
Acta Cybernetica 22 (2016) 633–655.

One-Pass Reductions∗

Sándor Vágvölgyi†

Abstract

We study OI and IO one-pass reduction sequences with term rewrite sys-
tems. We present second order decidability and undecidability results on
recognizable tree languages and one-pass reductions. For left-linear TRSs,
the second order OI inclusion problem and the second order OI reachability
problem are decidable, the second order OI joinability problem is undecid-
able. For right-linear TRSs, the second order common IO ancestor problem
is undecidable.

Keywords: term rewrite systems, OI and IO one-pass reductions, tree au-
tomata

1 Introduction

A term rewrite system (TRS for short) R reduces a term in a nondeterministic
way along which it does many choices. Traditional term rewriting is the exhaustive
application of R to a term until no more rules apply. However, this procedure is
usually not adequate for most applications, for example for program transformation.
Because, in general, there is no bound for the lengths of the possible reduction
sequences, or R is not confluent.

To overcome the above problems, researchers implemented and studied various
types of traversal reductions. Program transformation operates on the syntax tree
of a program applying rewrite rules along a traversal of the tree: it visits all tree
nodes in a certain visiting order and applies a rewrite rule at each node at most
once [2, 3, 14, 15]. They distinguish between the standard visiting orders top-
down (order: root, subtrees) and bottom-up (order: subtrees, root). Dauchet and
De Comité [4], Seynhaeve et al. [12] studied outside-in (OI) and inside-out (IO)
one-pass reductions, which are different from the above top-down and bottom-
up traversals, respectively, in that all reduction steps can be carried out mainly
independently from each other. During a reduction step, the left-hand side of an

∗The publication is supported by the European Union and co-funded by the European So-
cial Fund. Project title: “Telemedicine-focused research activities on the field of Mathematics,
Informatics and Medical sciences” Project number: TÁMOP-4.2.2.A-11/1/KONV-2012-0073
†Department of Foundations of Computer Science, University of Szeged, Árpád tér 2, H-6720

Szeged, Hungary E-mail: vagvolgy@inf.u-szeged.hu

DOI: 10.14232/actacyb.22.3.2016.6

634 Sándor Vágvölgyi

applied rule does not overlap with the already rewritten parts of the term, only the
values of the substituted subterms depend on the order of the reduction steps. One
may proceed in two ways. Along an OI one-pass reduction sequence, we proceed
from the root to the leaves. Along an IO one-pass reduction sequence, we proceed
from the leaves to the root. Fülöp et al. [5] studied two other very restrictive
strategies of term rewriting: and one-pass root-started rewriting and one-pass leaf-
started rewriting. They differ from the OI and IO one-pass reductions, respectively,
in that the rewriting always concern positions immediately adjacent to the already
rewritten parts of the term. Consequently, they establish a much more restricted
way of computing.

Reachability is a fundamental problem that appears in several areas of computer
science: finite- and infinite-state concurrent systems, computational models like cel-
lular automata and Petri nets, program analysis, discrete and continuous systems,
time critical systems, hybrid systems, TRSs, etc. [13]. For TRSs, reachability prob-
lem is the following: given a TRS R, and two terms s and t, decide whether s can
be rewritten into t with a finite number of rewriting steps of R. Ground reachabil-
ity problem is the restriction of the reachability problem to ground terms. Ground
reachability and unreachability proofs can be used as general purpose verification
techniques for the systems modeled by rewriting [9].

Gilleron and Tison [10] introduced and studied the second order reachability
problem and the second order sentential form inclusion problem for TRSs. They
[10] asked whether the set of sentential forms of the trees of a recognizable tree
language overlaps with a given recognizable tree language, and whether the set of
sentential forms of the trees of a recognizable tree language is a subset of a given
recognizable tree language, respectively. Observe that they [10] defined a second
order decidability problem from a first order one by substituting recognizable tree
languages for terms. Along this line of research, Fülöp et al. [5] introduced and
studied second order decidability problems: the one-pass root-started sentential
form inclusion problem, and the one pass leaf-started sentential form inclusion
problem. Moreover, Seynhaeve et al. [12] presented and studied the second order
IO inclusion problem.

In the light of the above problems, we study the following eight second order
decidability problems. Some of them, for instance the second order OI common
ancestor problem, are introduced in this paper following the above research line.
The terms appearing in an OI (resp. IO) one pass reduction sequence are called
the OI (resp. IO) sentential forms of the initial term. For a tree language L, the set
of all OI (resp. IO) sentential forms of the elements of L is denoted by SFOI(L)
(resp. SFIO(L)). First we present the problems concerning OI one pass reducing.

Second order OI inclusion problem.
Instance: A TRS R and recognizable tree languages L and M over Σ.
Question: Is SFOI(L) ⊆M?

Second order OI reachability problem.
Instance: A TRS R and recognizable tree languages L and M over Σ.
Question: Is SFOI(L) ∩M 6= ∅?

One-Pass Reductions 635

Second order OI joinability problem.

Instance: A TRS R and recognizable tree languages L and M over Σ.

Question: Is SFOI(L) ∩ SFOI(M) 6= ∅?

Second order OI common ancestor problem.

Instance: A TRS R and recognizable tree languages L and M over Σ.

Question: Is there a term t ∈ TΣ(X) such that SFOI(t) ∩ L 6= ∅ and SFOI(t) ∩
M 6= ∅?

We define the IO counterparts of the above problems replacing OI by IO.

Seynhaeve et al. showed that for left-linear TRSs and right-linear TRSs, the
second order IO inclusion problem is decidable, see Proposition 4 in [12]. Fülöp et
al. [5] showed that for left-linear TRSs, the one-pass root-started sentential form
inclusion problem, the counterpart of the second order IO inclusion problem, and
the one pass leaf-started sentential form inclusion problem, the counterpart of the
second order OI inclusion problem, are decidable. Seynhaeve et al. showed that
for right-linear TRSs, the one-pass root-started sentential form inclusion problem
is decidable, see Proposition 5 in [12].

In Section 2, we present our notations and basic definitions. Then we show
the following. For left-linear TRSs, the second order OI inclusion problem and the
second order OI reachability problem are decidable, see Section 3. For left-linear
TRSs, the second order OI joinability problem is undecidable, see Section 4. For
right-linear TRSs, the second order common IO ancestor problem is undecidable,
see Section 5. In Section 6, we present our concluding remarks and open problems.
We sum up the existing results in the literature and our contribution in Table 1,
where OI, IO, ll, rl, and ances. abbreviate one-pass OI reduction, one-pass IO
reduction, left-linear, right-linear, and ancestor, respectively. Each question mark
signifies an open problem.

decidability of inclusion reachability joinability common ances.
decidable decidable undecidable

OI for ll for ll for ll ?
Theorem 1 Theorem 1 Theorem 2
decidable undecidable

IO for ll and for rl ? ? for rl
[12], Prop. 4 Theorem 3

Table 1: Summary of results

2 Preliminaries

We recall and invent some notations, basic definitions and terminology which will
be used in the rest of the paper. Nevertheless the reader is assumed to be familiar
with the basic concepts of term rewrite systems and of tree language theory [1, 7, 8].

636 Sándor Vágvölgyi

2.1 Terms

The set of nonnegative integers is denoted by N , and N∗ stands for the free monoid
generated by N with empty word λ as identity element. For a word α ∈ N∗,
length(α) stands for the length of α. Consider the words α, β, γ ∈ N∗ such that
α = βγ. Then we say that β is a prefix of α, and that α is an extension of β; and
we write β � α. If γ 6= λ, then β is a proper prefix of α, and we write β ≺ α.

A ranked alphabet is a finite set Σ in which every symbol has a unique rank in
N . For m ≥ 0, Σm denotes the set of all elements of Σ which have rank m. The
elements of Σ0 are called constants. Throughout the paper we assume that Σ0 6= ∅.
That is, we have at least one constant in Σ.

