
Acta Cybernetica 22 (2015) 517–551.

On Ground Word Problem of

Term Equation Systems

Sándor Vágvölgyi∗

To the memory of my teacher and colleague Ferenc Gécseg

Abstract

We give semi-decision procedures for the ground word problem of variable
preserving term equation systems and term equation systems. They are nat-
ural improvements of two well known trivial semi-decision procedures. We
show the correctness of our procedures.

Keywords: term equation systems; ground word problem; Knuth-Bendix
completion procedure; ground term rewriting systems

1 Introduction

A term equation l ≈ r is called variable preserving if the same variables occur in
the left-hand side l as in the right-hand side r. A term equation system (TES)
E is called variable preserving if all of its equations are variable preserving. The
ground word problem is undecidable even for variable-preserving TESs, see Exam-
ple 4.1.4 on page 60 in [1]. We recall the well known trivial semi-decision procedure
PRO1 for the ground word problem of variable preserving TESs and its straightfor-
ward generalization, the trivial semi-decision procedure PRO2 for the ground word
problem of TESs.

On the basis of PRO1, we give a semi-decision procedure PRO3 for the ground
word problem of variable preserving TESs. Given a TES E and ground terms p, q
over the ranked alphabet Σ, procedure PRO3 constructs the ground TESs (GTESs)
Pi and Qi, i ≥ 1 such that

(a) Pi ∪Qi ⊆ ↔∗E for i ≥ 1.
Condition (a) ensures that the congruence closure of Pi ∪Qi is a subset of ↔∗E .
Procedure PRO3 outputs an answer and halts if and only if

(b) there is a j ≥ 1 such that
p↔∗Pj∪Qj

q or

↔∗Pj
∩({ p } × TΣ) =↔∗E ∩({ p } × TΣ) or

∗Department of Foundations of Computer Science, University of Szeged, Árpád tér 2, H-6720
Szeged, Hungary. E-mail: vagvolgy@inf.u-szeged.hu

DOI: 10.14232/actacyb.22.2.2015.16

518 Sándor Vágvölgyi

↔∗Qj
∩({ q } × TΣ) =↔∗E ∩({ q } × TΣ).

Condition (b) says that we have a proof of p↔∗E q, or the intersection of ↔∗Pj
with

({ p } × TΣ) is equal to that of ↔∗E , or the intersection of ↔∗Qj
with ({ q } × TΣ) is

equal to that of ↔∗E . Assume that (b) holds. If p↔∗Pj∪Qj
q holds, PRO3 outputs

’yes’, and halts. Otherwise, if
• the intersection of ↔∗Pj

with ({ p } × TΣ) is equal to that of ↔∗E , or

• the intersection of ↔∗Qj
with ({ q } × TΣ) is equal to that of ↔∗E ,

then p↔∗E q does not hold either. Hence semi-decision procedure PRO3 outputs
’no’ and halts.

Procedure PRO3 constructs the ground TESs (GTESs) Pi and Qi, i ≥ 1 in the
following way. We put a ground instance l′ ≈ r′ of an equation l ≈ r of E ∪E−1 in
P1 if l′ is a subterm of p. Then we iterate the following computation items.
• We convert the GTES Pi into an equivalent reduced ground term rewrite

system Ri applying Snyder’s fast ground completion algorithm [19].
• We define the GTES Pi+1 from the reduced ground term rewrite system Ri

by adding all ground instances l ≈ r of equations in E ∪ E−1 such that
- l ≈ r is not in ↔∗Pi

and that
- there exists a term s such that the conversion p↔∗Pi

s can be continued ap-
plying l ≈ r to s. If Pi+1 = Ri, then we let Ri+1 = Ri, and hence Ri = Pj = Rj
holds for j ≥ i+ 1.
Here we consider both the reduced ground term rewrite system Ri and the GTES
Pi+1 as subsets of TΣ × TΣ. Furthermore, we consider a ground instance of an
equation in E ∪ E−1 as an element of TΣ × TΣ.

We define the GTES Qi symmetrically to Pi for i ≥ 1.
Procedure PRO3 computes in the following way. For each i = 1, 2, . . .,
• if p↔∗Pi∪Qi

q, then we output the answer ’yes’ and halt;
• otherwise, if i ≥ 2 and we did not add ground instances of equations in

E ∪ E−1 to the reduced ground term rewrite system RPi−1
, equivalent to Pi−1, or

to the reduced ground term rewrite system RQi
, equivalent to Qi−1, in the previous

iteration step, then we output the answer ’no’ and halt.
Assume that p↔∗E q. Then, at some step during the run of procedure PRO3,

p↔∗P∪Q q becomes true, and procedure PRO3 outputs ’yes’ and halt. If p↔∗E q
does not hold, then procedure PRO3 either outputs ’no’ and halts or runs forever.

We give a semi-decision procedure PRO4 for the ground word problem of TESs.
We obtain it generalizing PRO3 taking into account PRO2. The main difference is
the following. We define Pi+1 from Ri by adding all ground instances l′ ≈ r′ of the
equations l ≈ r in E ∪ E−1 such that
• l′ ≈ r′ is not in ↔∗Pi

, that
• there exists a term s such that a conversion p↔∗Pi

s can be continued applying
l ≈ r to s, and that
• we substitute some finitely many ground terms depending on i, Ri, and p, for

those variables in r that do not appear in l.
We modify the halting condition of the proceedure so that it stops if we did not add
ground instances of equations in E ∪ E−1 to Pi or Qi in two successive iteration

On Ground Word Problem of Term Equation Systems 519

steps. We need two successive steps rather than one. Because, in general, the
heights of the substituted terms becomes larger in each step. If we do not add
ground equations to Pi in a step, then in the next step we still may add ground
equations to Pi.

Procedures PRO3 and PRO4 compute in a different way than all versions of
the Knuth-Bendix completion procedure. To some instances of the ground word
problem of a TES E, procedures PRO3 and PRO4 give an answer sooner than
all versions of the Knuth-Bendix completion procedure or it is open whether some
version of the Knuth-Bendix completion procedure gives an answer at all. Con-
sequently, they may compute efficiently for some instances of the ground word
problem of a TES E, when the various versions of the Knuth-Bendix completion
procedure does not give an answer to the ground word problem of a TES E at all
or at least not in a reasonable time. However, it is still open in which cases are
PRO3 and PRO4 really efficient.

In Section 2, we present a brief review of the notions, notations, and preliminary
results used in the paper. In Section 3 we introduce and study the concept of
reading-up reachability for reduced ground term rewriting systems. In Section 4
we present the procedures PRO1 and PRO2. In Section 5, we present the procedure
PRO3, and show its correctness. We give examples when procedure PRO3 is more
efficient than procedure PRO1. In Section 6, we present the procedure PRO4,
and show its correctness. In Section 7, we compare procedures PRO3 and PRO4
with the basic Knuth-Bendix completion procedure (see Section 7.1 in [1]), an
improved version of the Knuth-Bendix completion procedure described by a set of
inference rules (see Section 7.2 in [1]), the goal-directed completion procedure based
on SOUR graphs [13, 14], and the unfailing Knuth-Bendix completion procedure
[2]. In Section 8, we sum up our results, and explain the applicability of procedures
PRO3 and PRO4.

2 Preliminaries

In this section we present a brief review of the notions, notations and preliminary
results used in the paper. For all unexplained notions and notation see [1].

Relations. Let ρ be an equivalence relation on A. Then for every a ∈ A, we
denote by a/ρ the ρ-class containing a, i.e. a/ρ = { b | aρb }. For each B ⊆ A, let
B/ρ = { b/ρ | b ∈ B }.

2.1 Abstract Reduction Systems

An abstract reduction system is a pair (A,→), where the reduction → is a binary
relation on the set A. →−1,↔,→∗, and↔∗ denote the inverse, the symmetric clo-
sure, the reflexive transitive closure, and the reflexive transitive symmetric closure
of the binary relation →, respectively.
• x ∈ A is reducible if there is y such that x→ y.
• x ∈ A is irreducible if it is not reducible.

520 Sándor Vágvölgyi

• y ∈ A is a normal form of x ∈ A if x→∗ y and y is irreducible. If x ∈ A has
a unique normal form, the latter is denoted by x↓.
• y ∈ A is a descendant of x ∈ A if x→∗ y.
• x ∈ A and y ∈ A are joinable if there is a z such that x→∗ z ←∗ y, in which

case we write x↓y.
The reduction → is called
• confluent if for all x, y1, y2 ∈ A, if y1 ←∗ x→∗ y2, then y1↓y2;
• locally confluent if for all x, y1, y2 ∈ A, if y1 ← x→ y2, then y1↓y2;
• terminating if there is no infinite chain x0 → x1 → x2 → · · · ;
• convergent if it is both confluent and terminating.

If → is convergent, then each x ∈ A has a unique normal form [1].
Terms. A ranked alphabet Σ is a finite set of symbols in which every element

has a unique rank in the set of nonnegative integers. For each integer m ≥ 0, Σm
denotes the elements of Σ which have rank m.

Let Y be a set of variables. The set of terms over Σ with variables in Y is denoted
by TΣ(Y). The set TΣ(∅) is written simply as TΣ and called the set of ground terms
over Σ. We specify a countably infinite set X = {x1, x2, . . . } of variables which
will be kept fixed in this paper. Moreover, we put Xn = {x1, x2, . . . , xn }, for
n ≥ 0. Hence X0 = ∅. For any i ≥ 1 and j ≥ 0, let X[i,j] = ∅ if i > j, and let
X[i,j] = {xi, xi+1, . . . , xj } otherwise.

For a term t ∈ TΣ(X), the height height(t) ∈ N is defined by recursion:
(a) if t ∈ Σ0 ∪X, then height(t) = 0,
(b) if t = σ(t1, . . . , tm) with m ≥ 1 and σ ∈ Σm, then

height(t) = 1 +max(height(ti) | 1 ≤ i ≤ m).
For each k ≥ 0, HEΣ,≤k(X) = { t ∈ TΣ(X) | height(t) ≤ k }.

Let N be the set of all positive integers. N∗ stands for the free monoid generated
by N with empty word λ as identity element. For each word α ∈ N∗, length(α)
stands for the length of α. Consider the words α, β, γ ∈ N∗ such that α = βγ.
Then we say that β is a prefix of α. Furthermore, if α 6= β, then β is a proper
prefix of α. For a term t ∈ TΣ(X), the set Pos(t) ⊆ N∗ of positions is defined by
recursion:

(i) if t ∈ Σ0 ∪X, then Pos(t) = {λ }, and

(ii) if t = σ(t1, . . . , tm) with m ≥ 1 and σ ∈ Σm, then Pos(t) = {λ } ∪ { iα | 1 ≤
i ≤ m and α ∈ Pos(ti) }.

For each term t ∈ TΣ(X), size(t) is the cardinality of Pos(t).
For each t ∈ TΣ(X) and α ∈ Pos(t), we introduce the subterm t/α ∈ TΣ(X) of

t at α as follows:

(a) for t ∈ Σ0 ∪X, t/λ = t;

(b) for t = σ(t1, . . . , tm) with m ≥ 1 and f ∈ Σm, if α = λ then t/α = t,

otherwise, if α = iβ with 1 ≤ i ≤ m, then t/α = ti/β

For any t ∈ TΣ(X), α ∈ Pos(t), and r ∈ TΣ(X), we define t[α← r] ∈ TΣ(X).

On Ground Word Problem of Term Equation Systems 521

(i) If α = λ, then t[α← r] = r.

(ii) If α = iβ, for some integer i, then t = σ(t1, . . . , tm) with f ∈ Σm and
1 ≤ i ≤ m. Then t[α← r] = σ(t1, . . . , ti−1, ti[β ← r], ti+1, . . . , tm).

For a term t ∈ TΣ(X), the set sub(t) of subterms of t is defined as sub(t) =
{ t/α | α ∈ Pos(t) }.

Given a term t ∈ TΣ(Xn), n ≥ 0, and terms t1, . . . , tn, we denote by t[t1, . . . , tn]
the term which can be obtained from t by replacing each occurrence of xi in t by ti
for 1 ≤ i ≤ n. A context is a term u ∈ TΣ∪{ � }, where the nullary symbol � appears
exactly once in u. We denote the set of all contexts over Σ by CΣ. For a context
u and a term t, u[t] is defined from u by replacing the occurrence of � with t.

For the sake of simplicity, we may write unary terms as strings. For example,
we write fgh# for the term f(g(h(#))) and f3x1 for f(f(f(x1))), where f, g, h are
unary symbols and # is a nullary symbol.

Algebras. Let Σ be a ranked alphabet. A Σ algebra is a system B = (B,ΣB),
where B is a nonempty set, called the carrier set of B, and ΣB = { fB | f ∈ Σ } is
a Σ-indexed family of operations over B such that for every f ∈ Σm with m ≥ 0,
fB is a mapping from Bm to B. An equivalence relation ρ ⊆ B×B is a congruence
on B if

fB(t1, . . . , tm)ρfB(p1, . . . , pm)

whenever f ∈ Σm, m ≥ 0, and tiρpi, for 1 ≤ i ≤ m. For each B′ ⊆ B, let
[B′]ρ = { [b]ρ | b ∈ B′ }. In this paper we shall mainly deal with the algebra
TA = (TΣ,Σ) of ground terms over Σ, where for any f ∈ Σm with m ≥ 0 and
t1, . . . , tm ∈ TΣ, we have

fTA(t1, . . . , tm) = f(t1, . . . , tm) .

