monoids and Languages. Hon Min Book Company, Taichung,
third ed., 2001, iv4282 pp.

[28] H. J. Shyr, G. Thierrin: Codes and binary relations. In M. P. Malliavin (editor):
Séminaire d’algébre Paul Dubreil, Paris 1975-1976, (29éme Année). Lecture
Notes in Computer Science 586, 180-188, Springer-Verlag, Berlin, 1977.

[29] G. Thierrin, S. S. Yu: Shuffle relations and codes. J. Inform. and Optim. Sci.
12 (1991), 441-449.

[30] A. Weber, T. Head: The finest homophonic partition and related code concepts.
IEEE Trans. Inform. Theory 42 (1996), 1569-1575.

[31] S.-S. Yu: Languages and Codes. Tsang Hai Book Publishing Co., Taichung,
Taiwan, 2005.

Remembering Ferenc Gécseg

This paper is dedicated to Ferenc Gécseg. By his influential work he is known to
and admired by, all authors of this paper.

The first author, “I” in the sequel, was a close friend and is adding a few personal
memories.

Between 1970 and 2000 I was a frequent visitor to Hungary mostly working
with Jend Szép and Istvan Peédk in Budapest, but also with colleagues at the Math-
ematics Department in Szeged, in particular with Ferenc. As we grew familiar, we
usually spent the time in his garden, a bit outside Szeged, and research ideas grew
among grapes and fruits. We shared many interests including universal algebra and

292 Helmut Jiirgensen, Lila Kari, and Steffen Kopecki

automaton theory of course, but also gardening, and social politics — and even the
birthday. We wrote several papers together: on dependence in algebras, on algebras
with dimension, on soliton automata, on products of automata, and on automata
over algebras.

Ferenc and his wife Maria visited us in London, Canada, in 1987/88 for nearly
a year. This is when Ferenc taught me much of what I did not know in universal
algebra. He also tried to teach me how to turn the soil in our garden; that was
not quite as successful, because our soil is very heavy clay unlike the sand in the
Szeged area. We visited each other and met on many occasions, including several
important seminars in Bulgaria. Exchanging thoughts on all kinds of matters, in-
cluding scientific, political and social issues, was always an exceptionally positive
experience.

I was in contact with Ferenc about a week before his death. He did not sound
confident but expressed some hope. I and my wife miss him and his wife Maria,
who died a few years ago.

Received 23rd July 2015

