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Abstract

In this paper we generalize the shift radix systems to finite dimensional
Hermitian vector spaces. Here the integer lattice is replaced by the direct sum
of imaginary quadratic Euclidean domains. We prove in two cases that the
set of one dimensional Euclidean shift radix systems with finiteness property
is contained in a circle of radius 0.99 around the origin. Thus their structure
is much simpler than the structure of analogous sets.

1 Introduction
For r € R™ the mapping 7 : Z" — Z", defined as

((a1,...,a,)) = (az,...,an_1, |ral),

where ra denotes the inner product, is called shift radiz system, shortly SRS. This
concept was introduced by S. Akiyama et al. [1] and they proved that it is a common
generalization of canonical number systems (CNS), first studied by I. Kdtai and J.
Szabd [8], and the 3-expansions, defined by A. Rényi [11]. For computational aspects
of CNS we refer to the paper of P. Burcsi and A. Kovécs [5].

Among the several generalizations of CNS we cite here only one to polynomials
over Gaussian integers by M.A. Jacob and J.P. Reveilles [7]. Generalizing the shift
radix systems, H. Brunotte, P. Kirschenhofer and J. Thuswaldner [3] defined GSRS
for Hermitian vector spaces. A wider generalization of CNS, namely for polynomials
over imaginary quadratic Euclidean domains was studied by the first two authors
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in [10]. It is well known that there are exactly five such domains, which are the ring
of integers of the imaginary quadratic fields (@(\/&), d=1,2,3,7,11. The Euclidean
norm function allows not only the division by remainder, but also to define a floor
function for complex numbers. This observation leads us to generalize SRS for Her-
mitian vector spaces endowed by floor functions depending on imaginary quadratic
Fuclidean domains. Our generalization, which we call ESRS, is uniform for the five
imaginary quadratic Euclidean domains. This has the consequence that in case of
the Gaussian integers our floor function differs from that used in [3].

The SRS 7, is said to have the finiteness property iff for all a € Z™ there exists
a k > 1 such that 7%(a) = 0. Denote by DY the set of r € R" such that 7, has
the finiteness property. From numeration point of view these real vectors are most
important. It turned out that the structure of D,(lo) is very complicated already for
n =2, see [2], [12] and [13].

The analogue of the two dimensional SRS is the one dimensional GSRS and
ESRS. Brunotte et al. [3] studied first the set of one dimensional GSRS with finite-
ness property, which we denote by GSRS(®). It turned out that its structure is
quite complicated as well. Recently a more precise investigation of M. Weitzer [14]
showed that the structure of GSRS(® is much simpler as that of ’Déo). Based on
extensive computer investigations he conjectures a finite description of GSRS(®).

Analogously to D(O) we can define DSLO ()1, d=1,2,3,7,11 in a straight forward

way. We show how one can compute good approximations of D ) . Performing the
computation it turned out that the shape of these objects are qu1te different. The
subjective impression can be misleading, but we were able to prove that D(O) has
no critical points in the cases d = 2,11. More specifically we prove that the mrcle

(0

of radius 0.99 around the origin contains D,, ) . In the other cases this is probably

not true. It is certainly not true for D( ) and GSRS

2 Basic concepts

In order to establish a shift radix system over the complex numbers, an imaginary
quadratic Euclidean domain will be used as the set of integers, and a floor function
is needed which can be determined by making its Euclidean function unique, so
choosing the set of fractional numbers from the possible values.

Definition 1. Let E; = ZQ[\/jd] be an imaginary quadratic Fuclidean domain
(de{1,2,3,7,11}, see in [6]). Its canonical integral basis is: {1,w}, where

w::{ v=d_ . ifde{1,2},

HT V=d  otherwise.

(In the case of d =1 instead of w the imaginary unit i is used.)

For fixed d, the complex numbers 1,w form a basis of C, as a two dimensional
vector space over R. Thus all z € C can be uniquely written in the form z = e; +eaw
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with e;,eo € R. Plainly z € E; iff e1,e2 € Z. Let the functions Rey : C — R and
Img : C— R be defined as:

Rey(z) :=e1, Img(z) := ea.

Rey(z) and Img(z) are called the real and imaginary parts of z.
The elements of Eq will be denoted by (e1, e2),.

Plainly, for all z € C we have

Req(z) = Re(z)]m(z)fni((t:))

In order to define a floor function, a set of fractional numbers has to be defined.
Regarding generalization purposes the absolute value of a fractional number should
be less than 1, a fractional number should not be negative in a sense, it is a superset
of the fractional numbers for the reals, and the floor function should be unambigu-
ous. From these considerations the following definition will be used to specify the
floor function with the set of fractional numbers which will be called fundamental
sail tile.