We now recall the concept of a set of representatives for a congruence ρ and a set
of ρ-classes.

Definition 1. [6] Let ρ be a congruence on TA and let A be a set of ρ-classes. A
set REP of ground terms is called a set of representatives for A if

• REP ⊆
⋃
A,

•
⋃

(sub(t) | t ∈ REP) ⊆ REP , and

• each class Z ∈ A contains exactly one term t ∈ REP .

Term equation systems. Let Σ be a ranked alphabet. A term equation
system (TES for short) E over Σ is a finite subset of TΣ(X)×TΣ(X). Elements (l, r)
of E are called equations and are denoted by l ≈ r. The reduction relation →E ⊆
TΣ(X)×TΣ(X) is defined as follows. For any terms s, t ∈ TΣ(X), s→E t if there is
a pair l ≈ r in E and a context u ∈ CΣ(X1) and a substition δ such that s = u[δ(l)]
and t = u[δ(r)]. When we apply an arbitrary equation l ≈ r ∈ E∪E−1, we rename
the variables of l and r such that l ∈ TΣ(Xk+m) and r ∈ TΣ(Xk ∪X[k+m+1,k+m+`])
for some k,m, ` ≥ 0.

522 Sándor Vágvölgyi

The word problem for a TES E is the problem of deciding for arbitrary p, q ∈
TΣ(X) whether p↔∗E q. The ground word problem for E is the word problem
restricted to ground terms p and q.

For the notion of a term rewriting system (TRS), see Section 4.2 in [1]
Knuth-Bendix completion procedure. We now briefly recall the basic

Knuth-Bendix completion procedure, see Section 7.1 in [1]. The basic Knuth-
Bendix completion procedure starts with a TES E and tries to find a convergent
TRS R that is equivalent to E. A reduction order > is provided as an input for the
procedure. Since the word problem is not decidable in general, a finite convergent
TRS cannot always be obtained. In the basic Knuth-Bendix completion procedure
this could be due to failure or to non-termination of completion. In the initializa-
tion phase, the basic completion procedure removes trivial identities of the form
s = s and tries to orient the remaining nontrivial identities. If this succeeds, then
it computes all critical pairs of the TRS obtained. The terms in each critical pair
〈s, t〉 are reduced to their normal forms ŝ and t̂. If the normal forms are identical,
then this critical pair is joinable, and nothing needs to be done for it. Otherwise,
the procedure tries to orient the terms ŝ and t̂ into the rewrite rule ŝ → t̂ with
ŝ > t̂ or t̂ → ŝ with t̂ > ŝ. In this way the procedure orients all instances of the
terms ŝ and t̂ as well. If this succeeds, then the new rule is added to the current
rewrite system. This process is iterated until failure occurs or the rewrite system
is not changed during a step of the iteration, that is, the system does not have
non-joinable critical pairs.

If the basic completion procedure applied to (E,>) terminates succesfully with
output R, then R is a finite convergent TRS that is equivalent to E. In this case,
R yields a decision procedure for the word problem for E. If the basic completion
procedure applied to (E,>) does not terminate, then it outputs an infinite conver-
gent TRS that is equivalent to E. In this case, the completion procedure can be
used as a semidecision procedure for the word problem for E.

Assume that we want to decide for given terms p, q ∈ TΣ(X), whether p↔∗E q
holds. We call the pair (p, q) the goal. The basic Knuth-Bendix completion proce-
dure is independent of the goal. Hence, if p↔∗E q does not hold, and the set E of
equations has no finite convergent system, then the basic Knuth-Bendix completion
will run forever. In the light of this observation, Lynch and Strogova [13, 14] pre-
sented a goal-directed completion procedure based on SOUR graphs. Similarly to
the basic Knuth-Bendix completion procedure, the goal-directed completion proce-
dure uses a reduction order >. Unlike the basic Knuth-Bendix completion proce-
dure, it uses some inference rules. The main difference, described in an intuitive
simplified way, is the following. Along the completion procedure, we try to con-
struct a rewrite system R and a conversion

p = r1↔
R
r2↔

R
· · ·↔

R
rn = q, n ≥ 1 (1)

in a nondeterministic way. We compute and orient critical pairs and control the
completion process keeping in our mind that the rules of R should be applicable
along a conversion (1). When orienting the equations into rules along the comple-

On Ground Word Problem of Term Equation Systems 523

tion process, we do not put a rule in R if it is not applicable along a conversion (1).
If we do not find a conversion (1), the goal-directed completion procedure detects
that (p, q) 6∈ ↔∗E , outputs ’no’ and halts. Consider the following example. Let
ranked alphabet Σ consist of the unary symbols f , g and the nullary symbols $, #.
Consider the variable preserving TES E = { ffx ≈ gfx }. We raise the problem
whether $↔∗E #. The basic Knuth-Bendix completion procedure runs forever on
this example [13]. Along the goal oriented completion procedure, we find no rewrite
rule such that it is applicable along a conversion $ = r1↔R r2↔R · · ·↔R rn = #,
n ≥ 1. Therefore, the goal-directed completion procedure detects that ($,#) 6∈ ↔∗E ,
outputs ’no’, and halts [13].

We now adopt a more detailed description of the goal-directed completion pro-
cedure. [14] The goal-directed completion procedure uses a reduction order > and
computes critical pairs equipped with equational and ordering constraints, and con-
structs a graph. “The goal-directed completion procedure has two phases. The first
phase is the compilation phase. In this phase, all the edges and the recursive con-
straints labelling each edge are created. This phase also takes into account the goal
to be solved. Importantly, this phase takes only polynomial time, because there are
only polynomially many edges in the graph. The result of this phase is a constrained
tree automaton representing a schematized version of the completed system, and a
set of constraints representing potential solutions to the goal. The constraints that
are generated are the equational constraints representing the unification problems,
and ordering constraints arising from the critical pair inferences.

The second phase is the goal solving (or constraint solving) phase. In this
phase, the potential solutions to the goal are solved in order to determine whether
they are actual solutions of the goal. This phase can take infinitely long, since
the constraints are recursive. Step by step a constraint is rolled back, based on
which edges it is created from, and the equational and ordering constraints are
solved along the way. In some cases, the ordering constraints cause the recursion
to halt, and therefore the constraints are completely solved. The procedure is truly
goal oriented, because only a polynomial amount of time is spent compiling the
set of equations. The rest of the time is spent working backwards from the goal
to solve the constraints. If the procedure is examined more closely, we see that
the second phase of the procedure is exactly a backwards process of completion.
A schematization of an equation in the completed system is applied to the goal,
step by step until it rewrites to an identity. At the same time, the schematized
equation that is selected is worked backwards until we reach the original equations
from which it is formed.” [14]

See Section 7.2 in [1] for an improved version of the Knuth-Bendix comple-
tion procedure described by a set of inference rules. A detailed description of the
unfailing Knuth-Bendix completion procedure can be found in [2].

Ground term equation systems and rewriting systems. A ground term
equation system (GTES) E over a ranked alphabet Σ is a finite binary relation
on TΣ. Elements (l, r) of E are called equations and are denoted by l ≈ r. The
reduction relation →E ⊆ TΣ(X) × TΣ(X) is defined as follows. For any ground
terms s, t ∈ TΣ, s→E t if there is a pair l ≈ r in E and a context u ∈ CΣ(X1)

524 Sándor Vágvölgyi

such that s = u[l] and t = u[r]. It is well known that the relation ↔∗E is a
congruence on the term algebra TA [18]. We call ↔∗E the congruence induced by
E. The size of E is defined as the number of occurrences of symbols in the set.
sub(E) = { sub(l) | l ≈ r ∈ E ∪ E−1 }. Clearly, ↔∗E ∩(sub(E) × sub(E)) is an
equivalence relation on sub(E). The word problem for a GTES E is the problem
of deciding for arbitrary p, q ∈ TΣ whether p↔∗E q.

A ground term rewrite system (GTRS) over a ranked alphabet Σ is a finite
subset R of TΣ × TΣ. The elements of R are called rules and a rule (l, r) ∈ R
is written in the form l → r as well. Moreover, we say that l is the left-hand
side and r is the right-hand side of the rule l → r. lhs(R) = {l | l → r ∈ R },
rhs(R) = {r | l→ r ∈ R }. sub(R) = { sub(l) | l ∈ lhs(R) }∪{ sub(r) | r ∈ lhs(R) }.

The reduction relation →R ⊆ TΣ(X) × TΣ(X) is defined as follows. For any
ground terms s, t ∈ TΣ, s→R t if there is a pair l ≈ r in E and a context u ∈ CΣ(X1)
such that s = u[l] and t = u[r]. Here we say that R rewrites s to t applying the
rule l→ r. A GTRS R is equivalent to a GTRS E, if ↔∗R =↔∗E holds.

IRR(R) denotes the set of all ground terms irreducible by R. A GTRS R is
reduced if for every rule u→ v in R, u is irreducible with respect to R− {u→ v }
and v is irreducible with respect to R. For a reduced GTRS R, IRR(R)∩ sub(R) =
sub(R) − lhs(R), and sub(R) − lhs(R) is a set of representatives for sub(R)/↔∗R,
see Theorem 3.14 on page 162 in [17].

We say that a GTRS R is confluent, locally confluent, terminating, or conver-
gent, if →R has the corresponding property.

We recall the following important result.

Proposition 1. [19] Any reduced GTRS R is convergent.

Proposition 2. For a reduced GTRS R, one can reduce a ground term t ∈ TΣ

to its normal form in linear time of size(t). We traverse the term t in postorder.
When visiting a position α, we reduce the subterm t/α of t at α to is normal form
t/α↓R.

We say that a GTRS R is equivalent to a GTES E if ↔∗R =↔∗E .

Proposition 3. [19] For a GTES E one can effectively construct an equivalent
reduced GTRS R in O(n log n) time. Here n is the size of E.

Proof. We briefly recall Snyder’s [19] fast ground completion algorithm. We run
a congruence closure algorithm for E over the subterm graph of E [4, 15]. In this
way we get the representation of the equivalence relation ↔∗E ∩(sub(E)× sub(E)).
We compute a set REP of representatives for sub(E)/↔∗E . Then we construct a
reduced GTRS R over Σ as follows. We put the rewrite rule l→ r in R if
• l = f(p1, . . . , pm) for some f ∈ Σm, m ≥ 0, and p1, . . . , pm ∈ REP ,
• r ∈ REP ,
• l 6= r and l↔∗E r.

�
We can decide the word problem of a GTES E applying a congruence closure

algorithm [4, 15] for the GTES E1 = E∪{ p ≈ p, q ≈ q } and then examine whether

On Ground Word Problem of Term Equation Systems 525

p, q are in the same class of the equivalence relation ↔∗E1
∩(sub(E1) × sub(E1)).

Assume that we want to solve the word problem of a fixed GTES E for varying terms
p, q. Then we compute a convergent GTRS over Σ equivalent to E [8, 14, 16, 19].
We compute p ↓R and q ↓R, and compare them. If p ↓R= q ↓R, then p↔∗E q.
Otherwise, (p, q) 6∈ ↔∗E . By Proposition 2, we can decide the word problem of E
in linear time. We can also extend the signature. We introduce constants for the
equivalence classes of↔∗E ∩(sub(E)×sub(E)). Then we can construct in O(n log n)
time a reduced GTRS over the extended signature such that p↓R= q↓R if and only
if p↔∗E q. By Proposition 2, we can decide the word problem of E in linear time.
Finally, assume that we want to solve the word problem of a fixed GTES E for
a fixed term p and varying term q. Then we can construct in O(n log n) time a
deterministic tree automaton recognizing the ↔∗E-class of p [17].
For other completion algorithms on GTRSs see [5, 16]. For further results on
GTRSs see [18]. Proposition 1 and Proposition 3 imply the following well known
result.

Proposition 4. [19] For a GTES E and ground terms p, q, one can decide whether
p↔∗E q.

3 Reachability starting from a term attached to a
context

Let R be a reduced GTRS over Σ and s, t ∈ IRR(R). We say that R reaches t
starting from s attached to some context, if there is a u ∈ CΣ such that u[s]→∗R t.
Let RAC(s) denote the set of all terms t ∈ IRR(R) which are reachable by R
starting from s attached to some context.

Example 1. Let Σ = Σ0 ∪Σ1, Σ0 = { 0, 1 }, and Σ2 = { f }. Let GTRS R consist
of the equations f(0, 0) → 0 and f(0, 1) → 1. Clearly R is reduced. Then each
element of IRR(R) containing 0 is in RAC(0). For example, f(f(1, 0), 1) ∈ RAC(0),
because f(f(1, �), 1) ∈ CΣ and

f(f(1, �), 1)[0] = f(f(1, 0), 1)→∗R f(f(1, 0), 1).
Furthermore, 1 ∈ RAC(0), because

f(�, 1)[0] = f(0, 1)→R 1.
Thus each element of IRR(R) containing 1 is in RAC(0). Consequently, IRR(R) =
RAC(0).