For a set of variables Y and a ranked alphabet Σ, TΣ(Y) denotes the set of
Σ-terms (or Σ-trees) over Y . TΣ(∅) is written as TΣ. A term t ∈ TΣ is called a
ground term. A tree t ∈ TΣ(Y) is linear if any variable of Y occurs at most once in
t. We specify a countable set X = {x1, x2, . . . } of variables which will be kept fixed
in this paper. Moreover, we put Xm = {x1, . . . , xm }, for m ≥ 0. Hence X0 = ∅.

For a term t ∈ TΣ(X), the height height(t) and the yield yd(t) and the set of
positions pos(t) ⊆ N∗ of t are defined by tree induction.

• If t ∈ Σ0 ∪ X, then height(t) = 0, yd(t) =(if t ∈ Σ0 then λ else t), and
pos(t) = {λ }.

• If t = f(t1, . . . , tm) with f ∈ Σm, m > 0, then

height(t) = 1 + max{height(ti) | 1 ≤ i ≤ m},
yd(t) = yd(t1) . . . yd(tm), and

pos(t) = { iα | 1 ≤ i ≤ m,α ∈ pos(ti) }.

For each t ∈ TΣ(X) and α ∈ pos(t), we introduce the subterm t/α ∈ TΣ(X) of
t at α and define the label lab(t, α) ∈ Σ ∪X in t at α as follows:

• for t ∈ Σ0 ∪X, t/λ = t and lab(t, λ) = t;

• for t = f(t1, . . . , tm) with m ≥ 1 and f ∈ Σm, if α = λ then t/α = t and
lab(t, α) = f , otherwise, if α = iβ with 1 ≤ i ≤ m, then t/α = ti/β and
lab(t, α) = lab(ti, β).

Let t ∈ TΣ(X). We call a position α ∈ pos(t) of t a variable position if lab(t, α) ∈ X.
The set of variable positions of t is denoted by vpos(t). That is, vpos(t) = {α ∈
pos(t) | lab(t, α) ∈ X }. Furthermore, root(t) = lab(t, λ).

For trees t ∈ TΣ(Xm), and t1, . . . , tm ∈ TΣ(X), we denote by t[t1, . . . , tm] the
tree obtained by substituting ti for every occurrence of xi in t, for 1 ≤ i ≤ m. A
tree language L is a subset of TΣ.

For any m ≥ 0, we distinguish a subset TΣ(Xm) of TΣ(Xm) as follows: a tree
t ∈ TΣ(Xm) is in TΣ(Xm) if and only if yd(t) = x1 . . . xm.

For each integer k ≥ 0, we say that a tree t ∈ TΣ(X) is a k-normal tree over Σ
if t satisfies Conditions 1 and 2 [6].

One-Pass Reductions 637

1. t ∈ TΣ(Xm) for some m ≥ 0.

2. For every α ∈ pos(t), (length(α) = k and lab(t, α) ∈ Xm) or (length(α) < k
and lab(t, α) ∈ Σ).

Note that for each k-normal tree t, height(t) ≤ k and that the only 0-normal tree
is x1. The set of k-normal trees over Σ is denoted by NORMΣ,k.

We illustrate our concepts and results via a running example which we present
as a sequence of examples throughout Sections 2 and 3. So the ranked alphabet in
all examples will be the one introduced below.

Example 1. Let Σ = Σ0 ∪ Σ1 ∪ Σ2, where Σ0 = {# }, Σ1 = { f }, and Σ2 =
{ g }. The following trees are 3-normal trees over Σ: #, f(#), g(#, g(#,#)),
g(g(#, g(x1, x2)),#), g(#, g(#, f(x1))), g(f(g(x1, x2)), g(f(x3),#)).

By the definition of a k-normal tree we have the following.

Remark 1. For each k ≥ 0, { t ∈ NORMΣ,k | height(t) < k } ⊆ TΣ.
For all 0 ≤ i ≤ j ≤ k,
{ t ∈ NORMΣ,k | height(t) ≤ i } ⊆ { t ∈ NORMΣ,k | height(t) ≤ j }.
Let Σ be a ranked alphabet, u ∈ NORMΣ,k ∩ TΣ(Xm), k,m ≥ 0, and v ∈ TΣ.

We say that u is a k-normal prefix of v if v = u[u1, . . . , um] for some u1, . . . , um ∈
TΣ.

Proposition 1. [6] For each tree s ∈ TΣ and k ≥ 0, s has exactly one k-normal
prefix.

Remark 2. Let k ≥ 1, s, t ∈ TΣ, and assume that for any α ∈ pos(s), if
length(α) ≤ k − 1 then α ∈ pos(t) and lab(s, α) = lab(t, α). Then the k-normal
prefix of s is equal to the k-normal prefix of t.

Example 2. Let s = g(f(#), f(g(#,#))). Then
g(x1, x2) is the 1-normal prefix of s,
g(f(x1), f(x2)) is the 2-normal prefix of s,
g(f(#), f(g(x1, x2)) is the 3-normal prefix of s, and
s is the k-normal prefix of s for k ≥ 4.

For t ∈ TΣ, α ∈ pos(t), and r ∈ TΣ, we define t[α← r] ∈ TΣ as follows.

• If α = λ, then t[α← r] = r.

• If α = iβ, for some i ∈ N and β ∈ N∗, then t = f(t1, . . . , tm) with f ∈ Σm
and 1 ≤ i ≤ m. Then t[α← r] = f(t1, . . . , ti−1, ti[β ← r], ti+1, . . . , tm).

An alphabet ∆ is any finite nonempty set, ∆∗ stands for the set of words over
∆, and λ denotes the empty word. For an alphabet ∆, we consider the ranked
alphabet ∆ ∪ {# }, where # 6∈ ∆. Here each element of ∆ is a unary symbol
and # is a nullary symbol. Then we consider a tree in T∆∪{# } as a word over
the alphabet ∆ ∪ #. For example, let ∆ = { a, b }. Then the tree a(b(b(a(#))))
is written as the word abba#. Conversely, for each word w ∈ ∆∗, the word w#
over the alphabet ∆ ∪ {# } can be considered as a tree over the ranked alphabet
∆ ∪ {# }. For example, the word aab# can be considered as the tree a(a(b(#))).

638 Sándor Vágvölgyi

2.2 Term Rewrite Systems

Let →⊆ A × A be a binary relation on a set A. We denote by →∗ the reflexive,
transitive closure of →.

Let Σ be a ranked alphabet. Then a term rewrite system (TRS) R over Σ is a
finite subset of (TΣ(X) −X) × TΣ(X) such that for each (l, r) ∈ R, each variable
of r also occurs in l. Elements (l, r) of R are called rules and are denoted by l→ r.
We call l the left-hand side and r the right-hand of the rule l → r. The set of
left-hand sides (resp. right-hand sides) of rules in R is denoted by lhs(R) (resp.
rhs(R)).

A TRS R is left-linear (resp. right-linear) if each element of lhs(R) (resp.
rhs(R)) is linear. A left-linear and right-linear TRS R is called linear. A TRS R
is ground if each element of lhs(R) ∪ rhs(R) is a ground term.

Let R be a TRS over Σ. For any terms s, t ∈ TΣ(X), position α ∈ pos(s), and
rule l → r in R with l, r ∈ TΣ(Xm), m ≥ 0, we say that s rewrites to t applying
the rule l→ r at α, and denote this by s→α,l→r t if there are s1, . . . , sm ∈ TΣ(X)
such that s/α = l[s1, . . . , sm] and t = s[α← r[s1, . . . , sm]]. Here we also say that s
rewrites to t and denote this by s→R t.

A sequence

s0 →β1,l1→r1 s1 →β2,l2→r2 s2 →β3,l3→r3 · · · →βn,ln→rn sn, n ≥ 0 (1)

is called a reduction sequence with R.
Dauchet and De Comité [4] introduced the inside-out and outside-in one-pass

reductions with a TRS R in an intuitive way and illustrated these concepts by
examples. Intuitively, for any terms s, t ∈ TΣ(X), we say that s is rewritten to t in
one pass if we rewrite s into t applying some rules such that the left-hand sides do
not overlap. Moreover, in case of an OI pass, we rewrite from the outermost of a
bracketed expression of a term to the innermost, i.e., in a top-down order, hence the
subtrees are rewritten after duplicating subtrees. In case of an IO pass, we rewrite
from the innermost of a bracketed expression of a term to the outermost, i.e., in a
bottom-up order, hence the subtrees are rewritten before duplicating subtrees.