Definition 2. Let d € {1,2,3,7,11}. Let the set
1 1
Dg:=<ceC | |¢f<1 |e+1]>1 —§§Imd(c)<§

be defined as the fundamental sail tile (the set of fractional numbers).
Let p € E;. The set

1 1
Dd(p):z{p+c ceC | <1 Je+1>1 —2§Imd(c)<2}

is called p-sail tile and p is called its representative integer.
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Figure 1: Tilings of C given by the sets Dy(p), d € {1,2,3,7,11}.

By using Theorem 1 of [10] one can show that the sets D4(p), where p runs
through E; do not overlap and cover the complex plain C. This justifies the following
definition:

Definition 3. Let the function | |4 : C — E4 be defined as the floor function.
The floor of e is the representative integer p of the unique p-sail tile that contains
e.

The next lemma shows that the above defined floor function can be described
with the well-known floor function over the real numbers. We leave its simple proof
to the reader.

Lemma 1.

LRe(e) — led(e) + %J Re(w)J +w led(e) + %J L if
(Re(e) = [Re(e) = [Tma(e) + 3| Re(w)| -

lela = — led(e) + %J Re(w))2+

+ (Im(e) = [Ima(e) + 1| Im(w))2 <1,

| Re(e) — [Ima(e) + 3| Re(w)| +w [Ima(e) + 3 + 1| , otherwise.

Equipped with the appropriate floor functions we are in the position to define
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shift radix systems for Hermitian vectors. The notion depends on the imaginary
Euclidean domain.

Definition 4. Let C = (c1,...,¢,) € C™ be a complex vector. Let d €
{1,2,3,7,11} and the floor function |z|q defined as above.
For all vectors A := (a1, a2, ...,a,) € EJ let

Td,C(A) = (a23 ceey O, 7q) )

where ¢ = [c1a1 + c2a2 + -+ + cpan|q. The mapping Ty : Ey — Ey is called
Euclidean shift radix system with parameter d or ESRS,; respectively, ESRS
for short. If B := Ty c(A), this mapping will be denoted by

A = B.
d,C

If for A, B € E} there is a k € N, such that T;C(A) = B then this will be indicated

by:
A= B.
d,C

Ta,c is called ESRS with finiteness property iff for all vectors A € Ey

A =0,

where 0 is the zero vector.
Definition 5. The following sets form a generalization of the corresponding sets

defined in [1]:

o, focc

VAEE;”:A:*>O}7
d,C

Dpg = {c ecn

k
VA € E the sequence {Td C(A)}
’ k>0

1s ultimately pem’odic}.

Ta,c is ESRS with finiteness property iff C' € Dg,d-

Remark 1. The construction defined in this section can be generalized by using a
complex number for d.

3 Basic properties of the one dimensional shift
radix systems

This section and the following ones will consider C' as a one dimensional vector, i.e.
a complex number, which will be denoted by c¢. In this section we will investigate
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some properties of the one dimensional case. Theorem 1 can be considered as the
generalization of cutout polyhedra defined in [1]. These are areas defined by a closed
curve (arcs and lines). Let this area be denoted by P. Let’s consider this as cutout
area.

Theorem 1. Let c € C. The number ay € Eq with (d,c) admits a period

ag = a1 = az = az... = aj—1 = ag, if and only if
d,c d,c d,c d,c

,C

Dy — Dy — Dy —a;— Dy —
c€< d al)m( d a2>ﬁ-~~ﬂ< d— 1)0( d ao>.
agp a ar—2 ar—1

The number | will be called the length of the period.

Proof. The proof is essentially the same as the proof of Theorem 3 in [10]. O

The next theorem shows that if the ESRS associated to ¢ has the finiteness
property then it must lie in the closed unit circle.

Theorem 2. Let |c[ > 1, d € {1,2,3,7,11} then T4, doesn’t have the finiteness
property.