Lemma 1. Let R be a reduced GTRS over Σ. For any s ∈ sub(R) − lhs(R), we
can effectively compute RAC(s) ∩ (sub(R)− lhs(R)).

Proof. Let RAC0 = { s }. For each i ≥ 0, let RACi+1 consists of all elements
t, where
• t ∈ RACi or
• t ∈ sub(R) − lhs(R) and there is a rule f(t1, . . . , tm) → t in R for some

f ∈ Σm, t1, . . . , tm ∈ sub(R)− lhs(R), such that tj ∈ RACi for some 1 ≤ j ≤ m, or

526 Sándor Vágvölgyi

• t ∈ sub(R) − lhs(R) and t = f(t1, . . . , tm) for some f ∈ Σm, t1, . . . , tm ∈
sub(R)− lhs(R), and tj ∈ RACi for some 1 ≤ j ≤ m. Then

RACi ⊆ RACi+1 ⊆ RAC(s) ∩ (sub(R)− lhs(R)) for i ≥ 0 . (2)

Hence there is an integer 0 ≤ ` ≤ card(sub(R)−lhs(R)) such that RAC` = RAC`+1.
Then

RAC` = RAC`+k for k ≥ 1 . (3)

Hence
RAC` ⊆ RAC(s) ∩ (sub(R)− lhs(R)) . (4)

To show the reverse inclusion, we need the following.

Claim 1. For any u ∈ CΣ of height n ≥ 0 and t ∈ sub(R)− lhs(R), if u(s)→∗R t,
then t ∈ RACn.

Proof. By induction on n.
�

By (2), (3), and Claim 1, RAC(s) ∩ (sub(R)− lhs(R)) ⊆ RAC`. By (4),

RAC(s) ∩ (sub(R)− lhs(R)) = RAC` .

We compute the sets RAC0,RAC1, . . . , Rcard(sub(R)−lhs(R)). In this way we obtain
the integer ` and RAC(s) ∩ (sub(R)− lhs(R)).

�

Lemma 2. For any reduced GTRS R and s, t ∈ IRR(R), R reaches t starting from
s attached to some context if and only if

(i) t = u[s] for some u ∈ CΣ or
(ii) s ∈ (sub(R) − lhs(R)), and there are u ∈ CΣ and r ∈ rhs(R) such that

t = u[r] and R reaches r starting from s attached to some context.

Proof. (⇒) Assume that R reaches t starting from s attached to some context.
Then there is u ∈ CΣ such that u[s]→∗R t. If u[s] = t, then (i) holds. Otherwise,
u[s] →+

R t. Hence there are v1, v2, z ∈ CΣ and a rule l → r in R such that
u[s] = v1[z[s]]→∗R v1[l]→R v1[r]→∗R v2[r] = t, where

(a) u = v1[z],
(b) z[s]→∗R l,
(c) l→ r ∈ R,
(d) v1→∗R v2 over the ranked alphabet Σ ∪ �.

Hence t = v2[r], v2 ∈ CΣ, r ∈ rhs(R). By (b), s ∈ sub(l) or s ∈ sub(l1) for some
l1 ∈ LHS(R). Recall that s ∈ IRR(R). Hence s ∈ (sub(R)− lhs(R)).

(⇐) If (i) holds, then R reaches t starting from s attached to some context.
Assume that (ii) holds. Then there is z ∈ CΣ such that z[s]→∗R r. Consequently

(u[z])[s] = u[z[s]]→∗R u[r] = t. Hence R reaches t starting from s attached to some
context.

�
Lemma 1 and Lemma 2 imply the following result.

Proposition 5. For any s, t ∈ IRR(R), we can decide whether R reaches t starting
from s attached to some context.

On Ground Word Problem of Term Equation Systems 527

4 Two trivial semi-decision procedures

We present the well known trivial semi-decision procedure PRO1 for the ground
word problem of variable preserving TESs. We give examples when PRO1 is effi-
cient. Then we present the trivial semi-decision procedure PRO2 for the ground
word problem of TESs. Note that PRO2 is a straightforward generalization of
PRO1.

Procedure PRO1 Input: A variable preserving TES E over the ranked alphabet
Σ and ground terms p, q ∈ TΣ.
Output: ’yes’ if p↔∗E q, ’no’ or undefined otherwise.
Let U0 = { p }, V0 = { q }, i = 0.
repeat

i := i+ 1;
Ui := Ui−1 ∪ { s| there is u ∈ Ui−1 such that u↔E s };
Vi := Vi−1 ∪ { s| there is u ∈ Vi−1 such that u↔E s };

until (Ui = Ui−1 or Vi = Vi−1) or Ui ∩ Vi is not empty;
if Ui ∩ Vi is not empty
then begin output ’yes’; halt end;

output ’no’;
halt

For any variable preserving TES E and ground term u, the set { s|u↔E s } is finite
and then effectively computable. Thus for every i ≥ 0, Ui and Vi, are finite and can
be computed effectively. Hence the above procedure can be implemented. Clearly,
PRO1 outputs ’yes’ and halts if and only if p↔∗E q. If PRO1 outputs ’no’ and halts,
then (p, q) 6∈ ↔∗E .

We adopt the following example of Lynch [13].

Example 2. Let Σ = Σ0 ∪ Σ1, Σ0 = { $,# }, Σ1 = { f, g }. Consider the TES
E = { ffx ≈ gfx }. We raise the problem whether $↔∗E #. On the one hand, the
basic Knuth-Bendix completion procedure runs forever on this example [13]. On
the other hand, the goal-directed completion procedure outputs ’no’ and halts [13].
It is still open whether the goal-directed completion procedure halts on the TES E
and any goal [13].

Observe that for each u ∈ TΣ, the set { s | u↔∗E s } is finite. Hence for any
p, q ∈ TΣ, PRO1 outputs the correct answer and halts. For this example, PRO1 is
more efficient than the basic Knuth-Bendix completion procedure, and is at least
as efficient as the goal-directed completion procedure [13, 14].

Example 3. Let Σ = Σ0 ∪ Σ2, Σ0 = { ?, $,# }, and Σ2 = { f }. We define
the terms combi ∈ TΣ(Xi), i ≥ 1, as follows. Let comb1 = f(x1, ?), combi+1 =
f(x1, combi[x2, . . . , xi+1]) for i ≥ 1. For example, comb3 = f(x1, f(x2, f(x3, ?))).
Let n ≥ 1, p = comb2n[#, . . . ,#], and q = comb2n[$, . . . , $]. We run procedure
PRO1 on the TES E = {# ≈ $ } and the ground terms p and q. Then

card(Ui) = card(Vi) =

(
2n
i

)
+

(
2n
i− 1

)
+ · · ·+

(
2n
1

)
for i = 1, . . . n,

528 Sándor Vágvölgyi

Ui ∩ Vi = ∅ for i = 0, 1, . . . n− 1, and
comb2n[#, . . . ,#, $, . . . , $] ∈ Un ∩ Vn.

Hence in the nth step, PRO1 outputs ’yes’ and halts.

Example 4. We present Ceitin’s [3, 11] semi-Thue system as a TES. Let Σ =
Σ0 ∪ Σ1, Σ0 = { $ }, and Σ1 = { a, b, c, d, e }. E consists of the equations

acx1 ≈ cax1, adx1 ≈ dax1, bcx1 ≈ cbx1, bdx1 ≈ dbx1,
ecax1 ≈ cex1, edbx1 ≈ dex1,
cdcax1 ≈ cdcaex1, caaax1 ≈ aaax1, daaax1 ≈ aaax1.

Proposition 6. [3, 11] It is undecidable for an arbitrary given ground term t ∈ TΣ

whether t↔∗E a3$.

We run procedure PRO1 on the TES E and the ground terms p = a3$ and
q = edb$. We compute as follows.
U0 = { p }, V0 = { q },
U1 = { a3$, ca3$, da3$ }, V1 = { edb$, ebd$, de$ },
U2 = { a3$, ca3$, da3$, cca3$, cda3$, dca3$, dda3$, acaa$, adaa$ }, V2 = V1.
Now procedure PRO1 outputs ’no’ and halts.

Let n ≥ 1, p = (bd)2n$, and q = (db)2n$. We apply procedure PRO1 to TES E
and ground terms p and q. We compute as follows.
U0 = { p }, V0 = { q },
U1 = { p, db(bd)2n−1$, . . . , (bd)2n−1db$ },
V1 = { q, bd(db)2n−1$, . . . , (db)2n−1bd$, },
U2 = U1 ∪ { dbdb(bd)2n−2$, dbbddb(bd)2n−3$, . . . , (bd)2n−2dbdb$ },
V2 = V1 ∪ { bdbd(db)2n−2$, bddbbd(db)2n−3$, . . . , (db)2n−2bdbd$ },

. . . .
Observe that Ui ∩ Vi = ∅ for i = 0, 1, . . . , n − 1. Clearly, (bd)n(db)n$ ∈ Un ∩ Vn.
After computing Un and Vn, procedure PRO1 outputs ’yes’ and halts.

Example 5. We continue Example 4. Let p ∈ TΣ be arbitrary such that symbols
a or c appear in p. Let q ∈ TΣ such that a, c do not appear in q. That is, only the
constant $ and the symbols b, d, or e appear in q.

Observe that the left-hand side and the right-hand side of the fourth and sixth
rules do not contain a or c. Both sides of all other rules contain a or c. Hence for
any reduction sequence
p→R p1→R p2→···→R pn, n ≥ 1, for any 1 ≤ i ≤ n, the term pi contains the
constant $ and at least one a or c. Furthermore, along any reduction sequence
q→R q1→R q2→···→R qn, n ≥ 1, we only use the fourth and sixth equations.
Consequently, the set { v ∈ TΣ | q↔∗E v } is finite. Furthermore neither a nor c
appears in any element of the set { v ∈ TΣ | q↔∗E v }. Thus

(p, q) 6∈ ∗↔
E
, (5)

and Ui ∩ Vi = ∅ for i ≥ 0. Thus procedure PRO1 outputs ’no’ and halts on the
input E, p, q.

On Ground Word Problem of Term Equation Systems 529

Example 6. Let Σ = Σ0 ∪ Σ1, Σ0 = { a }, and Σ1 = { f }. TES E consists of the
equation ffx ≈ x. We run procedure PRO1 on TES E and ground terms p = a
and q = fa. We compute as follows.
U0 = { a }, V0 = { fa },
U1 = { a, ffa }, V1 = { fa, f3a },
U2 = { a, ffa, f4a }, V2 = { fa, f3a, f5a },. . ..
U0 ⊂ U1 ⊂ U2 ⊂ · · · ,
V0 ⊂ V1 ⊂ V2 ⊂ · · · , and
Ui ∩ Vi = ∅ for i ≥ 0.
Hence procedure PRO1 does not halt.

To present the semi-decision procedure PRO2, we define the sets Ui ⊆ TΣ,
i ≥ 0, by recursion. Let U0 = { p }. Let i ≥ 1. We put all elements of Ui−1 in Ui.
Moreover, we put in Ui all s ∈ TΣ such that
• l′ ≈ r′ is a ground instance of some equation l ≈ r in E ∪ E−1 obtained by

substituting arbitrary ground terms of height less than or equal to i − 1 for all
variables that do not appear in l,
• v ∈ CΣ,
• v[l′] ∈ Ui−1 and s = v[r′].

We define Vi ⊆ TΣ, i ≥ 0, symmetrically to Ui, i ≥ 0. Clearly for every i ≥ 0, Ui
and Vi are finite and can be computed effectively. Note that there may be an i ≥ 1
such that Ui = Ui+1 and Ui+1 ⊂ Ui+2.

Example 7. Let Σ = Σ0 ∪ Σ1, Σ0 = { 0, 1 }, and Σ2 = { f }. Let TES E consist
of the equations

f(x1, x1) ≈ 0, f(0, x1) ≈ x1.
Let p = f(1, 0) and q = f(1, f(1, 1)). Then
U0 = { f(1, 0) }, V0 = { f(1, f(1, 1)) },
U1 = { f(1, 0), f(f(0, 1), 0), f(1, f(0, 0)), f(1, f(1, 1)) },
V1 = { f(1, f(1, 1)), f(f(0, 1), f(1, 1)), f(1, 0), f(1, f(f(0, 1), 1)),
f(1, f(1, f(0, 1))) }.

Procedure PRO2 Input: A TES E over the ranked alphabet Σ and ground terms
p, q ∈ TΣ.
Output: ’yes’ if p↔∗E q, undefined otherwise.
1 i := i+ 1;

compute Ui and Vi;
if Ui ∩ Vi is not empty then begin output ’yes’; halt end;
goto 1

PRO2 outputs ’yes’ and halts if and only if p↔∗E q.

Example 8. We continue Example 7. We run procedure PRO2 on TES E and
ground terms p, q. We compute as follows. We compute U0 and V0. We observe
that U0 ∩ V0 is empty. Then we compute U1 and V1. We observe that U1 ∩ V1 is
not empty. Procedure PRO2 outputs ’yes’ and halts.

