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On a Property of Non Liouville Numbers*

Jean-Marie De Koninck! and Imre Kétait

Dedicated to the memory of Professor Ferenc Gécseg

Abstract

Let a be a non Liouville number and let f(z) = az” + ar_yz™ > 4 --- +
a1x+ao € Rlz] be a polynomial of positive degree r. We consider the sequence
(Yn)n>1 defined by y, = f(h(n)), where h belongs to a certain family of
arithmetic functions and show that (y»),>1 is uniformly distributed modulo 1.
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1 Introduction and notation

Let t(n) be an arithmetic function and let f € R[z] be a polynomial. Under what
conditions is the sequence (f(t(n)))n>1 uniformly distributed modulo 1?7 In the
particular case where f is of degree one, the problem is partly solved. For instance,
it is known that, if « is an irrational number and if ¢(n) = w(n) or Q(n), where
w(n) stands for the number of distinct prime factors of n and Q(n) for the number
of prime factors of n counting their multiplicity, with w(1) = Q(1) = 0, then the
sequence ({at(n)})n>1 is uniformly distributed modulo 1 (here {y} stands for the
fractional part of y). In 2005, we [1] proved that if « is a positive irrational number
such that for each real number x > 1 there exists a positive constant ¢ = ¢(k, «)
for which the inequality ||ag|| > ¢/¢" holds for every positive integer ¢, then the
sequence ({ao(n)})p>1 is uniformly distributed modulo 1. (Here ||z|| stands for
the distance between x and the nearest integer and o(n) stands for the sum of
the positive divisors of n.) Observe that one can construct an irrational number
« for which the corresponding sequence ({ao(n)}),>1 is not uniformly distributed
modulo 1. On the other hand, given an integer ¢ > 2 and letting s,(n) stand for
the sum of the digits of n expressed in base g, it is not hard to prove that, if a is an
irrational number, the sequence ({asy(n)})n>1 is uniformly distributed modulo 1.
In fact, in the past 15 years, important results have been obtained concerning the
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topic of the so-called g-ary arithmetic functions. For instance, it was proved that
the sequence ({asq(p)})pep (here g is the set of all primes) is uniformly distributed
modulo 1 if and only if @ € R\ Q. In 2010, answering a problem raised by Gelfond
[10] in 1968, Mauduit and Rivat [13] proved that the sequence ({asy(n?)})n>1 is
uniformly distributed modulo 1 if and only if & € R\ Q.

Recall that an irrational number [ is said to be a Liouville number if for all
integers m > 1, there exist two integers ¢ and s > 1 such that

t 1
O<'ﬂ—s‘<.

Sm

Hence, Liouville numbers are those real numbers which can be approximated “quite
closely” by rational numbers.
Here, if o is a non Liouville number and

f(x) =aa" +a, 12" + -+ a1x +ag € R[z] is of degree r > 1, (1)

we prove that (f(¢(n)))n>1 is uniformly distributed modulo 1, for those arithmetic
1
functions ¢(n) for which the corresponding function ay j = ﬁ#{n < N:t(n) =k}

is “close” to the normal distribution as N becomes large.
Given P C g, let Qp(n) = >y . From here on, we let ¢ > 2 stand for a
pEP

fixed integer. Now, consider the sequence (y,)n>1 defined by y,, = f(h(n)), where
h(n) is either one of the five functions

w(n)v Q(Tl), Qp(n)a Sq(n)a Sq(nz)' (2)

Here, we show that the sequence (yy,)n>1 is uniformly distributed modulo 1.

For the particular case h(n) = s4(n), we also examine an analogous problem, as
n runs only through the primes. Finally, we consider a problem involving strongly
normal numbers.