Proof. The basic idea is that we ignore those values of a where the length decreases
after applying Ty ., since after finitely many steps it will end in 0 or another value
a’ the absolute value of which increases by applying the mapping. Investigating the
length of a vector after applying the shift radix mapping:

a = ac—r.
d,c

For the length
la| > |ac —r| > |alle] = |r| > [a]le] -1,

al < ot

a .

le] = 1

If this inequality holds the length decreases. This is a finite open disk around the
origin. For any other a the length will increase, so starting from a applying the
shift radix mapping leads to a divergent sequence. [

Plainly 7,1 doesn’t have the finiteness property for any d. For finding ESRS
with finiteness property, one has to use a well chosen complex number c. Based on
Theorem 2, let’s start from the closed unit disc around the origin, and let’s ignore
these cutout areas in order to reach those points which are good to define ESRS
with finiteness property:

Remark 2. The set D? 4 can be defined in the following way. Let S : = {c €
C| |e| <1} and let’s consider the areas defined by Theorem 1 as P;. Then

nd_S\UP
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Since cutout areas can be infinitely many, can be disjoint, overlapped by each
other or superset and subset of each other, finding the union area of all is a hard
problem. The following definition helps to estimate how many cutout areas are
around some point in Dy, 4.

Definition 6. Let c € D, 4.

o [f there exists an open neighborhood of ¢ which contains only finitely many
cutout areas then we call ¢ a regular point.

e [f each open neighborhood of ¢ has nonempty intersection with infinitely many
cutout areas then we call ¢ a weak critical point for D, 4.

o [f for each open meighborhood U of ¢ the set U \ Dg)d cannot be covered by
finitely many cutout areas then c is called a critical point.

Let’s check what are the conditions to reach a cutout area in the one dimensional
case.

Remark 3. Theorem 1’s result for one dimensional case can be used to define

cutout areas with periods of any length. Ty . admits a period ag d:> a1 d=> as d=>
N ,c N

... = an = ag if and only if
d,c d,c

Dy —a Dy —a Dy —a Dy — a
Ce(d 1)ﬂ<d 2>mmm(d n)m<d o)_
agp a1 Apn—1 QA
The one-step and the two-step cases are really important, since the one-step

periods define large sets around —1, and the two-step case appear most likely around
1. The following two lemmata speak about these special cases.

Lemma 2. Let |c| < 1. Ty, admits a one-step period, if and only if c € % —1 for
an a € B4\ {0}.

Proof. The shift radix mapping leads to the following:

a= —ac—+r,

d,c

a € Eq \ {0}. This can be a one-step period, iff c = L — 1. r is a general element of

the fundamental sail tile, so ¢ € ]%d -1 O
Lemma 3. Let |c| < 1. Ty . admits a two-step period, if and only if c € (E”"Tfaj N
(PL72), where a,a’ € Eq \ {0}.

Proof. The shift radix mapping leads to the following:

a= —ac+r,

,C
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a € Eg\ {0}. Let @’ := —ac+r € Eg\ {0}, = —a’¢+ r. This can be a two-step

period, iff a = —a’c + r. This means that ¢ has to be in the set

_/ —
CG(Dd a)m<Dd/a>.
a a

Theorem 3 shows that only finitely many a € E; have to be investigated to
decide the finiteness property of a specific value of c.

Theorem 3. Let |c| < 1. Ty . is a ESRS with finiteness property, iff for all a € Eq

where |a| < %M

Proof.

a = —ac + r, where
d,c

r € D4. To decide the finiteness property one has to check only those numbers
where the absolute value does not decrease.

la| < | = ac+r| <lalle] +[r] <lalle[ + 1, s0

—lel”

Now, let’s see how the sets D(l))d (d € {1,2,3,7,11}) look like. Algorithm 1
defines a searching method, which will approximate the mentioned set using the
results of Remark 2 and Theorem 3. The input parameters are d € {1,2,3,7,11}
and 7s, which sets how many points in the unit circle will be tested, the result is a
superset of DY .
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Algorithm 1 Approximation algorithm for the set D?, d

1: d €{1,2,3,7,11} (input parameter)

2: rs:= 1000000 (input parameter)

3: res:= \/173

4: S:={ceC| |¢f <1}

5. Seyrr := S

6: for rad € {0,res,2res...,1} do

7: for ang € {0,res,2res..., 27} do

8: Ceurr 1= rad - €9

9: if ceyrr € Seyrr then

10: Apyrr 1= {a’|a’ e Eq |a’| < m}
11: for acyrr € Acyrr do

12: if Ty ¢, admits a period P’ starting from a.y,, then
13: Securr = Scurr \ P’

14: break operation 11

15: end if

16: end for

17: end if

18: end for

19: end for

20: return S.;-,

Figure 2: Using Algorithm 1, these are the generated approximations of
DY, DY, DY 5, DY ,, DY 1, respectively (black area).