530 Sándor Vágvölgyi

5 Semi-decision procedure for the ground word
problem of variable preserving TESs

We present the semi-decision procedure PRO3 for the ground word problem of
variable preserving TESs, and show its correctness. PRO3 is an improvement of
PRO1. The starting idea is the following. For each i ≥ 1, we construct the GTES
Pi using those instances of equations in E ∪ E−1 which are applied to compute
the set Ui. We improve this construction by defining Pi, i ≥ 2, as the set of all
instances of equations in E ∪ E−1 which can be applied to elements of { s ∈ TΣ |
p↔∗Pi−1

s } rather than to the elements of Ui−1. Furthermore, we define the GTES
Qi symmetrically. We give examples when procedure PRO3 is more efficient than
procedure PRO1.

Let E be a variable preserving TES over Σ, and let p, q ∈ TΣ. We define the
GTESs Pi and the reduced GTRSs Ri, i ≥ 1, over Σ as follows.

For each equation l ≈ r of E ∪ E−1 with l, r ∈ TΣ(Xm), m ≥ 0, and for
any u ∈ CΣ, u1, . . . , um ∈ TΣ, if p = u[l[u1, . . . , um]] then we put the equation
l[u1, . . . , um] ≈ r[u1, . . . , um] in P1. Applying Snyder’s algorithm we compute a
reduced GTRS R1 equivalent to the GTES P1, see Proposition 3.

Let i ≥ 1. (a) We put each element of Ri into Pi+1.
(b) For each equation l ≈ r of E ∪ E−1, l, r ∈ TΣ(Xm), m ≥ 0, for any

u1, . . . , um ∈ (sub(Ri) − lhs(Ri)) ∪ sub(p ↓Ri
), if Ri reaches p ↓Ri

starting from
l[u1, . . . , um]↓Ri attached to some context, and l[u1, . . . , um]↓Ri 6= r[u1, . . . , um]↓Ri ,
then we put the equation l[u1, . . . , um] ≈ r[u1, . . . , um] in Pi+1.

If Pi+1 = Ri, then let Ri+1 = Ri. Otherwise, applying Snyder’s algorithm, we
compute a reduced GTRS Ri+1 equivalent to the GTES Pi+1.

When misunderstanding may arise, we denote Ri as RPi
. We define the GTESs

Qi, i ≥ 1, symmetrically to the GTESs Pi, i ≥ 1. Applying Snyder’s algorithm, we
compute a reduced GTRS RPi∪Qi equivalent to the GTRS RPi ∪RQi for i ≥ 1.

We illustrate our concepts and results by the following example.

Example 9. Let Σ = Σ0∪Σ1∪Σ2, Σ0 = { $,# }, Σ1 = { e, f, g, h }, and Σ2 = { d }.
Let the TES E consist of the equations

≈ $, g$ ≈ h$, d(hx1, hx1) ≈ hx1, efhx1 ≈ hx1.
Observe that E is variable preserving. Let p = efg#, q = d(h#, h#).

First we compute the GTES Pi, i ≥ 1. GTES P1 consists of the equation # ≈ $.
Let Θ stand for↔∗P1

∩(sub(P1)×sub(P1)). Then sub(P1)/Θ = { {#, $ } } and { $ }
is a set of representatives for sub(P1)/↔∗P1

. GTRS R1 consists of the rule #→ $.
GTES P2 consists of the equations # ≈ $, g$ ≈ h$. Let Θ stand for

↔∗P2
∩(sub(P2) × sub(P2)). Then sub(P2)/Θ = { {#, $ }, { g#, g$, h#, h$ } } and

{ $, h$ } is a set of representatives for sub(P2)/↔∗P2
. GTRS R2 consists of the rules

#→ $, g$→ h$.
GTES P3 consists of the equations

≈ $, g$ ≈ h$, h$ ≈ d(h$, h$), h$ ≈ efh$.
Let Θ stand for ↔∗P3

∩(sub(P3)× sub(P3)). Then

On Ground Word Problem of Term Equation Systems 531

sub(P3)/Θ = { {#, $ }, { g#, g$, h#, h$, d(h$, h$), efh$}, { fh$ } }
and { $, h$, fh$ } is a set of representatives for sub(P3)/↔∗P3

. R3 consists of the
rules

#→ $, g$→ h$, d(h$, h$)→ h$, efh$→ h$.

P4 = R3 and R4 = R3. Furthermore, Pi = R3 and Ri = R3 for i ≥ 4.
Second, we compute the GTESs Qi, i ≥ 1. GTES Q1 consists of the equations

≈ $, d(h#, h#) ≈ h#. GTRS RQ1
consists of the rules #→ $, d(h$, h$)→ h$.

GTES Q2 consists of the equations # ≈ $, d(h$, h$) ≈ h$, efh$ ≈ h$.
GTRS RQ2 consists of the rules #→ $, d(h$, h$)→ h$, efh$→ h$.
Observe that RQ2 = Qi = RQi for i ≥ 3.

RP1∪Q1
= RP1

, RP2∪Q2
= RP2

∪RQ2
, and RP3∪Q3

= RP3
. Then

p↓RP1∪Q1
= efg$, q↓RP1∪Q1

= h$,
p↓RP2∪Q2

= h$, q↓RP2∪Q2
= h$.

We get the following result by direct inspection of the definition of the GTES
Pi, i ≥ 1.

Lemma 3. (a) For each i ≥ 1, ↔∗Pi
=↔∗Ri

⊆ ↔∗Pi+1
⊆ ↔∗E.

(b) If Ri = Pi+1 for some i ≥ 1, then Ri = Pj = Rj for j ≥ i+ 1.

Lemma 4. For each i ≥ 1, we can effectively construct the GTES Pi.

Proof. By induction on i.
Base Case: i = 1. Clearly, we can construct P1.
Induction Step: Let i ≥ 1. Assume that we have constructed Pi. By Proposition

3, we can construct Ri. Consider item (b) in the definition of Pi. By Proposition
5, we can effectively decide whether Ri reaches p↓Ri starting from l[u1 . . . , um]↓Ri

attached to some context. Hence we can construct Pi+1 as well.
�

We now present our semi-decision procedure.

Procedure PRO3 Input: A variable preserving TES E over the ranked alphabet
Σ and ground terms p, q ∈ TΣ.
Output: • ’yes’ if p↔∗E q,

• ’no’ if (p, q) 6∈ ↔∗E and the procedure halts,
• undefined if the procedure does not halt.

compute P1, RP1 , Q1, RQ1 , and RP1∪Q1 ;
if p↓RP1∪Q1

= q↓RP1∪Q1
, then begin output ’yes’; halt end;

i := 1;
1: i := i+ 1;
compute Pi, RPi , Qi, RQi , and RPi∪Qi ;
if p↓RPi∪Qi

= q↓RPi∪Qi
, then begin output ’yes’; halt end;

if RPi−1
= Pi or RQi−1

= Qi,
then begin output ’no’; halt end;
goto 1

532 Sándor Vágvölgyi

Example 10. We continue Example 9. Note that p↓RP1∪Q1
6= q ↓RP1∪Q1

. Hence
procedure PRO3 does not output anything and does not halt in the first step.
Observe that p↓RP2∪Q2

= q↓RP2∪Q2
. Hence procedure PRO3 outputs ’yes’ and halts

in the second step.

Example 11. We continue Example 5. Let n ≥ 1. We run procedure PRO3
on the TES E and the ground terms p = (bd)2n$, and q = (db)2n$. We com-
pute as follows. GTES P1 consists of the equation bd$ ≈ db$. Let Θ stand for
↔∗P1

∩(sub(P1)×sub(P1)). Then sub(P1)/Θ = { { b$ }, { d$ }, { bd$ } } and { bd$ } is
a set of representatives for sub(P1)/↔∗P1

. GTRS RP1 consists of the rule bd$→ db$.

Symmetrically, GTES Q1 consists of the equation db$ ≈ bd$. GTRS RQ1
con-

sists of the rule db$ → bd$. It is not hard to see, that GTRS RP1∪Q1
is equal to

GTRS RP1 . Observe that p↓RP1∪Q1
= q↓RP1∪Q1

, Hence procedure PRO3 outputs
’yes’ and halts in the first step.

We run procedure PRO3 on the TES E and the ground terms p = aaa$ and
q = bedb$. By our arguments in Example 5,

p↓RPi∪Qi
6= q↓RPi∪Qi

for i ≥ 1 .

Furthermore, PRO3 computes as follows.

RQ1
= { db$→ bd$, edb$→ de$ },

RQ2 = { db$→ bd$, edb$→ de$, bdde$→ dbde$ }, and

RQ2
= RQn+2

for n ≥ 1.

Consequently, Procedure PRO3 outputs ’no’ and then halts. Generalizing our ar-
guments, we can show the following.

Statement 1. Let p ∈ TΣ be arbitrary such that symbols a or c appear in p. Let
q ∈ TΣ such that a, c do not appear in q. Then procedure PRO3 outputs ’no’ and
halts on the input E, p, q.

By Propositon 6, for an arbitrary ground term q′ ∈ TΣ, the goal-directed com-
pletion procedure [13] may fail or may not halt on the TES E and the goal (aaa$, q′).
The following problem is open. For each goal (aaa$, q) such that q ∈ TΣ, and a, c
do not appear in q, is it true that the the goal-directed completion procedure does
not fail and halts on the TES E and the goal (aaa$, q).

It is open whether the goal-directed completion procedure does not fail and
halts on the TES E and any goal (aaa$, q) such that q ∈ TΣ, a, c do not appear in
q.

We now show the correctness of Procedure PRO3.

Lemma 5. For any i, n with 1 ≤ n ≤ i, and any t1, . . . , tn ∈ TΣ, if

p↔E t1↔E t2↔E · · ·↔E tn, then p↔∗Pi
t1↔∗Pi

t2↔∗Pi
· · ·↔∗Pi

tn.

Proof. We proceed by induction on i.

Base Case: i = 1. Then n = 1. By the definition of P1, we have p↔P1
t1.

On Ground Word Problem of Term Equation Systems 533

Induction Step: Let i ≥ 1, and assume that the statement holds for 1, 2, . . . , i.
We now show that the statement holds for i+ 1. To this end, assume that

p↔
E
t1↔

E
t2↔

E
· · ·↔

E
tn for some 0 ≤ n ≤ i+ 1 . (6)

By the induction hypothesis,

p
∗↔
Pi

t1
∗↔
Pi

t2
∗↔
Pi

· · · ∗↔
Pi

tn−1 . (7)

Hence

tn−1
∗→
Ri

p↓Ri
. (8)

By (6), there is an equation l ≈ r in E ∪E−1 with l, r ∈ TΣ(Xm), m ≥ 0 and there
are u ∈ CΣ, u1, . . . , um ∈ TΣ such that

tn−1 = u[l[u1, . . . , um]] and tn = u[r[u1, . . . , um]] . (9)

As Ri is convergent, by (8) and (9), u[l[u1, . . . , um] ↓Ri
]→∗Ri

p ↓Ri
. That is, Ri

reaches p ↓Ri
starting from l[u1, . . . , um] ↓Ri

attached to some context. By the
definition of Pi+1,

l[u1, . . . , um] ≈ r[u1, . . . , um] is in
∗↔
Pi

or Pi+1 . (10)

By Lemma 3, (7), (9), and (10),

p
∗↔

Pi+1

t1
∗↔

Pi+1

t2
∗↔

Pi+1

· · · ∗↔
Pi+1

tn−1
∗↔

Pi+1

tn .

�
By Lemma 3 and Lemma 5 we have the following result.

Lemma 6. Assume that Ri = Pi+1 for some i ≥ 1. Then p↔∗Pi+1
q if and only if

p↔∗E q.

Theorem 1. If p↔∗E q, then procedure PRO3 outputs ’yes’ and halts.

Proof. Assume that p = t1↔E t2↔E · · ·↔E tn = q for some n ≥ 1 and
t1, . . . , tn ∈ TΣ. By Lemma 5, p↔∗Pn

q. Let k be the least integer such that
p↔∗Pk∪Qk

q.
First assume that k = 1. Then p↔∗P1∪Q1

q. Hence p ↓RP1∪Q1
= q ↓RP1∪Q1

.
Consequently, procedure PRO3 outputs ’yes’ and halts in the first step.

Second assume that k ≥ 2. Then by the definition of k, (p, q) 6∈ ↔∗Pi∪Qi
for

2 ≤ i ≤ k − 1. Then by Lemma 6, RPi−1
⊂ Pi and RQi−1

⊂ Qi for 2 ≤ i ≤ k − 1.
Hence procedure PRO3 does not halt in the first k − 1 steps. By the definition of
the integer k, in the kth step procedure PRO3 outputs ’yes’ and halts.

�

534 Sándor Vágvölgyi

Theorem 2. If procedure PRO3 outputs ’yes’ and halts, then p↔∗E q. If procedure
PRO3 outputs ’no’ and halts, then (p, q) 6∈ ↔∗E.

