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Jürgen Dassow∗ and Stefan Rudolf†

In memorian Ferenc Gécseg, a pioneer in Theoretical Computer Science

Abstract

We study the generative power of extended conditional Lindenmayer sys-
tems where the conditions are finite, monoidal, combinational, definite, nilpo-
tent, strictly locally (k)-testable, commutative, circular, suffix-closed, star-
free, and union-free regular languages. The results correspond to those ob-
tained for conditional context-free languages.

Keywords: Lindenmayer systems, controlled derivations, subregular condi-
tions

1 Introduction

In the theory of formal languages one imposes very often conditions to perform
a step in the generation of words. By practical reasons – but also by theoretical
considerations – it is very useful that one can check the condition by an efficient
procedure. Thus one relates the condition to regular languages, for which the
membership problem can be decided in linear time. We mention here as examples
regularly controlled context-free grammars, conditional context-free grammars, tree
controlled context-free grammars, networks of evolutionary processors with regular
filters, and contextual grammars with selection languages (for details see [4], [16],
[13], and [14]).

In these cases the process of checking the condition given by a regular language
is now very simple and efficient, however, the increase of generative power is consid-
erable (for instance, for the first four devices mentioned above, one has an increase
from context-free languages to recursively enumerable languages). Since on the one
hand practical requirements do not ask for arbitrary regular languages and on the
other hand theoretical studies – for instance proofs – show that only special regular
languages are used, it is very natural to study the devices with subregular languages
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for the control. The effect of using subregular languages defined by combinatorial
and algebraic properties to the generative power was investigated in the last two
decades (see e. g. [1], [3], and [6]).

In 1968, A. Lindenmayer introduced a new type of formal grammars and lan-
guages in order to describe the development of organisms. We refer to [15] as a
monograph on Lindenmayer systems and languages.

Also in this area it is necessary to restrict the applicability of tables by biological
reasons (e.g. in order to model the change of the seasons, the different development
if water is present or not etc.). In a conditional Lindenmayer system a table P can
only be applied to a sentential form w if w belongs to a language associated to P .
A first variant of such systems was studied in [17].

In [5] the systematic study of conditional Lindenmayer systems where the lan-
guages associated to the tables belong to some family of subregular languages was
started. In [5], the case of non-extended Lindenmayer systems was investigated.
In this paper we continue by the consideration of extended conditional Linden-
mayer systems with subregular conditions. We prove that propagating extended
conditional Lindenmayer systems with suffix-closed, union-free, star-free, circular,
or strictly locally k-testable (for k ≥ 2) conditions allow further characterizations
of the family of context-sensitive languages, whereas the use of monoidal, combi-
national, definite, nilpotent and strictly-locally 1-testable languages as conditions
does not lead to an increase of the power, i. e., one obtains the family of ET0L lan-
guages; systems with commutative conditions are as powerful as non-erasing matrix
grammars (with appearance checking). For arbitrary Lindenmayer systems (with
erasing rules) one gets characterizations of the family of recursively enumerable
languages, if the conditions are suffix-closed, union-free, star-free, circular, strictly
locally k-testable (for k ≥ 1), or commutative; for the other families of subregular
languages the place in the hierarchy is not determined completely.

2 Definitions

We assume that the reader is familiar with the basic concepts of the theory of
formal languages and automata. In this section we only recall some notations and
some definitions such that a reader can understand the results. We refer to [16],
[15], and [4].

The inclusion of the set X in the set Y is denoted by X ⊆ Y . If the inclusion
is strict, we write X ⊂ Y .

For an alphabet V , i. e, V is a finite non-empty set, the set of all words and
all non-empty words over V are denoted by V ∗ and V +, respectively. The empty
word is denoted by λ. For a language L, let alph(L) be the minimal set V such
that L ⊆ V ∗. For a word w ∈ V ∗ and a subset C of V , the number of occurrences
of letters of C in w is denoted by #C(w). If C only consists of a letter a, we write
#a(w) instead of #{a}(w).

Let V = {a1, a2, . . . , an} (with a fixed order of the letters of V ). Then, for a
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word w ∈ V ∗, we define the Parikh vector πV (w) of w by

πV (w) = (#a1(w),#a2(w), . . . ,#an(w)).

For a language L over V , we set

πV (L) = {πV (w) | w ∈ L}.

A language L over V is called semi-linear if πV (L) is a finite union of sets of
the form

{(a1, a2, . . . , an) +

p∑
j=1

αj(b1,j , b2,j , . . . , bn,j) | αj ∈ N}.

If we consider a primed version V ′ = {a′ | a ∈ V } of some alphabet V , then,
for a word w = a1a2 . . . am with ai ∈ V for 1 ≤ i ≤ m, we set w′ = a′1a

′
2 . . . a

′
m.

Moreover, if U is a subset of V , then we set U ′ = {a′ | a ∈ U}. Analogous notation
we also use for double primed versions of V , etc.

In this paper two languages L1 and L2 are considered as equal if they differ at
most in the empty word, i. e., L1 \ {λ} = L2 \ {λ}.

The families of finite, regular, context-free, context-sensitive, and recursively
enumerable languages are denoted by FIN , REG , CF , CS , and RE , respectively.

2.1 Matrix Grammars and Languages

Matrix grammars are an important representant of grammars with controlled deri-
vations. They are equivalent to many other such devices. We recall their definition
since we shall show that also some extended conditional Lindenmayer systems are
equivalent to matrix grammars.

A matrix grammar is a quintuple G = (N,T,M, S,Q) where
– N and T are disjunct alphabets of nonterminals and terminals,
– M = {m1,m2, . . . ,mr} is a finite set of finite sequences mi of context-free

rules, i. e.,
mi = (Ai,1 → vi,1, Ai,2 → vi,2, . . . Ai,ri → vi,ri)

for 1 ≤ i ≤ r (the elements of M are called matrices),
– S is an element of N , and
– Q is a subset of the productions occurring in the matrices of M
The application of a matrix mi is defined as a sequential application of the rules

of mi in the given order where a rule of Q can be ignored if its left-hand side does
not occur in the current sentential form, i.e., x =⇒mi

y holds iff there are words
wj , 1 ≤ j ≤ ri + 1, such that x = w1, y = wri+1 and, for 1 ≤ j ≤ ri,

wj = xjAi,jyj and wj+1 = xjvi,jyj

or
wj = wj+1 and Ai,j does not occur in wj and Ai,j → vi.j ∈ Q.
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The language L(G) generated by G consists of all words z ∈ T+ such that there is
a derivation

S =⇒mi1
v1 =⇒mi2

v2 =⇒mi3
. . . =⇒mit

vt = z

for some t ≥ 1.
By MATλ and MAT we denote the families of languages generated by matrix

grammars and matrix grammars without erasing rules, respectively.
It is well-known that

CF ⊂ MAT ⊂ CS ⊂ RE = MATλ.