Recall that the discrepancy of a set of N real numbers z1, ..., xy is the quantity

1
D(xq,...,zny) = sup |— Z 1—(b—a)|.
[a,0)C[0,1) {z,}€a,b)
For each positive integer N, let
M = My = |68V N], where 0y — 0 and oy log N — coas N - oco.  (3)

We shall say that an infinite sequence of real numbers (x,,),>1 is strongly uniformly
distributed mod 1 if

D(zn41y---sxNntm) — 0 as N —

for every choice of M (and corresponding dy) satisfying (3). Then, given a fixed
integer ¢ > 2, we say that an irrational number « is a strongly normal number
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in base ¢ (or a strongly g-normal number) if the sequence (x,),>1, defined by
xn = {ag™}, is strongly uniformly distributed modulo 1. The concept of strong
normality was recently introduced by De Koninck, Kétai and Phong [2].

We will at times be using the standard notation e(z) := exp{2wiz}. Finally, we
let ¢ stand for the Euler totient function.

2 Background results

The sum of digits function s,(n) in a given base ¢ > 2 has been extensively studied
over the past decades. Delange [4] was one of the first to study this function.
Drmota and Rivat [7], [14] studied the function s,(n?) and then, very recently,
Drmota, Mauduit and Rivat [9] analyzed the distribution of the function s,(P(n)),
where P € Z[z] is a polynomial of a certain type.

Here, we state as propositions some other results and recall two relevant results
of Halasz and Katai.

First, given an integer ¢ > 2, we set

f‘I*l 2 q271
Ho=""97 % 12

Proposition 1. Let § > 0 be an arbitrary small number and let ¢ > 0. Then,
. 1
uniformly for |k: — jiqlog, N| < 51 /log, N,
#{n < N:sy(n) =k} =

N (k — pglog, N)? 1
T " atie v (T O\ ey )
\/2m02log, N T4 1084 log2™" N
Proof. This result is in fact a particular case of Proposition 3 below. O

Proposition 2. Lete > 0. Uniformly for all integers k > 0 such that (k,q—1) =1,
#{p <N :s4(p) =k} =

1 N k — pglog, N)? 1
q () exp ——( 'l;q 084 ) +O0|—]——1 -
plg—1) [2m02log, N 203 log, N logz2™* N

Proof. This is Theorem 1.1 in the paper of Drmota, Mauduit and Rivat [8]. O

Let G = (Gj);j>0 be a strictly increasing sequence of integers, with Gy = 1.
Then, each non negative integer n has a unique representation asn = .~ €;(n)G;
with integers €;(n) > 0 provided that Z €;(n)G; < Gy for all integers k > 1. Then,

i<k
the sum of digits function sg(n) is given by

sa(n) =Y €(n). (4)

Jj=0
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Setting an k= #{n < N : sg(n) = k}, consider the related sequence (Xn)n>1 of
random variables defined by

so that the expected value of X and its variance are given by

E[Xy] = % S sa(n)  and  V[Xy]= % S (sa(n) — EXN])?. (5)

n<N n<N

Let us choose the sequence (G;);>0 as the particular sequence

J
Go=1, Gj=> aG1+1 (j>0), (6)
=1

where the a;’s are simply the positive integers appearing in the Parry a-expansion
(here a > 1 is a real number) of 1, that is
ai

1_

az as
=—+ S+ 5+
« (0% (0%

It can be shown (see Theorem 2.1 of Drmota and Gajdosik [5]) that, for such a
sequence (G;);j>o0, setting

[e'e) ajfl
G(z,u) =) ( > z£> gty
i=1 \ =0

and letting 1/a(z) denote the analytic solution u = 1/a(z) of the equation G(z,u) =
1 for z in a sufficiently small (complex) neighbourhood of zy = 1 such that a(1) = «,

then,
log N

ElXN|= O(1
[Xn] Moga +O(1)
and oo N
0og
V[Xy]=o2—=— 1
(Xn] og o (1),
where n ")
u—aa and 02:aa + - pt

Proposition 3. Let G = (G;);>0 be as in (6). If 0® # 0, then, given an arbitrary
small € > 0, uniformly for all integers k > 0,

#{n < N:sg(n)=k} =

N (kBN (1
27V [Xn] (e p{ 2V[XN] }+O <1og%€N>>'
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Proof. This is Theorem 2.2 in the paper of Drmota and Gajdosik [5]. O

Let a be a positive integer. Let ¢ = —a +i (or ¢ = —a — i) and set Q = a® + 1
and N = {0,1,...,Q — 1}. Tt is well known that every Gaussian integer z can be
written uniquely as

z= Z eo(2)q" with each ¢, € N.
>0

Then, define the sum of digits function s,(z) of z € Z[i] in base ¢ as

sq(2) =) eul).