Proof. Assume that procedure PRO3 outputs ’yes’ and halts in the kth step.
Then p↔∗Pk∪Qk

q. By Lemma 3, p↔∗E q.
Assume that procedure PRO3 outputs ’no’ and halts in the kth step. Then
(a) (p, q) 6∈ ↔∗Pk∪Qk

and
(b) Pk = RPk−1

or Qk = RQk−1
.

We now distinguish two cases.
Case 1: Pk = RPk−1

. By (a) and by Lemma 6, (p, q) 6∈ ↔∗E .
Case 2: Qk = RQk−1

. This case is symmetric to Case 2.
�

Theorems 1 and 2 imply the following.

Theorem 3. If p↔∗E q, then procedure PRO3 outputs ’yes’ and halts. Otherwise,
either PRO3 outputs ’no’ and halts, or PRO3 does not halt.

Example 12. We continue Example 3. We now run procedure PRO3 on the TES
E and the ground terms p, q. Then P1 = Q1 = {# ≈ $ }, RP1 = RQ1 = P1,
and RP1∪Q1 = P1. Observe that p↓RP1∪Q1

= q ↓RP1∪Q1
. Hence procedure PRO3

outputs ’yes’ and halts in the first step. By Proposition 2, we compute p↓RP1∪Q1

and q ↓RP1∪Q1
in linear time. We apply the rules of RP1∪Q1

n times. For this
example, PRO3 is faster than PRO1.

Example 13. We continue Example 6. We now run procedure PRO3 on the TES
E and the ground terms p and q. Then { a ≈ ffa } = P1 = RP1 = P1+i = RP1+i

for i ≥ 1. Furthermore, Q1 = { a ≈ ffa, fa ≈ fffa }, RQ1 = P1 = Q2 = RQ2 =
Q1+i = RQ1+i

for i ≥ 1.
Observe that p↓RP2∪Q2

6= q↓RP2∪Q2
. Hence procedure PRO3 outputs ’no’ and

halts in the second step.
It should be clear that for all ground terms p and q, PRO3 halts. It outputs

’yes’ if p↔∗E q. Otherwise it outputs ’no’.

Example 14. We now continue Example 2. We apply procedure PRO3 to the
TES E = { ffx ≈ gfx } and any terms p, q ∈ TΣ. Observe that height(ffx) =
2 = height(gfx).

Statement 2. For each i ≥ 0, and for each pair of terms, s, t ∈ TΣ(X), if (s, t) ∈
Pi, then height(s) = height(t) ≤ height(p).

Proof. We proceed by induction on n.
Base Case: i = 1. By the definition of P1, for each equation s ≈ t in P1,

height(s) = height(t) ≤ height(p). Hence our statement holds.
Induction Step: Let n ≥ 1, and assume that the satement holds for 1, 2, . . . , n.

We now show that the satement holds for n+ 1. Consider an equation
l[u1, . . . , um] ≈ r[u1, . . . , um] in Pi+1. Then there exist
• an equation l ≈ r of E ∪ E−1, where l, r ∈ TΣ(Xm), m ≥ 0.

On Ground Word Problem of Term Equation Systems 535

• u1, . . . , um ∈ (sub(Ri)− lhs(Ri)) ∪ sub(p↓Ri).
such that Ri reaches p↓Ri

starting from l[u1, . . . , um]↓Ri
attached to some context,

and that
l[u1, . . . , um]↓Ri

6= r[u1, . . . , um]↓Ri
.

Consequently, there is a u ∈ CΣ such that u[l[u1, . . . , um]]→∗Ri
p. By (a) in

Lemma 3 and the induction hypothesis, height(u[l[u1, . . . , um]]) = height(p). Thus
height(l[u1, . . . , um]) ≤ height(p). By (a) in Lemma 3 and the induction hypothe-
sis, height(l) = height(r). Hence height(l[u1, . . . , um]) = height(r[u1, . . . , um]).

�
Observe that the set { (s, t) ∈ TΣ × TΣ | height(s) = height(t) ≤ height(p) } is

finite. By Lemma 3 and Statement 2, procedure PRO3 halts on E and any terms
p, q ∈ TΣ in finitely many steps.

The following result can be shown by generalizing the proof appearing in Ex-
ample 14.

Theorem 4. Let E be a variable preserving TES such that
• for any equation s ≈ t in E, height(s) = height(t), or
• for any equation s ≈ t in E, size(s) = size(t) and each variable appears the

same times in s and t.
Let p, q ∈ TΣ be arbitrary. Then procedure PRO3 halts on E and terms p, q.

6 Semi-decision procedure for the ground word
problem of TESs

We present the semi-decision procedure PRO4 for the ground word problem of
TESs, and show its correctness. We obtain it generalizing PRO3 taking into account
PRO2. The starting point to the definition of the GTESs Pi, i ≥ 1, is the same
as in Section 5. We define P1 as the set of all instances l′ → r′ of equations l ≈ r
in E ∪ E−1 which can be applied to p. We define Pi+1, i ≥ 1, as the set of all
instances l′ → r′ of equations l ≈ r in E ∪E−1 which can be applied to elements of
{ s ∈ TΣ | p↔∗Pi

s }. The question is what should we substitute for those variables
in the right-hand side r that do not appear in the left-hand side l. We now give
a simplified answer to this question. Applying Snyder’s algorithm we compute a
reduced GTRS Ri equivalent to the GTES Pi. When constructing the instance
l′ → r′ of l ≈ r, we substitute any term in (sub(Ri)− lhs(Ri))∪sub(p↓Ri

) or the Ri
normal form of any ground term of height less than or equal to i for each variable
in the right-hand side r that does not appear on the left-hand side l. Furthermore,
we define the GTESs Qi, i ≥ 1, symmetrically.

Let E be a TES over Σ, and let p, q ∈ TΣ. We now define the GTESs Pi and
the reduced GTRSs Ri, i ≥ 1, over Σ.

Let NORM0 = Σ0 ∪ sub(p). For each equation l ≈ r of E ∪ E−1 with
l ∈ TΣ(Xk+m), r ∈ TΣ(Xk ∪ X[k+m+1,k+m+`]) for some k,m, ` ≥ 0, if p =
u[l[u1, . . . , uk+m]] for some u ∈ CΣ, u1, . . . , uk+m ∈ TΣ, then for all

536 Sándor Vágvölgyi

vk+m+1, . . . , vk+m+` ∈ NORM0, we put the equation

l[u1, . . . , uk+m] ≈ r[u1, . . . , uk, vk+m+1, . . . , vk+m+`]

in P1. Applying Snyder’s algorithm we compute a reduced GTRS R1 equivalent to
the GTES P1, see Proposition 3.

Let i ≥ 1. Let
NORMi = sub(p↓Ri

) ∪ (sub(Ri)− lhs(Ri))∪
{ t↓Ri

| t ∈ NORMi−1 or t = f(t1, . . . , tm) for some f ∈ Σm and t1, . . . , tm ∈
NORMi−1 }.

(a) We put each rule of Ri into Pi+1.
(b) For each equation l ≈ r of E ∪ E−1 with l ∈ TΣ(Xk+m), r ∈ TΣ(Xk ∪

X[k+m+1,k+m+`]) for some k,m, ` ≥ 0, for any u1, . . . , uk+m ∈ (sub(Ri)− lhs(Ri))∪
sub(p↓Ri) and vk+m+1, . . ., vk+m+` ∈ NORMi, if Ri reaches p↓Ri starting from
l[u1, . . . , uk+m] ↓Ri attached to some context, and

l[u1, . . . , uk+m]↓Ri
6= r[u1, . . . , um, vk+m+1, . . . , vk+m+`]↓Ri

,
then we put the equation

l[u1, . . . , uk+m] ≈ r[u1, . . . , um, vk+m+1, . . . , vk+m+`]

in Pi+1.
If we do not put equations in Pi+1 in item (b), i.e. Pi+1 = Ri, then let Ri+1 =

Ri. Otherwise, applying Snyder’s algorithm, we compute a reduced GTRS Ri+1

equivalent to the GTES Pi+1.
When misunderstanding may arise, we denote Ri as RPi

. We define the GTESs
Qi, i ≥ 1, symmetrically to the GTESs Pi, i ≥ 1. Applying Snyder’s algorithm, we
compute a reduced GTRS RPi∪Qi

equivalent to the GTRS RPi
∪RQi

for i ≥ 1.
By Proposition 1 GTRSs RPi

, RQi
, and RPi∪Qi

are convergent.
We illustrate our concepts and results by two running examples, each of them

is presented as a series of examples.

Example 15. We continue Example 7. Let p = f(0, 1) and q = f(f(0, 1), 1).
Observe that for any u, v ∈ TΣ, if u↔∗E v, then the parity of the number of 1’s in
u equals to that in v. Hence

(p, q) 6∈ ∗↔
E
. (11)

We now construct the GTESs P1, P2, and P3. Then NORM0 = { 0, 1, f(0, 1) }.
P1 consists of the equations

0 ≈ f(0, 0), 0 ≈ f(1, 1), 0 ≈ f(f(0, 1), f(0, 1)),
1 ≈ f(0, 1), f(0, 1) ≈ 1, f(0, 1) ≈ f(0, f(0, 1)).

R1 consists of the rules
f(0, 0)→ 0, f(1, 1)→ 0, f(0, 1)→ 1.

NORM1 = { 0, 1, f(1, 0) }. P2 consists of the equations
f(0, 0) ≈ 0, f(1, 1) ≈ 0, f(0, 1) ≈ 1, 0 ≈ f(f(1, 0), f(1, 0)).

R2 consists of the rules
f(0, 0)→ 0, f(1, 1)→ 0, f(0, 1)→ 1, f(f(1, 0), f(1, 0))→ 0.

On Ground Word Problem of Term Equation Systems 537

NORM2 = { 0, 1, f(1, 0), f(0, f(1, 0)), f(1, f(1, 0)), f(f(1, 0), 0), f(f(1, 0), 1) }.
P3 consists of the equations

f(0, 0) ≈ 0, f(1, 1) ≈ 0, f(0, 1) ≈ 1, f(f(1, 0), f(1, 0)) ≈ 0,
0 ≈ f(f(0, f(1, 0)), f(0, f(1, 0))),
0 ≈ f(f(1, f(1, 0)), f(1, f(1, 0))),
0 ≈ f(f(f(1, 0), 0), f(f(1, 0), 0)),
0 ≈ f(f(f(1, 0), 1), f(f(1, 0), 1)).

R3 consists of the rules
f(0, 0)→ 0, f(1, 1)→ 0, f(0, 1)→ 1, f(f(1, 0), f(1, 0))→ 0,
f(f(0, f(1, 0)), f(0, f(1, 0)))→ 0,
f(f(1, f(1, 0)), f(1, f(1, 0)))→ 0,
f(f(f(1, 0), 0), f(f(1, 0), 0))→ 0,
f(f(f(1, 0), 1), f(f(1, 0), 1))→ 0.

Continuing in this manner we get that

RPi
⊂ RPi+1

for i ≥ 1 . (12)

We now compute the GTESs Q1, Q2, and Q3.
NORM0 = { 0, 1, f(0, 1), f(f(0, 1), 1) }.
Q1 consists of the equations

0 ≈ f(0, 0), 0 ≈ f(1, 1), 0 ≈ f(f(0, 1), f(0, 1)),
0 ≈ f(f(f(0, 1), 1), f(f(0, 1), 1)),
1 ≈ f(0, 1), f(0, 1) ≈ f(0, f(0, 1)), f(f(0, 1), 1) ≈ f(0, f(f(0, 1), 1)).

RQ1 consists of the rules
f(0, 0)→ 0, f(1, 1)→ 0, f(0, 1)→ 1.

NORM1 = { 0, 1, f(1, 0) }.
Q2 consists of the equations

f(0, 0) ≈ 0, f(1, 1) ≈ 0, f(0, 1) ≈ 1, 0 ≈ f(f(1, 0), f(1, 0)).
RQ2 consists of the rules

f(0, 0)→ 0, f(1, 1)→ 0, f(0, 1)→ 1, f(f(1, 0), f(1, 0))→ 0.
NORM2 = { 0, 1, f(1, 0), f(0, f(1, 0)), f(1, f(1, 0)), f(f(1, 0), 0), f(f(1, 0), 1) }.

Q3 consists of the equations
f(0, 0) ≈ 0, f(1, 1) ≈ 0, f(0, 1) ≈ 1, 0 ≈ f(f(1, 0), f(1, 0)),
0 ≈ f(f(0, f(1, 0)), f(0, f(1, 0))), 0 ≈ f(f(1, f(1, 0)), f(1, f(1, 0))),
0 ≈ f(f(f(1, 0), 0), f(f(1, 0), 0)), 0 ≈ f(f(f(1, 0), 1), f(f(1, 0), 1)).

RQ3
consists of the rules

f(0, 0)→ 0, f(1, 1)→ 0, f(0, 1)→ 1, f(f(1, 0), f(1, 0))→ 0,
f(f(0, f(1, 0)), f(0, f(1, 0)))→ 0, f(f(1, f(1, 0)), f(1, f(1, 0)))→ 0,
f(f(f(1, 0), 0), f(f(1, 0), 0))→ 0, f(f(f(1, 0), 1), f(f(1, 0), 1))→ 0.