2.2 Subregular Families of Languages

The aim of this section is the definition of the subregular families of languages
considered in this paper and the relation between them.

For a language L over V , we set

Comm(L) = {ai1 . . . ain | a1 . . . an ∈ L, n ≥ 1, {i1, i2, . . . , in} = {1, 2, . . . , n}},
Circ(L) = {vu | uv ∈ L, u, v ∈ V ∗},
Suf(L) = {v | uv ∈ L, u, v ∈ V ∗}

We consider the following restrictions for regular languages. For a language L
with V = alph(L), we say that L is

– combinational iff it can be represented in the form L = V ∗A for some subset
A ⊆ V ,

– definite iff it can be represented in the form L = A ∪ V ∗B where A and B
are finite subsets of V ∗,

– nilpotent iff L is finite or V ∗ \ L is finite,
– commutative iff L = Comm(L),
– circular iff L = Circ(L),
– suffix-closed (or fully initial or multiple-entry language) iff Suf(L) = L,
– union-free iff L can be described by a regular expression which is only built

by product and star,
– star-free (or non-counting) iff L can be described by a regular expression

which is built by union, product, and complementation,
– monoidal iff L = V ∗,

For more details on languages of the types defined above we refer to [19], [11],
and [18].

In [2], it was shown that a regular language R ⊂ V ∗ is commutative if and only
if there is a semi-linear set M and R = π−1V (M).

It is obvious that combinational, definite, nilpotent, union-free and star-free
languages are regular, whereas non-regular languages of the other types mentioned
above exist.

For a natural number k ≥ 1, a language L is strictly locally k-testable iff there
are three subsets A, B and C of V k such that a1a2 . . . an with n ≥ k and ai ∈ V ,



Conditional Lindenmayer Systems with Subregular Conditions 317

1 ≤ i ≤ n, belongs to L iff a1a2 . . . ak ∈ A, aj+1aj+2 . . . aj+k ∈ B for 1 ≤ j ≤
n− k − 1, and an−k+1an−k+2 . . . an ∈ C. Moreover, a language L is called strictly
locally testable iff it is strictly locally k-testable for some k ≥ 1.

Obviously, strictly locally testable languages can be accepted by finite automata,
and hence they are regular.

A set R ⊂ V ∗ is strictly locally 1-testable if and only if there are sets A ⊆ V ,
B ⊆ V , and C ⊆ V such that R = AC∗B ∪ (A ∩B) (see for instance [2]).

By COMB , DEF , NIL, COMM , CIRC , SUF , UF , SF , MON , LOC k, k ≥ 1,
and LOC , we denote the families of all combinational, definite, nilpotent, regular
commutative, regular circular, regular suffix-closed, union-free, star-free, monoidal,
strictly locally k-testable, and strictly locally testable languages, respectively. We
set

G = {FIN ,MON ,COMB ,DEF ,NIL,COMM ,CIRC ,SUF ,UF ,SF ,LOC}
∪ {LOC k | k ≥ 1}.

The relations between families of G are investigated e. g. in [12] and [20] and their
set-theoretic relations are given in Figure 1.
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Figure 1: Hierarchy of subregular languages (an arrow from X to Y denotes X ⊂ Y ,
and if two families are not connected by a directed path then they are incomparable)

Representations of definite automata and definite and nilpotent tree automata
and languages were studied by Ferenc Gécseg and coauthors in [7], [8], [9], and [10].
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2.3 Extended Conditional Lindenmayer Systems

We start with some definitions concerning Lindenmayer systems and introduce then
conditional Lindenmayer systems.

An extended tabled Lindenmayer system without interaction (ET0L system, for
short) is an (r + 3)-tuple H = (V, T, P1, P2, . . . , Pr, w), where

– V is an alphabet, T is a subset of V ,
– for 1 ≤ i ≤ r, Pi is a finite set of rules a → v with a ∈ V and v ∈ V ∗ such

that, for any b ∈ V , there is a word vb with b→ vb ∈ Pi,
– w ∈ V +.
The sets Pi, 1 ≤ i ≤ r, are called tables. For simplicity, for a table, we shall

give only the rules for the letters a for which a rule a→ w with w 6= a exists in the
table, i. e., for all letters b, for which no rules are mentioned, there is only the rule
b→ b in the table.

For x ∈ V + and y ∈ V ∗, we say that x derives y in H, written as x =⇒H y, iff
– x = a1a2 . . . an with ai ∈ V for 1 ≤ i ≤ n,
– y = y1y2 . . . yn,
– ai → yi ∈ Pj for 1 ≤ i ≤ n and some j, 1 ≤ j ≤ r.
The language L(H) generated by H is defined as

L(H) = {z | z ∈ T ∗, w =⇒∗H z}

where =⇒∗H is the reflexive and transitive closure of =⇒H .
An ET0L system is called propagating if no table contains a rule a→ λ.
By ET0L and EPT0L, we denote the families of all languages generated by

ET0L systems and propagating ET0L systems, respectively.
It is well-known that the following relation holds

CF ⊂ EPT0L = ET0L ⊂ MAT .

Definition 1. A conditional ET0L system is an (n+ 3)-tuple

H = (V, T, (P1, R1), (P2, R2), . . . , (Pn, Rn), w),

where
– H ′ = (V, T, P1, P2, . . . , Pn, w) is an ET0L system, and,
– for 1 ≤ i ≤ n, Ri is a regular language over some alphabet U ⊆ V .
For x ∈ V + and y ∈ V ∗, we say that x derives y in H, written as x =⇒H y, if

and only if there is a number j, 1 ≤ j ≤ n
– x = a1a2 . . . at with ai ∈ V for 1 ≤ i ≤ t,
– y = y1y2 . . . yt,
– ai → yi ∈ Pj for 1 ≤ i ≤ t, and
– x ∈ Rj.
The language L(H) generated by H is defined as

L(H) = {z | z ∈ T ∗, w =⇒∗H z}

where =⇒∗H is the reflexive and transitive closure of =⇒H .
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By definition, in a condition ET0L system, a table Pj is only applicable to a
sentential form x, if x belongs to the conditional language Rj associated with Pj .

Example 1. We consider the ET0L system

H = (V, {a, b}, (P1, R1), (P2, R2), (P3, R3), (P4, R4), (P5, R5), SD)

with

V = {S,A,B1, B2, C,D, a, b},
(P1, R1) = ({S → ASC}, V ∗{D}),
(P2, R2) = ({S → AC,D → λ}, V ∗{D}),
(P3, R3) = ({A→ Ab,C → B1, C → B2}, V ∗{C}),
(P4, R4) = ({B1 → λ,B2 → C}, V ∗{B1}),
(P5, R5) = ({A→ a}, V ∗{b}).

