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Abstract

In this paper we generalize the shift radix systems to finite dimensional
Hermitian vector spaces. Here the integer lattice is replaced by the direct sum
of imaginary quadratic Euclidean domains. We prove in two cases that the
set of one dimensional Euclidean shift radix systems with finiteness property
is contained in a circle of radius 0.99 around the origin. Thus their structure
is much simpler than the structure of analogous sets.

1 Introduction

For r ∈ Rn the mapping τr : Zn 7→ Zn, defined as

τr((a1, . . . , an)) = (a2, . . . , an−1, brac),

where ra denotes the inner product, is called shift radix system, shortly SRS. This
concept was introduced by S. Akiyama et al. [1] and they proved that it is a common
generalization of canonical number systems (CNS), first studied by I. Kátai and J.
Szabó [8], and the β-expansions, defined by A. Rényi [11]. For computational aspects
of CNS we refer to the paper of P. Burcsi and A. Kovács [5].

Among the several generalizations of CNS we cite here only one to polynomials
over Gaussian integers by M.A. Jacob and J.P. Reveilles [7]. Generalizing the shift
radix systems, H. Brunotte, P. Kirschenhofer and J. Thuswaldner [3] defined GSRS
for Hermitian vector spaces. A wider generalization of CNS, namely for polynomials
over imaginary quadratic Euclidean domains was studied by the first two authors
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in [10]. It is well known that there are exactly five such domains, which are the ring
of integers of the imaginary quadratic fields Q(

√
d), d = 1, 2, 3, 7, 11. The Euclidean

norm function allows not only the division by remainder, but also to define a floor
function for complex numbers. This observation leads us to generalize SRS for Her-
mitian vector spaces endowed by floor functions depending on imaginary quadratic
Euclidean domains. Our generalization, which we call ESRS, is uniform for the five
imaginary quadratic Euclidean domains. This has the consequence that in case of
the Gaussian integers our floor function differs from that used in [3].

The SRS τr is said to have the finiteness property iff for all a ∈ Zn there exists

a k ≥ 1 such that τkr (a) = 0. Denote by D(0)
n the set of r ∈ Rn such that τr has

the finiteness property. From numeration point of view these real vectors are most

important. It turned out that the structure of D(0)
n is very complicated already for

n = 2, see [2], [12] and [13].
The analogue of the two dimensional SRS is the one dimensional GSRS and

ESRS. Brunotte et al. [3] studied first the set of one dimensional GSRS with finite-
ness property, which we denote by GSRS(0). It turned out that its structure is
quite complicated as well. Recently a more precise investigation of M. Weitzer [14]

showed that the structure of GSRS(0) is much simpler as that of D(0)
2 . Based on

extensive computer investigations he conjectures a finite description of GSRS(0).

Analogously to D(0)
n we can define D(0)

n,d, d = 1, 2, 3, 7, 11 in a straight forward

way. We show how one can compute good approximations of D(0)
n,d. Performing the

computation it turned out that the shape of these objects are quite different. The

subjective impression can be misleading, but we were able to prove that D(0)
n,d has

no critical points in the cases d = 2, 11. More specifically we prove that the circle

of radius 0.99 around the origin contains D(0)
n,d. In the other cases this is probably

not true. It is certainly not true for D(0)
2 and GSRS(0).

2 Basic concepts

In order to establish a shift radix system over the complex numbers, an imaginary
quadratic Euclidean domain will be used as the set of integers, and a floor function
is needed which can be determined by making its Euclidean function unique, so
choosing the set of fractional numbers from the possible values.

Definition 1. Let Ed = ZQ[
√
−d] be an imaginary quadratic Euclidean domain

(d ∈ {1, 2, 3, 7, 11}, see in [6]). Its canonical integral basis is: {1, ω}, where

ω :=

{ √
−d , if d ∈ {1, 2},

1+
√
−d

2 , otherwise.