>0

Proposition 4. Let A be the set of those positive integers a for which if p | ¢ =
—a =i and |p| # 1, then |p|*> > 689. Let Dy = {z € C : |z| < VN}NZ[i] or
Dy ={z€C:|R(2)| < VN,|3(2)| < VN}NZ[i|. Then, uniformly for all integers
k >0, we have

1
— Dy : 54(2%) =k} =
Zp e € Dy () = k)
k,g—1 A2 log log N)!!
Q( 4 ) (exp{_;}+0((0glogN) ))7
2103 logg (N?) v1og
where ,
k — pglogy(N?) -1 21
Ak:: Q Q s MinQQ s Ué:QIQ
05 logg(N?)
Proof. This result is a simplified version of Theorem 4 in Morgenbesser [15]. [

Let a € Nand ¢ = —a+1i € Z[i]. Set N' = {0,1,...,a?}. Then, every z € Z[i]
can be written uniquely as

z=Y €;(2)¢ witheach ¢;(2) € N.
720

Let L be a non negative integer and consider a function F : Nt+1 — 7 satisfying
F(0,0,...,0) =0 and set

oo

sp(2) = Y F(e(2),€41(2), . 64 1(2)).

j=—L

The following is due to Drmota, Grabner and Liardet [6].
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Proposition 5. Under certain conditions on F stated in Corollary &8 in Drmota,
Grabner and Liardet [6],

#{z€Zi]: |2]*> <N, sp(z) =k} =

N k—plo N)? 1
N s V) (1+o( ))
1/27’(0'2 log‘q‘zN 20 10g|‘1|2 N IOgN
uniformly for |k—ulog|q|2 N| < e, [logq2 N, where ¢ can be taken arbitrarily large.

1
For any particular set of primes P, let E(x) = Ep(x) := Z —.
p

p<zx
pEP

The following two results, which we state as propositions, are due respectively
to Haldsz [11] and Katai [12].

Proposition 6. (HALASZ) Let 0 < 6 < 1 and let P be a set of primes with
corresponding functions Qp(n) and E(x) = Ep(z). Then, assuming that E(x) —
o0 as x — 00, the estimate

_ TE@)* _p |k = E(x)| 1
Y11= o {1+O( E) >+O< E(@)}

n<xz

Qp(n)=k
holds uniformly for all positive integers k and real numbers x > 3 satisfying

8 k
> — <
E(z) > 5 and 0 < E) S

Proposition 7. (KATAI) For 1 < h <z, let

Ag(z,h) = > 1, Blz)= > 1,

z<n<z+h <3
w(n)=k w(n)=k
A By o0
Sz, h) == ’“(}f’h) - ’“x(”“"), E(z,h) =Y 63(x,h).
k=1

Letting € > 0 be an arbitrarily small number and xT/12re < p < x, then
1
log?z - /loglogz

E(z,h) <

3 Main results

Theorem 1. Let f(x) be as in (1), h(n) be one of the five functions listed in (2)
and yp, := f(h(n)). Then, the sequence (yn)n>1 s uniformly distributed modulo 1.
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Theorem 2. Let f(x) be as in (1). Then, the sequence (zp)pep, Where z, =
f(sq(p)), is uniformly distributed modulo 1.

Theorem 3. Let Q > 2 and q > 2 be fixed integers. Let o be a strongly Q-
normal number. Let g be a real valued continuous function defined on [0,1] such

that fol g(z)dz = 0. Then,

| X
lim — Z g(th(”)) =0, (7)
—1

N—oco N
n=

where h(n) = sy(n) or su(n?). Moreover, letting w(N) stand for the number of
prime numbers not exceeding N, we have

i L sq(P)y —
PN
The following corollary follows from estimate (7) of Theorem 3.

Corollary 1. With « and h(n) as in Theorem 3, the sequence (aQ"P)),c,, is
uniformly distributed modulo 1.