We start with SD, have to apply sometimes P1 and then once P2 (the only rules
where the words in the associated language end with D). This yields AnCn. Now
we have to apply P3 and get (Ab)nz where z is a word of length n over {B1, B2}.
If z ends with B2, then the derivation cannot be continued. If B1 is the last letter
of z, we can only apply P4 and obtain (Ab)nCr with r < n (since we cancel at
least the last letter of z). This process can be iterated, in each step we add a letter
b after each A, and cancel at least one C. Finally, we get (Abm)n with m ≤ n
(m gives the number of iterations, for which 1 ≤ m ≤ n holds). Now, by the use
of P5 we get (abm)n with n ≥ 1 and 1 ≤ m ≤ n. Thus

L(H) = {(abm)n | 1 ≤ m ≤ n}.

We note that it is well-known that L(H) cannot be generated by an ET0L
system.

In this paper, we study the generative power of conditional ET0L systems, if
one restricts to a class of subregular languages. For X ∈ G, we define CEL(X) and
CEPL(X) as the families of all languages which can be generated by conditional
ET0L and conditional propagating ET0L system (V, T, (P1, R1), . . . , (Pn, Rn), w),
where all languages Ri, 1 ≤ i ≤ n, are in X.

By these definitions, the language from Example 1 is in CEL(COMB).

The following relations follow immediately from the definitions.

Lemma 1. i) For all X,Y ∈ G with X ⊆ Y ,

CEL(X) ⊆ CEL(Y ), CEPL(X) ⊆ CEPL(Y ), and CEPL(X) ⊆ CEL(X).

3 Some Equalities and Inclusions

In this section we prove inclusions CEL(X) ⊆ CEL(Y ) (CEPL(X) ⊆ CEPL(Y ))
and equalities CEL(X ′) = CEL(Y ′) (CEPL(X ′) = CEPL(Y ′)) for some families X,
Y , X ′, and Y ′, respectively.



320 Jürgen Dassow and Stefan Rudolf

Lemma 2. CEL(REG) = CEL(UF ) and CEPL(REG) = CEPL(UF ).

Proof. It is known that any regular language is a union of finitely many union-free
languages. Let

G = (V, T, (P1, R1), (P2, R2), . . . , (Pn, Rn), ω)

be a conditional ET0L system with regular conditions. Moreover, for 1 ≤ i ≤ n,
let

Ri = Ri,1 ∪Ri,2 ∪ · · · ∪Ri,ri ,
where Ri,j is union-free for 1 ≤ j ≤ n. It is easy to prove that the ET0L system

(V, T, (P1, R1,1), . . . , (P1, R1,r1), (P2, R2,1), . . . , (Pn, Rn,1), . . . , (Pn, Rn,rn), ω)

with union-free conditions generates L(G). Hence, CL(REG) ⊆ CL(UF ).
The converse inclusion follows by Lemma 1 and the inclusions given in the

diagram of Figure 1.
Thus CL(REG) = CL(UF ).

For propagating ET0L systems, we have to repeat the proof.

Lemma 3. CEL(REG) ⊆ RE and CEPL(REG) ⊆ CS.

Proof. Let L ∈ CEL(REG), and let G = (V, T, (P1, R1)(P2, R2), . . . , (Pn, Rn), ω)
be a conditional ET0L system with regular conditions generating L. Then we
construct a Turing machine M which works as follows (the detailed description
of M is left to the reader):

(1) M checks whether ω is the word on the tape. If this is the case, M accepts;
otherwise, it continues with (2).

(2) M chooses an i, 1 ≤ i ≤ n, remembers i in the state, and chooses a decom-
position w = w1w2 . . . wm of the tape content w; this can be done by writing
w1#w2# . . . wm−1#wm at the tape.

(3) M replaces each wj 1 ≤ j ≤ m, by some aj where aj → wj ∈ Pi (if wj is the
empty word, this means that aj with aj → λ ∈ Pi is inserted) and cancels all
symbols #. If M can perform this step (i. e., the tape content w1w2 . . . wm
is changed to a1a2 . . . am), it continues with (4); otherwise, M stops without
accepting.

(4) M checks whether a1a2 . . . am ∈ Ri. In the affirmative case, M continues
with (1); otherwise, M stops without accepting.

It is easy to see that a word w is accepted by M if and only if

w `i1 w1 `i2 w2 `i3 · · · `iq−1
wq−1 `iq ω,

where `i stands for applying (1) to (4) with i chosen in (2), if and only if

ω =⇒Piq
wq−1 =⇒Piq−1

wq−2 =⇒Piq−2
. . . =⇒Pi2

w1 =⇒Pi1
w

ω ∈ Riq , wk ∈ Rik for 1 ≤ k ≤ q−1, and w ∈ T ∗ if and only if w ∈ L(G). Therefore
the language accepted by M is L(G). Thus CEL(REG) ⊆ RE .
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If the conditional T0L system G is propagating, each wj of the decomposition
is non-empty. Then it follows easily that the maximal length of the tape contents is
twice the length of the input word. Hence the Turing machine is a linearly bounded
automaton, which implies CEPL(REG) ⊆ CS .

Lemma 4. RE ⊆ CEL(LOC 1).

Proof. Let L ∈ RE . Then there is a grammar G = (N,T, P, S) in Kuroda normal
form (i. e., all rules have one of the following forms: A → BC, A → a, A → λ, or
AB → CD with A,B,C,D ∈ N and a ∈ T ) which generates L. Let P1 be the set
of all rules of P of the form AB → CD and P2 = P \ P1.

Let S′′ and # be additional symbols not in N ∪ T . We set

V ′ = {a′ | a ∈ N ∪ T} ∪ {#},
Vp = {ap | a ∈ N ∪ T} for p ∈ P2,

Vp = {ap | a ∈ N ∪ T} ∪ {a′p | a ∈ N ∪ T} for p ∈ P1,

Vr = {ar | a ∈ N ∪ T ∪ {#} } ∪ {a′r | a ∈ N ∪ T ∪ {#} },
V = {S′′} ∪N ∪ T ∪ V ′ ∪ Vr ∪

⋃
p∈P

Vp.

