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Context-Free Tree Grammars are as Powerful as

Context-Free Jungle Grammars

Frank Drewes∗ and Joost Engelfriet†

Dedicated to the memory of Ferenc Gécseg

Abstract

Jungles generalize trees by sharing subtrees and allowing garbage. It is
shown that IO context-free tree grammars generate the same jungle languages
as context-free jungle grammars. Also, they define the same subsets of any
algebra.
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1 Introduction

One of the main motivations for studying tree language theory is that a tree over
a ranked alphabet is a term, which can be interpreted as an element of any al-
gebra, see, e.g., Sections I.2, I.3, II.1 and II.2 of the influential book of Gécseg
and Steinby [13]. Thus, the interpretation of a tree language, i.e., a set of trees,
becomes a subset of the algebra. Regular tree grammars [13, Section II.3] and
context-free tree grammars [14, Section 15] generate tree languages. However, as
shown by Mezei and Wright in [17], a regular tree grammar can also naturally be
viewed as a system of equations (or, more informally, as a recursive program) that
has a least fixed point semantics in any algebra, and thus defines a subset of the
algebra. The main result of [17] is that, for any algebra, the semantics of a regular
tree grammar G equals the interpretation of the tree language L(G) generated by
G. Thus, the semantics of the program G is determined by the set of syntactic
objects it generates. This program-schematic result was generalized to context-free
tree grammars in [11], both for call by value semantics vs. inside-out (IO) gener-
ation, and for call by name semantics vs. outside-in (OI) generation. However, in
the call by value case it holds for deterministic algebras, but not for nondetermin-
istic algebras. In a usual, deterministic algebra, each operator symbol of rank k
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is interpreted as a k-ary operation on the domain of the algebra, whereas in a
nondeterministic algebra, it is interpreted as a (k + 1)-ary relation (see, e.g., [13,
Section II.2]). Thus, in a nondeterministic algebra, a tree is interpreted as a subset
of the algebra; as in the deterministic case, a tree language is also interpreted as
a subset of the algebra, viz. the union of the interpretations of its elements. Since
grammars are essentially nondeterministic programs, it is natural to interpret them
in nondeterministic algebras.

It was shown in [5] that the call by value case for nondeterministic algebras can
be handled by considering jungles (or DOAGs, directed ordered acyclic graphs)
instead of trees. A jungle is a representation of a tree, in which equal subtrees can
be shared, and in which “garbage” can occur that is not used in the tree, see, e.g.,
[1, 15, 16, 18].1 Jungles can be interpreted in any nondeterministic algebra, in a
natural way. The sharing of subtrees allows to fix a nondeterministic choice for
later multiple use, whereas the garbage allows to force the evaluation of trees that
are later disregarded. As shown in [5], a context-free tree grammar G can be turned
into a graph grammar that generates jungles, in a straightforward way, such that
the call by value semantics of G equals the interpretation of the “jungle language”
LJ(G) generated by G, for any nondeterministic algebra.

On the basis of the above “Mezei-and-Wright-like” result for LJ(G), one may
ask whether context-free tree grammars have the same jungle generating power as
context-free jungle grammars, which are context-free graph grammars in which all
right-hand sides of rules are jungles (see [5, Definition 7.6]). In this paper, we answer
this question affirmatively. Moreover, we define the least fixed point semantics of a
context-free jungle grammar in any nondeterministic algebra, viewing the grammar
as a system of equations, and we prove that context-free jungle grammars define
the same subsets of the algebra as IO context-free tree grammars. As a corollary we
obtain that the above Mezei-and-Wright-like result also holds for context-free jungle
grammars G. Finally, a context-free jungle grammar generates the tree language
obtained by unfolding the generated jungles, and we show that context-free jungle
grammars generate the same tree languages as IO context-free tree grammars.

Thus we conclude that, in all respects, IO context-free tree grammars have the
same power as context-free jungle grammars.

In Section 2 we define basic concepts, such as trees and IO context-free tree
grammars. Jungles are defined in Section 3, and we define the substitution of one
jungle for a node of another jungle. It is shown that this substitution is conflu-
ent and associative (in the sense of [3]), a folklore result. In Section 4 we define
context-free jungle grammars (CFJGs), in such a way that context-free tree gram-
mars (CFTGs) are a special case. The derivations of a CFJG use the jungle sub-
stitution defined in the previous section. We show the simple fact that the rules
of a CFJG can be substituted into one another (generalizing the corresponding
property of context-free string grammars), and we prove our main result: for every
CFJG G there is a CFTG H that generates the same jungle language. As a corol-
lary we obtain that CFJGs generate the same tree languages as IO CFTGs. In

1When trees are called terms, jungles are called term graphs.
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Section 5 we turn to semantics. We recall (nondeterministic) algebras and define
the interpretation of jungles in such an algebra. Then we introduce the notion of
a jungle delegation network, which is a CFJG G together with an algebra A. It
generalizes the (finitary, tree) delegation network of [4, 5], which is an IO CFTG
with an algebra. Finally, we define the least fixed point semantics of a jungle del-
egation network (G,A), and prove that it defines the same subset of A as the tree
delegation network (H,A), where H is as above. As a corollary we obtain that that
subset is equal to the interpretation in A of the jungle language LJ(G) generated
by G: our Mezei-and-Wright-like result for context-free jungle grammars.

The results of this paper were already suggested in the Conclusion of [5].

2 Basic Terminology

The set of all natural numbers (including zero) is denoted N. For n ∈ N, we let
[n] = {1, . . . , n}. The set of all finite strings (or sequences) over a set A is denoted
by A∗, and λ denotes the empty string. The length of a string u is denoted by |u|.

We assume functions to be total, i.e., if f : A → B is a function, then f(a)
is defined for every a ∈ A. Functions from A to B are a special case of binary
relations r ⊆ A × B. As usual, we let r(A′) = {b ∈ B | ∃a ∈ A′ : (a, b) ∈ r} for
A′ ⊆ A, and r(a) = r({a}) for a ∈ A. Note that, in this way, r can be viewed as a
“nondeterministic function” r : A→ P(B) where P(B) is the powerset of B.

A signature (or ranked alphabet) is a pair (Σ, rk), where Σ is a finite set of
symbols, and rk assigns to every f ∈ Σ a rank rk(f) ∈ N. We will denote (Σ, rk)
simply by Σ. If necessary, the rank k of a symbol f is indicated by writing f as f(k).

The set of all trees over Σ is denoted by TΣ. It is the smallest set of strings
such that for all k ∈ N, f(k) in Σ, and t1, . . . , tk ∈ TΣ, the string f(t1, . . . , tk) is in
TΣ (where the parentheses and the comma are assumed to be special symbols not
in Σ). A tree of the form f( ), where f has rank 0, is identified with the string f of
length 1. A subset of TΣ is a tree language.