In light of Proposition 3, we have the following two corollaries.

Corollary 2. Let G be as in (4). Then, letting f be as in (1), the sequence
{f(s¢(n))}n>0 is uniformly distributed modulo 1.

Corollary 3. Let G be as in (4). Then, if a is a strongly normal number in base
Q, the sequence ({a - Q*™M 1Y), 50 is uniformly distributed modulo 1.

As a direct consequence of the Main Lemma and of Proposition 4, we have the
following result.

Theorem 4. Let Dy be as in Proposition 4. Let f be as in (1). For each z € Dy,
sety, := f(sq(2%)). Then, the discrepancy of the sequence y, tends to 0 as N — oo,
that is

D(y,:z2€Dn)—0 as N — oo.

Theorem 5. Let Dy be as in Proposition 4. Let a be a strongly normal number
in base Q) and consider the sequence (y).epy- Then

D(y,:2€Dn)—0 as N — oo.
In line with Proposition 7, we have the following.
Theorem 6. Let ¢ > 0 be a fived number. Let H = |27/'2%¢| and set
m([z,z + H]) == #{n € [z,z + H] : w(n) = k}.
Let f be as in (1) and set
S@= Y elflwn).

z<n<z+H
Then
—0 as r — .
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4 Preliminary lemmas

Lemma 1. Let o be a non Liouville number and let f(x) be as in (1). Then,

1 U+N
sup — e(f(n))| —0 as N — oo.
| X et

Proof. Since « is a non Liouville number, there exists a positive integer ¢ such that
if 7 is a fixed positive number and

t
a— =
s

1
S ) (t,S) = 17 S S T,
ST

then 71/¢ < s.
Vaughan ([16], Lemma 2.4) proved that if o — £| < & and K = 2'~!, then,
given any small number € > 0,

U+N e (1 1 s \ /K
n:ZUHe(f(n)) <. N (5 +5+ Nt) : (9)

Now, choose 7 = N*/2 so that N*/2 < s < 7. It then follows from (9) that

U+N

> elf(n) < N,

n=U+1

for some § > 0 which depends only on ¢ and £, thus completing the proof of Lemma
1. O

Using this result, we can establish our Main Lemma.

Lemma 2. (Main Lemma) For each positive integer N, let (En(k))r>1 be a
sequence of non negative integers called weights which, given any 6 > 0, satisfies
the following three conditions:

(a) > En(k)=1;
k=1

(b) there exists a sequence (Ln)n>1 which tends to infinity as N — oo such that

lim sup Z En(k)—0 as 6 — 0;
N— 00 1
\k*fzj\;f\ >%
Enx(k+¢
(¢) lim  max max M—l = 0.
N—oo lh—Lnl o1 1<0<63/2 | En(k)

VIn —9
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Moreover, let o and f be as in (1) and let

Then,
Tn(f)—0 as N — oo. (10)

Proof. Let > 0 be fixed and set

S = L(SB/?'/LNJ’ tm:LLNJ+mS (m:]_’Q’.”)’
Un = [t trnss — 1] (m=1,2,...).

Let us now write

Tn(f) = Si1(N) + S2(N), (11)
where
So(N) = Y. EdN)e(f(k)),
|k}7LN‘>%\/H
SIN) = > > BdNe(f(R) = Y SM(W),
|m|<1/65/2 keUn, |m|<1/65/2
say.

First observe that, by condition (b) above,

1S2(N)[ < > En(k) =o0(1) as N — oc. (12)
l[E—Lnl 1
Vin T8

On the other hand, it follows from condition (c) above and Lemma 1 that, as
N — oo,

(SN < B (DD elf)| +o(1) Y BN
k€U, k€U,
= 0(1)SE,, (N)+o(1) > Ex(N),

keUn,
while

SEy, (N) - z Er(N)| =o(1) Z Er(N).

k€Um k€Um
Gathering these two estimates, we obtain that
S1(N) =0 as N — oo. (13)

Using (12) and (13) in (11), conclusion (10) follows. O
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Lemma 3. For each integer k > 1, let