We now formally define these concepts. An outside-in one-pass (OI) reduction
sequence with R is a sequence

s0 −→α1,β1,l1→r1 s1 −→α2,β2,l2→r2 s2 −→α3,β3,l3→r3 · · · −→αn,βn,ln→rn sn, (2)

where Conditions 1–4 hold.

1. n ≥ 0, s0, . . . , sn ∈ TΣ(X), and αi ∈ pos(s0), βi ∈ pos(si−1) for i = 1, . . . , n.

2. s0 →β1,l1→r1 s1 →β2,l2→r2 s2 →β3,l3→r3 · · · →βn,ln→rn sn is a reduction
sequence with R.

3. α1 = β1.

4. For any 1 < j ≤ n, if there is 1 ≤ i < j such that βi � βj , then let k be the
largest such i, and then

One-Pass Reductions 639

a) αkγξ = αj , for some γ ∈ vpos(lk) and ξ ∈ N∗,
b) βkδξ = βj for some δ ∈ vpos(rk), and

c) lab(lk, γ) = lab(rk, δ) ∈ X.

Informally, along (2), we rewrite in a top-down order, and keep on rewriting the
unprocessed subtrees of the initial tree s0. At the same time we keep track of the
positions of the subtrees of the initial tree s0. For each i = 1, . . . , n, the position
αi points to the subtree s0/αi of s0, and the position βi points to an occurrence of
s0/αi in si−1, to be rewritten in the ith step of (2).

Formally, the terms s0, . . . , sn are called OI sentential forms of s0. For each term
s ∈ TΣ(X), SFOI(s) is the set of all OI sentential forms of s. That is, SFOI(s) is
the set of all terms t such that there is an OI reduction sequence (2) with s = s0

and t = sn. For a tree language L ⊆ TΣ, we put

SFOI(L) =
⋃

(SFOI(s) | s ∈ L).

We usually write (2) in the form

s0→
R
s1→

R
· · ·→

R
sn, (3)

and note that (3) is an OI reduction. The notation

s0 ⇒
R,OI

sn

means that there is an OI reduction (3).

Example 3. Consider the left-linear TRS

R = { g(x1, x2)→ f(x2), g(x1, x2)→ g(x1, x1) }

over Σ. Then
g(g(g(#,#),#), g(#,#)) −→λ,λ,g(x1,x2)→g(x1,x1)

g(g(g(#,#),#), g(g(#,#),#)) −→1,1,g(x1,x2)→f(x2)

g(f(#), g(g(#,#),#)) −→11,21,g(x1,x2)→f(x2) g(f(#), g(f(#),#))
is an OI reduction sequence with R.

Furthermore,
SFOI(g(g(#,#),#)) =
{ g(g(#,#),#), f(#), g(g(#,#), g(#,#)),
g(f(#),#), g(f(#), g(#,#)), g(g(#,#), f(#)), g(f(#), f(#)) }.

An inside-out one-pass (IO) reduction sequence with R is a reduction sequence
(1) where Conditions 1 and 2 hold.

1. s0, . . . , sn ∈ TΣ(X), and βi ∈ pos(si−1) ∩ pos(s0) for i = 1, . . . , n,

2. For any 2 ≤ j ≤ n, {β1, . . . , βj−1}∩
({ γ ∈ N∗ | γ � βj } ∪ {βjξ | ξ ∈ (pos(lj)− vpos(lj)) }) = ∅.

640 Sándor Vágvölgyi

Informally, Condition 2 ensures that we rewrite in a bottom-up order and that
the left-hand sides do not overlap. It says that for each 2 ≤ j ≤ n, the positions
β1, . . . , βj−1 are no prefixes of βj nor are positions of any nonvariable symbol in
the occurrence of the left-hand side lj of the rule lj → rj when applying it at βj in
the jth step.

The terms s0, . . . , sn are called IO sentential forms of s0. For each term s ∈
TΣ(X), SFIO(s) denotes the set of all IO sentential forms of s. For a tree language
L ⊆ TΣ, let SFIO(L) =

⋃
(SFIO(s) | s ∈ L). We usually write (1) in the form (3)

and note that (3) is an IO reduction. The notation s0⇒R,IO sn means that there
is an IO reduction (1).

Example 4. g(g(g(#,#),#), g(#,#))→11,g(x1,x2)→f(x2)

g(g(f(#),#), g(#,#))→1,g(x1,x2)→f(x2) g(f(#), g(#,#))
is an IO reduction sequence with R. Furthermore,

g(#, g(f(#),#))→2,g(x1,x2)→f(x2) g(#, f(#))→λ,g(x1,x2)→g(x1,x1) g(#,#)
is another IO reduction sequence with R.

Let R be a TRS over Σ, and s, t ∈ TΣ(X) be arbitrary. We say that s and t
are OI joinable for R if SFOI(s)∩SFOI(t) 6= ∅. Furthermore, we say that s is an
OI ancestor of t with respect to R if s⇒R,OI t. For tree languages L and M over
Σ, we say that L and M are OI joinable for R if SFOI(L) ∩ SFOI(M) 6= ∅. For
tree languages L and M over Σ, we say that L and M have a common OI ancestor
with respect to R if there is a term t ∈ TΣ(X) such that SFOI(t) ∩ L 6= ∅ and
SFOI(t) ∩M 6= ∅.

We define the IO counterparts of the above definitions replacing OI by IO.

For the definition of the second order OI (resp. IO) inclusion problem, the second
order OI (resp. IO) reachability problem, the second order OI (resp. IO) joinabil-
ity problem, and second order OI (resp. IO) common ancestor problem, see the
Introduction.

2.3 Post Correspondence Problem

A Post Correspondence System (PCS for short) over an alphabet ∆ is a pair
〈w, z〉 = 〈(w1, . . . , wn), (z1, . . . , zn)〉, n ≥ 1, of lists of nonempty words over the al-
phabet ∆. We say that the index sequence k1, . . . , k` with ` ≥ 1, 1 ≤ k1, . . . , k` ≤ n,
is a solution of the PCS 〈w, z〉, if

wk1 . . . wk` = zk1 . . . zk` .

cf. [11]. The Post Correspondence Problem is the question whether or not a given
PCS 〈w, z〉 has a solution.

Proposition 2. [11] The Post Correspondence Problem is unsolvable. That is,
there is no algorithm which takes a PCS 〈w, z〉 as input and determines whether
or not there is a solution of the PCS 〈w, z〉.

One-Pass Reductions 641

2.4 Recognizable Tree Languages

Let Σ be a ranked alphabet, a bottom-up tree automaton (bta) over Σ is a quadruple
A = (Σ, A,R,Af), where A is a finite set of states of rank 0, Σ ∩ A = ∅, Af (⊆ A)
is the set of final states, R is a finite set of rules of the form

f(a1, . . . , am)→ a with m ≥ 0, f ∈ Σm, a1, . . . , am, a ∈ A.
We call f(a1, . . . , am) the left-hand side of the rule f(a1, . . . , am)→ a. We consider
R as a ground TRS over Σ∪A. The tree language recognized by A is L(A) = { t ∈
TΣ | (∃a ∈ Af) t→∗R a}. We say that a tree language L is recognizable if there
exists a bta A such that L(A) = L [7]. The bta A = (Σ, A,R,Af) is total if for all
f ∈ Σm, m ≥ 0, and a1, . . . , am, R has a rule with the left-hand side f(a1, . . . , am).
The bta A = (Σ, A,R,Af) is deterministic (dbta) if R has no two rules with the
same left-hand side. We give a recognizable tree language L via a total dbta A
recognizing L. Let A be a total dbta. Then for each tree t ∈ TΣ, there is exactly
one state a ∈ A such that t→∗A a. We denote this a by tA.

Proposition 3. Let A = (Σ, A,RA, Af) be an arbitrary total dbta. Let s, u ∈ TΣ

and α ∈ pos(s). If (s/α)A = uA, then sA = (s[α← u])A.

In the rest of the paper we write s[α← u]A for (s[α← u])A.