As usual, a tree t ∈ TΣ will be identified with a graph whose nodes are labelled
with symbols in Σ. A node is a string in (N \ {0})∗ which, intuitively, represents
the Dewey path from the root to the node. Thus, λ is the root of t and vi is the
i-th child of node v. Formally, we define the set V (t) of nodes of t, the subtree t/v
at a node v, and the label `t(v) of node v inductively, as follows. If t = f(t1, . . . , tk),
then V (t) = {λ} ∪ {iv | i ∈ [k], v ∈ V (ti)}; furthermore, t/λ = t, `t(λ) = f, and,
for all i ∈ [k] and v ∈ V (ti), t/iv = ti/v and `t(iv) = `ti(v). A node v of t is said
to be an occurrence of the symbol `t(v).

As usual, to define the substitution of a tree s for a node v of a tree t, we use the
set of variables X = {x1, x2, x3, . . . }. For k ∈ N, Xk = {x1, . . . , xk} is a signature
such that xi has rank 0 for every i ∈ [k]. We assume X to be disjoint with all the
usual signatures. For such a signature Σ, the set TΣ∪Xk

is denoted by TΣ(Xk); it
is the set of trees with k variables.

For t ∈ TΣ, v ∈ V (t) and s ∈ TΣ(Xk), where k = rk(`t(v)), the substitution
of s for v in t, denoted t[v ← s], is defined as follows:
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• t[λ← s] is the result of substituting t/i for each occurrence of xi in s;

• if t = f(t1, . . . , tm), then t[iv ← s] = f(t1, . . . , ti−1, ti[v ← s], ti+1, . . . , tm).

This notion of substitution leads to the definition of context-free tree grammars
(see, e.g., [14, Section 15]).

Definition 1. A context-free tree grammar (abbreviated CFTG) is a four-tuple
G = (Ξ,Σ, R, gin) such that

• Ξ and Σ are disjoint signatures of nonterminals and terminals, respectively,

• R is a finite set of rules of the form g(x1, . . . , xk)→ s, where k ∈ N, g(k) ∈ Ξ
and s ∈ TΞ∪Σ(Xk), and

• gin ∈ Ξ is the initial nonterminal, of rank 0.

For trees t, t′ ∈ TΞ∪Σ, there is an IO derivation step t ⇒G,IO t′ if there are a
node v ∈ V (t) and a rule g(x1, . . . , xk) → s in R such that `t(v) = g, t/vi ∈ TΣ

for every i ∈ [k], and t′ = t[v ← s]. The tree language IO-generated by G is
LIO(G) = {t ∈ TΣ | gin ⇒∗G,IO t}.

Example 1. We consider a very simple example of a CFTG G1 = (Ξ,Σ, R, gin).

It has signatures Σ = {f(2), d(1), a(0), c(0)} and Ξ = {g(0)
in , g

(2)
1 , g

(1)
2 , g

(2)
3 }, and R

consists of the rules

gin → g2(f(a, g1(a, c))),
g1(x1, x2) → f(x1, x1),

g2(x1) → g3(x1, d(x1)), and
g3(x1, x2) → x1.

This grammar has exactly one derivation, viz., gin ⇒G1,IO g2(f(a, g1(a, c)))⇒G1,IO

g2(f(a, f(a, a))) ⇒G1,IO g3(f(a, f(a, a)), d(f(a, f(a, a)))) ⇒G1,IO f(a, f(a, a)), and
so LIO(G1) = {f(a, f(a, a))}.

3 Jungles and their Substitution

In this section, we recall some notions regarding jungles [1, 15, 16, 18], and present
some elementary properties of jungles.

Jungles can either be defined as node-labeled graphs (see, e.g., [1, 2]) or, equiv-
alently, as edge-labeled hypergraphs (see, e.g., [5, 15, 18]). Here we choose to
define them as node-labeled graphs, which are technically more convenient for our
purposes (and which are closer to trees).
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3.1 Jungles

Intuitively, a jungle is a directed ordered acyclic graph representing a tree. In such
a jungle, subtrees can be shared and unreachable subtrees, so-called garbage, may
occur.

Let Σ be a signature. A directed ordered graph (abbreviated DOG) over Σ is
a triple G = (V, lab, arg) consisting of a finite set V of nodes, a labelling func-
tion lab : V → Σ, and an argument function arg : V → V ∗ such that |arg(v)| =
rk(lab(v)) for every v ∈ V .

We define the rank of a node v as the rank of its label, i.e., rk(v) = rk(lab(v)).
The elements of the sequence arg(v) are called the arguments of v. In particular,
the i-th element of the sequence will be denoted arg(v, i), and is called the i-th
argument of v. The DOG G can be visualized as an ordinary directed graph (V,E)
with labelled nodes and edges, where the set of edges is E = {(v, arg(v, i)) | v ∈
V, i ∈ [rk(v)]} and the label of the edge (v, arg(v, i)) is the natural number i.
Accordingly, for nodes v and w of G, a (directed) path from v to w is a sequence
v1 · · · vn ∈ V ∗ such that n ≥ 1, v = v1, w = vn and vj+1 is an argument of vj for
every j ∈ [n − 1]. The DOG G is acyclic (in short, a DOAG) if, for every v ∈ V ,
the only path from v to v is v. A topological order of a DOG G is a linear order
< on its set V of nodes such that arg(v, i) < v for every v ∈ V and i ∈ [rk(v)].
It is well known (and easy to see) that a DOG is a DOAG if and only if it has a
topological order.

A jungle over Σ is a DOAG with a designated node, i.e., it is a four-tuple
J = (V, res, lab, arg) where (V, lab, arg) is a DOAG over Σ, and res ∈ V is the
result node of J . The set of jungles over Σ is denoted JΣ. A subset of JΣ is a
jungle language. For k ∈ N, we denote JΣ∪Xk

by JΣ(Xk); it is the set of jungles
with k variables. Note that JΣ(X0) = JΣ. If necessary, the components of a jungle
J will be denoted by VJ , resJ , labJ , argJ , respectively, and similarly for derived
notions such as EJ , rkJ , etc. Two jungles J and K are disjoint if VJ ∩ VK = ∅.
As usual, we do not distinguish between isomorphic jungles, i.e., jungles that are
identical up to a bijective renaming of their nodes.

Figure 1 shows three example jungles: K,K ′′ ∈ JΣ and K ′ ∈ JΣ(X1) where
Σ is the signature {f(2), h(1), d(1), a(0), c(0)}. All edges are assumed to be directed
downwards. Outgoing edges of the same node are assumed to be ordered from left
to right. Result nodes are indicated by dashed circles. Thus, K ′′ = (V, res, lab, arg)
with, e.g., V = {d, f1, a1, f2, a2, c} and res = f1, lab(d) = d, lab(f1) = lab(f2) = f,
lab(a1) = lab(a2) = a, lab(c) = c, arg(d) = f1, arg(f1) = a1f2, arg(f2) = a2a2, and
arg(c) = λ. A topological order of K ′′ is c < a2 < f2 < a1 < f1 < d.