We now construct a conditional ET0L system H as follows: The basic and terminal
alphabet are V and T , and the axiom is S′′. Now we give all tables and conditions
(if no rule is mentioned for some letter a, then a → a is the only rule for a in the
production set):

(P1, R1) = ({S′′ → #S′}, {S′′}+)

(we introduce from the axiom the word #S′; the symbol # remembers the beginning
of the word, because we shall use circular versions of a word; S′ is the primed version
of the start symbol of G),

(P2, R2) = (
⋃

a∈N∪T
{a′ → a′, a′ → ar, a

′ → a′r} ∪
⋃

a∈N∪T

⋃
p∈P1

{a′ → ap}

∪
⋃

a∈N∪T

⋃
p∈P2

{a′ → ap, a
′ → a′p} ∪ {#→ #,#→ #r,#→ #′r},

V ′(V ′)+),

(given a word over V ′, we can change some letters a′ to their versions ar and a′r
or their versions associated with a rule p; looking at the conditions of the tables
defined below, the obtained word can only be handled if the changes are only done
for the last letter or last and first letters and the introduced versions have to fit;
more precise, from x′w′y′ with x′, y′ ∈ V ′ and w′ ∈ (V ′)∗, we can derive only x′w′yp
with p ∈ P1, or xpw

′y′p with p ∈ P2, or xrw
′y′r),

(Pr,a,b, Rr,a,b) = ({ar → b′a′, b′r → λ}, {ar}(V ′)∗{b′r}) for a, b ∈ V ′
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(if we obtained arw
′b′r from a′w′b′, we now derive b′a′w′, i. e., we have performed

a rotation step from a′wb′ to b′a′w′),

(Pp, Rp) = ({Ap → B′C ′}, (V ′)+{Ap}) for p = A→ BC

(if we obtained x′w′Ap, then we obtain x′w′B′C ′, i. e., we have simulated an appli-
cation A→ BC)

(Pp, Rp) = ({Ap → a′}, (V ′)+{Ap}) for p = A→ a

(if we obtained x′w′Ap, then we obtain x′w′a′, i. e., we have simulated an applica-
tion A→ a)

(Pp, Rp) = ({Ap → λ}, (V ′)+{Ap}) for p = A→ λ

(if we obtained x′w′Ap, then we obtain x′w′, i. e., we have simulated an application
A→ λ)

(Pp, Rp) = ({Bp → D′, A′p → C ′}, {Bp}(V ′)+{A′p}) for p = AB → CD

(if we obtained Bpw
′Ap, then we obtain D′w′C ′, i. e., we have simulated an appli-

cation AB → CD up to some rotation),

(P3, R3) = ({a′ → a | a ∈ T} ∪ {#→ λ}, {#}T ∗)

(if we have a word #x′ with x ∈ T , then we can derive x).
We now prove that L(G) ⊆ L(H). The basic idea is to start with #S′ (produced

by one application of P1 to the axiom S′′), perform circular shifts on a sentential
form getting words of the form x′r+1x

′
r+2 . . . x

′
n#x′1x

′
2 . . . x

′
r and simulate the appli-

cation of a rule in G by applying some table which only changes the last (if the rule
is in P1) or first and last letter (which are neighbouring letters in the non-rotated
word, if the rule is from P2), and to finish by a cancellation of # and returning to
non-primed letters. Thus we can generate in H any word w ∈ T ∗ which can be
generated by G.

The converse inclusion L(H) ⊆ L(G) holds, since we can perform only the
rotation steps, or simulations of rules of P , or a cancellation of the primes, if we
have a terminal word.

Since all the conditions of H are in LOC 1, the statement follows.

Lemma 5. CS ⊆ CEPL(LOC 2).

Proof. Let L ∈ CS . Then there is a context-sensitive grammar G = (N,T, P, S) in
Kuroda normal form, i. e., all rules have the form A → B, A → BC, AB → CD,
and A→ a with A,B,C,D ∈ N and a ∈ T , such that L = L(G). Let p1, p2, . . . , pr
be the rules of P which have the form third mentioned form. For each rule
pi = AiBi → CiDi, we introduce new letters A′i and B′i such that A′i 6= B′j for
1 ≤ i, j ≤ r and A′i 6= A′j and B′i 6= B′j for 1 ≤ i, j ≤ r, i 6= j. Let

V ′ = {A′i | 1 ≤ i ≤ n} ∪ {B′i | 1 ≤ i ≤ n}.
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Then we define the conditional ET0L system

H = (N ∪ T ∪ V ′, T, (Q,R), (Q′, R′), S)

with

Q ={X → X | X ∈ N ∪ T ∪ V ′} ∪ {A→ w | A→ w ∈ P}
∪ {Ai → A′i | pi = AiBi → CiDi, 1 ≤ i ≤ n}
∪ {Bi → B′i | pi = AiBi → CiDi, 1 ≤ i ≤ n}

R =(N ∪ T )∗

Q′ ={X → X | X ∈ N ∪ T} ∪
r⋃
i=1

{A′i → Ci, B
′
i → Di}

R′ =(N ∪ T ∪
r⋃
i=1

{A′iB′i})∗.

It is easy to see that the conditions R and R′ belong to LOC 2.
We now prove that L(H) = L(G).
Let u ∈ (N ∪ T )+ be a sentential form of G. Let u =⇒ v using some rule r

of P which is different from all pi, 1 ≤ i ≤ r. Then u = u1Au2, y = u1wu2, and
r = A→ w. This derivation can be simulated by a derivation according to table Q
using X → X for all letters in u1 and u2 and A→ w for A in the special position.
If a rule ri = AiBi → CiDi is applied to u we get u = v1AiBiv2 =⇒ v1CiDiv2 = y.
This derivation can be simulated in a two-step derivation

u = v1AiBiv2 =⇒Q v1A
′
iB
′
iv2 =⇒Q′ v1CiDiv2 = y

where X → X from Q and Q′ are applied to the letters of v1 and v2. Since G as
well as H start with the axiom S, it is clear that L(G) ⊆ L(H).

Assume that x ∈ (N ∪ T )+ is a sentential form of H. Then the application of
Q′ does not change x. Thus we have to apply Q. Let x =⇒Q y. If y contains
a letter Ai, then its successor in y is Bi since we cannot continue the derivation,
otherwise (by the definition of R′). Let us assume without loss of generality (only
the positions of the letters Xi, 1 ≤ i ≤ n, and the subwords AijBij , 1 ≤ j ≤ m,
can occur in another order) that

x = u1X1u2X2u3X3 . . . unXnv1Ai1Bi1v2Ai2Bi2v3 . . . vmAimBimvm+1.

If X → X is applied to all letters of the words ui, 1 ≤ i ≤ n, and vj , 1 ≤ j ≤ m+1,
Xi → wi ∈ P is applied to all letters Xi, 1 ≤ i ≤ n, and Aij → A′ij and Bij → B′ij
are applied to the letters Aij and Bij , 1 ≤ j ≤ m, we get

x =⇒Q u1w1u2w2u3w3 . . . unwnv1A
′
i1B
′
i1v2A

′
i2B
′
i2v3 . . . vmA

′
imB

′
imvm+1 = y.