Continuing in this manner we get that

RQi
⊂ RQi+1

for i ≥ 1 . (13)

Let RP1∪Q1 = RP1 , RP2∪Q2 = RP2 , and RP3∪Q3 = RP3 ∪RQ3 .

538 Sándor Vágvölgyi

Example 16. Let Σ = Σ0∪Σ1, Σ0 = { 0, 1 }, and Σ1 = { g, h }. Let TES E consist
of the equations

gx1 ≈ x1, hx1 ≈ hx2.
Let p = 0 and q = 1.

We now construct the GTESs P1, P2, and P3. Then NORM0 = { 0, 1 }. P1

consists of the equation 0 ≈ g0.
R1 consists of the rule g0→ 0.
NORM1 = { 0, 1, g1, h0, h1 }.
P2 = R1 and R2 = P2.
NORM2 = { 0, 1, g1, h0, h1, gg1, hg1, gh0, hh0, gh1, hh1 }.
P3 = R2 and R3 = P3.

We now construct the GTESs Q1, Q2, and Q3. Then NORM0 = { 0, 1 }. Q1

consists of the equation 1 ≈ g1.
RQ1

consists of the rule g1→ 1.
NORM1 = { 0, 1, g0, h0, h1 }.
Q2 = RQ1 and RQ2 = Q2.
NORM2 = { 0, 1, g0, h0, h1, gg0, hg0, gh0, hh0, gh1, hh1 }.
Q3 = RQ2

and RQ3
= Q3.

RP1 ∪RQ1 = RP1∪Q1 = RP2∪Q2 = RP3∪Q3 .

We get the following result by direct inspection of the definition of the GTES
Pi and GTRS Ri, i ≥ 1.

Statement 3. For each i ≥ 1, ↔∗Pi
⊆ ↔∗Pi+1

⊆ ↔∗E.

We can show the following result similarly to Lemma 4.

Lemma 7. For each i ≥ 1, we can effectively construct the GTES Pi.

Lemma 8. For each i ≥ 1, sub(p↓RPi
)∪(sub(RPi

)−lhs(RPi
))∪{ t↓RPi

| height(t) ≤
i } ⊆ NORMi.

Proof. By induction on i.
�

We now present our semi-decision procedure.

Procedure PRO4 Input: A variable preserving TES E over the ranked alphabet
Σ and ground terms p, q ∈ TΣ.
Output: • ’yes’ if p↔∗E q,
• ’no’ if (p, q) 6∈ ↔∗E and the procedure halts,
• undefined if the procedure does not halt.
compute P1, RP1

, Q1, RQ1
, and RP1∪Q1

;
if p↓RP1∪Q1

= q↓RP1∪Q1
, then begin output ’yes’; halt end;

i := 1;
1: i := i+ 1;
compute Pi, RPi

, Qi, RQi
, and RPi∪Qi

;
if p↓RPi∪Qi

= q↓RPi∪Qi
, then begin output ’yes’; halt end;

On Ground Word Problem of Term Equation Systems 539

if i = 2, then goto 1;
if RPi−2 = RPi−1 = Pi, or RQi−2 = RQi−1 = Qi,
then begin output ’no’; halt end;
goto 1

Example 17. We continue Example 15. By Statement 3 and (11), p ↓RPi∪Qi
6=

q ↓RPi∪Qi
for i ≥ 1. Hence procedure PRO4 does not output ’yes’. By (12) and

(13), procedure PRO4 does not output ’no’. Hence procedure PRO4 does not
output anything and does not halt at all.

Example 18. We continue Example 16. Observe that
p↓RP1∪Q1

= 0 6= 1 = q↓RP1∪Q1
,

p↓RP2∪Q2
= 0 6= 1 = q↓RP2∪Q2

,
p↓RP3∪Q3

= 0 6= 1 = q↓RP3∪Q3
, and

RP1
= RP2

= P3.
Hence procedure PRO4 outputs ’no’ and halts in the third step.

Example 19. Let Σ = Σ0 ∪ Σ1 ∪ Σ2, Σ0 = { $,# }, Σ1 = { f, g }, Σ2 = {h }.
Consider the TES E = { ffx1 ≈ gfx1, h(x1, x1) ≈ $ }. As in Example 2, we
can show that the basic Knuth-Bendix completion procedure runs forever on this
example. Moreover, it is still open whether the goal-directed completion procedure
halts on the TES E and any goal.

Let n ≥ 1. Let p = h(fn$, gfn−1$) and q = $. We raise the problem whether
p↔∗E q. We now apply procedure PRO4 to the TES E and the terms p, q.
GTRS RP1 consists of the rules

f i$→ gf i−1$ for 2 ≤ i ≤ n,
h($, $)→ $,
h(#,#)→ $.

GTRS RQ1
consists of the rules

h($, $)→ $,
h(#,#)→ $.

GTRS RP2 consists of the rules
f2gf$→ gf$,
h($, $)→ $,
h(#,#)→ $.
h(f$, f$)→ $,
h(f#, f#)→ $.
h(g$, g$)→ $,
h(g#, g#)→ $.

GTRS RQ2
consists of the rules

h($, $)→ $,
h(#,#)→ $,
h(f$, f$)→ $,
h(f#, f#)→ $.
h(g$, g$)→ $,
h(g#, g#)→ $.

540 Sándor Vágvölgyi

Clearly,
p↓RP2∪Q2

= q↓RP2∪Q2
.

Hence procedure PRO4 outputs ’yes’ and halts in the second step.

We now show the correctness of Procedure PRO4.

Lemma 9. Assume that Ri−1 = Ri = Pi+1 and NORMi−1 ⊂ NORMi for some
i ≥ 2. Then for each equation l ≈ r of E ∪ E−1 with l ∈ TΣ(Xk+m), r ∈
TΣ(Xk ∪X[k+m+1,k+m+`]), k,m ≥ 0, ` ≥ 1, and for any u1, . . . , uk+m ∈ sub(p↓Ri

) ∪ (sub(Ri) − lhs(Ri)), Ri does not reach p↓Ri starting from l[u1, . . . , uk+m] ↓Ri

attached to some context.

Proof. By contradiction. Assume that there is an equation l ≈ r of E ∪ E−1

with l ∈ TΣ(Xk+m), r ∈ TΣ(Xk ∪X[k+m+1,k+m+`]), k,m ≥ 0, ` ≥ 1, and there are
u1, . . . , uk+m ∈ sub(p↓Ri

)∪ (sub(Ri)− lhs(Ri)) such that Ri reaches p↓Ri
starting

from l[u1, . . . , uk+m] ↓Ri
attached to some context. By Ri = Pi+1, we do not put

equations in Pi+1 in item (b) of its definition. Consequently, for any vk+m+1, . . .,
vk+m+` ∈ NORMi,

l[u1, . . . , uk+m]↓Ri= r[u1, . . . , um, vk+m+1, . . . , vk+m+`]↓Ri .

Hence by our indirect assumption, Ri reaches p↓Ri
starting from

r[u1, . . . , um, vk+m+1, . . . , vk+m+`]↓Ri
attached to some context. Hence there is a

u ∈ CΣ such that

u[r[u1, . . . , um, vk+m+1, . . . , vk+m+`]↓Ri
]
∗→
R
p↓Ri

.

Then u[r[u1, . . . , um, vk+m+1↓Ri , vk+m+2, . . . , vk+m+`]]→∗Ri

u[r[u1, . . . , um, vk+m+1, . . . , vk+m+`]↓Ri]→∗Ri
p↓Ri . By Lemma 2, vk+m+1↓Ri∈

sub(p↓Ri
) ∪ (sub(Ri)− lhs(Ri)). Since Ri−1 = Ri,

vk+m+1↓Ri−1
∈ sub(p↓Ri−1

) ∪ (sub(Ri−1)− lhs(Ri−1)) ⊆ NORMi−1.
By definition, vk+m+1 is an arbitrary element of NORMi. Consequently, we have
NORMi ⊆ NORMi−1. This is a contradiction.

�

Lemma 10. Let i ≥ 2. If Ri−1 = Ri = Ri+1 and NORMi−1 = NORMi, then
NORMi = NORMi+1.

Proof. First we show that NORMi ⊆ NORMi+1. Let s ∈ NORMi be ar-
bitrary. If s ∈ sub(p↓Ri) ∪ (sub(Ri) − lhs(Ri)) ∪ { t↓Ri | t ∈ NORMi−1 }, then
s ∈ sub(p↓Ri+1

) ∪ (sub(Ri+1) − lhs(Ri+1)) ∪ { t↓Ri+1
| t ∈ NORMi }. Hence t ∈

NORMi+1. If s = f(t1, . . . , tm)↓Ri
for some f ∈ Σm and t1, . . . , tm ∈ NORMi−1,

then s = f(t1, . . . , tm) ↓Ri+1
with f ∈ Σm and t1, . . . , tm ∈ NORMi. Hence

t ∈ NORMi+1.
We now show that NORMi+1 ⊆ NORMi. Let s ∈ NORMi+1 be arbitrary.

If s ∈ sub(p ↓Ri+1) ∪ (sub(Ri+1) − lhs(Ri+1)) ∪ { t ↓Ri+1 | t ∈ NORMi }, then
s ∈ sub(p↓Ri

)∪ (sub(Ri)− lhs(Ri))∪ { t↓Ri
| t ∈ NORMi−1 }. Hence t ∈ NORMi.

On Ground Word Problem of Term Equation Systems 541

If s = f(t1, . . . , tm)↓Ri+1 for some f ∈ Σm and t1, . . . , tm ∈ NORMi, then s =
f(t1, . . . , tm)↓Ri for f ∈ Σm and t1, . . . , tm ∈ NORMi−1. Hence t ∈ NORMi.

�

Lemma 11. For each i ≥ 2, if Ri−1 = Ri = Pi+1, then Ri = Ri+1 = Pi+2.

Proof. By the assumption Ri = Pi+1 and the definition of Ri+1, we have

Ri = Ri+1 . (14)

We now distinguish two cases.
Case 1: NORMi−1 = NORMi. By Lemma 10,

NORMi = NORMi+1 . (15)

By (14) and (15), Pi+1 = Pi+2. By the assumption Ri = Pi+1 and (14), we have
Ri = Ri+1 = Pi+2.

Case 2: NORMi−1 ⊂ NORMi. Then by Lemma 9, for each equation l ≈ r of
E ∪ E−1 with l ∈ TΣ(Xk+m), r ∈ TΣ(Xk ∪X[k+m+1,k+m+`]), k,m ≥ 0, ` ≥ 1, and
for any u1, . . . , uk+m ∈ (sub(Ri) − lhs(Ri)) ∪ sub(p↓Ri

), Ri does not reach p↓Ri

starting from l[u1, . . . , uk+m] ↓Ri attached to some context. Then by (14), we do
not put equations in Pi+2 in item (b) in the definition of Pi+2. Hence Ri+1 = Pi+2.
By (14) the proof is complete.

�
Lemma 11 implies the following.

Lemma 12. For each i ≥ 1, if Ri−1 = Ri = Pi+1, then for each k ≥ 1, Ri =
Ri+k = Pi+k+1.

We now show the correctness of Procedure PRO4.

Lemma 13. For any n ≥ 1, t1, . . . , tn ∈ TΣ, if p↔E t1↔E t2↔E · · ·↔E tn, then
there is i ≥ 1 such that p↔∗Pi

t1↔∗Pi
t2↔∗Pi

· · ·↔∗Pi
tn.

Proof. We proceed by induction on n.
Base Case: n = 1. Assume that p↔E t1. Then there is an equation l ≈ r of

E ∪ E−1 with l ∈ TΣ(Xk+m), r ∈ TΣ(Xk+m+`), k,m, ` ≥ 0, and there is u ∈ CΣ,
u1, . . . , uk+m, vk+m+1, . . . , vk+m+` ∈ TΣ such that

p = u[l[u1, . . . , uk+m]] (16)

and t1 = u[r[u1, . . . , uk, vk+m+1, . . . , vk+m+`]].
Let i = max{height(vk+1), . . . , height(vk+m+`) }. By Lemma 8, vk+m+1↓Ri

, . . . ,
vk+m+`↓Ri

are in NORMi. By (16), Ri reaches p↓Ri
from l[u1↓Ri

, . . . , uk+m↓Ri
]↓Ri

attached to some context. By the definition of Pi+1, the equation

l[u1↓Ri , . . . , uk+m↓Ri] ≈ r[u1↓Ri , . . . , uk↓Ri , vk+m+1↓Ri , . . . , vk+m+`↓Ri]

is in ↔∗Pi
or Pi+1. Hence, by the definition of Ri and Statement 3,

542 Sándor Vágvölgyi

p = u[l[u1, . . . , uk+m]]↔∗Pi+1
u[l[u1↓Ri , . . . , uk+m↓Ri]]↔∗Pi+1

u[r[u1↓Ri
, . . . , uk↓Ri

, vk+m+1↓Ri
, . . . , vk+m+`]↓Ri

]↔∗Pi

u[r[u1, . . . , uk, vk+m+1, . . . , vk+m+`]] = t1.
Then we have p↔∗Pi+1

t1.
Induction Step: Let n ≥ 1, and assume that the satement holds for 1, 2, . . . , n.