Since trees over Σ are identified with graphs in the usual way, we will view TΣ

as a subset of JΣ. To be precise, every tree t ∈ TΣ will be identified with the jungle
(V, res, lab, arg) where V = V (t), res = λ, and for every v ∈ V , lab(v) = `t(v) and
arg(v, i) = vi for i ∈ [rk(`t(v))]. In this way, TΣ ⊆ JΣ and TΣ(Xk) ⊆ JΣ(Xk) for
every k ∈ N.

Jungles generalize trees by allowing nodes (and hence whole subtrees) to be
shared. A node w of a jungle J is shared if there are distinct pairs (v, j), (v′, j′)
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Figure 1: Jungles K, K ′ and K ′′. Using jungle substitution as defined later,
K ′′ = K[v ← K ′], where v is the node of K with label h.

such that argJ(v, j) = w = argJ(v′, j′). Moreover, jungles contain garbage nodes,
i.e., nodes w for which there is no path in J from resJ to w. When jungles are
interpreted in a nondeterministic algebra (as we will do in Section 5), a node may
have no value, one value, or several possible values. Then shared nodes and garbage
nodes force a call by value semantics: a node must be evaluated, even if it will not
be used (i.e., is garbage); and when it is used several times (i.e., is shared), the
same value must be taken each time. In Figure 1, the node with label a of K is
shared (and so is the node a2 of K ′′), and the nodes with label c and d are garbage.

3.2 Jungle Substitution

We first show how to contract certain edges of jungles. Let id be a symbol of
rank 1 that does not occur in Σ; intuitively, it stands for the identity function. For
a jungle J ∈ JΣ∪{id}(Xn), n ∈ N, and a set W of nodes of J with label id we
define ctrW (J) ∈ JΣ∪{id}(Xn) to be the result of contracting all edges (v, arg(v, 1))
of J with v ∈ W ; the node that results from the identification of v and arg(v, 1)
receives the label of arg(v, 1). Formally, for J = (V, res, lab, arg) and W ⊆ {v ∈
V | lab(v) = id}, we define the function γ : V → V \W such that γ(v) = v if
v ∈ V \W , and γ(v) = γ(v′) if v ∈ W and v′ is the (unique) argument of v; note
that γ is well defined because J is acyclic. Then ctrW (J) = (V \W, res ′, lab′, arg ′)
where res ′ = γ(res), lab′ is the restriction of lab to V \W , and for v ∈ V \W , if
arg(v) = v1 · · · vk with vi ∈ V then arg ′(v) = γ(v1) · · · γ(vk). Note that ctrW (J) is
indeed acyclic: the restriction of a topological order of J to V \W is a topological
order of ctrW (J). In particular, we define the contraction ctr(J) ∈ JΣ(Xn) of J by
ctr(J) = ctrW (J) where W = {v ∈ V | lab(v) = id}. Thus, Vctr(J) consists of all
nodes of J that do not have label id; the above function γ : VJ → Vctr(J) is called
the track function of J .

For a jungle J and a node v of rank k, we now show how to substitute a jungle
K with k variables for that node v in J . Intuitively, the node v is replaced by the



The Jungle Generating Power of Context-Free Tree Grammars 379

result node of K, and every node of K with label xi is replaced by the i-th argument
of v. Note that in the special case where the result node of K has label xi, the
node v is replaced by its i-th argument.

Formally, let J ∈ JΣ(Xn), v ∈ VJ with rkJ(v) = k, and K ∈ JΣ(Xk). We
assume that J and K are disjoint, otherwise we consider a disjoint isomorphic copy
of K. We first define the jungle J〈v ← K〉 ∈ JΣ∪{id}(Xn) to be the union of J
and K, with result node resJ , and with the following changes: lab(v) is changed
into id and arg(v) into resK , and for every w ∈ VK and i ∈ [k], if lab(w) = xi,
then lab(w) is changed into id and arg(w) into arg(v, i).2 It should be clear that
U = J〈v ← K〉 is acyclic: if <J and <K are topological orders for J and K,
respectively, then a topological order for U is obtained by inserting <K just before
v in <J , i.e., <U is the union of <J , <K , {(v′, w) | v′ ∈ VJ , v′ < v, w ∈ VK} and
{(w, v′) | w ∈ VK , v′ ∈ VJ , v ≤ v′}.

Finally, we define J [v ← K] ∈ JΣ(Xn) to be the jungle ctr(J〈v ← K〉). It
is called the substitution of K for v in J . Note that VJ[v←K] is the union of
VJ \ {v} and VK \ {w ∈ VK | labK(w) ∈ X}. Note also that the track function γ of
J〈v ← K〉 is the identity on VJ[v←K]; moreover, γ(v) = resK if labK(resK) /∈ X,
γ(v) = argJ(v, i) if labK(resK) = xi, and γ(w) = argJ(v, i) for every w ∈ VK with
labK(w) = xi. A very simple example of substitution is shown in Figure 1.

In the next section we will need the fact that jungle substitution is confluent
and associative, as defined in [3]. These are natural properties that are satisfied
by many notions of substitution that are used in context-free grammars for several
types of structures, as shown in [3].3 We start with a simple lemma.

Lemma 1. For a jungle J ∈ JΣ∪{id}(Xn), a node v ∈ VJ of rank k with labJ(v) 6=
id, and a jungle K ∈ JΣ∪{id}(Xk),

ctr(J)[v ← ctr(K)] = ctr(J〈v ← K〉).

Proof. The straightforward proofs of the following two equalities are left to the
reader. Let W,W1,W2 be sets of nodes with label id, such that W,W1 ⊆ VJ and
W2 ⊆ VK .

(i) ctr(ctrW (J)) = ctr(J)

(ii) ctrW1(J)〈v ← ctrW2(K)〉 = ctrW1∪W2(J〈v ← K〉)
By (ii), ctr(J)[v ← ctr(K)] = ctr(ctrW1∪W2

(J〈v ← K〉)) where W1 = {w ∈ VJ |
labJ(w) = id} and W2 = {w ∈ VK | labK(w) = id}. This equals ctr(J〈v ← K〉)
by (i), applied to J〈v ← K〉.

2To be completely formal, U = J〈v ← K〉 is defined as follows: VU = VJ ∪ VK , resU = resJ ,

• labU (u) = labJ (u) and argU (u) = argJ (u) if u ∈ VJ and u 6= v,

• labU (v) = id and argU (v) = resK ,

• labU (u) = labK(u) and argU (u) = argK(u) if u ∈ VK and labK(u) /∈ Xk, and

• labU (u) = id and argU (u) = argJ (v, i) if u ∈ VK and labK(u) = xi, for every i ∈ [k].

3When jungles are defined as hypergraphs, jungle substitution is modeled by hyperedge re-
placement (see [5, Section 4]). It is well known that the corresponding notion of hypergraph
substitution is confluent and associative (see, e.g., [6, Section 2.2.2]).
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In the next two lemmas we show that jungle substitution is confluent and asso-
ciative, respectively.