If n ≥ 1 and m ≥ 1, we have to apply Q′ and get

y =⇒Q′ u1w1u2w2u3w3 . . . unwnv1Ci1Di1v2Ci2Di2v3 . . . vmCimDimvm+1 = y.
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Since we have the derivation

x = u1X1u2X2u3X3 . . . unXnv1Ai1Bi1v2Ai2Bi2v3Ai3Bi3v4 . . . vmAimBimvm+1

=⇒ u1w1u2X2u3X3 . . . unXnv1Ai1Bi1v2Ai2Bi2v3Ai3Bi3v4 . . . vmAimBimvm+1

=⇒ u1w1u2w2u3X3 . . . unXnv1Ai1Bi1v2Ai2Bi2v3Ai3Bi3v4 . . . vmAimBimvm+1

. . .

=⇒ u1w1u2w2u3w3 . . . unwnv1Ai1Bi1v2Ai2Bi2v3Ai3Bi3v4 . . . vmAimBimvm+1

=⇒ u1w1u2w2u3w3 . . . unwnv1Ci1Di1v2Ai2Bi2v3Ai3Bi3v4 . . . vmAimBimvm+1

=⇒ u1w1u2w2u3w3 . . . unwnv1Ci1Di1v2Ci2Di2v3Ai3Bi3v4 . . . vmAimBimvm+1

. . .

=⇒ u1w1u2w2u3w3 . . . unwnv1Ci1Di1v2Ci2Di2v3 . . . vmCimDimvm+1 = y,

the derivation x =⇒∗ y in H can be simulated in G. If n = 0 or m = 0, we get
analogously simulations. Thus L(H) ⊆ L(G), too.

Corollary 1. CEL(REG) = RE and CEPL(REG) = CS.

Proof. By Lemmas 1, 4, 5, and 3,

RE ⊆ CEL(LOC 1) ⊆ CEL(REG) ⊆ RE

and
CS ⊆ CEPL(LOC 2) ⊆ CEPL(REG) ⊆ CS ,

from which the statement immediately follows.

Lemma 6. RE = CEL(SUF ) and CS = CEPL(SUF ).

Proof. i) Let L ∈ RE . Then, by Corollary 1, L = L(G) for some ET0L system

G = (V, T, (P1, R1), (P2, R2), . . . (Pn, Rn), ω)

with regular conditions. Let V ′ = {a′ | a ∈ V }, and let S, F , and # be additional
symbols. Then we set

Pinit = {S → #ω′} ∪ {a′ → a′ | a′ ∈ V ′ ∪ {#, F}} ∪ {a→ F | a ∈ V }
and Rinit = {S, λ},

Pi = {a′ → w′ | a→ w ∈ Pi, a ∈ V } ∪ {a→ a | a ∈ {S,#, F}} ∪ {a→ F | a ∈ V }
and Ri = Suf({#z′ | z ∈ Ri}) for 1 ≤ i ≤ n,

Pfin = {#→ λ} ∪ {a′ → a | a ∈ T} ∪ {a′ → F | a′ ∈ (V ′ \ T ′) ∪ V ∪ {S, F}}
and Rfin = Suf({#}T ∗)

and consider the conditional ET0L system

H = (V ∪ V ′ ∪ {S, F,#}, T, (Pinit, Rinit), (P1, R1), . . . (Pn, Rn), (Pfin , Rfin), S).
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Any derivation in H starts with S =⇒ #ω and in the sequel Pinit cannot be
applied. Moreover, by the definition of the production sets of H, any derivable
word – except S – has the form #z′ for some z ∈ V ∗ or z with z ∈ T ∗ or it contains
at least one letter F . A set Pi is applicable to #z′ if and only if z ∈ Ri, and its
application yields #u′ if and only if z =⇒Pi

u holds in G. Furthermore, #z′ =⇒ z
if and only if z ∈ T ∗ by application of Rfin . From elements of z ∈ T ∗ we obtain a
word consisting only of F s. If a word x contains an occurrence of F , then all words
derivable from x contain an F , too; hence we cannot terminate the derivation. Now
it follows easily that L = L(H). Thus we have RE ⊆ CEL(SUF ).

The converse inclusion follows from the relation CEL(SUF ) ⊆ CEL(REG) = RE
by Lemma 1 and Corollary 1.

ii) Let L ∈ CS and T = alph(L). Moreover,

L =
⋃
a∈T
{a}La where La = {w | aw ∈ L2}.

Let

T1 = {a | a ∈ T, La = ∅},
T2 = {a | a ∈ T, La = {λ}},
T3 = {a | a ∈ T, λ ∈ La, w ∈ La for some non-empty word},
T4 = {a | a ∈ T, λ /∈ La, w ∈ La for some non-empty word}.

If a ∈ T3, then we set L′a = La \ {λ}. Then we get

L = T2 ∪ T3 ∪
⋃
a∈T3

{a}L′a ∪
⋃
a∈T4

{a}La.

By the closure properties of CS , La for all a ∈ T4 and L′a for a ∈ T3 are context-
sensitive languages and only consist of non-empty words. Hence, by Corollary 1,
for any a ∈ T4, there is a propagating conditional ET0L system Ga such that
L(Ga) = La.

Now, for each a ∈ T4, we construct the ET0L system G′a with suffix-closed
conditions as in the proof of the first statement of this lemma where we only change
# → λ to # → a in the set Pfin. Then it follows as above that L(Ga) = {a}La
and Ga is propagating. Analogously, we can construct a propagating ET0L system
G′a for a ∈ T3 such that L(G′a) = {a}L′a.

Now we rename all nonterminals in the ET0L systems G′a, a ∈ T3∪T4 such that
no nonterminal occurs in two different systems. Moreover, we change the rules and
regular sets according to the renaming and add to each table rules A → A for all
nonterminals not occurring in this table. For a ∈ T3 ∪ T4, let

G′′a = (V ′, T, (P ′′1,a, R
′′
1,a), (P ′′2,a, R

′′
2,a), . . . , (P ′′na,a, R

′′
na,a), Sa).

Now we construct the propagating conditional ETOL system G with the alpha-
bets V ′ ∪ {S} and T , where S is an additional symbol, the axiom S, the tables
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(P ′′i,a ∪ {S → S}, Ri,a) for a ∈ T3 ∪ T4 and 1 ≤ i ≤ na and the additional table

({S → a | a ∈ T2 ∪ T3} ∪ {S → Sa | a ∈ T3 ∪ T4}, {S, λ}).