(In the case of d = 1 instead of ω the imaginary unit i is used.)

For fixed d, the complex numbers 1, ω form a basis of C, as a two dimensional
vector space over R. Thus all z ∈ C can be uniquely written in the form z = e1+e2ω
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with e1, e2 ∈ R. Plainly z ∈ Ed iff e1, e2 ∈ Z. Let the functions Red : C 7→ R and
Imd : C 7→ R be defined as:

Red(z) := e1, Imd(z) := e2.

Red(z) and Imd(z) are called the real and imaginary parts of z.
The elements of Ed will be denoted by (e1, e2)d.

Plainly, for all z ∈ C we have

Imd(z) =
Im(z)

Im(ω)
,

Red(z) = Re(z)− Im(z)
Re(ω)

Im(ω)
.

In order to define a floor function, a set of fractional numbers has to be defined.
Regarding generalization purposes the absolute value of a fractional number should
be less than 1, a fractional number should not be negative in a sense, it is a superset
of the fractional numbers for the reals, and the floor function should be unambigu-
ous. From these considerations the following definition will be used to specify the
floor function with the set of fractional numbers which will be called fundamental
sail tile.

Definition 2. Let d ∈ {1, 2, 3, 7, 11}. Let the set

Dd :=

{
c ∈ C

∣∣∣∣ |c| < 1 |c+ 1| ≥ 1 − 1

2
≤ Imd(c) <

1

2

}

be defined as the fundamental sail tile (the set of fractional numbers).
Let p ∈ Ed. The set

Dd(p) :=

{
p+ c

∣∣∣∣ c ∈ C |c| < 1 |c+ 1| ≥ 1 − 1

2
≤ Imd(c) <

1

2

}

is called p-sail tile and p is called its representative integer.
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Figure 1: Tilings of C given by the sets Dd(p), d ∈ {1, 2, 3, 7, 11}.

By using Theorem 1 of [10] one can show that the sets Dd(p), where p runs
through Ed do not overlap and cover the complex plain C. This justifies the following
definition:

Definition 3. Let the function b cd : C→ Ed be defined as the floor function.
The floor of e is the representative integer p of the unique p-sail tile that contains
e.

The next lemma shows that the above defined floor function can be described
with the well-known floor function over the real numbers. We leave its simple proof
to the reader.

Lemma 1.

becd =



⌊
Re(e)−

⌊
Imd(e) + 1

2

⌋
Re(ω)

⌋
+ ω

⌊
Imd(e) + 1

2

⌋
, if(

Re(e)−
⌊
Re(e)−

⌊
Imd(e) + 1

2

⌋
Re(ω)

⌋
−

−
⌊
Imd(e) + 1

2

⌋
Re(ω)

)2
+

+
(
Im(e)−

⌊
Imd(e) + 1

2

⌋
Im(ω)

)2
< 1,⌊

Re(e)−
⌊
Imd(e) + 1

2

⌋
Re(ω)

⌋
+ ω

⌊
Imd(e) + 1

2 + 1
⌋

, otherwise.

Equipped with the appropriate floor functions we are in the position to define
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shift radix systems for Hermitian vectors. The notion depends on the imaginary
Euclidean domain.

Definition 4. Let C := (c1, . . . , cn) ∈ Cn be a complex vector. Let d ∈
{1, 2, 3, 7, 11} and the floor function bxcd defined as above.
For all vectors A := (a1, a2, . . . , an) ∈ En

d let

τd,C (A) := (a2, . . . , an,−q) ,

where q = bc1a1 + c2a2 + · · · + cnancd. The mapping τd,C : En
d 7→ En

d is called
Euclidean shift radix system with parameter d or ESRSd respectively, ESRS
for short. If B := τd,C(A), this mapping will be denoted by

A ⇒
d,C

B.

If for A,B ∈ En
d there is a k ∈ N, such that τ k

d,C(A) = B then this will be indicated

by:
A

∗
==⇒
d,C

B.