Lemma 2. For jungles J ∈ JΣ(Xn), K1 ∈ JΣ(Xk1), K2 ∈ JΣ(Xk2) and distinct
nodes v1, v2 ∈ VJ of rank k1, k2, respectively,

J [v1 ← K1][v2 ← K2] = J [v2 ← K2][v1 ← K1].

Proof. By Lemma 1, J [v1 ← K1][v2 ← K2] = ctr(J〈v1 ← K1〉〈v2 ← K2〉). It is
obvious that J〈v1 ← K1〉〈v2 ← K2〉 = J〈v2 ← K2〉〈v1 ← K1〉.

Lemma 3. For jungles J ∈ JΣ(Xn), K1 ∈ JΣ(Xk1), K2 ∈ JΣ(Xk2) and nodes
v1 ∈ VJ of rank k1 and v2 ∈ VK1

of rank k2 with labK1
(v2) /∈ Xk1 ,

J [v1 ← K1][v2 ← K2] = J [v1 ← K1[v2 ← K2]].

Proof. The proof is similar to the previous one. Lemma 1 implies that both
J [v1 ← K1][v2 ← K2] = ctr(J〈v1 ← K1〉〈v2 ← K2〉) and J [v1 ← K1[v2 ← K2]] =
ctr(J〈v1 ← K1〈v2 ← K2〉〉). And it is obvious that J〈v1 ← K1〉〈v2 ← K2〉 =
J〈v1 ← K1〈v2 ← K2〉〉.

4 Context-free Jungle Grammars

Having defined jungles and their substitution, we now define the notion of a context-
free jungle grammar in an obvious way, see [5, Definition 7.6].

Definition 2. A context-free jungle grammar (abbreviated CFJG) is a four-tuple
G = (Ξ,Σ, R, gin) such that

• Ξ and Σ are disjoint signatures of nonterminals and terminals, respectively,

• R is a finite set of rules of the form g(x1, . . . , xk)→ K, where k ∈ N, g(k) ∈ Ξ
and K ∈ JΞ∪Σ(Xk), and

• gin ∈ Ξ is the initial nonterminal, of rank 0.

For jungles J, J ′ ∈ JΞ∪Σ, there is a derivation step J ⇒G J ′ if there are a node v ∈
VJ and a rule g(x1, . . . , xk) → K in R such that labJ(v) = g and J ′ = J [v ← K].
The jungle language generated by G is LJ(G) = {J ∈ JΣ | gin ⇒∗G J}.4

Since every tree is a jungle, every context-free tree grammar G is also a context-
free jungle grammar, generating not only the tree language LIO(G) but also the
jungle language LJ(G).

4Note that gin is a (one-node) jungle, because gin has rank 0 and TΞ∪Σ ⊆ JΞ∪Σ.
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Example 2. We consider a very simple example of a CFJG G2 = (Ξ,Σ, R, gin).
It has the same terminal signature Σ = {f(2), d(1), a(0), c(0)} as the CFTG G1 of
Example 1. The nonterminal signature is Ξ = {g(0), h(1)} with gin = g, and the
set R consists of the two rules g→ K and h(x1)→ K ′, where K and K ′ are given
in Figure 1. The unique derivation of this grammar is g ⇒G K ⇒G K[v ← K ′],
where v is the node of K with label h. Thus LJ(G2) = {K ′′}, where K ′′ is given
in Figure 1.

As another simple example we consider the context-free jungle grammar G1 of
Example 1. A derivation of G1 is shown in Figure 2; it generates the jungle K ′′.
The other two derivations of G1 also generate the jungle K ′′ (in accordance with
Lemma 2). Thus, LJ(G1) = LJ(G2) = {K ′′}.

An interpretation of grammars G2 and G1 will be given in Examples 5 and 6.

gin ⇒ g2

f

a g1

a c

⇒ g2

f

a f

a c

⇒

g3

d

f

a f

a c

⇒ d

f

a f

a c

Figure 2: A derivation of G1.

Our next aim is to show that rules of a CFJG can be substituted into each
other, without changing the generated jungle language. More precisely, consider
a rule g(x1, . . . , xk) → K and let v ∈ VK be a node of rank m with nonterminal
label h. Then this rule can be replaced by all rules

g(x1, . . . , xk)→ K[v ← K ′]

where K ′ is the right-hand side of a rule with left-hand side h(x1, . . . , xm). This
clearly holds for the CFJG G2 of Example 2: the resulting grammar has rules
g→ K ′′ and h(x1)→ K ′, and thus generates the same jungle language {K ′′}; note
that the second rule has become superfluous.

The above property is well known for context-free string grammars, and for
several types of context-free graph grammars. Its proof is based on the fact that
jungle substitution is confluent and associative, as shown in the previous section.

Lemma 4. Let G = (Ξ,Σ, R, gin) be a CFJG. Let K ∈ JΞ∪Σ and let v ∈ VK be
such that labK(v) = h(m) ∈ Ξ. Then, for every J ∈ JΣ and n ∈ N, K ⇒n

G J if and
only if there exists a rule h(x1, . . . , xm)→ K ′ in R such that K[v ← K ′]⇒n−1

G J .
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Proof. The if direction is obvious, because K ⇒G K[v ← K ′]. The only-if direction
is proved by induction on n. Let K ⇒G K[w ← L] ⇒n−1

G J be the first step of
the derivation. If w = v then there is a rule h(x1, . . . , xm) → L in R, and we
are ready. Now assume that w 6= v. By the induction hypothesis, there is a
rule h(x1, . . . , xm) → K ′ in R such that K[w ← L][v ← K ′] ⇒n−2

G J . Hence
K[v ← K ′][w ← L]⇒n−2

G J by Lemma 2. This implies that

K[v ← K ′]⇒G K[v ← K ′][w ← L]⇒n−2
G J,

and so K[v ← K ′]⇒n−1
G J .

Theorem 1. Let G = (Ξ,Σ, R, gin) be a CFJG. Let g(x1, . . . , xk) → K be a rule
in R and let v ∈ VK be such that labK(v) = h(m) ∈ Ξ. Let G′ be the CFJG
(Ξ,Σ, R′, gin) where R′ is obtained from R by replacing the rule g(x1, . . . , xk)→ K
by all rules g(x1, . . . , xk) → K[v ← K ′] where h(x1, . . . , xm) → K ′ is in R. Then
LJ(G′) = LJ(G).

Proof. We prove by induction on the length of the derivations that for all I ∈ JΞ∪Σ

and J ∈ JΣ, I ⇒∗G J if and only if I ⇒∗G′ J .
For the only-if direction, we consider the first step of the derivation I ⇒∗G J .