Obviously, G is propagating, all conditions of G are suffix-closed, and

L(G) = T2 ∪ T3 ∪
⋃

a∈T3∪T4

L(G′′a) = T2 ∪ T3 ∪
⋃

a∈T3∪T4

L(G′a)

= T2 ∪ T3 ∪
⋃
a∈T3

{a}L′a ∪
⋃
a∈T4

{a}La = L.

Lemma 7. RE = CEL(CIRC ) and CS = CEPL(CIRC ).

Proof. Let L ∈ RE . Then, by Corollary 1, L = L(G) for some ET0L system

G = (V, T, (P1, R1), (P2, R2), . . . (Pn, Rn), ω)

with regular conditions. From G we construct the conditional ET0L system H as in
the first part of the proof of Lemma 6, where we take Circ instead of Suf in all cases.
Then the obtained system has circular conditions. Moreover, L(H) = L(G) = L
can be shown as in the proof of Lemma 6. Thus we have RE ⊆ CEL(CIRC ).

The converse inclusion follows from Lemma 3.

The proof of the second statement of the Lemma can be given by modifications
analogous to those in the proof of the second statement of Lemma 6.

Lemma 8. CEPL(LOC 1) ⊆ EPT0L.

Proof. Let L be a language in CEPL(LOC 1). Then L is generated by some condi-
tional ET0L system G = (V, T, (P1, R1), (P2, R2), . . . , (Pn, Rn), ω) with conditions
in LOC 1. Then, for 1 ≤ i ≤ n, Ri = AiB

∗
i Ci∪(Ai∩Ci) for some sets Ai, Bi, Ci ⊆ V .

We first discuss the case that ω = azb for some a, b ∈ V and z ∈ V ∗.
Let

V ′ = {a′ | a ∈ V }, V ′′ = {a′′ | a ∈ V } and V ′′′ = {a′′′ | a ∈ V }.

Moreover, for a set U ⊂ V , we set

U ′ = {a′ | a ∈ U}, U ′′ = {a′′ | a ∈ U} and U ′′′ = {a′′′ | a ∈ U}.

For a word w = a1a2 . . . am with ai ∈ V , we set w′ = a′1a
′
2 . . . a

′
m. We define the

EPT0L system

H = (V ∪ V ′ ∪ V ′′ ∪ {F}, T, P ′1, P ′2, . . . , P ′n, Q, a′′z′b′′),

where

P ′i = {x′′ → y′′v′ | x ∈ Ai, x→ yv ∈ Pi} ∪ {x′ → v′ | x ∈ Bi, x→ v ∈ Pi}
∪ {x′′′ → v′y′′′ | x ∈ Ci, x→ vy ∈ Pi}
∪ {x→ F | x ∈ (V ′ ∪ V ′′ ∪ V ′′′ ∪ {F}) \ (A′′i ∪B′i ∪ C ′′′i )}
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for 1 ≤ i ≤ n and

Q = {x′ → x | x ∈ T} ∪ {x′′ → x | x ∈ T} ∪ {x′′′ → x | x ∈ T}
∪ {x→ F | x ∈ (V ′ ∪ V ′′ ∪ V ′′′ ∪ {F}) \ (T ′ ∪ T ′′ ∪ T ′′′)}.

By these settings, without introducing F in a sentential form of the system H,
x1vx2 =⇒Pi

x3ux4 in G if and only if x′′1v
′x′′′2 =⇒P ′i

x′′3u
′x′′′4 in H and, moreover,

x′′1v
′x′′′2 =⇒Q x1vx2 in H if and only if x1vx2 ∈ T+. Furthermore, if a letter

F occurs in a sentential form w of H, then it also occurs in all sentential forms
derivable from w in H. Thus it is obvious that

ω = azb =⇒Pi1
a1z1b1 =⇒Pi2

a2z2b2 =⇒Pi3
. . . =⇒Pik

akzkbk

in G for some letters ai, bi ∈ V and some words zi ∈ V ∗ for 1 ≤ i ≤ k if and only if

a′′z′b′′′ =⇒P ′i1
a′′1z
′
1b
′′′
1 =⇒P ′i2

a′′2z
′
2b
′′′
2 =⇒Pi′3

. . . =⇒P ′ik
a′′kz
′
kb
′′′
k =⇒Q akzkbk

in H. Therefore L(G) = L(H) and it is shown that L ∈ EPT0L.
Now we discuss the case that ω is a letter. Then we define L1 as the set of all

letters, i. e., words of length 1, which can be derived in G, and L2,i with 1 ≤ i ≤ n
as the set of all words of length ≥ 2, which can be obtained from x ∈ L1∩Ai∩Ci by
the application of a rule of Pi. Now we add a further letter S to the basic alphabet
of H and a further table

Q′ = {S → x | x ∈ L1} ∪ {S → x | x ∈ L2,i, 1 ≤ i ≤ n}
∪ {x→ x | x ∈ V ∪ V ′ ∪ V ′′ ∪ V ′′′ ∪ {F}}.

Now it follows analogously to the above considerations that L(G) = L(H) holds.

Lemma 9. CEPL(DEF ) ⊆ EPT0L.

Proof. Let R = A∪V ∗B with finite sets A ⊆ V ∗ and B ⊆ V ∗. Let m be a number
which is greater than the maximal length of words in A and B. Then we have

R = {w | |w| ≤ m,w ∈ L} ∪ V ∗(
⋃
w∈B

V m−|v|{w}),

i. e., R can be represented as R = A′ ∪ V ∗B′ with A′ ⊆
⋃m
j=1 V

j and B′ ⊆ V m.
Let L ∈ CEPL(DEF ). Then L = L(G) for some propagating ET0L system

G = (V, T, (P1, R1), (P2, R2), . . . , (Pn, Rn), ω)

with definite conditions. By the above observation, without loss of generality, we
can assume that there is a number m ≥ |ω| such that, for 1 ≤ i ≤ n, Ri = Ai∪V ∗i Bi
with Ai ⊆

⋃m
j=1 V

j
i and Bi ⊆ V mi for some Vi ⊆ V .

Moreover, let V ′ = {a′ | a ∈ V } and V ′′ = {[w] | w ∈ V ∗, |w| ≤ m}. We
construct the EPT0L system

H = (V ∪ V ′ ∪ V ′′), T, P1, P2, . . . , Pn, Q, [ω])
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with

Pi ={a→ a | a ∈ V ∪ {F}} ∪ {a′ → z′ | a ∈ Vi, a→ z ∈ Pi}
∪ {[w]→ [z] | [w] ∈ V ′′, w ∈ Ai ∪Bi, w =⇒Pi z, |z| ≤ m}
∪ {[w]→ x′[z] | [w] ∈ V ′′, w ∈ Ai ∪Bi, w =⇒Pi xz, |z| = m}
∪ {a′ → F | a ∈ V \ Vi} ∪ {[w]→ F | [w] ∈ V ′′, w /∈ Ai ∪Bi}

for 1 ≤ i ≤ n and

Q = {a→ a | a ∈ V ∪ {F}} ∪ {a′ → a | a ∈ V } ∪ {[w]→ w | [w] ∈ V ′′}.