τd,C is called ESRS with finiteness property iff for all vectors A ∈ En
d

A
∗

==⇒
d,C

0,

where 0 is the zero vector.

Definition 5. The following sets form a generalization of the corresponding sets
defined in [1]:

D0
n,d :=

{
C ∈ Cn

∣∣∣∣ ∀A ∈ En
d : A

∗
==⇒
d,C

0

}
,

Dn,d :=

{
C ∈ Cn

∣∣∣∣ ∀A ∈ En
d the sequence

{
τ kd,C (A)

}
k≥0

is ultimately periodic

}
.

τd,C is ESRS with finiteness property iff C ∈ D0
n,d.

Remark 1. The construction defined in this section can be generalized by using a
complex number for d.

3 Basic properties of the one dimensional shift
radix systems

This section and the following ones will consider C as a one dimensional vector, i.e.
a complex number, which will be denoted by c. In this section we will investigate
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some properties of the one dimensional case. Theorem 1 can be considered as the
generalization of cutout polyhedra defined in [1]. These are areas defined by a closed
curve (arcs and lines). Let this area be denoted by P . Let’s consider this as cutout
area.

Theorem 1. Let c ∈ C. The number a0 ∈ Ed with (d, c) admits a period

a0 ⇒
d,c
a1 ⇒

d,c
a2 ⇒

d,c
a3 . . .⇒

d,c
al−1 ⇒

d,c
a0, if and only if

c ∈
(
Dd − a1
a0

)
∩
(
Dd − a2
a1

)
∩ · · · ∩

(
Dd − al−1
al−2

)
∩
(
Dd − a0
al−1

)
.

The number l will be called the length of the period.

Proof. The proof is essentially the same as the proof of Theorem 3 in [10].

The next theorem shows that if the ESRS associated to c has the finiteness
property then it must lie in the closed unit circle.

Theorem 2. Let |c| > 1, d ∈ {1, 2, 3, 7, 11} then τd,c doesn’t have the finiteness
property.

Proof. The basic idea is that we ignore those values of a where the length decreases
after applying τd,c, since after finitely many steps it will end in 0 or another value
a′ the absolute value of which increases by applying the mapping. Investigating the
length of a vector after applying the shift radix mapping:

a⇒
d,c
ac− r.

For the length
|a| > |ac− r| ≥ |a||c| − |r| > |a||c| − 1,

|a| < 1

|c| − 1
.

If this inequality holds the length decreases. This is a finite open disk around the
origin. For any other a the length will increase, so starting from a applying the
shift radix mapping leads to a divergent sequence.

Plainly τd,1 doesn’t have the finiteness property for any d. For finding ESRS
with finiteness property, one has to use a well chosen complex number c. Based on
Theorem 2, let’s start from the closed unit disc around the origin, and let’s ignore
these cutout areas in order to reach those points which are good to define ESRS
with finiteness property:

Remark 2. The set D0
n,d can be defined in the following way. Let S := {c ∈

C| |c| ≤ 1} and let’s consider the areas defined by Theorem 1 as Pi. Then

D0
n,d = S \ ∪Pi.
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Since cutout areas can be infinitely many, can be disjoint, overlapped by each
other or superset and subset of each other, finding the union area of all is a hard
problem. The following definition helps to estimate how many cutout areas are
around some point in Dn,d.

Definition 6. Let c ∈ Dn,d.

• If there exists an open neighborhood of c which contains only finitely many
cutout areas then we call c a regular point.

• If each open neighborhood of c has nonempty intersection with infinitely many
cutout areas then we call c a weak critical point for Dn,d.

• If for each open neighborhood U of c the set U \ D0
n,d cannot be covered by

finitely many cutout areas then c is called a critical point.

Let’s check what are the conditions to reach a cutout area in the one dimensional
case.