It clearly suffices to consider the case that the rule g(x1, . . . , xk) → K is applied
in this step. Thus, let I ⇒G I[w ← K] ⇒∗G J , where labI(w) = g. By Lemma 4
there is a rule h(x1, . . . , xm) → K ′ in R such that I[w ← K][v ← K ′] ⇒∗G J , and
this derivation is shorter than the derivation I ⇒∗G J . Hence, by the induction
hypothesis, I[w ← K][v ← K ′]⇒∗G′ J . Now, by Lemma 3, we have I[w ← K][v ←
K ′] = I[w ← K[v ← K ′]], and so I ⇒G′ I[w ← K[v ← K ′]]⇒∗G′ J , where the rule
g(x1, . . . , xk)→ K[v ← K ′] of G′ is applied in the first step.

The if direction is similar, but slightly easier. For the first step of the derivation
I ⇒∗G′ J it suffices to consider a rule g(x1, . . . , xk) → K[v ← K ′] in R′. If I ⇒G′

I[w ← K[v ← K ′]] ⇒∗G′ J , then I[w ← K][v ← K ′] ⇒∗G J by Lemma 3 and the
induction hypothesis, and so I ⇒G I[w ← K]⇒∗G J by Lemma 4.

Before proving our main result, we discuss an easy normal form of context-free
jungle grammars. A CFJG G = (Ξ,Σ, R, gin) is in variable normal form if, for
every rule g(x1, . . . , xk) → K in R and every i ∈ [k], exactly one node of K has
label xi. It is easy to see that for every CFJG G an equivalent CFJG G′ can be
constructed that is in variable normal form, as follows. If g(x1, . . . , xk) → K is a
rule of G, then g(x1, . . . , xk)→ K ′ is a rule of G′, where K ′ is obtained from K by
identifying all nodes with label xi, for each i ∈ [k], and adding an isolated node with
label xi if K does not have such a node. To be precise, K ′ = g(x1, . . . , xk)[λ← K],
i.e., the substitution of K for the node with label g in the jungle g(x1, . . . , xk). It
follows from Lemma 3 (and is also easy to see) that J [v ← K ′] = J [v ← K] for
every jungle J and every node v ∈ VJ with label g, and hence LJ(G′) = LJ(G).

The equivalence of G′ and G can also be proved by Theorem 1, as follows. Let
G1 be the CFJG obtained from G by replacing every rule g(x1, . . . , xk) → K by
the rules g(x1, . . . , xk) → g0(x1, . . . , xk) and g0(x1, . . . , xk) → K, where g0 is a
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new nonterminal. Obviously, LJ(G1) = LJ(G). Application of Theorem 1 to each
rule g(x1, . . . , xk) → g0(x1, . . . , xk), changes G1 into the equivalent grammar G′1
in which that rule is changed into all rules g(x1, . . . , xk) → K ′. Since the rules
g0(x1, . . . , xk) → K have become useless in G′1, we obtain that LJ(G′1) = LJ(G′)
and hence LJ(G) = LJ(G′).

We now show the main result of this paper: context-free tree grammars have
the same jungle generating power as context-free jungle grammars.

Theorem 2. For every context-free jungle grammar G there is a context-free tree
grammar H such that LJ(H) = LJ(G).

Proof. Let G = (Ξ,Σ, R, gin) be a CFJG in variable normal form, which can be
assumed by the discussion above. Consider a rule g(x1, . . . , xk) → K in R. We
will construct an equivalent CFJG G′ in which this rule is replaced by a finite set
of CFTG rules. By repeating this construction we obtain the required CFTG H.
In the CFJG G′ = (Ξ′,Σ, R′, gin), the rule will be simulated by a sequence of rules
that build the jungle K node by node, in a bottom-up fashion. This is similar to,
but slightly more complicated than, the construction of Chomsky normal form for
context-free string grammars.

Let v1 < · · · < vk < vk+1 < · · · < vk+`, ` ≥ 0, be a topological order of K such
that v1, . . . , vk are the (unique) nodes of K with labels x1, . . . , xk, respectively.
Obviously such a topological order exists, because the nodes v1, . . . , vk have no
arguments. We define Ξ′ = Ξ ∪ {g0, g1, . . . , g`} where gi is a new nonterminal of
rank k + i, for 0 ≤ i ≤ `. Moreover, we define R′ to be the set of rules obtained
from R by replacing the rule g(x1, . . . , xk)→ K by the CFTG rules

• g(x1, . . . , xk)→ g0(x1, . . . , xk),

• gi−1(x1, . . . , xk+i−1)→ gi(x1, . . . , xk+i−1, fi(xj1 , . . . , xjp)) for i ∈ [`],

where f
(p)
i = labK(vk+i) and argK(vk+i, q) = vjq for every q ∈ [p], and

• g`(x1, . . . , xk+`)→ xj , where resK = vj .

For i ∈ [` + 1], let ti be the right-hand side of the rule with left-hand side
gi−1(x1, . . . , xk+i−1). Note that in the second item jq ∈ [k + i − 1], because <
is a topological order. Thus, ti ∈ TΞ∪Σ(Xk+i−1) as required.

To prove the correctness of this construction, we take new nodes r0, . . . , r`,
we assume that the nodes in the right-hand side g0(x1, . . . , xk) of the first rule
are r0, v1, . . . , vk with respective labels g0, x1, . . . , xk, and we assume for i ∈ [`],
that the nodes in ti with labels gi and fi are ri and vk+i, respectively. For 0 ≤
i ≤ `, we define the jungle Ki = (V, res, lab, arg) ∈ JΞ′∪Σ(Xk) as follows: V =
{ri, v1, . . . , vk+i}, res = ri, lab(ri) = gi, arg(ri) = v1 · · · vk+i, and for j ∈ [k + i],
lab(vj) = labK(vj) and arg(vj) = argK(vj). Moreover, we define K`+1 = K.

It can easily be checked that K0 = g0(x1, . . . , xk) and Ki = Ki−1[ri−1 ← ti]
for every i ∈ [` + 1]. Thus, by iterated application of Theorem 1 (i.e., formally
by induction on i), the grammar G′ is equivalent to the grammar G′i that is ob-
tained from G′ by changing the rule g(x1, . . . , xk) → g0(x1, . . . , xk) into the rule
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g(x1, . . . , xk)→ Ki. Hence, since K`+1 = K, the grammar G′`+1 has all rules of G
plus all rules gi(x1, . . . , xk+i) → ti+1 for 0 ≤ i ≤ `. However, since g0 does not
appear in any right-hand side of a rule of G′`+1, the rules gi(x1, . . . , xk+i) → ti+1

have become useless in G′`+1, and hence G′`+1 is equivalent to G.
This shows that LJ(G′) = LJ(G).