3 OI One Pass Reductions

We show that for left-linear TRSs, the second order OI inclusion problem and the
second order OI reachability problem are decidable.

Theorem 1. For any left-linear TRS R and recognizable tree languages L and M
over Σ, it is decidable whether SFOI(L) ⊆M and whether SFOI(L) ∩M 6= ∅.

The proof needs a long preparation, we now start the process of getting ready
for it. Let the total dbtas A = (Σ, A,RA, Af) and B = (Σ, B,RB, Bf) be such that
L(A) = L and L(B) = M . We introduce the ranked alphabet ∆ = Σ×A× P(B).
We write the elements of ∆ in the form 〈f, a, C〉 and the rank of a symbol 〈f, a, C〉
in ∆ is the rank of f in Σ. To every s ∈ TΣ, we associate an element of ∆, denoted
by val(s) as follows: let val(s) = 〈f, a, C〉, where root(s) = f , sA = a, and

C = { b | b = tB for some t ∈ SFOI(s) }.

Let s ∈ TΣ be arbitrary. The evaluated copy of s, denoted by ec(s), is a term
in T∆ defined in the following way.

• pos(ec(s)) = pos(s),

• for each α ∈ pos(s), lab(ec(s), α) = val(s/α).

For each k ≥ 0, the evaluated k-prefix of s is the k-normal prefix of ec(s), and is
denoted by epk(s).

642 Sándor Vágvölgyi

Remark 3. For any s ∈ TΣ and k ≥ 0, epk(s) ∈ NORM∆,k.

Example 5. Let L(A) = L, where A = (Σ, A,RA, Af), A = { 0, 1 }, Af = { 0 },
and RA consists of the rules

#→ 1,
f(0)→ 0, f(1)→ 1,
g(0, 0)→ 0, g(0, 1)→ 1, g(1, 0)→ 1, g(1, 1)→ 0.

Let L(B) = M , where B = (Σ, B,RB, Bf), B = { 0, 1, 2 }, Bf = { 0 }, and RB
consists of the rules

#→ 1,
f(0)→ 0, f(1)→ 1, f(2)→ 2,
g(0, 0)→ 0, g(0, 1)→ 1, g(0, 2)→ 2,
g(1, 0)→ 1, g(1, 1)→ 2, g(1, 2)→ 0,
g(2, 0)→ 2, g(2, 1)→ 0, g(2, 2)→ 1.

Then
val(g(#,#)) = 〈g, 0, { 1, 2 }〉,
val(g(g(#,#),#)) = 〈g, 1, { 0, 1, 2 }〉,
ep1(g(g(#,#),#)) = 〈g, 1, { 0, 1, 2 }〉(x1, x2),
ep2(g(g(#,#),#)) =
〈g, 1, { 0, 1, 2 }〉(〈g, 0, { 1, 2 }〉(x1, x2), 〈#, 1, { 1 }〉),
ep2(g(g(g(#,#),#),#)) =
〈g, 0, { 0, 1, 2 }〉(〈g, 1, { 0, 1, 2 }〉(x1, x2), 〈#, 1, { 1 }〉),
ep3(g(g(g(#,#),#),#)) =
〈g, 0, { 0, 1, 2 }〉(〈g, 1, { 0, 1, 2 }〉(〈g, 0, { 1, 2 }〉(x1, x2), 〈#, 1, { 1 }〉), 〈#, 1, { 1 }〉),
ep4(g(g(g(#,#),#),#)) =
〈g, 0, { 0, 1, 2 }〉(〈g, 1, { 0, 1, 2 }〉(〈g, 0, { 1, 2 }〉(〈#, 1, { 1 }〉, 〈#, 1, { 1 }〉),
〈#, 1, { 1 }〉), 〈#, 1, { 1 }〉).

Let

τ = max{height(l) | l ∈ lhs(R) }+ 1. (4)

Lemma 1. For any s, t ∈ TΣ and µ ∈ pos(s), if epτ (s/µ) = epτ (t), then root(s) =
root(s[µ← t]), sA = s[µ← t]A, and

{uB | u ∈ SFOI(s) } ⊆ {uB | u ∈ SFOI(s[µ← t]) }. (5)

Proof. Let s, t ∈ TΣ, and µ ∈ pos(s) such that

epτ (s/µ) = epτ (t).

If µ = λ, then s/µ = s and t = s[µ ← t]. By our assumption, epτ (s) = epτ (s[µ ←
t]). Consequently, the statement of the lemma holds.

From now on, we assume that µ 6= λ. Then root(s) = root(s[µ ← t]) and
sA = s[µ← t]A by Proposition 3. It is left to show (5). To this end, let b ∈ {uB |
u ∈ SFOI(s) }. Then there is an OI reduction sequence

(a) s −→ᾱ1,β̄1,l̄1→r̄1 s̄1 −→ᾱ2,β̄2,l̄2→r̄2 · · · −→ᾱn,β̄n,l̄n→r̄n s̄n

One-Pass Reductions 643

such that

b = s̄Bn .

Along (a), R may have produced more than one copies of the subtree s/µ of s.
We now consider the rewriting of the `th copy of s/µ. R may rewrite at some
α ∈ pos(s) such that

α ≺ µ

and the left-hand side of the applied rule l → r overlaps with the `th copy of s/µ.
Then R rewrites the subtrees s/χ1, . . . , s/χk, where χ1, . . . , χk ∈ pos(s), of the `th
copy of s/µ. There are

ν`1, . . . , ν`n`
∈ {αξ | ξ ∈ vpos(l) } (6)

such that for each χj , j = 1, . . . , k, there is a ν`i, i ∈ { 1, . . . , n` }, such that

µ � ν`i � χj . (7)

Thus ν`i is an extension of µ and a prefix of χj . Then by α ≺ µ, (4), (6), and (7),

ν`i = µη`i for some η`i ∈ N∗ with length(η`i) ≤ τ − 2 for each i = 1, . . . , n`. (8)

Note that we do not necessarily rewrite at the positions ν`1, . . . , ν`n`
, rather we

rewrite at the extensions χ1, . . . , χk of the positions ν`1, . . . , ν`n`
. The positions

ν11, . . . , ν1n1
, ν21, . . . , ν2n2

, . . . are simply denoted by ν1, . . . , νm. We rearrange the
rewrite steps of the OI reduction sequence (a) into the OI reduction sequence (b)
below such that the following conditions hold.
• Beginning with step d0 + 1, we carry out the reduction steps that take place

at the extensions of µ. Intuitively, the suffix of (b), starting at step d0 + 1, consists
of the reduction of the copies of s/µ.
• When rewriting the `th copy of s/µ, first we carry out all reduction steps at

the extensions of ν`1, second we carry out all reduction steps at the extensions of
ν`2, and so on. Thus we have

(b) s −→α1,β1,l1→r1 s1 −→α2,β2,l2→r2 s2 −→α3,β3,l3→r3 · · · −→αd0
,βd0

,ld0→rd0
sd0 = v[s/ν1, . . . , s/νm] −→αd0+1,βd0+1,ld0+1→rd0+1

· · · −→αd1
,βd1

,ld1→rd1
v[v1, s/ν2, . . . , s/νm] −→αd1+1,βd1+1,ld1+1→rd1+1

· · · −→αdm ,βdm ,ldm→rdm
v[v1, v2, . . . , vm] = sn,
where

• v ∈ T (Xm), m ≥ 0,

• ϑi ∈ vpos(v) and lab(v, ϑi) = xi for i = 1, . . . ,m,

• 0 ≤ d0 < d1 < · · · < dm = n,

• s̄n = sn.

Moreover, the following four conditions hold.

644 Sándor Vágvölgyi

1. For each 1 ≤ i ≤ d0, µ is not a prefix of αi, and for each d0 + 1 ≤ i ≤ dm,
µ � αi.

2. For each 1 ≤ i ≤ m, we have νi = µζi for some ζi ∈ N∗ with length(ζi) ≤ τ−2.

3. For each 1 ≤ i ≤ m and di−1 + 1 ≤ j ≤ di, we have νi � αj and ϑi � βj .

4. For each 1 ≤ i ≤ m, there is an OI reduction sequence s/νi⇒R,OI vi for some
subtree vi of sn.

We obtained Condition 2 by (8). Since b = s̄Bn and s̄n = sn, we also have

b = sBn .