Remark 3. Theorem 1’s result for one dimensional case can be used to define
cutout areas with periods of any length. τd,c admits a period a0 ⇒

d,c
a1 ⇒

d,c
a2 ⇒

d,c

. . .⇒
d,c
an ⇒

d,c
a0 if and only if

c ∈
(
Dd − a1
a0

)
∩
(
Dd − a2
a1

)
∩ · · · ∩

(
Dd − an
an−1

)
∩
(
Dd − a0
an

)
.

The one-step and the two-step cases are really important, since the one-step
periods define large sets around−1, and the two-step case appear most likely around
1. The following two lemmata speak about these special cases.

Lemma 2. Let |c| < 1. τd,c admits a one-step period, if and only if c ∈ Dd

a − 1 for
an a ∈ Ed \ {0}.

Proof. The shift radix mapping leads to the following:

a⇒
d,c
−ac+ r,

a ∈ Ed \ {0}. This can be a one-step period, iff c = r
a − 1. r is a general element of

the fundamental sail tile, so c ∈ Dd

a − 1.

Lemma 3. Let |c| < 1. τd,c admits a two-step period, if and only if c ∈
(

Dd−a′

a

)
∩(Dd−a

a′

)
, where a, a′ ∈ Ed \ {0}.

Proof. The shift radix mapping leads to the following:

a⇒
d,c
−ac+ r,
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a ∈ Ed \ {0}. Let a′ := −ac+ r ∈ Ed \ {0}, a′ ⇒
d,c
−a′c+ r. This can be a two-step

period, iff a = −a′c+ r. This means that c has to be in the set

c ∈
(
Dd − a′

a

)
∩
(
Dd − a
a′

)
.

Theorem 3 shows that only finitely many a ∈ Ed have to be investigated to
decide the finiteness property of a specific value of c.

Theorem 3. Let |c| < 1. τd,c is a ESRS with finiteness property, iff for all a ∈ Ed

where |a| < 1
1−|c|

a
∗

=⇒
d,c

0.

Proof.

a⇒
d,c
−ac+ r, where

r ∈ Dd. To decide the finiteness property one has to check only those numbers
where the absolute value does not decrease.

|a| ≤ | − ac+ r| ≤ |a||c|+ |r| < |a||c|+ 1, so

|a| < 1
1−|c| .

Now, let’s see how the sets D0
1,d (d ∈ {1, 2, 3, 7, 11}) look like. Algorithm 1

defines a searching method, which will approximate the mentioned set using the
results of Remark 2 and Theorem 3. The input parameters are d ∈ {1, 2, 3, 7, 11}
and rs, which sets how many points in the unit circle will be tested, the result is a
superset of D0

1,d.
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Algorithm 1 Approximation algorithm for the set D0
1,d

1: d ∈ {1, 2, 3, 7, 11} (input parameter)
2: rs := 1000000 (input parameter)
3: res := 1√

rs

4: S := {c ∈ C| |c| ≤ 1}
5: Scurr := S
6: for rad ∈ {0, res, 2res . . . , 1} do
7: for ang ∈ {0, res, 2res . . . , 2π} do
8: ccurr := rad · ei·ang
9: if ccurr ∈ Scurr then

10: Acurr := {a′|a′ ∈ Ed |a′| < 1
1−|ccurr|}

11: for acurr ∈ Acurr do
12: if τd,ccurr admits a period P ′ starting from acurr then
13: Scurr = Scurr \ P ′
14: break operation 11
15: end if
16: end for
17: end if
18: end for
19: end for
20: return Scurr

Figure 2: Using Algorithm 1, these are the generated approximations of
D0

1,1,D0
1,2,D0

1,3,D0
1,7,D0

1,11, respectively (black area).
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The area close to the origin is the easiest part of the disc to decide the finiteness
property, so let’s consider the case |c| < 1

2 .