Example 3. We illustrate the construction in the proof of Theorem 2 with the
CFJG G2 of Example 2. It has initial nonterminal g and it has the two rules
g → K and h(x1) → K ′, where K and K ′ are given in Figure 1. The resulting
CFTG H has the same initial nonterminal g. Its rules are constructed based on the
following topological orders of K and K ′ (where we indicate nodes by their labels):
a < c < f < h for K, and x1 < a < f < d for K ′. This gives the following rules:

g → g0

g0 → g1(a)
g1(x1) → g2(x1, c)

g2(x1, x2) → g3(x1, x2, f(x1, x1))
g3(x1, x2, x3) → g4(x1, x2, x3, h(x3))

g4(x1, x2, x3, x4) → x4

h(x1) → h0(x1)
h0(x1) → h1(x1, a)

h1(x1, x2) → h2(x1, x2, f(x2, x1))
h2(x1, x2, x3) → h3(x1, x2, x3, d(x3))

h3(x1, x2, x3, x4) → x3

Of course, this is not the simplest CFTG that generates the same jungle language
as G2. A simpler one is the grammar G1 of Example 1, as we saw in Example 2.

Thus, context-free tree grammars have the same jungle generating power as
context-free jungle grammars. Vice versa, every jungle represents a tree (by un-
folding) and we will show that context-free jungle grammars have the same tree
generating power as context-free tree grammars.

Every jungle J ∈ JΣ represents a unique tree tree(J) ∈ TΣ, namely tree(J) =
tree(J, resJ), where tree(J, v) is defined as follows, for all v ∈ VJ : if labJ(v) =
f(k) and argJ(v) = v1 · · · vk, then tree(J, v) = f(tree(J, v1), . . . , tree(J, vk)). For
example, tree(K ′′) = f(a, f(a, a)) where K ′′ is given in Figure 1.

For a context-free jungle grammar G we define the tree language generated by G
as LT(G) = {tree(J) | J ∈ LJ(G)}.

Theorem 3. A tree language can be generated by a context-free jungle grammar if
and only if it can be IO-generated by a context-free tree grammar.

Proof. (If) It is shown in [5, Corollary 6.5] that LT(G) = LIO(G) for every context-
free tree grammar G.5

5As an example, LIO(G1) = {f(a, f(a, a))} for the context-free tree grammar G1 of Example 1,
and, by Example 2, LJ(G1) = {K′′} and so LT(G1) = {tree(K′′)} = {f(a, f(a, a))}.
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(Only if) For a context-free jungle grammar G, let H be a context-free tree
grammar such that LJ(H) = LJ(G), which exists by Theorem 2. By the previous
paragraph, LIO(H) = LT(H) and so LIO(H) = {tree(J) | J ∈ LJ(H)} = {tree(J) |
J ∈ LJ(G)} = LT(G).

Related results are proved in [7, 9, 12, 10]. It is shown in [7] (see also [8])
that IO context-free tree grammars generate the same tree languages as attribute
grammars with one synthesized attribute. As shown in [9], arbitrary attribute
grammars generate the same tree languages as jungle generating context-free graph
grammars (which generalize context-free jungle grammars). In [12] it is proved that
total deterministic macro tree transducers compute the same tree translations as
top-down tree-to-jungle transducers. Finally, in [10] context-free tree grammars
are considered such that for every rule g(x1, . . . , xk)→ s, each parameter xi occurs
exactly once in s; it should be clear that LIO(G) = LJ(G) = LT(G) for such a
grammar G (cf. [5, Theorem 6.7]).

5 Jungle Delegation Networks

In this section we interpret context-free jungle grammars in algebras and call them
jungle delegation networks.

5.1 Interpretations and Algebras

We wish to interpret every symbol of a signature Σ as an operation on the elements
of a set A, and to use this interpretation for evaluating jungles over Σ. Usually, the
interpretation of a symbol f(k) would be a k-ary function f : Ak → A. However, we
wish to consider the more general case of nondeterministic operations (as in [13,
Section II.2]; see also [5, 11]). For this purpose, symbols are interpreted as relations
f ⊆ Ak × A rather than as functions. Of course, functions and partial functions
are special cases.

A Σ-interpretation into A is a function σ that maps every symbol f(k) ∈ Σ to
a relation σ(f) ⊆ Ak × A; in particular, if k = 0 then σ(f) ⊆ A. The pair (A, σ)
is called a (nondeterministic) Σ-algebra. If σ(f) is a function for all f ∈ Σ, then
(A, σ) is a deterministic Σ-algebra.

Jungles with n variables can now be interpreted as derived operations of a given
Σ-algebra (A, σ), in an obvious way (see [5, Definition 5.2]).

Definition 3 (jungle evaluation). Consider a Σ-algebra (A, σ) and a jungle J ∈
JΣ(Xn). Given a1, . . . , an ∈ A, let ASSJ,σ(a1, . . . , an) be the set of all assignments
(i.e., functions) α : VJ → A such that every v ∈ VJ :

• if labJ(v) = xi, then α(v) = ai; and

• if labJ(v) = f ∈ Σ and argJ(v) = v1 · · · vk, then α(v) ∈ f(α(v1), . . . , α(vk))
where f = σ(f).
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Now, σ(J) ⊆ An × A is the relation given by

σ(J)(a1, . . . , an) = {α(resJ) | α ∈ ASSJ,σ(a1, . . . , an)},

for all a1 . . . , an ∈ A. For a set of jungles J ⊆ JΣ(Xn), σ(J ) =
⋃
J∈J σ(J).

Since every tree is a jungle, this also defines σ(t) for every tree t ∈ TΣ(Xn).
It should be clear that σ(t) is the usual evaluation of t in a (nondeterministic)
Σ-algebra, see, e.g., [5, Lemma 5.3]. For a set of trees T ⊆ TΣ(Xn), σ(T ) is called
the derived relation of T over (A, σ) in [11, Definition 5.8].

Example 4. We extend [5, Example 5.1]. Let Σ = {f(2), d(1), a(0), c(0)} be the sig-
nature of Examples 1 and 2, and consider the Σ-algebra (A, σ) where A = {♦,♥}∗,
σ(f) is string concatenation, σ(a) = {♦,♥}, σ(c) = {♦}, and σ(d) is the partial
function d : A → A such that, for every string w ∈ A, d(♦w) = w and d(♥w) and
d(λ) are undefined (thus, d checks that the first symbol of a string is diamonds,
and deletes that symbol). Now consider the interpretation σ(K ′′) of the jungle K ′′

of Figure 1. If one constructs α ∈ ASSK′′,σ in a bottom-up fashion, then α(resK′′)
can have the values ♦♦♦, ♦♥♥, ♥♦♦, and ♥♥♥ (note that the last two symbols
are equal because of the shared node with label a). Thus, due to the presence of
the node with label d, we have σ(K ′′) = {♦♦♦,♦♥♥}. If we redefine σ(c) = ∅,
then σ(K ′′) = ∅ because no value can be assigned to the node with label c.

The jungle K ′ of Figure 1 is interpreted as the function σ(K ′) = k′ : A → A
such that k′(w) = ♦w for every w ∈ A.

5.2 Delegation Networks

We are now ready to give the formal definition of delegation networks.