By the construction, all sentential forms have the form [w], x′[w] or x with
[w] ∈ V ′′ and x ∈ V +. Furthermore, we have the derivations [w] =⇒Pi

[z] if and
only if w =⇒Pi

z, [w] =⇒Pi
x′[z] if and only if w =⇒Pi

xz. Moreover, if a word
y ∈ V ∗ is obtained by using x′[w] =⇒Q y (if xw = y and |y| ≥ m+ 1) or [y] =⇒Q y
(if |y| ≤ m), then it is not changed by further derivation steps, because we have
only the rule a→ a for a ∈ V in all tables. Thus any derivation in H has the form

[ω] =⇒Pi1
[w1] =⇒Pi2

. . . =⇒Pir
[wr]

=⇒Pir+1
x′1[wr+1] =⇒Pir+2

x′2[wr+2] =⇒Pir+3
. . . =⇒Pir+s

x′s[wr+s]

=⇒Q xswr+s =⇒ xswr+s =⇒ . . .

with [wi] ∈ V ′′ for 1 ≤ i ≤ r + s and xj ∈ V ∗ for 1 ≤ j ≤ s; and such a derivation
exists if and only there is a derivation

ω =⇒Pi1
w1 =⇒Pi2

. . . =⇒Pir
wr =⇒Pir+1

x1wr+1

=⇒Pir+2
x2wr+2 =⇒Pir+3

. . . =⇒Pir+s
xswr+s

in G exists. Therefore, L(H) = L(G) and L ∈ EPT0L.

Lemma 10. ET0L ⊆ CEPL(MON ).

Proof. Let L be a language in ET0L. Then there is a propagating ET0L system
G = (V, T, P1, P2, . . . , Pr, ω) generating L. In an ET0L system, any table can
be applied to any sentential form. Thus the conditional propagating ET0L system
(V, T, (P1, V

∗), (P2, V
∗), . . . , (Pr, V

∗), ω) with monoidal conditions generates L, too.
Therefore ET0L ⊆ CEPL(MON ).

Lemma 11. CEPL(COMM ) = MAT and CEL(COMM ) = MATλ

Proof. i) MATλ ⊆ CEL(COMM ).
We recall that any recursively enumerable language can be generated by a ma-

trix grammar G in 2-normal form (see Lemma 1.2.3 in [4]), i. e., by a matrix gram-
mar G = (N1 ∪N2 ∪ {S}, T, M, S, Q) where all matrices of M have one of the
following forms

– (S → AX) with A ∈ N1 and X ∈ N2,
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– (A→ w, X → Y ) with A ∈ N1, w ∈ (N1 ∪ T )∗, and X,Y ∈ N2,
– (A→ w, X → λ) with A ∈ N1, w ∈ (N1 ∪ T )∗, and X ∈ N2,

and Q contains only rules of the form A→ w.
Let L be a language in MATλ. Then L is generated by a matrix grammar

G = (N1∪N2∪{S}, T, M, S, Q) which satisfies the above mentioned normal form
conditions. Let m1,m2, . . .mr be the matrices (A→ w,X → z) of M , z ∈ N2∪{λ}
with A → w /∈ F and mr+1,mr+2, . . .ms be the matrices (A → w,X → z) of M ,
z ∈ N2 ∪ {λ} with A→ w ∈ F We set

V = N1 ∪N2 ∪ {S} ∪ T ∪ {B′ | B ∈ N1 ∪N2 ∪ T} ∪
⋃

(A→w,X→z)∈M

{Am, Xm}

and
(P,R) = ({S → AX | (S → AX) ∈M}, {S}).

With a matrix m = (A → w,X → z) with z ∈ N2 or z = λ, we associate
(Pm,1, Rm,1) and (Pm,2, Rm,2) defined by

Pm,1 = {A→ A,A→ Am, X → Xm},
Rm,1 = (N1 ∪N2 ∪ T )+,

Pm,2 = {Am → w,Xm → Y },
Rm,2 = {w | w ∈ (N1 ∪ T ∪ {Am, Xm})+,#Am = #Xm = 1},

and if A→ w is an element of F , we add

(P ′m,2, R
′
m,2) = ({Xm → Y }, {w | w ∈ ((N1 \ {A}) ∪ T ∪ {Xm})+,#Xm

= 1}).

We construct the conditional Lindenmayer system

G′ = (V, T, (P,R), (Pm1,1, Rm1,1), (Pm1,2, Rm1,2),

. . . , (Pmr,1, Rmr,1), (Pmr,2, Rmr,2),

(Pmr+1,1, Rmr+1,1), (Pmr+1,2, Rmr+1,2), (P ′mr+1,2, R
′
mr+1,2),

. . . , (Pms,1, Rms,1), (Pms,2, Rms,2), (P ′ms,2, R
′
ms,2), S).

Obviously, all conditions are commutative. We now prove that L(G′) = L(G).
In both devices any derivation starts with S =⇒ AX.
Now let z1Az2X be a sentential form of G, and let m = (A→ w,X → Y ) be a

matrix of M . Then in G we get z1wz2Y . In G′, by application of (Pm,1, Rm,1), we
obtain a word which differs from z′1Amz

′
2Xm where z′1 and z′2 are obtained from z1

and z2 by replacing some As by Am. However, the derivation can only continued if
there are no Ams in z′1 and z′2, i. e., we obtained z1Amz2Xm. Now only (Pm,2, Rm,2)
can be applied which yields z1wz2Y . Therefore we have simulated a derivation step
of G. If A→ w is in F and the sentential form zX does not contain a letter A, then
we get in G the word zY , and in G′ we have the simulation zX =⇒ zXm =⇒ zY .

Obviously, a successful derivation in G′ consists only of the mentioned derivation
steps.
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Moreover, the derivation in G stops if and only if no table (Pm,2, Rm,2) and
(P ′m,2, R

′
m,2) changes the sentential form.

Thus L(G′) = L(G) follows.

ii) MAT ⊆ CEPL(COMM ).
This can be shown analogously. We have only to start with the accurate normal

form (see Definition 1.3.2 and Lemma 1.3.7 in [4]).

iii) CEL(COMM ) ⊆ MATλ

Let L ∈ CEL(COMM ). Then there is a conditional Lindenmayer system G =
(V, T, (P1, R1), (P2, R2, . . . , (Pn, Rn), w) such that, for any i, 1 ≤ i ≤ n, Ri is a
commutative and regular language.