Note that along the reduction in Condition 4 we do not necessarily rewrite s/νi
at the position λ. By Condition 2 and the assumption epτ (s/µ) = epτ (t) of the
lemma, val(s/νi) = val(s[µ ← t]/νi). Hence by Condition 4, for each 1 ≤ i ≤ m,
there is a tree zi ∈ TΣ such that

s[µ← t]/νi ⇒
R,OI

zi and zBi = vBi .

Hence, as R is left-linear, we have the OI reduction sequence
s[µ ← t] −→α1,β1,l1→r1 s

′
1 −→α2,β2,l2→r2 s

′
2 −→α3,β3,l3→r3 · · · −→αd0

,βd0
,ld0→rd0

s′d0 = v[s[µ← t]/ν1, . . . , s[µ← t]/νm] −→γd0+1,δd0+1,ld0+1→rd0+1
· · ·

−→γe1 ,δe1 ,le1→re1 v[z1, s[µ← t]/ν2, . . . , s[µ← t]/νm] −→γe1+1,δe1+1,le1+1→re1+1
· · ·

−→γem ,δem ,lem→rem v[z1, z2, . . . , zm].
Here

d0 < e1 < · · · < em,

and the following conditions hold.

• For each 1 ≤ i ≤ d0, s′i ∈ TΣ.

• For each 1 ≤ i ≤ d0, µ is not a prefix of αi, and for each d0 + 1 ≤ i ≤ em,
µ � γi.

• For each d0 + 1 ≤ j ≤ e1, we have ν1 � γj and ϑ1 � δj . Furthermore, for
each 2 ≤ i ≤ m and ei−1 + 1 ≤ j ≤ ei, we have νi � γj and ϑi � δj .

• For each 1 ≤ i ≤ m, there is an OI reduction sequence s[µ← t]/νi⇒R,OI zi.

By the definition of zi, i = 1, . . . ,m, and Proposition 3,

sBn = v[v1, . . . , vm]B = v[z1, . . . , zm]B.

Thus, by b = sBn , we have b ∈ {uB | u ∈ SFOI(s[µ ← t]) }. This proves (5), and
with it also finishes the proof of the lemma.

One-Pass Reductions 645

Lemma 2. For any s, t ∈ TΣ and µ ∈ pos(s), if epτ (s/µ) = epτ (t), then {uB | u ∈
SFOI(s) } = {uB | u ∈ SFOI(s[µ← t]) }.

Proof. The inclusion from left to right is proven in Lemma 1. The other inclusion
can be verified by applying Lemma 1 on s′ = s[µ← t] and t′ = s/µ.

By Lemma 1 and Lemma 2 we have the following result.

Lemma 3. For any s, t ∈ TΣ and µ ∈ pos(s), if epτ (s/µ) = epτ (t), then val(s) =
val(s[µ← t]).

Lemma 4. For any s, t ∈ TΣ and µ ∈ pos(s), if epτ (s/µ) = epτ (t), then epτ (s) =
epτ (s[µ← t]).

Proof. Let s, t ∈ TΣ and µ ∈ pos(s) such that

epτ (s/µ) = epτ (t). (9)

Let α ∈ pos(s) such that length(α) ≤ τ − 1. We now show that

lab(ec(s), α) = lab(ec(s[µ← t]), α). (10)

For this we distinguish the following three cases.
Case 1: α is not a prefix of µ and µ is not a prefix of α. In this case, s/α =

s[µ← t]/α, and hence we have (10).
Case 2: α � µ. Then by (9) and Lemma 3, (10) holds.
Case 3: µ ≺ α. Then α = µβ for some β ∈ pos(s/µ), and
lab(ec(s), α) = lab(ec(s/µ), β) =
lab(ec(t), β) = lab(ec(s[µ← t]), α) (by (9)).

Hence (10) holds.
In the aggregate, we conclude that for each α ∈ pos(s) with length(α) ≤ τ − 1,

(10) holds. Consequently, by Remark 2, the τ -normal prefix of ec(s) is equal to the
τ -normal prefix of ec(s[µ← t]), that is, epτ (s) = epτ (s[µ← t]).

For each i ≥ 0, let Pi = { epτ (s) | s ∈ TΣ and height(s) ≤ i }. It should be clear
that Pi can be computed effectively for every i ≥ 0.

Example 6. Observe that τ = 2. The trees in TΣ with height at most two are the
following:

#, f(#), g(#,#),
f(f(#)), f(g(#,#)), g(#, f(#)), g(f(#),#), g(f(#), f(#)), g(#, g(#,#)),
g(f(#), g(#,#)), g(g(#,#),#), g(g(#,#), f(#)), g(g(#,#), g(#,#)).

Moreover, P0 = { 〈#, 1, { 1 }〉 },
P1 consists of the trees:
〈#, 1, { 1 }〉, 〈f, 1, { 1 }〉(〈#, 1, { 1 }〉), 〈g, 0, { 1, 2 }〉(〈#, 1, { 1 }〉, 〈#, 1, { 1 }〉),

and P2 consists of the trees:
〈#, 1, { 1 }〉, 〈f, 1, { 1 }〉(〈#, 1, { 1 }〉), 〈g, 0, { 1, 2 }〉(〈#, 1, { 1 }〉, 〈#, 1, { 1 }〉),
〈f, 1, { 1 }〉(〈f, 1, { 1 }〉(x1)), 〈f, 0, { 1, 2 }〉(〈g, 0, { 1, 2 }〉(x1, x2)),

646 Sándor Vágvölgyi

〈g, 0, { 1, 2 }〉(〈#, 1, { 1 }〉, 〈f, 1, { 1 }〉(x1)),
〈g, 0, { 1, 2 }〉(〈f, 1, { 1 }〉(x1), 〈#, 1, { 1 }〉),
〈g, 0, { 1, 2 }〉(〈f, 1, { 1 }〉(x1), 〈f, 1, { 1 }〉(x2)),
〈g, 1, { 0, 1, 2 }〉(〈#, 1, { 1 }〉, 〈g, 0, { 1, 2 }〉(x1, x2)),
〈g, 1, { 0, 1, 2 }〉(〈f, 1, { 1 }〉(x1), 〈g, 0, { 1, 2 }〉(x2, x3)),
〈g, 1, { 0, 1, 2 }〉(〈g, 0, { 1, 2 }〉(x1, x2), 〈#, 1, { 1 }〉),
〈g, 1, { 0, 1, 2 }〉(〈g, 0, { 1, 2 }〉(x1, x2), 〈f, 1, { 1 }〉(x3)),
〈g, 0, { 0, 1, 2 }〉(〈g, 0, { 1, 2 }〉(x1, x2), 〈g, 0, { 1, 2 }〉(x3, x4)).

By Remark 3 and the definition of Pi, i ≥ 0,

P0 ⊆ P1 ⊆ · · · ⊆ NORM∆,τ . (11)

Since NORM∆,τ is a finite set, there is a smallest index n such that Pn = Pn+1.
We call n the evaluation index. From now on, throughout this section, n stands
for the evaluation index.

Lemma 5. Pn = P` for ` > n.

Proof. We proceed by induction on `.
Base Step: ` = n + 1. Then Pn = P` by the definition of the evaluation index

n.
Induction step: Let ` ≥ n + 2, and assume that Pn = Pj for all j such that

n ≤ j ≤ `− 1.
Let s ∈ TΣ with height(s) = `. Then s = f(s1, . . . sm) for some f ∈ Σm, m ≥ 1,

and s1, . . . sm ∈ TΣ. For each i = 1, . . . ,m, we define the tree vi ∈ TΣ as follows.
If height(si) ≤ ` − 2, then let vi = si. Assume that height(si) = ` − 1. By the
induction hypothesis, there is a tree vi ∈ TΣ such that height(vi) ≤ ` − 2 and
epτ (si) = epτ (vi). Let

v = f(v1, . . . , vm).