Definition 4. A jungle delegation network is a system N = (G,A, σ), where
G = (Ξ,Σ, R, gin) is a context-free jungle grammar and (A, σ) is a Σ-algebra. If G
is a context-free tree grammar, then N is a tree delegation network.6

The signature Ξ ∪ Σ is denoted by ΣN . For g(k) ∈ Ξ we denote by rhsG(g) the
set of right-hand sides of rules in R with left-hand side g(x1, . . . , xk).

The semantics of N is obtained by defining a ΣN -interpretation σN into A that
agrees with σ on Σ. Since the rules of G are recursive, it is natural to choose a
least fixed point semantics, using Kleene’s fixed point theorem which we state next
(see, e.g., [13, Theorem I.4.8]).

Proposition 1. Let C be a complete lattice, and let ϕ : C → C be an ω-continuous
function. Then ϕ has a least fixed point, and this least fixed point is equal to the
least upper bound of all ϕm(0), m ∈ N, where 0 is the zero element of C.

6A tree delegation networkN is called a finitary delegation network in [5]. In [11, Definition 5.1]
the syntactic part G of N is called a system of context-free Σ-equations.
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We recall that a complete lattice is a set C with a partial order ≤ such that
every subset of C has a least upper bound. Moreover, ω-continuity of ϕ means
that if c0 ≤ c1 ≤ c2 ≤ · · · (with ci ∈ C) and c ∈ C is the least upper bound
of {ci | i ∈ N}, then ϕ(c) is the least upper bound of {ϕ(ci) | i ∈ N}. The zero
element 0 of C is its smallest element (i.e., the least upper bound of ∅).

As is well known, the set of all relations r ⊆ Ak × A is a complete lattice with
⊆ as partial order. We extend this ordering to ΣN -interpretations τ, τ ′ into A in
the usual way: τ ≤ τ ′ if and only if τ(f) ⊆ τ ′(f) for all f ∈ ΣN . With the partial
order ≤, the set of all ΣN -interpretations into A is a complete lattice, as is also
well known. If T is a set of such interpretations, with least upper bound υ, then,
for every f ∈ ΣN , υ(f) is the union of all τ(f), τ ∈ T . Note that the zero element 0
of the lattice is the ΣN -interpretation such that 0(f) = ∅ for all f ∈ ΣN .

The semantics of N is a subset of A. It will be called the language defined by N ,
generalizing the notions of string language, tree language, graph language, picture
language, etc. The semantics of N is an obvious generalization of the one for tree
delegation networks (see [5, Definition 2.4]). Intuitively, G is viewed as a system
of equations (g = rhsG)g∈Ξ, where rhsG is viewed as the union of its elements, and
these equations are solved in the algebra (A, σ).

Definition 5. Let N = (G,A, σ) be a jungle delegation network such that G =
(Ξ,Σ, R, gin). Let CN be the complete lattice of all ΣN -interpretations into A.

1. The function ϕN : CN → CN is defined as follows for every τ ∈ CN :

• ϕN (τ)(f) = σ(f) for every f ∈ Σ, and

• ϕN (τ)(g) = τ(rhsG(g)) for every g ∈ Ξ.

2. The least fixed point of ϕN is denoted by σN .7

3. The language defined by N is L(N ) = σN (gin).

Note that the language defined by N is a subset of A, because the rank of gin

is 0. Note furthermore that, for f ∈ Σ, we have σN (f) = σ(f).
As already observed in [5], if N is a tree delegation network, then, for every

g ∈ Ξ, the relation σN (g) is what is called the call by value relation computed by G
over (A, σ) in the discussion after Corollary 5.7 in [11].

Example 5. Consider the jungle delegation network N2 = (G2,A, σ) where G2 is
the CFJG of Example 2 and (A, σ) is the string algebra defined in Example 4. Since
K ′ does not contain nonterminal symbols, we obtain that σN2(h) = σ(K ′), which is
the function k′ that puts � in front of a string (as observed in the latter example).
This implies that σN2

(g) = σ′(K), where σ′ extends σ with σ′(h) = k′. From this
it is easy to see that N2 defines the language L(N2) = σN2

(g) = {♦♦♦,♦♥♥}.
7By Proposition 1, σN exists, as it is easy to verify that ϕN is ω-continuous. Note that by

Definition 3, if τ0 ≤ τ1 ≤ τ2 ≤ · · · (with τi ∈ CN ), τ ∈ CN is the least upper bound of {τi | i ∈ N},
and J ⊆ JΣ(Xn) is finite, then τ(J ) is the union of all τi(J ), i ∈ N.
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We have seen in Example 2 that LJ(G2) = {K ′′}, where K ′′ is given in Figure 1.
Combining this with the fact that σ(K ′′) = {♦♦♦,♦♥♥} (as seen in Example 4),
we find that L(N2) = σ(LJ(G2)). In other words, L(N2) equals the interpretation
of the jungle language generated by its CFJG G2. We will prove in Theorem 6 that
this is a result that holds in general.

To express the semantics of a substitution J [v ← K] in terms of that of J and
K, we need some terminology. Let v have rank k, let @ be a new symbol of rank k,
and let J [v ← @] be the jungle obtained from J by changing the label of v into @,
i.e., J [v ← @] = J [v ← @(x1, . . . , xk)]. The next lemma shows that the semantics
of J [v ← K] is equal to the semantics of J [v ← @], when @ is interpreted as the
semantics of K. For a Σ-algebra (A, σ) and a relation r ⊆ Ak × A, we denote
by σ〈@ := r〉 the (Σ ∪ {@})-interpretation σ′ into A such that σ′(@) = r and
σ′(f) = σ(f) for every f ∈ Σ.

Lemma 5. Let (A, σ) be a Σ-algebra. Let J ∈ JΣ(Xn), v ∈ VJ with rkJ(v) = k and
labJ(v) ∈ Σ, and K ∈ JΣ(Xk). Then σ(J [v ← K]) = σ〈@ := σ(K)〉(J [v ← @]).

Proof. Without loss of generality we assume that id ∈ Σ, that σ(id) is the identity
on A, and that id does not occur in J and K. Obviously, σ(I) = σ(ctr(I)) for
every I ∈ JΣ(Xn). Hence σ(J [v ← K]) = σ(J〈v ← K〉).

If α ∈ ASSJ〈v←K〉,σ(a1, . . . , an), then the restriction αK of α to VK is in
ASSK,σ(b1, . . . , bk) where bi = α(argJ(v, i)). Moreover, αK(resK) = α(v). This
shows that the restriction αJ of α to VJ is in ASSJ[v←@], σ〈@:=σ(K)〉(a1, . . . , an),
and so σ(J [v ← K]) ⊆ σ〈@ := σ(K)〉(J [v ← @]).