Theorem 4. Let |c| < 1 − 1√
4

= 1
2 . The function τd,c is a ESRS with finiteness

property, if c ∈ Dd. Additionally, if d = 11 then

c 6∈
{
z ∈ C

∣∣∣∣ |(−ω)z + ω − 1| ≥ 1 −
√

11

4
< Im((−ω)z + ω)

}
, and

c 6∈
{
z ∈ C

∣∣∣∣ |(−1 + ω)z − ω| ≥ 1 Im((−1 + ω)z + 1− ω) ≤
√

11

4

}
.

Proof. The proof of this theorem only uses basic considerations and the results of
this article.

The following Lemma implies that D0
1,d and D1,d reflected at the real axis coin-

cide almost everywhere. Parts where the two sets might not coincide are contained
in the union of their respective boundaries.

Lemma 4. Let c ∈ C, a, b ∈ Ed, and ϕ = (a1, a2, . . . , ak) ∈ Ek
d. Then 2Imd(ca) is

not an odd integer ⇔ (τca = b⇔ τca = b),
2Imd(ca) is an odd integer ⇒ (τca = b⇒ τca− b ∈ {(0,−1)d, (1,−1)d}).
In particular, if c is contained in the interior of the cutout area corresponding to ϕ
then
(a1, a2, . . . , ak) period of τc ⇔ (a1, a2, . . . , ak) period of τc.
Proof. The proof can be done the same way as the proof of Lemma 3.6 in [3].

Definition 7. Let(
((x2,1, y2,1), (a2,1, b2,1)), . . . , ((x2,45, y2,45), (a2,45, b2,45)

)
:=
(

((
1, 0
)
,
(
− 2, 0

))
,
((
− 529

4023 ,
22378908
45415717

)
,
(
0, 1
))

,
((
− 8413

3862276 ,
6385
8993

)
,
(
0, 1
))

,((
− 560

3763 ,
166
229

)
,
(
0, 1
))

,
((

11051
36427 ,

12022
16987

)
,
(
0, 1
))

,
((
− 39833

139318 ,
634841
887952

)
,
(
0, 1
))

,((
− 587

32542 ,
1260970
1501501

)
,
(
0, 1
))

,
((

20911
27059 ,

183
517

)
,
(
0, 1
))

,
((
− 3533

7022 ,
1411
1988

)
,
(
0, 1
))

,((
645
3757 ,

1432877
1660169

)
,
(
0, 1
))

,
((

844688
1266909 ,

2031
3445

)
,
(
0, 4
))

,
((

44399
51256 ,

4447
14348

)
,
(
0, 2
))

,((
781981
1137704 ,

159
260

)
,
(
0, 4
))

,((
3741
6160 ,

2237
3237

)
,
(
0, 2
))

,
((

18563
132052 ,

677269
744909

)
,
(
0, 1
))

,
((
− 273

461 ,
256
357

)
,
(
0, 1
))

,((
− 23531

44649 ,
2367
3041

)
,
(
0, 1
))

,
((
− 2504

4903 ,
53361
66614

)
,
(
0, 1
))

,
((

2295978
14352937 ,

128937
134770

)
,
(
0, 1
))

,((
− 22537

155137 ,
19631
20469

)
,
(
0, 1
))

,
((
− 1324

2503 ,
85287
104894

)
,
(
0, 1
))

,
((

186647
247677 ,

278
433

)
,
(
0, 2
))

,((
81473
111068 ,

86419
129984

)
,
(
0, 2
))

,
((
− 1087

2004 ,
670
809

)
,
(
0, 1
))

,
((

19
25 ,

16
25

)
,
(
0, 2
))

,
((

27
37 ,

25
37

)
,(

0, 2
))

,
((

13
17 ,

54
85

)
,
(
0, 2
))

,
((

7647
10000 ,

16
25

)
,
(
0, 2
))

,
((

7339
10000 ,

1347
2000

)
,
(
0, 2
))

,((
1979
20000 ,

4961
5000

)
,
(
0, 1
))