Then height(v) ≤ `−1. Hence, by (11) epτ (v) ∈ P`−1. By the induction hypothesis,

epτ (v) ∈ Pn. (12)

By Lemma 4,
epτ (f(s1, s2, . . . , sm)) = epτ (f(v1, s2 . . . sm)) =
epτ (f(v1, v2, s3, . . . , sm)) = · · · = epτ (f(v1, v2, . . . , vm)).

Thus epτ (s) = epτ (v). By (12), epτ (s) ∈ Pn. Since s ∈ TΣ with height(s) = ` is
arbitrary, we have P` ⊆ Pn. By (11) P` = Pn.

Lemma 6. The evaluation index n can be computed effectively.

Proof. Let us compute Pi for i = 0, 1, . . . until we find that Pi = Pi+1. As mentioned
above, the procedure stops at some i. By definition, n equals to this i.

By the definition of val(p) for p ∈ TΣ, and the definition of Pi, i ≥ 0, we have
the following.

One-Pass Reductions 647

Lemma 7. SFOI(L) ⊆ M if and only if for each p ∈ Pn with p = 〈f, a, C〉(p1,
. . . , pm), m ≥ 0, if a ∈ Af then C ⊆ Bf .
SFOI(L)∩M 6= ∅ if and only if there is p ∈ Pn such that p = 〈f, a, C〉(p1, . . . , pm),
m ≥ 0, a ∈ Af , and C ∩Bf 6= ∅.

Example 7. We now show that SFOI(L) 6⊆ M and SFOI(L) ∩M 6= ∅. To this
end we need not compute n and Pn. Observe that
〈g, 0, { 1, 2 }〉(〈#, 1, { 1 }〉, 〈#, 1, { 1 }〉) ∈ P2 ⊆ Pn, 0 ∈ Af , and { 1, 2 } 6⊆ Bf .

Hence by Lemma 7, SFOI(L) 6⊆M . Furthermore,
〈g, 0, { 0, 1, 2 }〉(〈g, 0, { 1, 2 }〉(x1, x2), 〈g, 0, { 1, 2 }〉(x3, x4)) ∈ P2 ⊆ Pn, 0 ∈ Af ,

and { 0, 1, 2 } ∩Bf 6= ∅.
Hence by Lemma 7, SFOI(L) ∩M 6= ∅.

Proof. (of Theorem 1) Recall that A = (Σ, A,RA, Af) and B = (Σ, B,RB, Bf) are
total dbtas such that L(A) = L and L(B) = M . Let us compute the evaluation in-
dex n and the set Pn (cf. Lemma 6). For each p ∈ Pn with p = 〈f, a, C〉(p1, . . . , pm),
m ≥ 0, by direct inspection we decide whether a ∈ Af implies C ⊆ Bf . If for each
p ∈ Pn, the answer is yes, then SFOI(L) ⊆ M . Otherwise, SFOI(L) 6⊆ M , see
Lemma 7.

For each p ∈ Pn with p = 〈f, a, C〉(p1, . . . , pm), m ≥ 0, by direct inspection we
decide whether a ∈ Af implies C ∩ Bf 6= ∅. If the answer is yes for some p ∈ Pn,
then SFOI(L) ∩M 6= ∅. Otherwise, SFOI(L) ∩M = ∅, see Lemma 7.

4 Second Order OI Joinability Problem

We show that the second order OI joinability problem is undecidable for left-linear
TRSs.

For an alphabet ∆, we also consider the alphabets ∆ = { a | a ∈ ∆ } and

∆̂ = { â | a ∈ ∆ }. The alphabets ∆, ∆, and ∆̂ are pairwise disjoint. For each word

w ∈ ∆∗, the word w ∈ ∆
∗

is defined as follows.

• If w = λ, then w = λ.

• If w = az for some a ∈ Σ and z ∈ ∆∗, then w = a z.

For each word w ∈ ∆∗, we define the word ŵ ∈ ∆̂∗ in a similar way to w.
Let 〈w, z〉 = 〈(w1, . . . , wn), (z1, . . . , zn)〉 be a PCS over the alphabet ∆. We

associate the ranked alphabet Σ, the recognizable tree languages L and M over Σ,
and the TRS R over Σ with the PCS 〈w, z〉. To this end, we consider the sets ∆,

∆, ∆̂, and Γ = { 1, . . . , n } of unary symbols. Let Σ = Σ0∪Σ1∪Σ2∪Σ4, Σ0 = {#},
Σ1 = ∆ ∪∆ ∪ ∆̂ ∪ Γ, Σ2 = { f, g }, Σ4 = {h}. Let

L = { f(s, t) | s ∈ (TΓ∪{# } − {# }), t ∈ T∆̂∪{# } }

and
M = { g(s, t) | s ∈ T∆∪{# }, t ∈ T∆∪{# }}.

The TRS R consists of the following rules:

648 Sándor Vágvölgyi

• f(x1, x2)→ h(x1, x1, x2, x2), g(x1, x2)→ h(x1, x2, x1, x2),

• k(x1)→ wk(x1), k(x1)→ zk(x1) for k = 1, . . . , n,

• â(x1)→ a(x1), â(x1)→ a(x1) for a ∈ ∆.

Example 8. Let ∆ = { a, b }. Let PCS 〈w, z〉 = 〈(a, ab), (aa, b)〉. Note that 12 is
a solution of the PCS 〈w, z〉. The ranked alphabet Σ consists of

• the nullary symbol #,

• the unary symbols 1, 2, a, b, a, b, â, b̂,

• the binary symbols f, g, and

• the symbol h of rank 4.

The TRS R consists of the following rules:

• f(x1, x2)→ h(x1, x1, x2, x2), g(x1, x2)→ h(x1, x2, x1, x2),

• 1x1 → ax1, 2x1 → abx1, 1x1 → aax1, 2x1 → bx1,

• âx1 → ax1, âx1 → ax1, b̂x1 → bx1, b̂x1 → bx1.

Let

L = { f(s, t) | s ∈ (T{ 1,2,# } − {# }), t ∈ T{ â,̂b,# } }

and

M = { g(s, t) | s ∈ T{ a,b,# }, t ∈ T{ a,b,# }}.

Since 12 is a solution of the PCS 〈w, z〉, we have the following OI reduction se-
quence.

f(12#, ââb̂#)→R h(12#, 12#, ââb̂#, ââb̂#)→R h(a2#, 12#, ââb̂#, ââb̂#)→R

h(aab#, 12#, ââb̂#, ââb̂#)→R h(aab#, aa2#, ââb̂#, ââb̂#)→R

h(aab#, aab#, ââb̂#, ââb̂#)→R h(aab#, aab#, aâb̂#, ââb̂#)→R

h(aab#, aab#, aab̂#, ââb̂#)→R h(aab#, aab#, aab#, ââb̂#)→R

h(aab#, aab#, aab#, aâb̂#)→R h(aab#, aab#, aab#, aab̂#)→R

h(aab#, aab#, aab#, aab#).

Consider the OI-reduction sequence

g(aab#, aab#)→R h(aab#, aab#, aab#, aab#).

Thus, the terms f(12#, ââb̂#) and g(aab#, aab#) are OI joinable. Consequently
L and M are OI joinable.

Lemma 8. The PCS 〈w, z〉 has a solution if and only if L and M are OI joinable.

One-Pass Reductions 649

Proof. Assume that the index sequence k1, . . . , k` is a solution of the PCS 〈w, z〉.
Then

wk1 . . . wk` = zk1 . . . zk` . (13)

We have the OI-reduction sequence
(a) f(k1 . . . k`#, ŵk1 . . . ŵk`#)→R

h(k1 . . . k`#, k1 . . . k`#, ŵk1 . . . ŵk`#, ŵk1 . . . ŵk`#)→R

h(wk1k2 . . . k`#, k1 . . . k`#, ŵk1 . . . ŵk`#, ŵk1 . . . ŵk`#)→∗R
h(wk1 . . . wk`#, k1 . . . k`#, ŵk1 . . . ŵk`#, ŵk1 . . . ŵk`#)→R

h(wk1 . . . wk`#, zk1k2 . . . k`#, ŵk1 . . . ŵk`#, ŵk1 . . . wk̂`#)→∗R
h(wk1 . . . wk`#, zk1 . . . zk`#, ŵk1 . . . ŵk`#, ŵk1 . . . ŵk`#)→∗R
h(wk1 . . . wk`#, zk1 . . . zk`#, wk1ŵk2 . . . ŵk`#, ŵk1 . . . ŵk`#)→∗R
h(wk1 . . . wk`#, zk1 . . . zk`#, wk1 . . . wk`#, ŵk1 . . . ŵk`#)→∗R
h(wk1 . . . wk`#, zk1 . . . zk`#, wk1 . . . wk`#, wk1ŵk2 . . . ŵk`#)→∗R
h(wk1 . . . wk`#, zk1 . . . zk`#, wk1 . . . wk`#, wk1 . . . wk`#).