If αJ ∈ ASSJ[v←@], σ〈@:=σ(K)〉(a1, . . . , an), then there exists an assignment αK ∈
ASSK,σ(b1, . . . , bk) such that bi = αJ(argJ(v, i)) and αK(resK) = αJ(v). It is now
clear that αJ ∪αK is in ASSJ〈v←K〉,σ(a1, . . . , an), from which we can conclude that
σ〈@ := σ(K)〉(J [v ← @]) ⊆ σ(J [v ← K]).

The next theorem is similar to Theorem 1 in Section 4. It shows that rules of
the grammar of a jungle delegation network can be substituted into each other,
without changing the language defined by the network.

Theorem 4. Let N = (G,A, σ) and N ′ = (G′,A, σ) be jungle delegation networks,
where G and G′ are as in Theorem 1. Then L(N ′) = L(N ).

Proof. By assumption, G = (Ξ,Σ, R, gin) and G′ = (Ξ,Σ, R′, gin) where R′ is ob-
tained from R by replacing the rule g(x1, . . . , xk)→ K by all rules g(x1, . . . , xk)→
K[v ← K ′] such that h(x1, . . . , xm)→ K ′ is in R; here v is a node of K such that
labK(v) = h(m) ∈ Ξ.

We will prove that σN = σN ′ , where σN is the least fixed point of ϕN and
similarly for N ′ (see Definition 5). For m ∈ N, we will denote ϕmN (0) by σN ,m, and
similarly for N ′. Thus, by Proposition 1, σN is the least upper bound of all σN ,m,
m ∈ N. Note that by Definition 5, σN ,m+1(k) = σN ,m(rhsG(k)) for every m ∈ N
and k ∈ Ξ; and, of course, σN ,0(k) = ∅.

We first show that σN ′,m ≤ σN for all m ∈ N, which implies that σN ′ ≤ σN . It
suffices to prove that σN ′,m(k) ⊆ σN (k) for all k ∈ Ξ and m ∈ N. The proof is by
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induction on m. It is trivial for m = 0. For the induction step, consider σN ′,m+1(k).
Since this equals σN ′,m(rhsG′(k)), it remains to prove that σN ′,m(J) ⊆ σN (k) for
every J ∈ rhsG′(k). We consider two cases.

Case 1 : J ∈ rhsG(k). By induction we have σN ′,m(J) ⊆ σN (J); because, in
general, if τ1 ≤ τ2 then τ1(J) ⊆ τ2(J). Moreover σN (J) ⊆ σN (k), because σN is a
fixed point of ϕN .

Case 2 : k = g and J = K[v ← K ′]. By Lemma 5, σN ′,m(K[v ← K ′]) =
σN ′,m〈@ := σN ′,m(K ′)〉(K[v ← @]). By induction, and since σN is a fixed point of
ϕN , we obtain that σN ′,m(K ′) ⊆ σN (h). Thus, again by induction,

σN ′,m(K[v ← K ′]) ⊆ σN 〈@ := σN (h)〉(K[v ← @]) = σN (K) ⊆ σN (g).

In the other direction, we prove by induction on m that σN ,m ≤ σN ′ . As
above, it suffices to prove in the induction step that σN ,m(J) ⊆ σN ′(k) for every
J ∈ rhsG(k). As above there are two cases. The first case, where J ∈ rhsG′(k), is
handled as above. It remains to consider the second case, where k = g and J = K.
If m = 0 then σN ,m(K) = ∅ because a non-variable (namely h) occurs in K, and
we are ready. Now let m ≥ 1. Then

σN ,m(K) = σN ,m〈@ := σN ,m(h)〉(K[v ← @])
= σN ,m〈@ := σN ,m−1(rhsG(h))〉(K[v ← @])
=

⋃
K′∈rhsG(h) σN ,m〈@ := σN ,m−1(K ′)〉(K[v ← @])

⊆
⋃
K′∈rhsG(h) σN ′〈@ := σN ′(K ′)〉(K[v ← @])

=
⋃
K′∈rhsG(h) σN ′(K[v ← K ′])

⊆ σN ′(g)

where the last three steps are by induction, by Lemma 5, and by the fact that σN ′

is a fixed point of ϕN ′ , respectively.

We can now prove that tree delegation networks are as powerful as jungle dele-
gation networks.

Theorem 5. For every jungle delegation network N there is a tree delegation
network N ′ over the same algebra such that L(N ′) = L(N ).

Proof. Let N = (G,A, σ). Then we define N ′ = (H,A, σ) where H is the CFTG
constructed in the proof of Theorem 2. Since the proof of LJ(H) = LJ(G) was
entirely based on Theorem 1, the proof of L(N ′) = L(N ) is exactly the same, now
based on Theorem 4.

Note that the construction of N ′ in the above proof does not depend on the
given algebra. Thus, Theorem 5 is a program-schematic result.

Finally, we prove a Mezei-Wright-like result for jungle delegation networks N =
(G,A, σ): the language defined byN is equal to the semantics of the jungle language
generated by G.
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Theorem 6. For every jungle delegation network N = (G,A, σ),

L(N ) = σ(LJ(G)).

If, moreover, (A, σ) is deterministic, then L(N ) = σ(LT(G)).

Proof. Let N ′ = (H,A, σ) be the tree delegation network constructed in the proofs
of Theorems 2 and 5. Then L(N ) = L(N ′) by Theorem 5, and LJ(G) = LJ(H)
by Theorem 2. It is proved in [5, Theorem 5.6] for tree delegation networks that
L(N ′) = σ(LJ(H)).

In [5, Theorem 6.6] it is proved that if (A, σ) is deterministic, then L(N ′) =
σ(LIO(H)). In the proof of Theorem 3 we already saw that LIO(H) = LT(G).

Example 6. Let G1 and G2 be the grammars of Examples 1 and 2. We have seen
in Example 2 that LJ(G1) = LJ(G2). Hence, by Theorem 6, L(N1) = L(N2) for
all delegation networks N1 = (G1,A, σ) and N2 = (G2,A, σ) over the same algebra
(A, σ). In other words, G1 and G2 are equivalent program schemes. In particular,
by Example 5, we have that L(N1) = σ(K ′′) = {♦♦♦,♦♥♥} for the string algebra
(A, σ) defined in Example 4.

Note that L(N1) is not equal to σ(LT(G1)). In fact, LT(G1) = {f(a, f(a, a))}
(see the footnote in the proof of Theorem 3), and σ(f(a, f(a, a))) is the set of all
strings of length 3 in A = {♦,♥}∗. As discussed in Example 4, this illustrates two
effects: in the IO-generated tree the second and third a are not shared, so that the
second and third symbol of the resulting strings may differ. Morover, the node with
label d above the root of K ′′ (which is garbage) is not present, thus allowing the
first symbol of the string to differ from ♦. In fact, the node with label c is garbage
as well and thus not present in the IO-generated tree. If we redefine σ(c) = ∅, see
Example 4, then L(N1) = L(N2) = ∅ whereas σ(LT(G1)) is the same as above.
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