3
e
)
Il
Ik
—
3
AN
&
£
S
Il

Then, the relations

z (loglogz)*

-1

logz (k—1)! ~’
" k-1
@) = (1 0(1))logx (loflio_g 15!

hold uniformly for

1
|k —loglogz| < y\/loglogas, (14)

where &, is some function of x chosen appropriately and which tends to 0 as x — oo.
Proof. This follows from Theorem 10.4 stated in the book of De Koninck and Luca
[3]. O

5 Proof of Theorem 1

We first consider the case when h(n) is one of the three functions w(n), 2(n) and
Qp(n). Set

(V) = #{n<N:wm) =k},
T(N) = #{n<N:Qn)=k),
Ti(N) = #{n<N:Qg(n) =k}

In light of Lemma 3 and Proposition 6, the corresponding weights of the sequences
(me(N))kz1, (T3 (N)rz1 and (T (N))k>1 are 7(N)/N, 73 (N)/N and Tj(N)/N,
respectively.

Now, in order to obtain the conclusion of the Theorem, we only need to prove
that, for each non zero integer m,

3 emf(h(n) 50 as N oo

n<N

But this is guaranteed by Lemma 1 if we take into account the fact that since « is
a non Liouville number, the number ma is also non Liouville for each m € Z \ {0}.
Hence, the theorem is proved.
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6 Proof of Theorem 2

We cannot make a direct use of Lemma 2 because the estimate in that lemma only
holds for those positive integers k such that (k,¢g — 1) = 1. To avoid this obstacle,
we shall subdivide the positive integers k according to their residue class modulo
g — 1. Observe that there are p(g — 1) such classes. Hence, we write each k as

k=tlg—1)+¢, (lg—1)=1
Hence, for each positive integer ¢ such that (¢,q — 1) =1, we set
pr={p€pisyp)=L (modg—1)},  I(N):=#{p<N:pe€gpi. (15

It is easy to verify that

1L, (N)
=(14o0())—/——— N — 00). 16
=0ty (Vo) (16)
Thus, in order to prove Theorem 2, we need to show that the sum
U(N) := > e(mf(sq(p))),
Sq(p)E’fpg(ﬁod q—1)
where m is any fixed non zero integer, satisfies
Ue(N)=0(1) as N — oo. (17)
Setting
on(k) == #{p < N : 54(p) = k},
we have
Ui(N) = > elmf(k)on(k)
k=¢ (mod g—1)
= Y elmf(tlg—1)+0)on(t(g—1)+0). (18)
t>0

Observe that the leading coefficient of the above polynomial f(t(¢ — 1) + £) is
a(q — 1), which is a non Liouville number as well (as we mentioned in the proof
of Theorem 1), and also that the functions

1
Iy (N)

wy(t) := on(t(g—1)+0)

may be considered as weights (since >, wn(t) = 1). Thus, applying Lemma 2,
we obtain (17), thereby completing the proof of Theorem 2.
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7 Proof of Theorem 3

We shall skip the proof of estimate (7), since it can be obtained along the same
lines as that of the main theorem in De Koninck, Kétai and Phong [2].

In order to obtain (8), we separate the set p into ¢(q — 1) distinct sets p,, with
corresponding counting function Iy (¢) defined in (15).

Observe that

9(@Q" ™V Yo (t(g = 1) +£) = g((aQ") - Q") (t(g — 1) + )

Now, since « is a strongly Q-normal number, then so is aQ?, a number which is
strongly Q9™ !'-normal.
We then have

D> g ™) = 3" 3" g(aQ")

p<N E>1 qué)zv:k
q—1
= Y 3 9@ o n(t(g — 1) +£)
=1 p<N
(£,q—1)=1 pEp,
q—1
= Y Y g(a@Y) - QU D)an(t(g — 1) + ).

=1 p<N
(£,q—1)=1 pEp,

Since we then have

lim a@®P)) =0 for each ¢ with (¢,q—1) =1,
R i) p;g( Q) (6,q—1)
PEPyY

summing up over all £’s such that (¢,q — 1) = 1, estimate (8) follows immediately.
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