We also have the OI-reduction sequence
(b) g(wk1 . . . wk`#, wk1 . . . wk`#)→R

h(wk1 . . . wk`#, wk1 . . . wk`#, wk1 . . . wk`#, wk1 . . . wk`#).
By (13),

h(wk1 . . . wk`#, zk1 . . . zk`#, wk1 . . . wk`#, wk1 . . . wk`#) =
h(wk1 . . . wk`#, wk1 . . . wk`#, wk1 . . . wk`#, wk1 . . . wk`#).

Hence SFOI(L) ∩ SFOI(M) 6= ∅. That is, L and M are OI joinable.
Conversely, assume that L and M are OI joinable, i.e., SFOI(L)∩SFOI(M) 6=

∅. Consequently, there are u ∈ SFOI(L) ∩ SFOI(M), 1 ≤ k1, . . . , k` ≤ n, ` ≥ 1,

s ∈ T∆̂∪{# }, t1 ∈ ∆∗, and t2 ∈ ∆
∗

(14)

such that
f(k1 . . . k`#, s) ⇒

R,OI
u (15)

and
g(t1#, t2#) ⇒

R,OI
u. (16)

We write (15) in the form
(c) f(k1 . . . k`#, s)→R,OI h(k1 . . . k`#, k1 . . . k`#, s, s)⇒R,OI u =

h(u1#, u2#, u3#, u4#) for some u1, u2, u3, u4 ∈ Σ∗. Here
(d) k1 . . . k`#⇒R,OI u1# and k1 . . . k`#⇒R,OI u2#, and
(e) s⇒R,OI u3# and s⇒R,OI u4#.

We write (16) in the form
(f) g(t1#, t2#)→R,OI h(t1#, t2#, t1#, t2#) = u. Hence

t1# = u1# = u3# and t2# = u2# = u4#. (17)

Consequently, by (14) and (e), we get that s = û3# and u3# = u4#. Hence, by
(17), we have

t1 = t2. (18)

650 Sándor Vágvölgyi

By (d) and (17),

k1 . . . k`# ⇒
R,OI

t1# and k1 . . . k`# ⇒
R,OI

t2#.

Since t1 ∈ ∆∗ and t2 ∈ ∆
∗
,

wk1 . . . wk` = t1 and zk1 . . . zk` = t2. (19)

By (18) and (19), we have

wk1 . . . wk` = zk1 . . . zk` .

Consequently (13) holds. Hence the index sequence k1, . . . , k` is a solution of the
PCS 〈w, z〉.

Theorem 2. For left-linear TRSs, the second order OI joinability problem is un-
decidable.

Proof. Let 〈w, z〉 be a Post Correspondence System over the alphabet ∆. We
associated the ranked alphabet Σ, the recognizable tree languages L and M over
Σ and the TRS R over Σ with the PCS 〈w, z〉. By Lemma 8, the PCS 〈w, z〉 has
a solution if and only if L and M are OI joinable. By Proposition 2, there is no
algorithm which takes a PCS 〈w, z〉 as input and determines whether or not there
is a solution of the PCS 〈w, z〉.

5 Second Order IO Common Ancestor Problem

We show that the second order common IO ancestor problem is undecidable for
right-linear TRSs.

Let 〈w, z〉 = 〈(w1, . . . , wn), (z1, . . . , zn)〉 be a Post Correspondence System over
the alphabet ∆. We associate the ranked alphabet Σ, the recognizable tree lan-
guages L and M over Σ, and the TRS R over Σ with the PCS 〈w, z〉. To this end,
we consider the sets ∆, ∆ = { d | d ∈ ∆ }, Γ = { 1, . . . , n }, and Γ = { 1, . . . , n }
of unary symbols. Let Σ = Σ0 ∪ Σ1 ∪ Σ2 ∪ Σ4, Σ0 = {# }, Σ1 = ∆ ∪∆ ∪ Γ ∪ Γ,
Σ2 = { g, h }, Σ4 = { f }.
The TRS R consists of the following rules:

• f(x1, x1, x2, x2)→ g(x1, x2), f(x1, x2, x1, x2)→ h(x1, x2),

• kx1 → kx1, kx1 → wkx1, kx1 → zkx1 for k = 1, . . . , n,

• dx1 → dx1 for d ∈ ∆.

Note that R is right-linear.
Let L = { g(s, t) | s ∈ (TΓ∪{# } − {# }), t ∈ T∆∪{# } } and M = {h(s, t) | s ∈
T∆∪{# }, t ∈ T∆∪{# } }.

One-Pass Reductions 651

Example 9. Let ∆ = { a, b }. Let PCS 〈w, z〉 = 〈(a, ab), (aa, b)〉. Note that 12 is
a solution of the PCS 〈w, z〉. The ranked alphabet Σ consists of

• the nullary symbol #,

• the unary symbols 1, 2, a, b, 1, 2, a, b,

• the symbol f of rank 4, and the binary symbols g and h.

The TRS R consists of the following rules:

• f(x1, x1, x2, x2)→ g(x1, x2), f(x1, x2, x1, x2)→ h(x1, x2),

• 1x1 → ax1, 2x1 → abx1,

• 1x1 → aax1, 2x1 → bx1,

• 1x1 → 1x1, 2x1 → 2x1,

• ax1 → ax1, bx1 → bx1.

Furthermore

L = { g(s, t) | s ∈ (T{ 1,2,# } − {# }), t ∈ T{ a,b,# } }

and
M = {h(s, t) | s ∈ T{ a,b,# }, t ∈ T{ a,b,# } }.

Since 12 is a solution of the PCS 〈w, z〉, we have the following two IO reduction
sequences.

f(12#, 12#, aab#, aab#)→R f(12#, 12#, aab#, aab#)→R

f(12#, 12#, aab#, aab#)→R f(12#, 12#, aab#, aab#)→R

f(12#, 12#, aab#, aab#)→R f(12#, 12#, aab#, aab#)→R g(12#, aab#)
and
f(12#, 12#, aab#, aab#)→R f(1ab#, 12#, aab#, aab#)→R

f(aab#, 12#, aab#, aab#)→R f(aab#, 1b#, aab#, aab#)→R

f(aab#, aab#, aab#, aab#)→R h(aab#, aab#).
Thus f(12#, 12#, aab#, aab#) is a common IO ancestor of the terms g(12#, aab#)
and h(aab#, aab#). Consequently, the tree languages L and M have a common IO
one-pass ancestor.

Lemma 9. The PCS 〈w, z〉 has a solution if and only if L and M have a common
IO ancestor.