,
((
− 1979

20000 ,
397
400

)
,
(
0, 1
))

,
((
− 2701

5000 ,
8399
10000

)
,
(
0, 1
))

,((
− 1097

2000 ,
4169
5000

)
,
(
0, 1
))

,
((

1527
2000 ,

6429
10000

)
,
(
0, 2
))

,
((

3831
5000 ,

6413
10000

)
,
(
0, 2
))

,((
3699
5000 ,

6711
10000

)
,
(
0, 2
))

,
((

7321
10000 ,

6767
10000

)
,
(
0, 2
))

,
((

7419
10000 ,

1339
2000

)
,
(
0, 2
))

,((
3683
5000 ,

3377
5000

)
,
(
0, 2
))

,
((
− 1087

2000 ,
4183
5000

)
,
(
0, 1
))

,
((
− 1089

2000 ,
8387
10000

)
,
(
0, 1
))

,((
− 1089

2000 ,
1677
2000

)
,
(
0, 1
))

,
((

1
10 ,

7
5
√
2

)
,
(
0, 1
))

,((
1

100

(
50 +

√
1534

)
,−−100+

√
1534

100
√
2

)
,
(
0, 1
))

,
((

9
10 ,

3
5
√
2

)
,
(
0, 1
)))

,
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(
((x11,1, y11,1), (a11,1, b11,1)), . . . , ((x11,47, y11,47), (a11,47, b11,47)

)
:=
(

((1, 0), (−2, 0))
((
− 529

4023 ,
22378908
45415717

)
,
(
0, 1
))

,
((

25699
75158 ,

11951
22586

)
,
(
2, 0
))

,((
122233
192089 ,

5593
12399

)
,
(
0, 1
))

,
((

6229
23994 ,

22353
28738

)
,
(
0, 9
))

,
((

2039
57213 ,

17365
20941

)
,
(
0, 1
))

,((
3099
4183 ,

442047
1060847

)
,
(
0, 1
))

,
((
− 39923

156499 ,
22371
26896

)
,
(
0, 1
))

,
((

4038
5203 ,

4722
11383

)
,
(
0, 1
))

,((
285
406 ,

752
1417

)
,
(
0, 1
))

,
((

15765
22453 ,

431
725

)
,
(
0, 1
))

,
((

2023
7895 ,

2634
2981

)
,
(
0, 1
))

,((
− 810241

3496246 ,
662044
743591

)
,
(
0, 1
))

,
((

127129
185005 ,

42539
67882

)
,
(
0, 4
))

,
((
− 109151

435226 ,
1106
1235

)
,(

0, 1
))

,
((

1499
5037 ,

10953
12284

)
,
(
0, 1
))

,
((
− 8495

29356 ,
259913
290617

)
,
(
0, 1
))

,
((

755
851 ,

3083
7406

)
,
(
0, 1
))

,((
− 15483

32584 ,
4513239
5265740

)
,
(
0, 1
))

,
((
− 39752315

80135632 ,
1130
1337

)
,
(
0, 1
))

,
((
− 45318560

90412991 ,
235960
280199

)
,(

0, 1
))

,
((
− 422566

838723 ,
6443
7665

)
,
(
0, 1
))

,
((
− 7361

14390 ,
105082
125711

)
,
(
0, 1
))

,((
− 724614

1438463 ,
2019
2369

)
,
(
0, 1
))

,
((
− 4861

9600 ,
1020
1199

)
,
(
0, 1
))

,
((
− 1064

2059 ,
166081
196678

)
,
(
0, 1
))

,((
− 545

1034 ,
168253
200773

)
,
(
0, 1
))

,
((

13
50 ,

24
25

)
,
(
0, 1
))

,
((

13
51 ,

49
51

)
,
(
0, 1
))

,
((
− 45

82 ,
34
41

)
,(

0, 1
))

,
((
− 1135

2048 ,
1699
2048

)
,
(
0, 1
))