494 Attila Pethd, Péter Varga, and Mario Weitzer

The area close to the origin is the easiest part of the disc to decide the finiteness
property, so let’s consider the case |c¢| < %
Theorem 4. Let |c| < 1 — ﬁ = % The function Ty . is a ESRS with finiteness
property, if ¢ € Dy. Additionally, if d =11 then

cd {ze(C‘ (—w)z+w—1]>1 —g <Im((—w)z+w)}, and

T

C¢{Z€C‘|(—1+w)z—w21 Im((—ler),H-l—w)gT :

Proof. The proof of this theorem only uses basic considerations and the results of
this article. O

The following Lemma implies that DY . and Dy 4 reflected at the real axis coin-
cide almost everywhere. Parts where the two sets might not coincide are contained
in the union of their respective boundaries.

Lemma 4. Let c € C, a,b € Eq, and ¢ = (a1, az,...,ax) € EX. Then 2Img(ca) is
not an odd integer < (T.a = b & Tga =b),

2Img(ca) is an odd integer = (Tpa=b = Tza—b € {(0,—1)a, (1,—1)4}).

In particular, if ¢ is contained in the interior of the cutout area corresponding to ¢
then

(a1,aq,...,a) period of T, < (a1,az,...,ax5) period of Ts.

Proof. The proof can be done the same way as the proof of Lemma 3.6 in [3]. O

Definition 7. Let

(((552 1,92,1), (a2, 1752 1)), (22,45, Y2,45), (024575245)) = (

1,0), (=2,0)), ((— o asarss): (0:1)), (= sxgoms. soos

2048, (0.1)), (WL 1), (0.1)), (- R il
0 :

): (0

3763’ 229 ) ’ ) 1393187 887952)’ (07
isots01)+ (0:1)). (57055, 237) (0. 1)) 1oss ) (0
0 L), (o ). (0

—~

7

((= 7655 Toss

J
3254271501501 84270597 51 L) 14595° 4i%%
1)), ((51386> 14345

)
)

\1/\/\/\/\/\

G: W~~~

2000’ 2000

105 (50 + V1534), - =8502), (0.1)), (5 595) - (0

77 ’1660169) (71))7 ((1266909’3445) s M ’

1377047 260 ’ (0’4))7
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(11,1, 911,1), (@11,1,011,1))s - - -, (11,47, Y11,47), (@117, b11,47)) = (
1
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(
(

(= 33+ V). I+ VEB)), (01), (12, s dom

(0, 1))),
and let C’éz)(k) denote the ultimate period of the orbit of (ag,ba k)2 under
T2 (2o pyyay) Jor all k € {1,...45} and C’(()H)(k) the ultimate period of the orbit
of (@11,k,b11,6)11 under T, (211w p) JOT all k€ {1,...47}. Furthermore let for

allk € Z:

OOk = ((=k, )4, (b, —1)a)
CS k) = ((—ky gy (k+1,~1)a).

Theorem 5. The sets D§02) and D§01)1 do not contain any weakly critical points

(and thus no critical points) r satisfying r € D1 2 andr € D( fl respectively. More

precisely the circle of radius 0.99 around the origin contains the sets D§2) and Dg?l)l.

Proof. For any cycle m of complex numbers let 7 denote the cycle one gets if all
elements of 7 are replaced by their complex conjugates. The cutout sets of the

cycles CP(k), P (k), k € z, cP(1),...,c?45), cP(1),...,Cc{P(45), and

k), S k), k ez, ciMa),...,cMun, ci),. .., i (47) respec-
tively, completely cover the ring centered at the origin in the complex plane with
inner radius m and outer radius 1. Figures 3 and 3 show the cutout sets for the
cases d = 2 and d = 11 respectively. The list has been found by a combination of a

variant of Algorithm 1 with manual search. O




496 Attila Pethd, Péter Varga, and Mario Weitzer

Figure 3: Cutout areas of D; o which covers the annulus with radii 99/100 and 1.
The green area represents the first cutout area, the blue ones are the two infinite
sequences.

Figure 4: Cutout areas of Dj 11 which covers the annulus with radii 99/100 and 1.
The green area represents the first cutout area, the blue ones are the two infinite
sequences.
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4 Conclusion and further work

In this paper shift radix systems have been defined over the complex field (Definition
4), and the one dimensional case has been investigated more precisely.

This can be continued to investigate polynomials and vectors with greater degree,
Hausdorff dimensions can be calculated more precisely, or SRS over other Euclidean
domains can be investigated as well.
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