Proof. Assume that the index sequence k1, . . . , k` is a solution of the PCS 〈w, z〉.
Then

wk1 . . . wk` = zk1 . . . zk` . (20)

Furthermore, we have the IO-reduction sequences
f(k1 . . . k`#, k1 . . . k`#, wk1 . . . wk`#, zk1 . . . zk`#)→R

652 Sándor Vágvölgyi

f(k1 . . . k`−1k`#, k1 . . . k`#, wk1 . . . wk`#, zk1 . . . zk`#)→∗R
f(k1 . . . k`#, k1 . . . k`#, wk1 . . . wk`#, zk1 . . . zk`#)→∗R
f(k1 . . . k`#, k1 . . . k`#, wk1 . . . wk`−1

wk`#, zk1 . . . zk`#)→∗R
f(k1 . . . k`#, k1 . . . k`#, wk1 . . . wk`#, zk1 . . . zk`#)→R

g(k1 . . . k`#, wk1 . . . wk`#)
and

f(k1 . . . k`#, k1 . . . k`#, wk1 . . . wk`#, zk1 . . . zk`#)→R

f(k1 . . . k`−1wk`#, k1 . . . k`#, wk1 . . . wk`#, zk1 . . . zk`#)→∗R
f(wk1 . . . wk`#, k1 . . . k`#, wk1 . . . wk`#, zk1 . . . zk`#)→∗R
f(wk1 . . . wk`#, k1 . . . k`−1zk`#, wk1 . . . wk`#, zk1 . . . zk`#)→∗R
f(wk1 . . . wk`#, zk1 , . . . , zk`#, wk1 . . . wk`#, zk1 . . . zk`#)→R

h(wk1 . . . wk`#, zk1 , . . . , zk`#) = h(wk1 . . . wk`#, wk1 . . . wk`#).
Hence g(k1 . . . k`#, wk1 . . . wk`#) ∈ L and h(wk1 . . . wk`#, wk1 . . . wk`#) ∈M have
a common ancestor.

Conversely, assume that p ∈ TΣ(X) is a common ancestor of g(k1 . . . k`#, q) ∈ L
with 1 ≤ k1, . . . , k` ≤ n, ` ≥ 1,

q ∈ T∆∪{# } (21)

and h(s, t) ∈M with
s ∈ T∆∪{# } (22)

and
t ∈ T∆∪{# }. (23)

Then p is a ground term. Hence

p = f(p1, p2, p3, p4) for some p1, p2, p3, p4 ∈ TΣ.

Furthermore, there are IO one-pass reduction sequences
f(p1, p2, p3, p4)→∗R f(k1 . . . k`#, k1 . . . k`#, q, q)→R g(k1 . . . k`#, q),

and
f(p1, p2, p3, p4)→∗R f(s, t, s, t)→R h(s, t).

Here
(a) p1⇒R,IO k1 . . . k`#, (b) p1⇒R,IO s,
(c) p2⇒R,IO k1 . . . k`#, (d) p2⇒R,IO t,
(e) p3⇒R,IO q and p3⇒R,IO s, and (f) p4⇒R,IO q and p4⇒R,IO t.

Consequently, (g) p1 ∈ TΓ∪{# }, p2 ∈ TΓ∪{# }, p3 ∈ T∆∪{# }.
We proceed as follows.

(h) p1 = k1 . . . k`# by (a) and (g).
(i) p2 = k1 . . . k`# by (c) and (g).
(j) s = wk1 . . . wk`# by (22), (b), and (h).
(k) t = zk1 . . . zk`# by (23), (d), and (i).
(l) q = s by (21), (22), (e), and (g).
(m) q = t by (21), (23), and (f).
(n) s = t by (l) and (m).

By (j), (k), and (n),
wk1 . . . wk`# = zk1 . . . zk`#.

One-Pass Reductions 653

Thus (20) holds. Hence the index sequence k1, . . . , k` is a solution of the PCS
〈w, z〉.

Theorem 3. For right-linear TRSs, the second order common IO ancestor problem
is undecidable.

Proof. Let 〈w, z〉 be a Post Correspondence System over the alphabet ∆. We
associated the ranked alphabet Σ, the recognizable tree languages L and M over
Σ, and the TRS R over Σ with the PCS 〈w, z〉. By Lemma 9, the PCS 〈w, z〉 has
a solution if and only if L and M have a common IO one-pass reduction ancestor.
By Proposition 2, there is no algorithm which takes a PCS 〈w, z〉 as input and
determines whether or not there is a solution of the PCS 〈w, z〉.

6 Conclusion

We summed up the existing results in the literature and our contribution in Table
1.

We conjecture that for right-linear TRSs, the second order IO reachability prob-
lem and the second order common OI ancestor problem are decidable. We raise
the following open problems.

Problem 1. Given a TRS R and a recognizable tree language L, is it decidable
whether SFIO(L) is recognizable and whether SFOI(L) is recognizable?

For any linear TRS R, ⇒R,IO is equal to ⇒R,OI . Hence for any linear TRS R
and recognizable tree language L, SFIO(L) = SFOI(L). Therefore, we raise the
following question.

Problem 2. Given a TRS R and a recognizable tree language L, is it decid-
able whether SFIO(L) ⊆ SFOI(L), whether SFOI(L) ⊆ SFIO(L), and whether
SFIO(L) = SFOI(L)?

References

[1] Baader, F. and Nipkow, T. Term Rewriting and All That, Cambridge Univer-
sity Press, Cambridge, United Kingdom, 1998.

[2] Van Den Brand, M., Klint, P., and Vinju, J. J. Term rewriting with traversal
functions. ACM Transactions on Software Engineering and Methodology 12(2):
152-190 (2003).

[3] Bravenboer, M., Kalleberg, K. T., Vermaas R., and Visser E. Stratego/XT
0.17. A language and toolset for program transformation. Sci. Comput. Pro-
gram. 72(1-2): 52-70 (2008).

654 Sándor Vágvölgyi

[4] Dauchet, M., De Comité, F. A Gap Between Linear and Non Linear Term-
Rewriting Systems. In Lescanne, P editor, Rewriting Techniques and Applica-
tions, RTA-87, Proceedings. Lecture Notes in Computer Science 256 Springer
1987, pages 95-104.

[5] Fülöp, Z., Jurvanen, E., Steinby, M., and Vágvölgyi, S. On one-pass term
rewriting. In Brim, L., Gruska, J., Zlatuska, J. editors, Mathematical Foun-
dations of Computer Science, 1998 Lecture Notes in Computer Science, 1450,
Springer Publishing Company, Berlin, 1998, pages 248-256; see also in Acta
Cybernetica, 14 (1999) 83-98.

[6] Fülöp, Z. and Vágvölgyi, S. A Characterization of Irreducible Sets Modulo
Left-Linear Term Rewriting Systems by Tree Automata, Fundamenta Infor-
maticae, XIII (1990) 211-226.

[7] Gécseg, F. and Steinby, M. Tree Automata (Akadémiai Kiadó, Budapest,
1984).

[8] Gécseg, F. and Steinby, M. Tree languages. In G. Rozenberg and A. Salomaa,
editors, Beyond Words, volume 3 of Handbook of Formal Languages, chapter
1, pages 1-68. Springer-Verlag, Berlin, 1997.

[9] Genet, T., Reachability analysis of rewriting for software verification, Habili-
tation document, 2009.
http://www.irisa.fr/celtique/genet/Publications/habilitation.pdf.

[10] Gilleron, R., Tison, S., Regular Tree Languages and Rewrite Systems. Funda-
menta Informaticae 24 (1995) 157-174.

[11] Harrison, M. Introduction to Formal Language Theory, Addison-Wesley Pub-
lishing Company, Boston, MA, USA 1978.

[12] Seynhaeve, F., Tison, S., Tommasi, M., Homomorphisms and Concurrent Term
Rewriting. In Ciobanu, G., Paun, G. editors Fundamentals of Computation
Theory, 12th International Symposium, FCT ’99, Iasi, Romania, 1999, Pro-
ceedings. Springer 1999 Lecture Notes in Computer Science 1684 (1999) pages
475-487.

[13] J. Ouaknine, J., Potapov I., Worrell, J., Reachability Problems - 8th Inter-
national Workshop, RP 2014, Oxford, UK, September 22-24, 2014. Proceed-
ings. Lecture Notes in Computer Science 8762, Springer 2014, ISBN 978-3-
319-11438-5.

[14] Stratego/XT Manual

http://releases.strategoxt.org/strategoxt-manual/unstable/manual/one-
page/index.html#tutorial-introduction.

One-Pass Reductions 655

[15] Visser, E. Program Transformation with Stratego/XT: Rules, Strategies,
Tools, and Systems in Stratego/XT 0.9. In C. Lengauer, D. S. Batory, C. Con-
sel, Odersky, M. editor, Domain-Specific Program Generation, International
Seminar, Dagstuhl Castle, Germany, March 23-28, 2003, Revised Papers, Lec-
ture Notes in Computer Science 3016 pages 216-238 Springer 2004.

Received 5th March 2014