,
((
− 1125

2048 ,
851
1024

)
,
(
0, 1
))

,
((
− 1123

2048 ,
1701
2048

)
,(

0, 1
))

,
((
− 1083

2048 ,
869
1024

)
,
(
0, 1
))

,
((
− 1075

2048 ,
433
512

)
,
(
0, 1
))

,
((
− 1069

2048 ,
873
1024

)
,(

0, 1
))

,
((
− 531

1024 ,
1745
2048

)
,
(
0, 1
))

,
((
− 529

1024 ,
875
1024

)
,
(
0, 1
))

,
((

505
2048 ,

991
1024

)
,
(
0, 1
))

,((
511
2048 ,

1983
2048

)
,
(
0, 1
))

,
((

513
2048 ,

991
1024

)
,
(
0, 1
))

,
((

135
512 ,

987
1024

)
,
(
0, 1
))

,((
129106
516339 ,

2147435
2219844

)
,
(
0, 1
))

,
((

1
212

(
− 140 +

√
573
)
,
√
11
4

)
,(

0, 3
))

,
((−550−√42130

1500 ,
√
11
(
−25+2

√
42130

)
1500

)
,
(
0, 1
))

,((
1
48

(
− 33 +

√
93
)
, 1
48

√
11
(
3 +
√

93
))

,
(
0, 1
))

,
((

1639+
√
10021

6600 , 539+
√
10021

200
√
11

)
,(

0, 1
)))

,

and let C
(2)
0 (k) denote the ultimate period of the orbit of (a2,k, b2,k)2 under

τ2,(x2,k,y2,k) for all k ∈ {1, . . . 45} and C
(11)
0 (k) the ultimate period of the orbit

of (a11,k, b11,k)11 under τ11,(x11,k,y11,k) for all k ∈ {1, . . . 47}. Furthermore let for
all k ∈ Z:

C
(d)
1 (k) := ((−k, 1)d, (k,−1)d)

C
(d)
2 (k) := ((−k, 1)d, (k + 1,−1)d).

Theorem 5. The sets D(0)
1,2 and D(0)

1,11 do not contain any weakly critical points

(and thus no critical points) r satisfying r ∈ D(0)
1,2 and r ∈ D(0)

1,11 respectively. More

precisely the circle of radius 0.99 around the origin contains the sets D(0)
1,2 and D(0)

1,11.

Proof. For any cycle π of complex numbers let π denote the cycle one gets if all
elements of π are replaced by their complex conjugates. The cutout sets of the

cycles C
(2)
1 (k), C

(2)
2 (k), k ∈ Z, C

(2)
0 (1), . . . , C

(2)
0 (45), C

(2)
0 (1), . . . , C

(2)
0 (45), and

C
(11)
1 (k), C

(11)
2 (k), k ∈ Z, C

(11)
0 (1), . . . , C

(11)
0 (47), C

(11)
0 (1), . . . , C

(11)
0 (47) respec-

tively, completely cover the ring centered at the origin in the complex plane with
inner radius 99

100 and outer radius 1. Figures 3 and 3 show the cutout sets for the
cases d = 2 and d = 11 respectively. The list has been found by a combination of a
variant of Algorithm 1 with manual search.
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Figure 3: Cutout areas of D1,2 which covers the annulus with radii 99/100 and 1.
The green area represents the first cutout area, the blue ones are the two infinite
sequences.

Figure 4: Cutout areas of D1,11 which covers the annulus with radii 99/100 and 1.
The green area represents the first cutout area, the blue ones are the two infinite
sequences.
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4 Conclusion and further work

In this paper shift radix systems have been defined over the complex field (Definition
4), and the one dimensional case has been investigated more precisely.
This can be continued to investigate polynomials and vectors with greater degree,
Hausdorff dimensions can be calculated more precisely, or SRS over other Euclidean
domains can be investigated as well.
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Debrecen., to appear.

Received 23rd June 2015