We now show that the satement holds for n+ 1. To this end, assume that

p↔
E
t1↔

E
t2↔

E
· · ·↔

E
tn+1 . (17)

By the induction hypothesis, there is j ≥ 1 such that

p
∗↔
Pj

t1
∗↔
Pj

t2
∗↔
Pj

· · · ∗↔
Pj

tn . (18)

Hence
tn
∗→
Ri

p↓Ri
. (19)

By (17), there is an equation l ≈ r in E ∪ E−1 with l ∈ TΣ(Xk+m), r ∈ TΣ(Xk ∪
X[k+m+1,k+m+`]) for some k,m, ` ≥ 0, and there are u ∈ CΣ,
u1, . . . , uk+m, vk+m+1, . . . , vk+m+` ∈ TΣ such that

tn = u[l[u1, . . . , uk+m]] and tn+1 = u[r[u1, . . . , uk, vk+m+1, . . . , vk+m+`]] . (20)

Let i = max{ j, height(vk+m+1), . . . , height(vk+m+`) }. By Lemma 8, vk+m+1↓Ri

, . . . , vk+m+` ↓Ri
are in NORMi. Clearly, l[u1 ↓Ri

, . . . , uk+m ↓Ri
]→∗Ri

l[u1 ↓Ri

, . . . , uk+m↓Ri]↓Ri . Then by (19) and (20), Ri reaches p↓Ri starting from l[u1↓Ri

, . . . , uk+m↓Ri]↓Ri attached to some context. By the definition of Pi+1, the equation
l[u1↓Ri

, . . . , uk+m↓Ri
] ≈ r[u1↓Ri

, . . . , uk↓Ri
, vk+m+1↓Ri

, . . . , vk+m+`↓Ri
]

is in ↔∗Pi
or Pi+1. Hence, by the definition of Ri and Statement 3,

tn = u[l[u1, . . . , uk+m]]↔∗Pi+1
u[l[u1↓Ri

, . . . , uk+m↓Ri
]]↔Pi+1

u[r[u1↓Ri
, . . . , uk↓Ri

, vk+m+1↓Ri
, . . . , vk+m+`↓Ri

]]↔∗Pi+1

u[r[u1, . . . , uk, vk+m+1, . . . , vk+m+`]] = tn+1.
By (18), p↔∗Pi+1

t1↔∗Pi+1
t2↔∗Pi+1

· · ·↔∗Pi+1
tn↔∗Pi+1

tn+1.
�

By Statement 3, Lemma 12, and Lemma 13 we have the following result.

Lemma 14. For each i ≥ 2, if Ri−1 = Ri = Pi+1, then for each q′ ∈ TΣ, p↔∗Pi
q′

if and only if p↔∗E q′.

We can show the following in the same way as Theorem 1.

Theorem 5. If p↔∗E q, then procedure PRO4 outputs ’yes’ and halts.

We can show the following in the same way as Theorem 2.

Theorem 6. If procedure PRO4 outputs ’yes’ and halts, then p↔∗E q. If procedure
PRO4 outputs ’no’ and halts, then (p, q) 6∈ ↔∗E.

Theorems 5 and 6 imply the following.

Theorem 7. If p↔∗E q, then procedure PRO4 outputs ’yes’ and halts. Otherwise,
either PRO4 outputs ’no’ and halts, or PRO4 does not halt at all.

On Ground Word Problem of Term Equation Systems 543

7 Comparison with the Knuth-Bendix completion
procedure

We now compare procedures PRO3 and PRO4 with the basic Knuth-Bendix com-
pletion procedure (see Section 7.1 in [1]), the improved version of the Knuth-Bendix
completion procedure described by a set of inference rules (see Section 7.2 in [1]),
the goal-directed completion procedure based on SOUR graphs [13, 14], and the
unfailing Knuth-Bendix completion procedure [2]. In contrast to all versions of
the Knuth-Bendix procedure, Procedures PRO3 and PRO4 do not compute any
critical pairs and do not use a reduction order. They do not attempt to construct
a convergent TRS equivalent to E. When PRO3 and PRO4 run a congruence
closure algorithm for the TES E over the subterm graph of E [4, 15], they com-
pute and then process only finitely many ground instances (s, t) of finitely many
elements (s, t) of the relation ↔∗E , where s, t may contain variables. Here (s, t)
need not be a critical pair computed by the basic Knuth-Bendix completion pro-
cedure. In fact, the ground instances (s, t) are elements of the equivalence relation
↔∗E ∩(sub(E)× sub(E)). Procedures PRO3 and PRO4 compute a representative r
of s and t for the equivalence relation ↔∗E ∩(sub(E)× sub(E)). The representative
r becomes the normal form of s and t for the rewrite relation induced by the con-
structed reduced GTRS. Hence, PRO3 and PRO4 do not compare the normal forms
of s and t via any reduction order. In contrast, the basic Knuth-Bendix completion
procedure reduces the terms in each critical pair to their normal forms. Then tries
to orient the normal forms into a rewrite rule. In this way the procedure orients all
instances of these terms as well. The improved version of the Knuth-Bendix com-
pletion procedure described by a set of inference rules (see Section 7.2 in [1]) also
processes each critical pair and also orients the obtained pair, and hence all of its
instances. The unfailing Knuth-Bendix completion procedure [2] applies orientable
instances of equations in E with respect to a reduction order >.

To illustrate the efficiency of the goal-directed completion procedure, Lynch [13]
presented the following example. Let the ranked alphabet Σ consist of the unary
symbols f , g and the nullary symbols $, #. Consider the variable preserving TES
E = { ffx ≈ gfx }. We raise the problem whether $↔∗E #. On the one hand, the
basic Knuth-Bendix completion procedure runs forever on this example [13]. On
the other hand, the goal-directed completion procedure does not generate any rule
applicable to $ or #. Therefore, the goal-directed completion procedure outputs
’no’ and halts [13]. Lynch and Strogova [14] said that “the goal-directed comple-
tion procedure compiles the TES E and the goal (p, q). After the compilation is
finished, we cannot apply a schematization of an equation in the completed system.
Therefore, the goal-directed completion procedure outputs ’no’ and halts. This is
an example where the goal-directed completion procedure is superior to the basic
Knuth-Bendix algorithm.” It is still open whether the goal-directed completion
procedure halts on the TES E and any goal [13]. As for the above example, PRO3
gives the correct answer and then halts on the TES E and any terms p, q ∈ TΣ.

We conjecture that there are variable preserving TES E and ground terms p, q

544 Sándor Vágvölgyi

such that Conditions (a)-(c) hold.
(a) The basic Knuth-Bendix completion procedure runs forever on E.
(b) There is a goal (p, q) such that the goal-directed completion procedure does

not stop on E and (p, q).
(c) Procedure PRO3 gives the correct answer and then halts on the TES E and

any terms p, q ∈ TΣ.
Let TES E be as in Example 11. We conjecture that there is q ∈ TΣ such that the
symbols a, c do not appear in q and that the goal-directed completion procedure
does not halt on the TES E and the goal (aaa$, q). On the other hand, let q ∈ TΣ

be arbitrary such that the symbols a, c do not appear in q. On the input E, aaa$,
q, Procedure PRO3 outputs ’no’, the correct answer, and then halts, see Example
11.

Procedures PRO3 and PRO4 attempt to construct the reduced GTRSs RP and
RQ, rather than a convergent term rewrite system equivalent to E, such that
• RP ∪RQ ⊆ ↔∗E ,
• p↔∗RP

q or ↔∗RP
∩({ p } × TΣ) =↔∗E ∩({ p } × TΣ), and

• p↔∗RQ
q or ↔∗RQ

∩({ q } × TΣ) =↔∗E ∩({ q } × TΣ).
Thus RP and RQ need not be equivalent to E. By contrast, all versions of the
Knuth-Bendix completion procedure attempt to transform a given TES E into
an equivalent convergent term rewrite sytem. Since Snyder’s ground completion
algorithm does not apply orderings, procedures PRO3 and PRO4 do not apply any
orderings as well.

We now present three examples where procedures PRO3 and PRO4 compute
efficiently, probably more efficiently than all versions of the Knuth-Bendix comple-
tion procedure.

Example 20. [8, 16] Gallier et al [8] and Plaisted and Sattler-Klein [16] presented
the following problem to illustrate that reducing a ground term to its normal form
can take exponential time if a proper strategy is not used. Let Σ = Σ0 ∪ Σ1,
Σ0 = { $ }, and Σ1 = { f, g }. Let n ≥ 2. Let the GTRS R consist of the following
rules:

f$→ g$,
fg$→ gf$,
fg2$→ gf2$,
. . .
fgn$→ gfn$.

Plaisted and Sattler-Klein observed the following on page 156 in [16]. Although
GTRS R is convergent, the right-hand sides can be further rewritten. An unskilful
choice of rewrites can lead to an exponential time of process. The straightforward
reduction of the term gfn$ can take a number of rewrite steps exponential in n.
However, if we apply the rules in order of size, smallest first, to all other rules, the
whole TRS can be rewritten to a reduced GTRS in a polynomial number of steps.

We form the TES E by adding the equation

fgn+1x ≈ gfn+1x

On Ground Word Problem of Term Equation Systems 545

to the set R. We now run procedure PRO3 on the variable preserving TES E and
the ground terms p = fn+2$ and q = gn+2$. Then

{ f$ ≈ g$ } = P1 = RP1
= Q1 = RQ1

, p↓RP1∪Q1
6= q↓RP1∪Q1

= q.

R1 ∪ { fg$ ≈ g2$ } = P2 = RP2
= Q2 = RQ2

, p↓RP2∪Q2
6= q↓RP2∪Q2

= q.

R2 ∪ { fg2$ ≈ g3$ } = P3 = RP3
= Q3 = RQ3

, p↓RP3∪Q3
6= q↓RP3∪Q3

= q.

. . .

RPn
∪ { fgn$ ≈ gn$ } = Pn = RPn

= Qn = RQn
, p↓RPn+1∪Qn+1

6= q↓RPn+1∪Qn+1
.

RPn+1 ∪ { fgn+1$ ≈ gn+1$ } = Pn+2 = RPn+2 = Qn+2 = RQn+2 .

Pn+2 = RPn+3
= Qn+2 = RQn+3

.

Observe that p↓RPn+2∪Qn+2
= q↓RPn+2∪Qn+2

= q. Hence procedure PRO3 outputs

’yes’ and halts in the (n+ 2)nd step. The number of computation steps is polyno-
mial. It should be clear that for all ground terms p and q, PRO3 halts. It outputs
’yes’ if p↔∗E q. Otherwise it outputs ’no’.

Consider the lexicographic path order >lpo induced by the order f > g > $
[1]. We now run the basic Knuth-Bendix completion procedure on the TES E
and the reduction order >lpo. In the initialization phase, the basic Knuth-Bendix
completion procedure orients the equations of E. We obtain the TRS S consisting
of the following rules:

f$→ g$,

fg$→ gf$,

fg2$→ gf2$,

. . .

fgn$→ gfn$,

fgn+1x→ gfn+1x.

Similarly to the first part of the example we have the following. The TRS S
has no critical pairs. Hence the basic Knuth-Bendix procedure outputs S. The
straightforward reduction of the term fn+2$ to gn+2$ by S takes a number of
rewrite steps exponential in n. The improved Knuth-Bendix completion procedure
reduces the right-hand sides of the first n rules as in the first part of the example.
We obtain the TRS S′ consisting of the following rules:

f$→ g$,

fg$→ gf$, fg$→ gg$,

fg2$→ gf2$, fg2$→ gfg$, fg2$→ g3$,

. . .

fgn$→ gfn$, fgn$→ gfn−1g$, . . ., fgn$→ gn+1$,

fgn+1x→ gfn+1x.

In the best case, the reduction of the term fn+2$ to gn+2$ applies the rules

f$→ g$,

fg$→ gg$,

fg2$→ g3$,

. . .

fgn$→ gn+1$,

fgn+1x→ gfn+1x.

546 Sándor Vágvölgyi

In the worst case, S′ applies only the rules of S in the reduction of the term fn+2$
to gn+2$. Hence it takes a number of rewrite steps exponential in n as in the first
part of the example. The goal-directed completion procedure computes fast on E
and the goal (p, q). For experimental results, see the line of the problem Counter5
in Table 1 in Section 7 in [14].

Example 21. We now modify an example of Plaisted and Sattler-Klein [16] and
Lynch and Strogova [14].