Let
V = {A1, A2, . . . , Am} and T = {Ap+1, Ap+2, . . . , Am}.

Obviously, for 1 ≤ i ≤ n, Ri is a set over V and Ri = π−1V (Mi) for some semi-linear
set Mi. Let

Mi =

ri⋃
j=1

Mi,j

with

Mi,j = {(a1,i,j , a2,i,j , . . . , am,i,j)

+

ti,j∑
k=1

αk(b1,k,i,j , b2,k,i,j , . . . , bm,k,i,j) | αj ∈ N for 1 ≤ k ≤ ti,j}

for some ar,i,j and br,k,i,j , 1 ≤ r ≤ m, 1 ≤ i ≤ n, 1 ≤ j ≤ ri, and 1 ≤ k ≤ tij .
We define the matrix grammar G′ = (N ′, T ′,M, S,Q) where

N ′ = {S,Z,#} ∪
m⋃
i=1

{A′i, A′′i } ∪
n⋃
j=1

{Zi, Z ′i} ∪
⋃

1≤i≤n
1≤j≤ti

{Zi,j}

T ′ = T ∪ {X},
Q = {A′i → # | 1 ≤ i ≤ m} ∪ {A′′i → # | 1 ≤ i ≤ m},

and M consists of all matrices constructed as follows. As initial rules we take all
rules

(S → Ziw
′) for 1 ≤ i ≤ n

(we generate a primed version of the axiom w of G accompanied by some control
symbol Zi).

For any 1 ≤ i ≤ n, 1 ≤ i′ ≤ n, and 1 ≤ j ≤ ri, we introduce the matrices

(Zi → Zi,j , (A
′
1 → A′′1)a1,i,j , (A′2 → A′′2)a2,i,j , . . . , (A′m → A′′m)am,i,j )

(Zi,j → Zi,j , (A
′
1 → A′′1)b1,k,i,j , (A′2 → A′′2)b2,k,i,j , . . . , (A′m → A′′m)bm,k,i,j )

for 1 ≤ k ≤ ti,j
(Zi,j → Z ′i, A

′
1 → #, A′2 → #, . . . , A′m → #) for 1 ≤ j ≤ ri,
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(applying these matrices to a sentential form Ziv
′ for some v′ ∈ (V ′)∗ one checks

whether the Parikh vector of v is contained in Mi,j ; thus the Z ′iv
′′ can only be

obtained if the sentential form is contained in Ri)

(Z ′i → Z ′i, A
′′ → w′) for A→ w ∈ Pi

(after checking that the sentential form is in Ri we apply the rules of Pi),

(Z ′i → Zi′ , A
′′
1 → #, A′′2 → #, . . . , A′′n → #)

(if all letters of v′′ are replaced, i. e., we get z′ where v =⇒ z holds in G and have
simulated a derivation step in G, we can start the same process with i′),

(Zi → Z,A′1 → #, A′2 → #, . . . , A′p → #),

(Z → Z,A′q → Aq) for p+ 1 ≤ q ≤ m,
(Z → X,A′q+1 → #, A′q+2 → #, . . . , A′m → #).

(if Ziv
′ does not contain the letters A′1, A

′
2, . . . A

′
p, i. e., v is a word over the terminal

alphabet T , we replace all letters A′q by Aq, and finally Z by X).
By the given explanations, it is easy to see that L(G′) = {X}L(G).
Thus {X}L(G) ∈ MATλ. By the closure properties of MAT (see [4], page 48),

L(G) ∈ MATλ which proves the statement.

iv) CEPL(COMM ) ⊆ MAT
Since the construction in iii) produces no erasing rules in the matrix grammar

if the conditional Lindenmayer system contains no erasing rules, the statement
follows by the same construction.

Lemma 12. CEPL(FIN ) = CEL(FIN ) = FIN

Proof. Obviously, any language in CEL(FIN ) is finite. Thus CEL(FIN ) ⊆ FIN .
Let L ⊂ T+ be finite language (note that by our setting that languages are

equal if they differ at most in the empty word, we can ignore the empty word, if it
is in L). It is easy to see that the propagating ET0L system

({S} ∪ T, T, ({S → w | w ∈ L}, {S}), S)

with a finite condition generates L. Thus FIN ⊆ CEPL(FIN ).
By these inclusions and Lemma 1, we get the statement of the lemma.

4 Summary and Conclusions

By a combination of the lemmas above and Example 1, we get the following theo-
rem.

Theorem 1. For all s ≥ 1 and r ≥ 2, the diagram given in Figure 2 holds.
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RE
= CEL(REG) = CEL(COMM )
= CEL(SUF ) = CEL(CIRC )
= CEL(SF ) = CEL(UF )
= CEL(LOC ) = CEL(LOC s)

CEL(DEF )

CS = CEPL(REG)
= CEPL(SF ) = CEPL(UF )
= CEPL(SUF ) = CEPL(CIRC )
= CEPL(LOC ) = CEPL(LOC r)

OO

CEL(NIL) CEL(COMB) MAT = CEPL(COMM )

OO

ET0L = EPT0L
= CEPL(MON ) = CEL(MON )
= CEPL(COMB) = CEPL(DEF )
= CEPL(NIL) = CEPL(LOC1)

OOii

FIN
= CEPL(FIN ) = CEL(FIN )

OO

Figure 2: Hierarchy of language families CEL(X) and CEPL(X) with X ∈ G (an
arrow from Z1 to Z2 denotes Z1 ⊂ Z2; a line from Z1 to a higher positioned Z2

stands for Z1 ⊆ Z2; the relation between families which are connected by a broken
line is unknown; and if two families are not connected by a directed path or a
broken line, then they are incomparable)

If one only considers the propagating families, then the hierarchy is completely
determined. However, in the general case, there are some open problems related to
the families CEL(NIL), CEL(COMB), and CEL(DEF ); essentially we only have the
relations which follow directly from the relation between the subregular families.

The obtained picture is very similar to that which was obtained for (sequential)
context-free conditional grammars (for a definition see [4]). Especially,

CEL(X) = Z ∈ {RE ,CS ,MAT ,ET0L}

implies that the family of context-free conditional grammars with conditions from
X coincides with Z, too; this implication also holds for systems/grammars with
only non-erasing rules. However, the families of context-free conditional grammars
with definite, nilpotent, and combinational conditions are also equal to ET0L. In
contrast, for Lindenmayer systems ET0L ⊂ CEL(COMB) ⊆ CEL(DEF ).
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