Let n ≥ 2, Σ = Σ0 ∪ Σ2, Σ0 = { $1, $2, . . . , $n,#1,#2, . . . ,#n }, and Σ2 =
{ f, g }. Let the TES E consist of the following equations:

f([, [) ≈ f(#0, $0),
$0 ≈ f($1,#1),
#0 ≈ g(#1, $1),
$1 ≈ f($2,#2),
#1 ≈ g(#2, $2),
. . .
$n−1 ≈ f($n,#n),
#n−1 ≈ g(#n, $n),
$n ≈ #n,
f(x1, x1) ≈ g(x1, x1).
We now run procedure PRO3 on the variable preserving TES E and the ground

terms p = f($0,#0) and q = g(#0,#0). Then
{ f($1,#1) ≈ $0, g(#1, $1) ≈ #0 } = P1 = RP1

,
{ g(#1, $1) ≈ #0, f(#0,#0) ≈ g(#0,#0) } = Q1 = RQ1 ,
RP1
∪ { f($2,#2) ≈ $1, g(#2, $2) ≈ $1 } = P2 = RP2

,
RQ1

∪ { f($1,#1) ≈ $0, f($2,#2) ≈ $1, g(#2, $2) ≈ #1 } = Q2 = RQ2
,

. . .
RPn−1

∪ { f($n,#n) ≈ $n−1, g(#n, $n) ≈ #n−1 } = Pn = RPn
,

RQn−1
∪ { f($n−1,#n−1) ≈ $n−2, g(#n, $n) ≈ #n−1 } = Qn = RQn

.
RPn

consists of the following rules:
f($1,#1)→ $0,
g(#1, $1)→ #0,
f($2,#2)→ $1,
g(#2, $2)→ #1,
. . .
f($n,#n)→ $n−1,
g(#n, $n)→ #n−1,
RPn ∪ { $n ≈ #n } = Pn+1.

RPn+1
consists of the following rules:

f($0,#0)→ $0,
f($1, $1)→ $0,
f($2, $2)→ $1,
. . .
g($n, $n)→ $n−1,
#0 → $0,

On Ground Word Problem of Term Equation Systems 547

#1 → $1,
#2 → $2,
. . .
#n → $n.
RQn

∪ { f($n,#n) ≈ $n−1, $ ≈ # } = Qn+1,
RQn+1

= RPn+1
∪ { f(#0,#0)→ g(#0,#0) }.

Pn+2 = RPn+3
= Qn+2 = RQn+3

.
Clearly, p↓RPn+1

= q↓RPn+1
. Consequently, procedure PRO3 outputs ’yes’ and halts

in the (n+ 1)st step. The number of computation steps is polynomial.
Consider the lexicographic path order >lpo induced by the order

[> $0 > $1 > · · · > $n > #0 > #1 > · · · > #n > f > g.

We now run the basic Knuth-Bendix completion procedure on the TES E and the
reduction order >lpo. In the initialization phase, the basic Knuth-Bendix comple-
tion procedure orients the equations of E. We obtain the TRS S consisting of the
following rules:

$0 → f($1,#1),
#0 → g(#1, $1),
$1 → f($2,#2),
#1 → g(#2, $2),
. . .
$n−1 → f($n,#n),
#n−1 → g(#n, $n),
$n → #n,
f([, [)→ f(#0, $0),
f(x1, x1)→ g(x1, x1).

The last two rules yield the critical pair 〈f(#0, $0), g([, [)〉. Observe that f(#0, $0)
has a unique →S normal form, and that size(f(#0, $0) ↓S) = 2n+1. Thus the
completed system contains a rule with a left-hand side of size 2n+1. The improved
Knuth-Bendix completion procedure also yields the TRS S and the above critical
pair. Again, the completed system contains a rule with a left-hand side of size 2n+1.
The goal-directed completion procedure based on SOUR graphs [13, 14] stores the
term f(#0, $0)↓S in linear space in n.

Example 22. Let Σ = Σ0 ∪ Σ1, Σ0 = { $ }, and Σ1 = { a, b }. Let the GTES F
consist of the equation abbax1 ≈ x1. Furthermore, let the GTES E consist of the
equations

abbax1 ≈ x1, a$ ≈ $, b$ ≈ $.
It is well-known that there is no convergent TRS R equivalent to F , see Theorem
4.2.18 in [10]. Hence there is no convergent TRS R equivalent to E either. Con-
sequently, the basic Knuth-Bendix completion procedure (see Section 7.1 in [1]),
the improved version of the Knuth-Bendix completion procedure described by a
set of inference rules (see Section 7.2 in [1]) cannot produce a convergent TRS R
equivalent to E.

548 Sándor Vágvölgyi

Let p, q ∈ TΣ be arbitrary. First, we run the procedure PRO3 on the input
E, p, q. Procedure PRO3 outputs ’yes’ and halts in the first or second step. The
resulting reduced GTRS is a subset of

{ a$→ $, b$→ $ }.
Second, we run the goal-directed completion procedure on the input E, (p, q). It
computes all critical pairs and then processes them. Then it applies the resulting
rules. The goal-directed completion procedure takes more time on E and the goal
(p, q) than procedure PRO3 on the input E, p, q.

8 Conclusion

We recalled the well known trivial semi-decision procedure PRO1 for the ground
word problem of variable preserving TESs and its straightforward generalization,
the trivial semi-decision procedure PRO2 for the ground word problem of TESs. On
the basis of PRO1, we gave the semi-decision procedure PRO3 for the ground word
problem of variable preserving TESs. We gave examples when procedure PRO3
was more efficient than procedure PRO1. Then we presented the semi-decision
procedure PRO4 for the ground word problem of term equation systems. We ob-
tained it generalizing PRO3 taking into account PRO2. We showed the correctness
of PRO3 and PRO4. We compared the procedures PRO3 and PRO4 with the basic
Knuth-Bendix completion procedure and the goal-directed completion procedure
based on SOUR graphs [13, 14].

Procedures PRO3 or PRO4 compute in a different way than all versions of the
Knuth-Bendix completion procedure. To some instances of the ground word prob-
lem of a TES E, they give an answer sooner than all versions of the Knuth-Bendix
completion procedure or it is open whether some version of the Knuth-Bendix com-
pletion procedure gives an answer at all. Assume that, given a TES E and ground
terms p, q, we want to decide whether p↔∗E q. The ground word problem is unde-
cidable even for variable-preserving TESs. Consequently, we have no upper bound
on the running time of any type of the Knuth-Bendix completion procedure on the
input TES E any reduction order > and the ground terms p, q. However, we assume
beforehand that the basic Knuth-Bendix completion procedure or the goal-directed
completion procedure or the nonfailing Knuth-Bendix completion procedure will
stop on E, >, and p, q, and estimate its running time. We base our time estimate
on the size of the input and the experimental results by the various implementations
[7, 9, 12, 20] of all versions of the Knuth-Bendix completion procedure on inputs
of similar size. Then we carry out the following steps. Simultaneously, we start all
implementations of all versions of the Knuth-Bendix completion procedure on E
and p, q. We wait for the estimated running time. If none of the procedures stop
within this time, then they do not stop at all, or we underestimated the running
time. Then we start the procedure PRO3 or PRO4 depending on whether TES E
is variable preserving. In some cases PRO3 or PRO4 might give an answer sooner
than all implementations of all versions of the Knuth-Bendix completion procedure.

We presented ad hoc examples when procedure PRO3 was probably more ef-

On Ground Word Problem of Term Equation Systems 549

ficient than the goal-directed completion procedure [13, 14]. However, to justify
the introduction of procedures PRO3 and PRO4, we need further evidence for the
efficiency of the procedures PRO3 and PRO4. We should present implementa-
tion results and theoretical arguments. We now raise questions on the efficiency of
PRO3 and PRO4 compared to the various versions of the Knuth-Bendix completion
procedure.

Question 1. Is it true that for most instances of the ground word problem of a
TES E, a correctly chosen version of the Knuth-Bendix completion procedure is
more efficient than PRO3 or PRO4?

Question 2. For which instances of the ground word problem of a TES E, is a
correctly chosen version of the Knuth-Bendix completion procedure more efficient
than PRO3 or PRO4?

Question 3. Is it decidable for an instance of the ground word problem of a TES
E, whether a correctly chosen version of the Knuth-Bendix completion procedure is
more efficient than PRO3 or PRO4?

Question 4. Is there an instance of the ground word problem of a TES E, such that
no version of the Knuth-Bendix completion procedure halts, and PRO3 or PRO4
halts?

We can reduce an instance of the word problem for a TES E to an instance of
the ground word problem for E over a larger alphabet ∆. Let E be a TES and
p, q arbitrary terms over a ranked alphabet Σ. Assume that exactly the variables
x1, . . . , xm appear in p or q. We now define the ranked alphabet ∆. It contains
each element of Σ. Furthermore, for each i = 1, . . . ,m, we add a new constant #i

to ∆. We define p′ from p and q′ from q by replacing each occurrence of xi with
#i for i = 1, . . . ,m. Then p↔∗E q over Σ if and only if p′↔∗E q′ over ∆. Thus if we
can decide whether p′↔∗E q′ over ∆, then we can also decide whether p↔∗E q over
Σ.

References

[1] F. Baader and T. Nipkow Term Rewriting and All That, Cambridge University
Press, Cambridge, United Kingdom, 1998.

[2] L. Bachmair, N. Dershowitz, D. A. Plaisted, Completion without failure. In
Resolution of equations in algebraic structures, Vol. 2, Rewriting techniques.
Edited by H. Ait-Kaci and M. Nivat. pp. 130, Academic Press, Boston, MA,
1989,

[3] G. C. Ceitin: Associative calculus with an unsolvable equivalence problem. Tr.
Mat. Inst. Akad. Nauk 52, 172-189 (1958) (in Russian).

[4] P. J. Downey, R. Sethi, and R. E. Tarjan: Variations on the Common Subex-
pression Problem. Journal of the ACM, 27 (1980) 758-771.

550 Sándor Vágvölgyi

[5] Z. Fülöp and S. Vágvölgyi, Ground term rewriting rules for the word problem
of ground term equations, Bulletin of the EATCS, 45 (1991) 186-201.

[6] Z. Fülöp and S. Vágvölgyi, Minimal Equational Representations of Recogniz-
able Tree Languages, Acta Informatica, 34 (1997) 59-84.

[7] J.-M. Gaillourdet, T. Hillenbrand, B. Löchner, H. Spies: The New WALD-
MEISTER Loop at Work, in Franz Baader (Ed.): Automated Deduction -
CADE-19, 19th International Conference on Automated Deduction, Proceed-
ings. Lecture Notes in Computer Science 2741 Springer 2003, I 317-321.

[8] J. Gallier, P. Narendran, D. Plaisted, S. Raatz, and W. Snyder, An Algorithm
for Finding Canonical Sets of Ground Rewrite Rules in Polynomial Time,
Journal of the Association for Computing Machinery, 40 (1993) 1-16.

[9] T. Hillenbrand, Citius altius fortius: Lessons learned from the Theorem Prover
WALDMEISTER, Electronic Notes in Theoretical Computer Science 86(1)
(2003).

[10] M. Jantzen, Confluent string rewriting, Springer Verlag, Berlin 1988.

[11] Y. Matiyasevich, G. Sénizergues, Decision Problems for Semi-Thue Systems
with a Few Rules, Proceedings, 11th Annual IEEE Symposium on Logic in
Computer Science, New Brunswick, New Jersey, 27-30 July 1996. IEEE Com-
puter Society Press, 523-531.

[12] Serge Mechveliani, From a Computer Algebra Library to a System with an
Equational Prover, in Bruno Buchberger, John A. Campbell (Eds.): Artificial
Intelligence and Symbolic Computation, 7th International Conference, AISC
2004, Linz, Austria, September 22-24, 2004, Proceedings. Lecture Notes in
Computer Science 3249 Springer 2004, 281-284.

[13] C. Lynch, Goal-Directed Completion Using SOUR Graphs, in Hubert Comon
(Ed.): Rewriting Techniques and Applications, 8th International Conference,
RTA-97, Proceedings. Lecture Notes in Computer Science 1232 Springer 1997,
8-22.

[14] C. Lynch, P. Strogova, SOUR graphs for efficient completion, Discrete Math-
ematics & Theoretical Computer Science 2 (1998) 1-25.

[15]] G. Nelson, D. C. Oppen: Fast Decision Procedures Based on Congruence
Closure. J. ACM 27 (1980) 356-364

[16] D. Plaisted and A. Sattler-Klein, Proof lengths for equational completion,
Information and Computation, 125 (1996) 154-170.

[17] S. Vágvölgyi, A fast algorithm for constructing a tree automaton recognizing
a congruential tree language, Theoret. Comput. Sci, 115 (1993) 391-399.

On Ground Word Problem of Term Equation Systems 551

[18] S. Vágvölgyi, Ground term rewriting. Bull. Eur. Assoc. Theor. Comput. Sci.
EATCS No. 102 (2010), 153190.

[19] W. Snyder, A Fast Algorithm for Generating Reduced Ground Rewriting Sys-
tems from a set of Ground Equations, Journal of Symbolic Computation, 15
(1993) 415-450.

[20] I. Wehrman, A. Stump, E. M. Westbrook: Slothrop: Knuth-Bendix Comple-
tion with a Modern Termination Checker, Frank Pfenning (Ed.): Term Rewrit-
ing and Applications, 17th International Conference, RTA 2006, Proceedings.
Lecture Notes in Computer Science 4098 Springer 2006, 287-296.

Received 5th June 2015

